JP5348798B2 - Relative evaluation method based on pattern recognition of food hardness, texture and texture - Google Patents

Relative evaluation method based on pattern recognition of food hardness, texture and texture Download PDF

Info

Publication number
JP5348798B2
JP5348798B2 JP2010170015A JP2010170015A JP5348798B2 JP 5348798 B2 JP5348798 B2 JP 5348798B2 JP 2010170015 A JP2010170015 A JP 2010170015A JP 2010170015 A JP2010170015 A JP 2010170015A JP 5348798 B2 JP5348798 B2 JP 5348798B2
Authority
JP
Japan
Prior art keywords
curve
load
order
texture
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010170015A
Other languages
Japanese (ja)
Other versions
JP2012032193A (en
Inventor
博之 三次
孝一 福原
兆宏 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T Hasegawa Co Ltd
Original Assignee
T Hasegawa Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T Hasegawa Co Ltd filed Critical T Hasegawa Co Ltd
Priority to JP2010170015A priority Critical patent/JP5348798B2/en
Publication of JP2012032193A publication Critical patent/JP2012032193A/en
Application granted granted Critical
Publication of JP5348798B2 publication Critical patent/JP5348798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To exactly grasp difference in hardness, texture, and attribute of food in mastication. <P>SOLUTION: A sample specimen (A) of the food is pressed by a plunger, weight and distortion rate are continuously measured, a distortion rate-weight curve of a multidimensional approximation curve such as five or more dimensional approximation curve which considers an X axis as the distortion rate, and a Y axis as the weight by a least square method based on values of the weight and the distortion rate, and the maximum value (MaxA) in the multidimensional approximation curve is calculated. A distortion rate-weight curve of the multidimensional approximation curve of the same dimension is created for a test specimen (B) of the food, and the maximum value (MaxB) in the multidimensional approximation curve is calculated. After that, a corrected multidimensional approximation curve in which weight values on the multidimensional approximation curve is integrally corrected is created for each of the multidimensional approximation curves so that the weight values of the maximum value (MaxA) and the maximum value (MaxB) become the same value, a difference between the two created corrected multidimensional approximation curves is integrated, and a distinction in the hardness, texture and attribute between the sample specimen (A) of the food and the sample specimen (B) of the food is evaluated from the integrated value. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

本発明は、食品の硬さ、食感、及びテクスチャーのパターン認識による相対的評価方法に関する。詳しくは、寒天、ゼラチン、豆腐、クッキー、ビスケット、パイなどの各種商品について、少ない測定回数で、食品咀嚼時に知覚される硬さ、食感、及びテクスチャーの違いを数値的に定量化し、パターン認識によって相対的に評価するための方法に関する。   The present invention relates to a relative evaluation method based on pattern recognition of food hardness, texture, and texture. Specifically, for a variety of products such as agar, gelatin, tofu, cookies, biscuits, and pies, pattern recognition is performed by numerically quantifying differences in hardness, texture, and texture perceived when chewing food with a small number of measurements. It is related with the method for evaluating relatively.

人間にとって食物の摂取は、単に生命の維持のためのエネルギーの獲得だけを目的とする行為ではなく、味覚、嗅覚、触覚、視覚、聴覚の五感の全てを働かせて、より積極的に「おいしさ」を追求し、「満足感」、「幸福感」を享受しようとする行為である。一般的に、食物の「おいしさ」の要素として、「味」、「香り」、「外観」とともに「テクスチャー」が挙げられる。   For human beings, food intake is not just an act of acquiring energy to sustain life, but more positively by using all five senses of taste, smell, touch, sight, and hearing. Is an act that seeks to enjoy "satisfaction" and "happiness". In general, “taste”, “fragrance” and “appearance” as well as “texture” are listed as elements of “taste” of food.

