JP5380671B2 - Glass raw material melting method, melting apparatus, and glass manufacturing apparatus - Google Patents

Glass raw material melting method, melting apparatus, and glass manufacturing apparatus Download PDF

Info

Publication number
JP5380671B2
JP5380671B2 JP2006126539A JP2006126539A JP5380671B2 JP 5380671 B2 JP5380671 B2 JP 5380671B2 JP 2006126539 A JP2006126539 A JP 2006126539A JP 2006126539 A JP2006126539 A JP 2006126539A JP 5380671 B2 JP5380671 B2 JP 5380671B2
Authority
JP
Japan
Prior art keywords
glass
raw material
melt
glass melt
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006126539A
Other languages
Japanese (ja)
Other versions
JP2007297239A (en
Inventor
哲司 矢野
徹 伊勢田
千禾夫 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Original Assignee
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC filed Critical Tokyo Institute of Technology NUC
Priority to JP2006126539A priority Critical patent/JP5380671B2/en
Publication of JP2007297239A publication Critical patent/JP2007297239A/en
Application granted granted Critical
Publication of JP5380671B2 publication Critical patent/JP5380671B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B3/00Charging the melting furnaces
    • C03B3/02Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet
    • C03B3/026Charging the melting furnaces combined with preheating, premelting or pretreating the glass-making ingredients, pellets or cullet by charging the ingredients into a flame, through a burner or equivalent heating means used to heat the melting furnace
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

本発明は、板ガラス、びんガラス、繊維ガラス、電気ガラス等のガラス製品を、工業的に製造するためのガラス原料溶解方法および溶解装置、ならびにガラス製造装置に関する。   The present invention relates to a glass raw material melting method and melting apparatus for industrially producing glass products such as plate glass, bottle glass, fiber glass, and electric glass, and a glass manufacturing apparatus.

従来、ガラス原料を溶解するガラス溶解窯(以下、「シーメンス窯」という)は、100年以上前にF.シーメンスにより発明され、基本的設計思想は現在でも踏襲され使用されている(例えば、非特許文献1参照)。現行の一部のシーメンス窯には、蓄熱室または換熱室と呼ばれる熱交換装置が設けられ、燃焼用空気の予熱に使用される。そして、加熱用エネルギー源としては、主として重油または天然ガスなどの化石燃料が使用されている。化石燃料は、予熱された燃焼用空気とともに、シーメンス窯内に滞留しているガラス融液の上部空間で燃焼させられ、その輻射熱によってガラス原料やガラス融液が加熱される。このガラス融液は、最高1600℃程度まで加熱される。   Conventionally, glass melting kilns (hereinafter referred to as “Siemens kilns”) for melting glass raw materials have been manufactured by F.S. Invented by Siemens, the basic design concept is still followed and used (for example, see Non-Patent Document 1). Some current Siemens kilns are provided with a heat exchange device called a heat storage chamber or a heat exchange chamber, and are used for preheating combustion air. As a heating energy source, fossil fuels such as heavy oil or natural gas are mainly used. The fossil fuel is burned in the upper space of the glass melt staying in the Siemens kiln together with the preheated combustion air, and the glass raw material and the glass melt are heated by the radiant heat. This glass melt is heated to a maximum of about 1600 ° C.

所定の組成を有するガラス製品を得るため、粉末状ガラス原料の混合物(以下、「バッチ」と呼ぶ)がシーメンス窯に供給され、バッチはガラス融液上に堆積して厚い原料層を形成し、長時間をかけて少しずつ溶解される。このとき、融液上のバッチは、反応あるいは溶融し易い物質から順次溶け出るため、融点あるいは粘性の高い珪砂あるいは珪砂分を多く含む粒子が取り残され、また、それらが相互に結合するなどして原料層内に難溶融性物質が形成され易い。さらに、同様の理由で、融液形成の初期状態においては、局所的に見るとバッチと組成が異なったガラス融液が生じ、融液の不均質化が生じ易い。   In order to obtain a glass product having a predetermined composition, a mixture of powdered glass raw materials (hereinafter referred to as “batch”) is supplied to a Siemens kiln, and the batch is deposited on the glass melt to form a thick raw material layer, It dissolves little by little over a long time. At this time, since the batch on the melt melts sequentially from the material that is easily reacted or melted, the silica or sand containing a large amount of the melting point or viscosity is left behind, and they are bonded to each other. A hardly fusible substance is easily formed in the raw material layer. Further, for the same reason, in the initial state of the melt formation, a glass melt having a composition different from that of the batch is generated locally, and the melt is likely to be inhomogeneous.

このような難溶融性物質の形成や融液の不均質化は、得られるガラス製品に未溶解欠点(ブツなど)、不均質欠点(ムラ、スジなど)などの欠陥をもたらす原因となる。さらに、このような欠陥を低減させるために、従来は、例えば、板ガラス等の製造においては3〜5日間に及ぶ極めて長期間にわたる溶融状態の保持を必要とし、窯の大規模化と膨大なエネルギー消費が避けられない。また、従来は、ガラス原料の溶解と気泡の除去(清澄)は同一窯内で行うように設計されているため、清澄過程を経た融液と未清澄の融液とが窯の内部で混ざり合うなど、効率的な清澄が行われないおそれがある。さらに、シーメンス窯は熱容量が大きいため、一定の品種のガラス製品を大量に生産する大規模大量生産には向いているが、少量多品種製品の機動的な生産には対応できない問題がある。   Such formation of a hardly-fusible substance and heterogeneity of the melt cause defects such as undissolved defects (such as blisters) and inhomogeneous defects (such as unevenness and streaks) in the obtained glass product. Furthermore, in order to reduce such defects, conventionally, for example, in the production of sheet glass or the like, it is necessary to maintain a molten state for an extremely long period of 3 to 5 days, and the large-scale kiln and enormous energy are required. Consumption is inevitable. Conventionally, melting of glass raw material and removal of bubbles (clarification) are designed to be performed in the same kiln, so the melt that has undergone the clarification process and the unclear melt are mixed inside the kiln. There is a risk that efficient clarification may not be performed. Furthermore, the Siemens kiln has a large heat capacity, so it is suitable for large-scale mass production that produces a large amount of glass products of a certain variety, but there is a problem that it cannot cope with the agile production of a small variety of products.

また、高融点物質の加熱方法として、熱プラズマを利用して溶解する技術が開発されている。具体的には、移送式プラズマ溶融によって石英ガラスを製造しようとするものである。逆の極性を持つ一対の電極(アノードとカソード)が形成するプラズマアークの間に生じる熱プラズマにより原料を溶解する方法である(例えば特許文献1参照)。しかし複数成分からなるガラスの溶解に用いられた例はない。   In addition, as a method for heating a high melting point material, a technique of melting using thermal plasma has been developed. Specifically, quartz glass is to be manufactured by transfer plasma melting. In this method, the raw material is melted by thermal plasma generated between plasma arcs formed by a pair of electrodes (anode and cathode) having opposite polarities (see, for example, Patent Document 1). However, there is no example used for melting glass composed of a plurality of components.

そこで、ガラス融液上にバッチが厚く堆積しないように、バッチを直径3〜8mm程度のペレット状に加工し、これを連続的に燃焼バーナーから射出することにより高温に加熱してからガラス融液上に供給する技術が開発されている(例えば、特許文献2参照)。また、ガラス融液室上部に設けられた燃焼室上部から微粉状のバッチを連続供給し、燃焼炎で加熱すると共に燃焼炎の流れによりバッチを融液表面に強く打ち込む技術も開発されている(例えば、特許文献3参照)。しかし、これらいずれの方法でもガラス融液上の原料層の形成は避けられず顕著な効果を得ることは難しい。   Therefore, the batch is processed into pellets having a diameter of about 3 to 8 mm so that the batch does not accumulate on the glass melt, and the glass melt is heated to a high temperature by continuously injecting it from the combustion burner. A technique for supplying the above has been developed (see, for example, Patent Document 2). Also, a technology has been developed in which a fine powder batch is continuously supplied from the upper part of the combustion chamber provided in the upper part of the glass melt chamber, heated by the combustion flame and strongly driven into the melt surface by the flow of the combustion flame ( For example, see Patent Document 3). However, in any of these methods, formation of the raw material layer on the glass melt is unavoidable and it is difficult to obtain a remarkable effect.