テクスチャーとは、国際標準化機構(International 0rganization for Standardization)の定義では、「力学的、触覚的及び適切であれば視覚的、聴覚的な方法で感知できる食物のレオロジー的、構造的属性の総体」であるとされる。すなわち、テクスチャーは、食品を食べる人間が感知して表現する食感と、食品自体の物性の両方を合わせた意味の用語として一般に理解されている。そして、テクスチャーの測定あるいは評価については、従来、ヒトの感覚器官により評価をする官能評価と、食品の物性を客観的に評価する物理学的測定が行われてきた。
しかしながら、現在に至るまで、食品の総合的なテクスチャーの測定あるいは評価に関しては、確立され、広く認められた方法はなかった。
Texture, as defined by the International 0rganization for Standardization, is the sum of the rheological and structural attributes of food that can be perceived mechanically, tactilely and, if appropriate, visually and audibly. It is supposed to be. That is, texture is generally understood as a term that means both the texture that is sensed and expressed by a person who eats food and the physical properties of the food itself. For texture measurement or evaluation, conventionally, sensory evaluation for evaluation by human sensory organs and physical measurement for objective evaluation of physical properties of foods have been performed.
To date, however, there has been no established and widely accepted method for measuring or evaluating the overall texture of foods.

一般に各種食品の物性の測定装置として、例えば、レオメータ、クリープメータなどと称される力学的性状を測定する装置が普及している。該装置は圧縮破断強度、引っ張り強度、切断強度、弾性、粘弾性、脆さ、粘着性、応力緩和、クリープ等の測定が可能である。   In general, as a measuring device for physical properties of various foods, for example, a device called a rheometer, a creep meter, or the like that measures mechanical properties is widespread. The apparatus can measure compressive breaking strength, tensile strength, cutting strength, elasticity, viscoelasticity, brittleness, adhesiveness, stress relaxation, creep, and the like.

これまで食品の物性の測定方法あるいは食感の評価方法に関して、いくつかの提案がなされている。例えば、乳幼児または嚥下困難者用食品(ムース)について、上顎模型の形状計測に基づき、口蓋及び舌の形状をそれぞれモジュール化した口蓋容器及び舌プランジャーを備えた食品の物性測定器具を用い、最大応力を測定する提案(特許文献1)がある。   Several proposals have been made regarding methods for measuring physical properties of foods or methods for evaluating texture. For example, for foods for infants or those with difficulty in swallowing (mousse), based on the measurement of the shape of the upper jaw model, using a food property measuring instrument equipped with a palatal container and tongue plunger that modularize the shape of the palate and tongue, respectively, There is a proposal (Patent Document 1) for measuring stress.

また、レオメータを用い、クッキーやスナック菓子などの供試食品の破断曲線を取得し、数学的解析により所定の周波数領域での破断エネルギーを求め、官能検査のクリスプネスとの間の統計的解析を行うことにより、クリスプネスの指標とする提案(特許文献2)がある。   In addition, use a rheometer to obtain the breaking curve of test foods such as cookies and snacks, obtain the breaking energy in a predetermined frequency range by mathematical analysis, and perform statistical analysis with the crispness of the sensory test. Therefore, there is a proposal (Patent Document 2) as an index of crispness.

また、物性がゾルからゲルに変化する豆腐、蒲鉾、チーズなどのゲル形成食品に、内部に浸透性のある特定波長(400nmから50,000nmの範囲)の光を照射し、得られた吸光度曲線の特に800nm〜840nm付近の吸光度と破断力に高い負の相関があることを利用したゲル形成食品の品質判定方法の提案(特許文献3)がある。   In addition, gel-forming foods such as tofu, koji, and cheese whose physical properties change from sol to gel are irradiated with light having a specific wavelength (ranging from 400 nm to 50,000 nm) and the resulting absorbance curve is obtained. In particular, there is a proposal for a method for judging the quality of gel-formed foods utilizing the fact that there is a high negative correlation between the absorbance at 800 nm to 840 nm and the breaking force (Patent Document 3).

また、キウイやセロリなどの食品にレオメータのプローブを挿入し、発生する振動を取得し、ノイズを取り除いた振動データを単位時間当たりの振幅密度を得て、この振幅密度が高いほど「シャキシャキ感」が高い(ダイコンよりネギの方が、振幅密度が高くシャキシャキしている)と評価する提案(特許文献4)がある。   Also, a rheometer probe is inserted into food such as kiwi or celery, the vibrations generated are obtained, and the vibration data from which noise has been removed is obtained as the amplitude density per unit time. The higher the amplitude density, the more "crispy" There is a proposal (Patent Document 4) that evaluates that the leeks are higher than the Japanese radish (the leeks have higher amplitude density and are more crisp).

また、クロワッサン、デニッシュペストリーなどの層状食品をレオメータで抑圧してプランジャーにかかる荷重の合計を破断エネルギー値Eとして算出し、「破断エネルギー値E/破断点の数N」を求め、該数値を層状食品の食感の指標として評価する提案(特許文献5)がある。   In addition, the layered foods such as croissants and Danish pastries are suppressed with a rheometer, and the total load applied to the plunger is calculated as a breaking energy value E to obtain “breaking energy value E / number of breaking points N”. There exists a proposal (patent document 5) evaluated as an index of the texture of layered food.

また、食品、例えば、寒天、ゼラチン、ナタデココ、コンニャクゲルなどのゲル状食品、リンゴ、ナシ、バナナなどの果実、クッキー、ビスケット、パイなどの焼き菓子類の複数試料について、荷重及び歪率のデータを連続的に測定できる装置(レオメータ等)を用いた測定を行い、得られた荷重及び歪率の測定値を基に近似四次方程式近似曲線、あるいは五次方程式近似曲線の歪率−荷重曲線を最小自乗法により作成し、当該曲線における破断点である極大値に到達する以前の曲線部分の変曲点における接線の傾きを食感の硬さとして評価する提案(特許文献6、特許文献7)がある。   Also, load and strain rate data for multiple samples of food, for example gel foods such as agar, gelatin, nata de coco, konjac gel, fruits such as apples, pears and bananas, baked confectionery such as cookies, biscuits and pies Is measured using a device (rheometer, etc.) that can continuously measure the quaternary equation approximate curve or the quaternary equation approximate curve based on the obtained load and strain rate measurements. Proposed by the method of least squares and evaluating the inclination of the tangent at the inflection point of the curve portion before reaching the local maximum value that is the breaking point in the curve as the hardness of the texture (Patent Document 6, Patent Document 7) )

特開2000−283975号公報JP 2000-283975 A 特開2001−133374号公報JP 2001-133374 A 特開2003−106995号公報JP 2003-106995 A 特開2007−57476号公報JP 2007-57476 A 特開2007−225460号公報JP 2007-225460 A 特願2009−70951号Japanese Patent Application No. 2009-70951 特願2010−85178号Japanese Patent Application No. 2010-85178