特開2002−356337号公報(請求項1、図1および図5JP 2002-356337 A (Claim 1, FIG. 1 and FIG. 5) 米国特許第 4,183,725号明細書(請求項1、図1、本文)US Pat. No. 4,183,725 (Claim 1, FIG. 1, text) 米国特許第 5,672,190号明細書(請求項1、図1)US Pat. No. 5,672,190 (Claim 1, FIG. 1) 山根正之ほか編「ガラス工学ハンドブック」朝倉書店(1999) 第303頁〜第308頁Masayuki Yamane et al. “Glass Engineering Handbook”, Asakura Shoten (1999), pages 303-308

本発明の目的は、前記ガラス製品に未溶解欠点、不均質欠点などの欠陥をもたらす、従来のガラス原料の溶解方法および溶解装置における問題を解消することにある。   An object of the present invention is to eliminate the problems in the conventional glass raw material melting method and melting apparatus that cause defects such as undissolved defects and inhomogeneous defects in the glass product.

また、本発明の目的は、窯の大規模化と膨大なエネルギー消費を大幅に抑制し、小規模かつ小さいエネルギー消費量で効率的にガラス原料を溶解させることができるガラス原料の溶解方法および溶解装置を提供することにある。   In addition, the object of the present invention is to greatly suppress the enlarging and enormous energy consumption of the kiln, and to dissolve the glass raw material efficiently and with a small amount of small energy consumption, and to dissolve the glass raw material To provide an apparatus.

また、本発明の目的は、ガラス融液の効率的な清澄が可能なガラス製造装置を提供することにある。   Moreover, the objective of this invention is providing the glass manufacturing apparatus which can clarify a glass melt efficiently.

また、本発明の目的は、少量多品種製品の機動的な生産に対応できるガラス製造装置を提供することにある。   Moreover, the objective of this invention is providing the glass manufacturing apparatus which can respond to the flexible production of a small amount multi-product type.

前記課題を解決するため、本発明は以下の発明を提供する。
(1)複数の成分から成るガラスを製造するためのガラス原料をガラス融液部において溶解する際に、ガラス原料から成る、個々の微細混合粒子を、最終製品であるガラスの組成に対応した成分比率に近い構成比率で調製する工程;該ガラス原料から成る微細混合粒子を気相雰囲気中で加熱して液相体を形成する工程;成された液相体をガラス融液部に滞留するガラス融液上に降下させて供給する工程;ならびにガラス融液部からガラス融液を融液状態で排出する工程;を含むことを特徴とするガラス原料の溶解方法;
(2)加熱気相雰囲気が熱プラズマアークおよび/または酸素燃焼炎によって形成されている(1)に記載のガラス原料の溶解方法;
(3)ガラス融液は、微細混合粒子から形成された液相体が降下する位置およびその近傍を熱プラズマアークおよび/または酸素燃焼炎によって加熱される(1)または(2)に記載のガラス原料の溶解方法;
(4)熱プラズマが形成するプラズマの周囲から中心に向けて、微細混合粒子を供給する(2)または(3)に記載のガラス原料の溶解方法;
(5)酸素燃焼炎を形成する燃焼炎ノズルの中央部に微細混合粒子を供給する(2)に記載のガラス原料の溶解方法;
(6)加熱気相雰囲気の温度が1600℃以上である(1)〜(5)のいずれかに記載のガラス原料の溶解方法;
(7)ガラス原料の一部を構成するガラスカレットの一部あるいは全部を、加熱気相雰囲気中を通過させずに、直接、ガラス融液上に供給する(1)〜(6)のいずれかに記載のガラス原料の溶解方法;
(8)複数の成分から成るガラスを製造するためのガラス原料の溶解装置であって、該ガラス原料から成り、最終製品であるガラスの組成に対応した成分比率に近い構成比率で調製された、個々の微細混合粒子を加熱して液相体を形成するための加熱気相雰囲気を形成する原料加熱部;成された液相体が上部に供給されるガラス融液を滞留させるガラス融液部;ならびにガラス融液部からガラス融液を融液状態で排出するためのガラス融液排出口、を含むことを特徴とするガラス原料の溶解装置;
(9)加熱気相雰囲気を形成する原料加熱部が熱プラズマ発生装置および/または酸素燃焼炎ノズルによりなる(8)に記載のガラス原料の溶解装置;
(10)ガラス融液部がガラス融液の補助加熱手段を有する(8)または(9)に記載のガラス原料の溶解装置;
(11)(8)〜(10)のいずれかに記載のガラス原料の溶解装置と、該ガラス原料の溶解装置のガラス融液排出口に連設された気泡除去槽とを備えることを特徴とするガラス製造装置;
(12)ガラス原料の溶解装置のガラス融液排出口から、気泡除去が不完全な状態でガラス融液を排出し、排出されたガラス融液を気泡除去槽に導入するようにした(11)に記載のガラス製造装置;
(13)ガラス融液部がガラス融液の撹拌手段を有する(8)または(9)に記載のガラス原料の溶解装置;ならびに
(14)(8)〜(13)のいずれかに記載のガラス原料の溶解装置と、該ガラス原料の溶解装置の気体排出経路に連設されたガラス原料噴霧乾燥装置とを備えることを特徴とするガラス製造装置、
である。
In order to solve the above problems, the present invention provides the following inventions.
(1) When a glass raw material for producing a glass composed of a plurality of components is melted in the glass melt part, individual fine mixed particles made of the glass raw material are components corresponding to the composition of the glass as the final product. a step of preparing a structure ratio close to the ratio; step to form a heated liquid body a finely mixed particles made of the glass raw material in a gas phase atmosphere; form made liquid phase body to stay in the glass melt portion A method of melting a glass raw material, comprising : a step of lowering and supplying a glass melt ; and a step of discharging the glass melt from the glass melt portion in a melt state ;
(2) The glass raw material melting method according to (1), wherein the heated gas phase atmosphere is formed by a thermal plasma arc and / or an oxyfuel flame;
(3) The glass melt according to (1) or (2), wherein the glass melt is heated by a thermal plasma arc and / or an oxycombustion flame at a position where the liquid phase formed from fine mixed particles descends and in the vicinity thereof. Melting method of raw materials;
(4) The method for melting glass raw material according to (2) or (3), wherein fine mixed particles are supplied from the periphery of the plasma formed by thermal plasma toward the center;
(5) The method for melting a glass raw material according to (2), wherein fine mixed particles are supplied to a central portion of a combustion flame nozzle that forms an oxyfuel combustion flame;
(6) The melting method of the glass raw material according to any one of (1) to (5), wherein the temperature of the heated gas phase atmosphere is 1600 ° C. or higher;
(7) Any of (1) to (6), wherein a part or all of the glass cullet constituting a part of the glass raw material is directly supplied onto the glass melt without passing through the heated gas phase atmosphere. A method for melting a glass raw material according to claim 1,
(8) A glass raw material melting apparatus for producing glass composed of a plurality of components, comprising the glass raw material, and prepared at a composition ratio close to the component ratio corresponding to the composition of the glass as the final product, glass melt to dwell the glass melt form made liquid phase body is supplied to the upper; material heating portion to form the heating vapor atmosphere to form a liquid phase body by heating the individual fine mixed particles And a glass melt discharge port for discharging the glass melt from the glass melt part in a melt state ;
(9) The glass raw material melting apparatus according to (8), wherein the raw material heating unit for forming the heated gas phase atmosphere is formed of a thermal plasma generator and / or an oxyfuel flame nozzle;
(10) The glass raw material melting apparatus according to (8) or (9), wherein the glass melt part has auxiliary heating means for the glass melt;
(11) The glass raw material melting apparatus according to any one of (8) to (10), and a bubble removing tank connected to a glass melt outlet of the glass raw material melting apparatus. Glass manufacturing equipment;
(12) The glass melt is discharged from the glass melt outlet of the glass raw material melting apparatus in an incomplete bubble removal state, and the discharged glass melt is introduced into the bubble removal tank (11). A glass manufacturing apparatus according to claim 1;
(13) The glass raw material melting device according to (8) or (9), wherein the glass melt part has a means for stirring the glass melt; and (14) The glass according to any one of (8) to (13) A glass production apparatus comprising: a raw material melting apparatus; and a glass raw material spray drying apparatus connected to a gas discharge path of the glass raw material melting apparatus;
It is.