しかしながら、特許文献1の提案は、ヒトの口蓋、舌の形状をモジュール化することによる、最大応力の測定方法の改善にすぎない。また、特許文献2の提案は、異なる食感を有しながら類似の音響パターンを有するクッキーやスナック菓子の差を判断する上では適用が難しい。また、特許文献3の提案は、ゾルからゲルに変化する食品の物性を確認するにすぎず、得られた焼き菓子類の食感を評価するものではない。また、特許文献4の提案は、ネギやダイコンなどの野菜組織の「シャキシャキ感」の評価はできるが、異なる食感を有しながら類似の音響パターンを有するクッキーやスナック菓子の食感の差を判断する上では適用が難しい。また、特許文献5の提案は、クロワッサン、デニッシュペストリーなどの層状食品の食感を評価する提案であり、焼き菓子類においてパイのような層状食品には有効であるが、クッキー、スナック菓子などへの適用した場合を考慮すると、全ての焼き菓子類に対して有効ではなかった。また、特許文献6の提案は、破断挙動の比較的単純なゲル状食品には有効であるが、焼き菓子類の場合は破断が急激に起こり、歪率−荷重曲線の挙動が複雑であるため、荷重及び歪率の測定値が近似四次方程式から乖離する場合があり、四次方程式近似が適切ではなく、有効ではなかった。   However, the proposal of Patent Document 1 is merely an improvement of the method for measuring the maximum stress by modularizing the shape of the human palate and tongue. In addition, the proposal of Patent Document 2 is difficult to apply in determining the difference between cookies and snacks having similar sound patterns while having different textures. Moreover, the proposal of patent document 3 only confirms the physical property of the foodstuff which changes from sol to gel, and does not evaluate the food texture of the obtained baked confectionery. In addition, the proposal of Patent Document 4 can evaluate the “crispness” of vegetable tissues such as leeks and radish, but determines the difference in texture of cookies and snacks having similar texture patterns while having different textures. Is difficult to apply. In addition, the proposal of Patent Document 5 is a proposal for evaluating the texture of layered foods such as croissants and Danish pastries, and is effective for layered foods such as pie in baked confectionery, but is suitable for cookies, snacks and the like. Considering the case of application, it was not effective for all baked goods. In addition, the proposal of Patent Document 6 is effective for a gel-like food having a relatively simple breaking behavior, but in the case of baked confectionery, the breaking occurs rapidly, and the behavior of the strain rate-load curve is complicated. In some cases, the measured values of load and strain rate deviate from the approximate quaternary equation, and the approximation of the quaternary equation was not appropriate and effective.

また、特許文献1〜5に記載された技術に共通する問題点として、食品の硬さ、食感、及びテクスチャーの違いをパターン化して相対的に評価する方法が確立されていない点が挙げられる。さらに、特許文献6に記載された技術に関しては、得られた近似四次方程式からパターン認識して食品の硬さ、食感、及びテクスチャーの違いを数値化して相対的に評価しようとしても、荷重及び歪率の測定値が近似四次方程式から乖離する場合があるため、評価は困難であった。   In addition, as a problem common to the techniques described in Patent Documents 1 to 5, there is a point that a method of patterning and relatively evaluating differences in food hardness, texture, and texture has not been established. . Furthermore, with respect to the technique described in Patent Document 6, even if an attempt is made to evaluate the relative differences by digitizing differences in food hardness, texture, and texture by recognizing patterns from the obtained approximate quaternary equation, load In addition, since the measured value of the distortion rate may deviate from the approximate quaternary equation, the evaluation is difficult.

そこで、特許文献7に記載された技術においては、特許文献6に記載された近似四次方程式を五次以上の方程式にすることにより改良が施された。その結果、特許文献7の技術によれば、実際に測定した荷重及び歪率の測定値から乖離の程度が少ない五次以上の多次方程式近似曲線を作成することにより、ゲル状食品、焼き菓子類など多岐の食品に渡って、実際に受ける硬さ、食感、及びテクスチャーを反映した指標を得ることができる。
しかしながら、五次以上の多次方程式近似曲線同士を比較して、複数の食品間における硬さ、食感、及びテクスチャーの違いを数値化して相対的に評価することは測定者の判断に委ねられ、その評価の正確性、信頼性が欠如していた。
Therefore, the technique described in Patent Document 7 has been improved by making the approximate quartic equation described in Patent Document 6 an equation of the fifth or higher order. As a result, according to the technique of Patent Document 7, by preparing a fifth-order or higher order approximate curve with a small degree of deviation from the actually measured load and strain rate measurement values, gel food, baked goods It is possible to obtain an index that reflects the hardness, texture, and texture actually received over a wide variety of foods such as foods.
However, it is left to the judgment of the measurer to compare and evaluate the relative differences in hardness, texture, and texture among multiple foods by comparing approximate curves of fifth-order or higher-order polynomial equations. The accuracy and reliability of the evaluation was lacking.