本発明のガラス原料の溶解方法およびガラス製造装置においては、たとえば粒径0.001〜0.5mmの微細粒子状の小さい単位で混合されたガラス原料が溶解されるために、未溶解欠点の発生やガラス融液の不均質性が抑制されるとともに、ガラス原料の溶解の飛躍的な時間短縮が可能となり、比較的小規模かつ少ないエネルギー消費量で従来の大規模なガラス溶解窯と同等のガラス溶解能力を発揮することができる。   In the glass raw material melting method and glass manufacturing apparatus of the present invention, for example, glass raw materials mixed in small units of fine particles having a particle size of 0.001 to 0.5 mm are melted, so that undissolved defects are generated. And glass melt inhomogeneity are suppressed, and it is possible to drastically shorten the melting time of glass raw materials. The glass is equivalent to a conventional large-scale glass melting furnace with a relatively small scale and low energy consumption. Dissolving ability can be demonstrated.

また、本発明においては、ガラス原料溶解の飛躍的な時間短縮と、ガラス製造装置の大幅な小型化が可能になるため、建設費の削減と、ガラス製造装置が寿命を迎えたときの廃棄物の低減が可能となる。   Further, in the present invention, it is possible to dramatically reduce the melting time of the glass raw material and to greatly reduce the size of the glass manufacturing apparatus, thereby reducing construction costs and waste when the glass manufacturing apparatus reaches the end of its life. Can be reduced.

さらに、本発明においては、未溶解欠点の発生や融液の不均質化が抑制されるため、ガラス製造歩留まりの向上、ガラス製品品質の向上、さらには、ガラス製造コストの低減が可能となる。   Furthermore, in the present invention, since the occurrence of undissolved defects and the inhomogeneity of the melt are suppressed, the glass production yield can be improved, the glass product quality can be improved, and the glass production cost can be reduced.

また、本発明においては、ガラス製造装置の大幅な小型化が可能になるために、ガラス製品の少量多品種化において、組成変更に伴う原料と消費エネルギーの無駄が大幅に低減できる。   Further, in the present invention, since the glass manufacturing apparatus can be greatly reduced in size, waste of raw materials and consumed energy accompanying the composition change can be greatly reduced in the case of a small variety of glass products.

以下、本発明のガラス原料の溶解方法および溶解装置、ならびにガラス製造装置について詳細に説明する。   The glass raw material melting method and melting apparatus and glass manufacturing apparatus of the present invention will be described in detail below.

本発明のガラス原料の溶解方法は、複数(通常3成分以上)の成分から成るガラスを製造するためのガラス原料を溶解してガラス融液を製造する方法である。用いられるガラス原料は、主原料として珪砂、無水硼酸、メタ燐酸カルシウム、硝酸カルシウム、硝酸バリウム、酸化アルミニウム、酸化ネオジウム、長石などの微粉原料、および水溶性の硝酸ナトリウム、硝酸カリウム、硫酸ナトリウムなどを含む微細混合粒子が使用される。微粉のガラスカレットも微細混合粒子に混合しうる。微細混合粒子の成分組成は、ガラス製品に求められる熱膨張係数、成形温度、化学的耐久性等の特性に応じて、適宜決定されうる。本発明においては、シリカ成分を主体としないガラス原料にも好適に適用し得、シリカの含量が50モル%未満、たとえば0〜20モル%であってもよい。微細混合粒子は、短時間で加熱でき発生ガスの放散が容易である点から、粒径が0.5mm(重量平均)以下、原料の微粉化によるコスト上昇と、粒子間の組成変動の低減の点からは、粒径が0.01mm(重量平均)以上であるのが好ましい。   The glass raw material melting method of the present invention is a method for producing a glass melt by melting a glass raw material for producing a glass composed of a plurality of (usually three or more components) components. Glass raw materials used include silica sand, anhydrous boric acid, calcium metaphosphate, calcium nitrate, barium nitrate, aluminum oxide, neodymium oxide, feldspar and other fine powder raw materials, and water-soluble sodium nitrate, potassium nitrate, sodium sulfate, etc. Fine mixed particles are used. Fine glass cullet can also be mixed into the finely mixed particles. The component composition of the fine mixed particles can be appropriately determined according to characteristics such as a thermal expansion coefficient, a molding temperature, and chemical durability required for the glass product. In this invention, it can apply suitably also to the glass raw material which does not mainly have a silica component, and the content of a silica may be less than 50 mol%, for example, 0-20 mol%. Finely mixed particles can be heated in a short time and the emission of the generated gas is easy. Therefore, the particle size is 0.5 mm (weight average) or less. From this point, it is preferable that the particle diameter is 0.01 mm (weight average) or more.

微細混合粒子を構成する微粉原料の粒径は、通常0.001〜0.05mm(1〜50μm)(重量平均)であり、形成される混合粒子毎の組成の変動が少なく、均一な組成の粒子が得られることから、水溶性ではない成分については0.05mm以下であることが好ましい。特に、微細混合粒子の粒径が小さいほど短時間で加熱でき発生ガスの放散が容易である点からは、0.001〜0.03mmの範囲が好ましいが、原料の微粉化によるコスト上昇と、粒子間の組成変動の低減の点からは、粒径が0.005mm以上のものが好ましい。   The particle size of the fine powder material constituting the fine mixed particles is usually 0.001 to 0.05 mm (1 to 50 μm) (weight average), and there is little variation in the composition of each mixed particle to be formed, and the uniform composition From the viewpoint of obtaining particles, the component that is not water-soluble is preferably 0.05 mm or less. In particular, the smaller the particle size of the fine mixed particles, the shorter the heating time and the easier it is to dissipate the generated gas, which is preferably in the range of 0.001 to 0.03 mm. From the viewpoint of reducing composition variation between particles, particles having a particle size of 0.005 mm or more are preferable.

また、これらのガラス原料混合物は、必要に応じて、副原料として清澄剤、着色剤、溶融助剤、乳白剤等を含むことができる。また、これらのガラス原料中の無水硼酸などは、高温時の蒸気圧が比較的高いため加熱により蒸発しやすいことから、最終製品であるガラスの組成よりも余分に混合しておくことが好ましい。   Moreover, these glass raw material mixtures can contain a clarifying agent, a coloring agent, a melting aid, an opacifier, etc. as an auxiliary material as needed. Further, since boric anhydride and the like in these glass raw materials have a relatively high vapor pressure at a high temperature and are likely to evaporate by heating, it is preferable to mix them in excess of the composition of the glass as the final product.

前記ガラス原料を粒子状に成形して微細混合粒子を調製する方法としては、スプレードライ法などの方法が使用でき、ガラス原料を分散溶解させた水溶液を高温雰囲気中に噴霧させて瞬間的に乾燥固化させる方法が好ましい。また、この成形体は最終ガラス製品の成分組成に対応する混合比の原料のみで構成してもよいが、その混合体に更に同一組成のガラスカレット微粉を混合して、これをガラス原料として用いることもできる。   As a method of forming the glass raw material into particles and preparing fine mixed particles, a spray drying method or the like can be used, and an aqueous solution in which the glass raw material is dispersed and dissolved is sprayed in a high-temperature atmosphere and dried instantaneously. A solidification method is preferred. In addition, this molded body may be composed only of raw materials having a mixing ratio corresponding to the component composition of the final glass product, but the mixture is further mixed with glass cullet powder having the same composition and used as a glass raw material. You can also.

また、本発明においては、前記微細混合粒子は加熱気相雰囲気中で加熱される。混合粒子を加熱するための加熱気相雰囲気としては、気相雰囲気で加熱しうるものであれば特に制限されず、各種の加熱炉を使用できるが、好適には移送式直流プラズマ、非移送式直流プラズマ、多相プラズマ、高周波誘導プラズマ等の熱プラズマアーク、酸水素炎、天然ガス−酸素燃焼炎等の酸素燃焼炎、などが使用できる。これらの中でも、効率が高く、大出力が得やすく、設備費が比較的安価で、大気圧下での加熱を行なうことができ、技術的に確立されていて、長時間安定的に使用できるという理由で、特に、多相プラズマ、酸水素炎あるいは天然ガス−酸素燃焼炎を使用することが好ましい。   In the present invention, the fine mixed particles are heated in a heated gas phase atmosphere. The heating gas phase atmosphere for heating the mixed particles is not particularly limited as long as it can be heated in the gas phase atmosphere, and various heating furnaces can be used. Thermal plasma arcs such as direct current plasma, multiphase plasma, and high frequency induction plasma, oxyhydrogen flames, and oxygen combustion flames such as natural gas-oxygen combustion flames can be used. Among these, high efficiency, easy to obtain a large output, relatively low equipment cost, heating under atmospheric pressure, technically established, can be used stably for a long time For this reason, it is particularly preferable to use a multiphase plasma, an oxyhydrogen flame or a natural gas-oxygen combustion flame.

本発明で使用される熱プラズマの作動ガスとしては、アルゴン、酸素、空気、水蒸気などを単独あるいは混合して使用することが好ましい。   As the working gas of the thermal plasma used in the present invention, it is preferable to use argon, oxygen, air, water vapor or the like alone or in combination.

本発明で使用される加熱気相雰囲気への微細混合粒子の供給方法は、熱プラズマノズルの周囲から中心に向けて混合粒子を供給する方法が好ましい。また、加熱気相雰囲気として酸素燃焼炎を用いる場合には、その中央部が最も温度が高いので、酸素燃焼炎を形成する燃焼炎ノズルの中央部に前記混合ガラス原料を供給する。また、加熱気相雰囲気中への混合粒子の供給速度は、通常、1〜200kg/分程度であり、多品種少量生産用の小規模の溶解装置の場合には、0.1〜5kg/分が好ましい。   The method of supplying fine mixed particles to the heated gas phase atmosphere used in the present invention is preferably a method of supplying mixed particles from the periphery of the thermal plasma nozzle toward the center. Further, when an oxyfuel flame is used as the heated gas phase atmosphere, the temperature of the central portion is highest, so the mixed glass raw material is supplied to the central portion of the combustion flame nozzle that forms the oxyfuel flame. In addition, the supply speed of the mixed particles in the heated gas phase atmosphere is usually about 1 to 200 kg / min, and in the case of a small-scale dissolution apparatus for high-mix low-volume production, 0.1 to 5 kg / min. Is preferred.

また、加熱気相雰囲気の温度は、水分、結晶水、硝酸塩(硝酸ナトリウム、硝酸カルシウム等)などの形で混合粒子に含まれる気体成分を迅速にガス化散逸させ、ガラス化反応を相当程度進行させるために、珪砂の溶融温度以上に設定することが好ましく、通常、1600℃以上に設定される。   In addition, the temperature of the heated gas phase atmosphere rapidly dissipates gas components contained in the mixed particles in the form of moisture, crystal water, nitrates (sodium nitrate, calcium nitrate, etc.), and the vitrification reaction proceeds considerably. Therefore, the temperature is preferably set to be equal to or higher than the melting temperature of silica sand, and is usually set to 1600 ° C. or higher.

本発明において、加熱気相雰囲気中で、たとえば加熱気相雰囲気を通過して、加熱された微細混合粒子は液相を形成する。形成された液相体はガラス融液部に滞留するガラス融液上に降下して供給され、引き続き加熱される。微細混合粒子から形成された液相体のガラス融液上への到達位置は、ガラス融液部の一定位置であってもよく、また、微細混合粒子を加熱気相雰囲気に供給する原料供給ノズルの揺動により一カ所に定まらないように分散させてもよい。また、一定位置に到達した微細混合粒子を拡散させるために、定期的にガラス融液の表面を撹拌してもよい。また、ガラス融液全体を撹拌するためのスターラー、バブラーなどの撹拌装置を当該溶解装置内に設け、ガラス化したガラス融液の均質化を促進させることもできる。小型の液中燃焼バーナーを当該溶解装置内に設け、ガラス融液を撹拌してもよい。   In the present invention, the fine mixed particles heated in a heated gas phase atmosphere, for example, passing through the heated gas phase atmosphere, form a liquid phase. The formed liquid phase body is lowered and supplied onto the glass melt staying in the glass melt portion, and subsequently heated. The arrival position of the liquid phase formed from the finely mixed particles on the glass melt may be a fixed position in the glass melt part, and the raw material supply nozzle for supplying the finely mixed particles to the heated gas phase atmosphere It may be dispersed so as not to be fixed in one place by swinging. Further, in order to diffuse the fine mixed particles that have reached a certain position, the surface of the glass melt may be periodically stirred. Further, a stirrer such as a stirrer or bubbler for stirring the entire glass melt may be provided in the melting device to promote homogenization of the vitrified glass melt. A small liquid combustion burner may be provided in the melting apparatus to stir the glass melt.

また、ガラス原料の一部を構成するガラスカレットは、その一部あるいは全部を、前記加熱気相雰囲気中を通過させずに、直接、ガラス融液上に供給してもよい。この場合、ガラスカレットは、他の原料とともに、粒子状に成形してそれを高温の加熱気相雰囲気中に通過させることにより加熱する方法、他の場所で予備的に加熱した後に溶解槽のガラス融液に直接投入することにより加熱する方法などがあるが、微粒のカレットは前者の方法で、粗大なカレットは後者の方法で加熱することが好ましい。また、後者の場合、カレットと加熱気相雰囲気中を通過したガラスとの組成の相違による均質性の低下を回避するため、撹拌装置を当該溶解装置内に設置することが好ましい。   Moreover, you may supply the glass cullet which comprises a part of glass raw material directly on a glass melt, without letting the one part or all part pass in the said heating gaseous-phase atmosphere. In this case, the glass cullet is formed into particles together with other raw materials and heated by passing it through a high-temperature heated gas phase atmosphere. There is a method of heating by directly putting it into the melt, but it is preferable to heat the fine cullet by the former method and the coarse cullet by the latter method. In the latter case, it is preferable to install a stirrer in the melting apparatus in order to avoid a decrease in homogeneity due to a difference in composition between the cullet and the glass that has passed through the heated gas phase atmosphere.

次に、図1に基づいて、本発明のガラス原料の溶解装置について説明する。図1は、本発明に係るガラス原料の溶解装置の基本的構成例を示す模式断面図である。図1に構成を示すガラス原料の溶解装置1は、矩形の炉体1aを有し、ガラス原料が粒子状に成形された微細混合粒子を、炉体内に供給するための原料供給口2と、炉体内を降下する混合粒子を加熱する原料加熱部と、ガラス融液4が滞留するガラス融液部と、ガラス融液部からガラス融液4を排出させるためのガラス融液排出口5とを備える。   Next, the glass raw material melting apparatus of the present invention will be described with reference to FIG. FIG. 1 is a schematic cross-sectional view showing a basic configuration example of a glass raw material melting apparatus according to the present invention. A glass raw material melting apparatus 1 having a configuration shown in FIG. 1 has a rectangular furnace body 1a, and a raw material supply port 2 for supplying fine mixed particles in which the glass raw material is formed into particles into the furnace body, A raw material heating part for heating mixed particles descending in the furnace, a glass melt part in which the glass melt 4 stays, and a glass melt outlet 5 for discharging the glass melt 4 from the glass melt part Prepare.

原料加熱部は、炉体1aの天井を貫通して炉体1a内に突設された1本の酸素燃焼炎ノズル6を備えることができる。このノズルが形成する燃焼炎によって、炉体1aの中心部に加熱気相雰囲気3が形成される。   The raw material heating unit can include one oxyfuel flame nozzle 6 that projects through the ceiling of the furnace body 1a and protrudes into the furnace body 1a. Due to the combustion flame formed by this nozzle, a heated gas phase atmosphere 3 is formed at the center of the furnace body 1a.

原料加熱部は、炉体1aの側壁を貫通して炉体1a内に突設された複数本のアーク電極7を備えることができる。この電極が形成する熱プラズマによって、炉体1aの中心部に加熱気相雰囲気3が形成される。   The raw material heating unit can include a plurality of arc electrodes 7 that project through the side wall of the furnace body 1a and project into the furnace body 1a. A heated gas phase atmosphere 3 is formed in the center of the furnace body 1a by the thermal plasma formed by the electrodes.

この加熱気相雰囲気3の中心部の温度は、水素酸素燃焼炎の場合、約2,800℃、熱プラズマの場合、5,000〜20,000℃である。   The temperature at the center of the heated gas phase atmosphere 3 is about 2,800 ° C. in the case of a hydrogen-oxygen combustion flame, and 5,000-20,000 ° C. in the case of thermal plasma.

原料供給口2は、炉体1aの上部に配置され、ガラス原料が粒子状に成形された微細混合粒子を炉外から導入して、炉体内に所定の供給速度で供給する役割を有する。この原料供給口2は、たとえば、微細混合粒子を、原料加熱部に形成される加熱気相雰囲気3に応じて微細混合粒子の供給位置を調整可能なノズルで構成することができる。例えば、熱プラズが形成する加熱気相雰囲気3の周囲から中心に向けて微細混合粒子を供給する原料供給口2、また、酸素燃焼炎が加熱気相雰囲気3を形成する場合には、高温度を得やすい中央部からの供給が可能であることから、酸素燃焼炎を形成する燃焼炎ノズル6の中央部に前記混合粒子を供給する原料供給口2を配置することが好ましい。さらに、この原料供給口2を揺動させることにより、ガラス融液4上に降下する混合ガラス原料液相体の位置を一箇所に集中させずに、分散して供給するようにしてもよい。   The raw material supply port 2 is disposed at the upper part of the furnace body 1a, and has a role of introducing fine mixed particles formed of glass raw material into particles from the outside of the furnace and supplying them into the furnace body at a predetermined supply rate. The raw material supply port 2 can be constituted by, for example, a nozzle capable of adjusting the supply position of the fine mixed particles according to the heated gas phase atmosphere 3 formed in the raw material heating unit. For example, when the raw material supply port 2 that supplies fine mixed particles from the periphery to the center of the heated gas phase atmosphere 3 formed by the thermal plasma, or when the oxyfuel flame forms the heated gas phase atmosphere 3, Therefore, it is preferable to dispose the raw material supply port 2 for supplying the mixed particles to the central portion of the combustion flame nozzle 6 that forms the oxyfuel flame. Further, by swinging the raw material supply port 2, the mixed glass raw material liquid phase descending on the glass melt 4 may be distributed and supplied without being concentrated in one place.

ガラス融液部は、炉体1aの下部にあり、加熱気相雰囲気3を通過して加熱された微細混合粒子から形成された液相体が堆積してガラス融液部にガラス融液4が形成される。このガラス融液部には、ガラス融液部に滞留するガラス融液4を加熱する補助加熱手段が配設されていてもよい。この補助加熱手段によってガラス融液4の保温を図ることができる。補助加熱手段としては、通電発熱してガラス融液を加熱するためにガラス融液4中に挿入された電気抵抗体、ガラス融液4中に直接電流を流すことによりガラス融液4を加熱する一対の電極などで構成することが好ましい。   The glass melt part is located in the lower part of the furnace body 1a, and a liquid phase formed from fine mixed particles heated through the heated gas-phase atmosphere 3 is deposited and the glass melt 4 is formed in the glass melt part. It is formed. The glass melt part may be provided with auxiliary heating means for heating the glass melt 4 staying in the glass melt part. The glass melt 4 can be kept warm by this auxiliary heating means. As the auxiliary heating means, the glass melt 4 is heated by passing an electric current directly through the glass melt 4 or an electric resistor inserted in the glass melt 4 to heat the glass melt by energization heating. A pair of electrodes is preferably used.

このガラス原料の溶解装置1において、原料供給口2から供給される微細混合粒子は、図1に示すように、原料加熱部によって形成された加熱気相雰囲気3中を通過して加熱され液相を形成し、ガラス融液部に滞留するガラス融液4上に降下する。なお、ガラス原料の溶解の開始時には、ガラス融液部にガラス融液4が滞留していないが、ガラス融液部は予め加熱気相雰囲気3によって所定温度まで加熱され、加熱気相雰囲気3を通過して降下する液相体は、ガラス融液部に堆積した後も、加熱気相雰囲気3および炉体1aからの輻射熱によって加熱され、さらに必要に応じてガラス融液部に設けられた補助加熱手段によって加熱されて溶融し、ガラス融液4を形成する。以後、ガラス融液4上に降下する加熱された液相体は、溶融してガラス融液4を形成する。そして、所定の速度でガラス融液排出口5から排出し、必要に応じて気泡除去槽等に導入され、所要の成形工程を経てガラス製品が製造される。   In this glass raw material melting apparatus 1, the fine mixed particles supplied from the raw material supply port 2 are heated and passed through a heated gas phase atmosphere 3 formed by the raw material heating unit as shown in FIG. Is lowered onto the glass melt 4 staying in the glass melt portion. At the start of the melting of the glass raw material, the glass melt 4 does not stay in the glass melt part, but the glass melt part is heated to a predetermined temperature by the heated gas phase atmosphere 3 in advance. The liquid phase body that passes and descends is heated by the radiant heat from the heating gas phase atmosphere 3 and the furnace body 1a even after being deposited on the glass melt portion, and further, an auxiliary provided in the glass melt portion as necessary. The glass melt 4 is formed by being heated and melted by the heating means. Thereafter, the heated liquid phase descending onto the glass melt 4 is melted to form the glass melt 4. And it discharges | emits from the glass melt discharge port 5 at a predetermined | prescribed speed | rate, is introduce | transduced into a bubble removal tank etc. as needed, and a glass product is manufactured through a required formation process.

本発明のガラス原料の溶解装置は、図1に示す実施形態に限定されず、各種の変形例が可能である。例えば、図1に示すガラス原料の溶解装置では、原料加熱部として、熱プラズマを発生するアーク電極7と燃焼炎ノズル6とを備える例を例示したが、例えば、燃焼炎ノズル6のみで加熱気相雰囲気を形成してもよい。   The glass raw material melting apparatus of the present invention is not limited to the embodiment shown in FIG. 1, and various modifications are possible. For example, in the glass raw material melting apparatus shown in FIG. 1, an example in which the arc electrode 7 that generates thermal plasma and the combustion flame nozzle 6 are provided as the raw material heating unit is illustrated. A phase atmosphere may be formed.

さらに、本発明のガラス製造装置は、図1に示すガラス原料の溶解装置1のガラス融液排出口5に連設された気泡除去槽(清澄槽)を備えることができる。気泡除去槽で気泡が除去されたガラス融液は、フロートバス、フュージョン成形機、ガラス瓶成形機、ロール成形機、プレス成形機等の各種成形装置に供給されて所要の形態に成形された後、徐冷炉にて所定温度になるまで徐冷されて、ガラス製品が製造される。   Furthermore, the glass manufacturing apparatus of this invention can be equipped with the bubble removal tank (clarification tank) connected with the glass melt discharge port 5 of the melting | dissolving apparatus 1 of the glass raw material 1 shown in FIG. After the glass melt from which bubbles have been removed in the bubble removing tank is supplied to various molding apparatuses such as a float bath, a fusion molding machine, a glass bottle molding machine, a roll molding machine, and a press molding machine, The glass product is manufactured by gradually cooling to a predetermined temperature in a slow cooling furnace.

このとき、本発明のガラス製造装置においては、前記ガラス原料の溶解装置1のガラス融液排出口5から排出されるガラス融液は気泡がほぼ除去された状態であるが、さらに完全な気泡除去を行なうために、排出されたガラス融液を気泡除去槽に導入して気泡除去を行うことによって、初期溶解と気泡除去の2つの機能が分離され、全体として装置の小型化が可能となる利点がある。   At this time, in the glass manufacturing apparatus of the present invention, the glass melt discharged from the glass melt discharge port 5 of the glass raw material melting apparatus 1 is in a state in which bubbles are almost removed, but further complete bubble removal is performed. In order to carry out the process, by introducing the discharged glass melt into the bubble removal tank and removing the bubbles, the two functions of initial dissolution and bubble removal are separated, and the overall size of the apparatus can be reduced. There is.

本発明で使用される気泡除去槽としては、深さが従来の溶融槽の半分以下で対流が生じにくく気泡が浮上しやすい浅型の一方向流の槽、減圧清澄槽などを使用することが好ましい。例えば、ジルコニアあるいは白金合金の耐蝕耐熱材料により形成され、ガラス融液の流れ方向に長手方向を有する略直方体の槽であって、前記ガラス融液排出口5に連結されるガラス融液導入口と、このガラス融液導入口に対向する側壁にガラス融液導出口を有し、ガラス融液がショートパスを形成せず、例えば、1400℃程度の温度を保って、所定の時間、槽内に滞留してガラス融液内の大小の気泡が放出されるように構成される。そして、ガラス融液中から放出された気泡は、気泡除去槽の天井部等に設けられたガス抜き口から外部に放出される。   As the bubble removal tank used in the present invention, it is possible to use a shallow unidirectional flow tank, a vacuum clarification tank, etc., which is less than half the depth of a conventional melting tank and is less likely to cause convection and bubbles are likely to rise. preferable. For example, a substantially rectangular parallelepiped tank formed of a zirconia or platinum alloy corrosion-resistant heat resistant material and having a longitudinal direction in the flow direction of the glass melt, the glass melt inlet connected to the glass melt outlet 5; The glass melt lead-out port is provided on the side wall facing the glass melt inlet, and the glass melt does not form a short path. For example, the glass melt is maintained at a temperature of about 1400 ° C. for a predetermined time in the tank. It is configured to stay and discharge large and small bubbles in the glass melt. And the bubble discharge | released from the inside of glass melt is discharge | released outside from the vent hole provided in the ceiling part etc. of the bubble removal tank.

また、気泡除去槽は、槽内に邪魔板等を設けて、槽内を流通するガラス融液が、ショートパスを形成しないで、ガラス融液導入口からガラス融液導出口まで所定の時間をかけて流通するように構成されていてもよい。気泡除去槽で気泡が除去されたガラス融液は、フロートバス、フュージョン成形機、ガラス瓶成形機、ロール成形機、プレス成形機、短繊維・長繊維紡糸機等の各種成形装置(図示せず)に供給され、所要のガラス製品が製造される。   The bubble removal tank is provided with a baffle plate or the like in the tank so that the glass melt flowing in the tank does not form a short path, and has a predetermined time from the glass melt inlet to the glass melt outlet. You may be comprised so that it may distribute over. The glass melt from which bubbles have been removed in the bubble removal tank is used for various molding apparatuses (not shown) such as a float bath, a fusion molding machine, a glass bottle molding machine, a roll molding machine, a press molding machine, and a short fiber / long fiber spinning machine. The required glass products are manufactured.

さらに、本発明で使用されるガラス融液部と気泡除去槽との間に、ガラス融液の均質化を向上させる目的で撹拌槽を設けることもでき、カレットがガラス融液部のガラス融液に直接投入される場合は、カレット片間あるいはカレットとガラス原料粒子との間における組成の差により均質性が低下する場合が多いことから、撹拌槽を設けることが特に好ましい。また、ガラス融液部に攪拌機あるいは小型の液中燃焼バーナー等の撹拌手段を設置してもよい。   Furthermore, a stirring tank can be provided between the glass melt part used in the present invention and the bubble removal tank for the purpose of improving homogenization of the glass melt, and the cullet is the glass melt of the glass melt part. In the case where it is directly charged, it is particularly preferable to provide a stirring tank because the homogeneity often decreases due to the difference in composition between the cullet pieces or between the cullet and the glass raw material particles. Moreover, you may install stirring means, such as a stirrer or a small submerged combustion burner, in a glass melt part.

以下、本発明の実施例を挙げて、本発明についてさらに具体的に説明するが、本発明は、これらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although the Example of this invention is given and this invention is demonstrated further more concretely, this invention is not limited to these Examples.

実施例1
粒径5μm以内の珪砂(SiO2)53mol%、無水硼酸30.5mol%、アルミナ5.9mol%、硝酸バリウム10.2mol%、および酸化アンチモン0.4mol%の割合で合計800kg秤量し、さらに粒径5μm以内に粉砕したカレット200kgを加えて撹拌混合し、これに水を容量比で3倍量供給して微粒子が分散したスラリー液にした。得られた液状の混合物を、200〜300℃に加熱されたスプレードライ装置内に噴射することにより、直径約0.05mmの顆粒状の原料粒子からなる微細混合粒子を得た。
Example 1
A total of 800 kg was weighed at a ratio of 53 mol% of silica sand (SiO 2 ) within a particle size of 5 μm, 30.5 mol% of boric anhydride, 5.9 mol% of alumina, 10.2 mol% of barium nitrate, and 0.4 mol% of antimony oxide, 200 kg of cullet pulverized within a diameter of 5 μm was added and mixed by stirring, and water was supplied in a volume ratio of 3 times to obtain a slurry liquid in which fine particles were dispersed. By spraying the obtained liquid mixture into a spray drying apparatus heated to 200 to 300 ° C., fine mixed particles made of granular raw material particles having a diameter of about 0.05 mm were obtained.

次に、図1に示す構造を有し、内のりで底面80×80cm、高さ2mの寸法を有する耐火煉瓦製のガラス原料の溶解装置1のガラス融液部の上部に下方を向けて取り付けられた酸水素燃焼炎ノズル6のノズル中心付近より、この微細混合粒子を3kg/分の供給速度で供給した。微細混合粒子は、ガラス融液部の底部(またはガラス融液面)に達するまでに1200℃以上に加熱されて液相体を形成し、原料中の水分、NO、有機物などはほぼ完全に放出された。ガラス融液部は、予め酸水素燃焼炎により1400℃前後に加熱されていたため、加熱された液相体はガラス融液部の底部に着地後、酸水素燃焼炎とガラス融液部および炉壁からの輻射熱によりさらに加熱され相互に溶け合って融液状態で一体化して堆積してガラス融液4を形成し、原料供給開始から2時間後に、ガラス融液部の底部付近の側面に設けられたガラス融液排出口5から平均約2.7kg/分の速度で流出した。このときの酸水素燃焼炎の供給ガス量は、水素600L/分、酸素300L/分であった。このガラス融液4を、約1400℃に電気的に加熱された幅50cm、長さ2m、高さ30cmの樋状の気泡除去槽に導き、滞留させた。約3時間後に平均約3.1kg/分の速度でガラス融液4を他端から連続的に流出させてブロック状の型(10cm×20cm×5cm)に導き、一旦、200〜300℃まで放冷した後、型から固化したガラス成形体を取り出して加熱徐冷処理を行った。このガラス成形体の表面を研磨して欠陥等の検査を行ったところ、すべてのガラスについて、直径0.1mm以上の未溶解珪砂および気泡は認められず、屈折率の局所的なムラも認められなかった。 Next, it is attached to the upper part of the glass melt portion of the glass raw material melting apparatus 1 made of refractory brick having the structure shown in FIG. 1 and having a bottom surface of 80 × 80 cm and a height of 2 m. The fine mixed particles were supplied from the vicinity of the center of the oxyhydrogen combustion flame nozzle 6 at a supply rate of 3 kg / min. The fine mixed particles are heated to 1200 ° C. or higher to reach the bottom (or glass melt surface) of the glass melt part to form a liquid phase, and the moisture, NO 3 , organic matter, etc. in the raw material are almost completely Was released. Since the glass melt was previously heated to about 1400 ° C. by the oxyhydrogen combustion flame, the heated liquid phase landed on the bottom of the glass melt, and then the oxyhydrogen combustion flame, the glass melt, and the furnace wall The glass melt 4 was formed by being further heated by the radiation heat from and melted together and integrated in the melt state to form the glass melt 4, and provided on the side surface near the bottom of the glass melt portion 2 hours after the start of the raw material supply. The glass melt was discharged from the melt outlet 5 at an average speed of about 2.7 kg / min. The amount of gas supplied to the oxyhydrogen combustion flame at this time was 600 L / min for hydrogen and 300 L / min for oxygen. The glass melt 4 was introduced into a bowl-like bubble removing tank having a width of 50 cm, a length of 2 m, and a height of 30 cm, which was electrically heated to about 1400 ° C., and was retained. After about 3 hours, the glass melt 4 is continuously discharged from the other end at an average speed of about 3.1 kg / min, led to a block-shaped mold (10 cm × 20 cm × 5 cm), and once released to 200 to 300 ° C. After cooling, the solidified glass molded body was taken out from the mold and subjected to a heat annealing treatment. When the surface of this glass molded body was polished and inspected for defects and the like, undissolved silica sand and bubbles having a diameter of 0.1 mm or more were not observed, and local unevenness in refractive index was also observed for all glasses. There wasn't.

実施例2
実施例1と同様のガラス溶解装置において、加熱気相雰囲気を六相プラズマアーク電極により形成し、実施例1と同様な微細混合粒子を使用して、炉体1aの天井に設けられた原料供給口2から原料粒子を1.5kg/分の供給速度で供給し、ガラス融液部の底部に二対の加熱用電極を挿入し、白金製の攪拌機を備えた撹拌槽を気泡除去槽との間に設けた装置を用い、ガラス融液部の下部より40cm上方の側面に設けられた開口部より、約700℃に予熱されたカレット粒を毎分2kgの速度で供給するとともに、約1400℃付近まで加熱を行った。ここで使用したカレット粒は、予め外径5mm程度に粉砕し、十分混合してから組成分析し、原料粒子とほぼ同一の組成であることを確認してから使用した。その結果、実施例1と同様の結果を得ることができた。
Example 2
In the same glass melting apparatus as in Example 1, a heated gas-phase atmosphere is formed by a six-phase plasma arc electrode, and the raw material supply provided on the ceiling of the furnace body 1a using the same fine mixed particles as in Example 1 The raw material particles are supplied from the mouth 2 at a supply rate of 1.5 kg / min, two pairs of heating electrodes are inserted at the bottom of the glass melt part, and the stirring tank equipped with a platinum stirrer is connected to the bubble removal tank. Using an apparatus provided between them, cullet grains preheated to about 700 ° C. are supplied at a rate of 2 kg / min through an opening provided on the side 40 cm above the lower part of the glass melt, and about 1400 ° C. Heating to near. The cullet grains used here were preliminarily pulverized to an outer diameter of about 5 mm, mixed well and then subjected to composition analysis to confirm that they had almost the same composition as the raw material particles. As a result, the same results as in Example 1 could be obtained.

本発明は、従来技術における未溶解欠点、不均質欠点などの欠陥の発生を大幅に抑制し、効率的な気泡除去を可能にし、溶融窯の大規模化と膨大なエネルギー消費を回避することができ、少量多品種製品の機動的な生産にも対応できるため、板ガラス、びんガラス、繊維ガラス、電気ガラス等のあらゆるガラス製品の工業的製造に有用である。   The present invention significantly suppresses the occurrence of defects such as undissolved defects and inhomogeneous defects in the prior art, enables efficient bubble removal, and avoids the large-scale melting furnace and enormous energy consumption. It can also be used for the flexible production of a small variety of products, so it is useful for industrial production of all glass products such as flat glass, bottle glass, fiber glass, and electric glass.

本発明の実施形態に係るガラス原料の溶解装置の模式縦断面図。The schematic longitudinal cross-sectional view of the melting | dissolving apparatus of the glass raw material which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 溶解装置
1a 炉体
2 原料供給口
3 加熱気相雰囲気
4 ガラス融液
5 ガラス融液排出口
6 燃焼炎ノズル
7 アーク電極
DESCRIPTION OF SYMBOLS 1 Melting apparatus 1a Furnace body 2 Raw material supply port 3 Heating gas-phase atmosphere 4 Glass melt 5 Glass melt discharge port 6 Combustion flame nozzle 7 Arc electrode

Claims (14)

複数の成分から成るガラスを製造するためのガラス原料をガラス融液部において溶解する際に、ガラス原料から成る、個々の微細混合粒子を、最終製品であるガラスの組成に対応した成分比率に近い構成比率で調製する工程;該ガラス原料から成る微細混合粒子を気相雰囲気中で加熱して液相体を形成する工程;成された液相体をガラス融液部に滞留するガラス融液上に降下させて供給する工程;ならびにガラス融液部からガラス融液を融液状態で排出する工程;を含むことを特徴とするガラス原料の溶解方法。 When melting a glass raw material for producing glass composed of a plurality of components in the glass melt part, individual fine mixed particles made of the glass raw material are close to the component ratio corresponding to the composition of the glass as the final product. glass melt staying shape made liquid phase body glass melt unit; step of preparing a structure ratio; step of finely mixed particles made of the glass material is heated in the vapor phase atmosphere to form a liquid phase body A glass raw material melting method comprising : a step of lowering and supplying; and a step of discharging the glass melt from the glass melt portion in a melt state . 加熱気相雰囲気が熱プラズマアークおよび/または酸素燃焼炎によって形成されている請求項1に記載のガラス原料の溶解方法。   The method for melting a glass raw material according to claim 1, wherein the heated gas phase atmosphere is formed by a thermal plasma arc and / or an oxyfuel flame. ガラス融液は、微細混合粒子から形成された液相体が降下する位置およびその近傍を熱プラズマアークおよび/または酸素燃焼炎によって加熱される請求項1または2に記載のガラス原料の溶解方法。   The method for melting a glass raw material according to claim 1 or 2, wherein the glass melt is heated by a thermal plasma arc and / or an oxyfuel flame at a position where the liquid phase formed from fine mixed particles descends and in the vicinity thereof. 熱プラズマが形成するプラズマの周囲から中心に向けて、微細混合粒子を供給する請求項2または3に記載のガラス原料の溶解方法。   The glass raw material melting method according to claim 2 or 3, wherein fine mixed particles are supplied from the periphery of the plasma formed by thermal plasma toward the center. 酸素燃焼炎を形成する燃焼炎ノズルの中央部に微細混合粒子を供給する請求項2に記載のガラス原料の溶解方法。   The method for melting a glass raw material according to claim 2, wherein fine mixed particles are supplied to a central portion of a combustion flame nozzle that forms an oxyfuel flame. 加熱気相雰囲気の温度が1600℃以上である請求項1〜5のいずれか一項に記載のガラス原料の溶解方法。   The method for melting a glass raw material according to any one of claims 1 to 5, wherein the temperature of the heated gas phase atmosphere is 1600 ° C or higher. ガラス原料の一部を構成するガラスカレットの一部あるいは全部を、加熱気相雰囲気中を通過させずに、直接、ガラス融液上に供給する請求項1〜6のいずれか一項に記載のガラス原料の溶解方法。   A part or all of the glass cullet constituting a part of the glass raw material is supplied directly onto the glass melt without passing through the heated gas phase atmosphere. Method for melting glass raw materials. 複数の成分から成るガラスを製造するためのガラス原料の溶解装置であって、該ガラス原料から成り、最終製品であるガラスの組成に対応した成分比率に近い構成比率で調製された、個々の微細混合粒子を加熱して液相体を形成するための加熱気相雰囲気を形成する原料加熱部;成された液相体が上部に供給されるガラス融液を滞留させるガラス融液部;ならびにガラス融液部からガラス融液を融液状態で排出するためのガラス融液排出口、を含むことを特徴とするガラス原料の溶解装置。 An apparatus for melting glass raw material for producing glass composed of a plurality of components, each of which is made of the glass raw material and is prepared with a component ratio close to the component ratio corresponding to the composition of the glass as the final product. material heating unit to form a heated vapor atmosphere to form a liquid phase body mixed particles by heating; glass melt unit form made liquid phase body thereby staying molten glass to be supplied to the upper; and A glass raw material melting apparatus comprising a glass melt outlet for discharging a glass melt from a glass melt part in a melt state . 加熱気相雰囲気を形成する原料加熱部が熱プラズマ発生装置および/または酸素燃焼炎ノズルによりなる請求項8に記載のガラス原料の溶解装置。   The glass raw material melting apparatus according to claim 8, wherein the raw material heating unit for forming the heated gas phase atmosphere is formed by a thermal plasma generator and / or an oxyfuel flame nozzle. ガラス融液部がガラス融液の補助加熱手段を有する請求項8または9に記載のガラス原料の溶解装置。   The glass raw material melting apparatus according to claim 8 or 9, wherein the glass melt part has auxiliary heating means for the glass melt. 請求項8〜10のいずれか一項に記載のガラス原料の溶解装置と、該ガラス原料の溶解装置のガラス融液排出口に連設された気泡除去槽とを備えることを特徴とするガラス製造装置。   A glass production comprising: the glass raw material melting apparatus according to any one of claims 8 to 10; and a bubble removal tank connected to a glass melt outlet of the glass raw material melting apparatus. apparatus. ガラス原料の溶解装置のガラス融液排出口から、気泡除去が不完全な状態でガラス融液を排出し、排出されたガラス融液を気泡除去槽に導入するようにした請求項11に記載のガラス製造装置。   12. The glass melt discharge port according to claim 11, wherein the glass melt is discharged from the glass melt discharge port of the glass raw material melting apparatus in an incomplete bubble removal state, and the discharged glass melt is introduced into the bubble removal tank. Glass manufacturing equipment. ガラス融液部がガラス融液の撹拌手段を有する請求項8または9に記載のガラス原料の溶解装置。   The glass raw material melting apparatus according to claim 8 or 9, wherein the glass melt part has a glass melt stirring means. 請求項8〜13のいずれか一項に記載のガラス原料の溶解装置と、該ガラス原料の溶解装置
の気体排出経路に連設されたガラス原料噴霧乾燥装置とを備えることを特徴とするガラス製造装置。
A glass production comprising: the glass raw material melting apparatus according to any one of claims 8 to 13; and a glass raw material spray drying apparatus connected to a gas discharge path of the glass raw material melting apparatus. apparatus.
JP2006126539A 2006-04-28 2006-04-28 Glass raw material melting method, melting apparatus, and glass manufacturing apparatus Active JP5380671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006126539A JP5380671B2 (en) 2006-04-28 2006-04-28 Glass raw material melting method, melting apparatus, and glass manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006126539A JP5380671B2 (en) 2006-04-28 2006-04-28 Glass raw material melting method, melting apparatus, and glass manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2007297239A JP2007297239A (en) 2007-11-15
JP5380671B2 true JP5380671B2 (en) 2014-01-08

Family

ID=38767071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006126539A Active JP5380671B2 (en) 2006-04-28 2006-04-28 Glass raw material melting method, melting apparatus, and glass manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP5380671B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009011850B3 (en) 2009-03-05 2010-11-25 Schott Ag Process for the environmentally friendly melting and refining of a glass melt for a starting glass of a lithium-aluminum-silicate (LAS) glass ceramic and their use
EP2450315A4 (en) * 2009-06-29 2014-04-09 Asahi Glass Co Ltd Method for manufacturing molten glass, glass-melting furnace, glass article manufacturing device, and glass article manufacturing method
CN102471114B (en) * 2009-07-01 2015-03-25 旭硝子株式会社 Glass melting furnace, process for producing molten glass, apparatus for manufacturing glass products, and process for manufacturing glass products
EP2460773A4 (en) 2009-07-27 2014-03-26 Asahi Glass Co Ltd Glass melting furnace, process for producing molten glass, apparatus for producing glass product, and process for producing glass product
EP2468688A4 (en) * 2009-08-17 2014-03-26 Asahi Glass Co Ltd Molten glass manufacturing method, glass-melting furnace, glass product manufacturing method, and glass product manufacturing device
EP2468689A4 (en) 2009-08-20 2013-03-06 Asahi Glass Co Ltd Glass melting furnace, molten glass producing method, glass product producing device, and glass product producing method
EP2471756A4 (en) * 2009-08-28 2015-05-27 Asahi Glass Co Ltd Process for producing granules and process for producing glass product
CN102648163B (en) * 2009-11-20 2015-11-25 旭硝子株式会社 The manufacture method of the manufacture method of glass melting furnace, melten glass, the manufacturing installation of glasswork and glasswork
CN103108839B (en) * 2010-09-24 2015-12-16 旭硝子株式会社 The manufacture method of frit granulation body and the manufacture method of glasswork
JP5920218B2 (en) * 2010-09-30 2016-05-18 旭硝子株式会社 Method for melting glass raw material, method for producing molten glass, and method for producing glass product
JP5712563B2 (en) * 2010-10-29 2015-05-07 旭硝子株式会社 Air melting burner, glass raw material melting method, molten glass manufacturing method, glass bead manufacturing method, glass product manufacturing method, air melting apparatus and glass product manufacturing apparatus
KR101899171B1 (en) * 2010-12-02 2018-09-14 에이지씨 가부시키가이샤 Glass melter, modification method for glass blank, production method for molten glass, production method for glassware, and production apparatus for glassware
KR101965003B1 (en) 2011-05-17 2019-04-02 에이지씨 가부시키가이샤 Method for producing molten glass, glass-melting furnace, method for producing glass article, and device for producing glass article
WO2012173154A1 (en) * 2011-06-17 2012-12-20 旭硝子株式会社 Glass melter, method for manufacturing molten glass, method for manufacturing glass article, and device for manufacturing glass article
WO2013012040A1 (en) 2011-07-19 2013-01-24 旭硝子株式会社 Manufacturing method for molten glass and manufacturing method for glass article
EP2821374A4 (en) * 2012-02-28 2015-10-21 Asahi Glass Co Ltd Granulated bodies and process for producing same
JP6000336B2 (en) * 2012-03-28 2016-09-28 Hoya株式会社 Manufacturing method of glass block or glass blank for glass substrate for HDD, manufacturing method of glass substrate for HDD
CN102786201A (en) * 2012-08-04 2012-11-21 昆明理工大学 Plasma composite heating glass quick melting method and device
RU178934U1 (en) * 2017-11-13 2018-04-23 Автономная некоммерческая организация высшего образования "Белгородский университет кооперации, экономики и права" DEVICE FOR OBTAINING SILICATE-Lump
RU178380U1 (en) * 2017-11-28 2018-04-02 Автономная некоммерческая организация высшего образования "Белгородский университет кооперации, экономики и права" PLASMA GLASS FURNACE
RU189143U1 (en) * 2018-12-21 2019-05-14 АНО ВО "Белгородский университет кооперации, экономики и права" DEVICE FOR OBTAINING CRYSTAL AND COLOR GLASSES
RU2726676C1 (en) * 2019-12-27 2020-07-15 Автономная некоммерческая организация высшего образования «Белгородский университет кооперации, экономики и права» Method of producing silicate glass

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1111954A (en) * 1997-06-17 1999-01-19 Nippon Sanso Kk Melting of glass
JP2000169161A (en) * 1998-12-08 2000-06-20 Fuji Electric Co Ltd Process and device for producing glass ingot
JP2000281356A (en) * 1999-03-31 2000-10-10 Tokyo Gas Co Ltd Operation of glass melting furnace
JP2002356337A (en) * 2001-06-01 2002-12-13 Tosoh Corp Method for producing composite quarts glass containing aluminum and/or yttrium by plasma fusion and its application

Also Published As

Publication number Publication date
JP2007297239A (en) 2007-11-15

Similar Documents

Publication Publication Date Title
JP5380671B2 (en) Glass raw material melting method, melting apparatus, and glass manufacturing apparatus
JP4565185B2 (en) Glass raw material melting method and melting apparatus, and glass manufacturing apparatus
JP5674156B2 (en) Glass melting furnace, molten glass manufacturing method, glass product manufacturing apparatus, and glass product manufacturing method
CN101405231B (en) Method for temperature manipulation of a melt
CN102471112B (en) Glass melting furnace, process for producing molten glass, apparatus for producing glass product, and process for producing glass product
KR101899171B1 (en) Glass melter, modification method for glass blank, production method for molten glass, production method for glassware, and production apparatus for glassware
TWI574927B (en) Glass melt handling equipment and method
TWI419851B (en) Method for manufacturing molten glass, glass melting furnace, manufacturing apparatus for glass product, and method for manufacturing glass product
TWI415808B (en) A glass melting furnace, a manufacturing method of a molten glass, a manufacturing apparatus for a glass product, and a method for manufacturing a glass product
US8573007B2 (en) Process for producing molten glass, glass-melting furnace, process for producing glass products and apparatus for producing glass products
WO2004050568A1 (en) Glass melting furnace and method for producing glass
WO2011021576A1 (en) Glass melting furnace, molten glass producing method, glass product producing device, and glass product producing method
JP2006521991A (en) Melting and refining in tanks with cooling walls
JPS5837255B2 (en) Method and apparatus for homogenizing and fining glass
TW201114708A (en) Glass melting furnace, molten glass manufacturing method, glass product manufacturing device, and glass product manufacturing method
JP2005154216A (en) Glass melting furnace and method of manufacturing glass
CN208362171U (en) A kind of energy saving kiln
KR100510196B1 (en) Continuous type fusion furnace system for frit production
TW201236986A (en) Glass melting furnace, method for producing molten glass, method for producing glass products and apparatus for producing glass products
JP7393605B2 (en) Melt manufacturing method, glass article manufacturing method, melting device, and glass article manufacturing device
US20120272685A1 (en) Melting method and apparatus
WO2012157432A1 (en) Method for producing molten glass, glass-melting furnace, method for producing glass article, and device for producing glass article
CN211522028U (en) Basalt continuous fiber production kiln with forced stirring system
CN110590128A (en) Production method of basalt continuous fibers
TW201922633A (en) Glass melting furnace and method for manufacturing glass articles comprising a melting tank and a furnace throat

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121211

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130213

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20130502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150