こうした状況から、複数の食品間における硬さ、食感、及びテクスチャ−の違いを客観的に比較することができる新しい評価方法の開発が望まれていた。
そこで、本発明は、焼き菓子類、ゲル状食品などの各種食品に関して、ヒトが食品咀嚼時に実際に感知する食品の硬さ、食感、及びテクスチャ−の違いを的確に反映した指標によって、食品咀嚼時における食品の硬さ、食感、及びテクスチャ−の異なる度合いを数値的に定量化し、得られた定量値を用いて、それらの違いを相対的に評価する、食品の硬さ、食感、及びテクスチャ−のパターン認識による相対的評価方法の提供を課題とする。
Under such circumstances, it has been desired to develop a new evaluation method that can objectively compare differences in hardness, texture, and texture among a plurality of foods.
Therefore, the present invention relates to various foods such as baked confectionery and gel-like foods by using an index that accurately reflects the difference in the hardness, texture and texture of foods that humans actually sense when chewing foods. The degree of hardness, texture and texture of food during chewing are quantified numerically, and the obtained quantitative values are used to relatively evaluate the differences. And a relative evaluation method based on texture pattern recognition.

従来技術によれば、クッキー、ビスケット、パイなどの焼き菓子類、ゼラチン、寒天、豆腐類などのゲル状食品、その他多くの食品においては、歪率一荷重曲線の極大値、極小値、変曲点における傾きなどが食品の硬さ、食感、及びテクスチャ−の指標となり、ヒトが実際に食品を咀嚼したときに感知する硬さ、食感、及びテクスチャ−の質に対応すると考えられる。すなわち、歪率一荷重曲線の形状が、硬さ、食感、及びテクスチャ−の質を表現していると考えられる。 According to the prior art, in baked confectionery such as cookies, biscuits and pies, gelatinous foods such as gelatin, agar, tofu, and many other foods, the maximum value, minimum value, and inflection of the strain-load curve It is considered that the inclination of the point or the like serves as an indicator of the hardness, texture and texture of the food, and corresponds to the hardness, texture and texture quality sensed when a human actually chews the food. That is, it is considered that the shape of the strain rate-one load curve expresses the hardness, texture, and texture quality.

そこで、本発明者は、焼き菓子類、ゲル状食品、あるいは、その他の食品を咀嚼したときの硬さ、食感、及びテクスチャ−の質の指標を得る基礎となる歪率一荷重測定の結果を、現在最も有効な近似の1つである五次以上の多次方程式で近似して、歪率一荷重曲線の多次方程式近似曲線を作成した。また、硬さ、食感、及びテクスチャ−の質を比較するため、複数サンプルについて、歪率一荷重破断の測定を行い、歪率一荷重曲線の多次方程式近似曲線を作成した。そして、この多次方程式近似曲線から、複数サンプル間の硬さ、食感、及びテクスチャ−の違いを自動計算し、得られた計算値を、硬さ、食感、及びテクスチャ−の質の差として自動的にパターン認識することにより、硬さ、食感、及びテクスチャ−の違いを判別することができる解析法について鋭意検討を行った。 Therefore, the present inventor has determined the results of strain rate one load measurement as a basis for obtaining an index of hardness, texture, and texture quality when chewing baked confectionery, gel food, or other foods. Was approximated with a multi-order equation of the fifth or higher order, which is one of the most effective approximations, and a multi-order equation approximate curve of a strain rate-one load curve was created. Moreover, in order to compare the quality of hardness, food texture, and texture, the strain rate-one-load fracture was measured for a plurality of samples, and a multi-order equation approximate curve of the strain-rate load curve was created. And from this multi-order equation approximation curve, the difference of hardness, texture and texture between multiple samples is automatically calculated, and the obtained calculated value is the difference in quality of hardness, texture and texture. As a result, we have intensively studied an analysis method that can discriminate differences in hardness, texture, and texture by automatically recognizing patterns.

その結果、複数の上記多次方程式近似曲線について、該近似曲線上の荷重値を統一的に補正した補正多次近似曲線をそれぞれ作成し、得られた補正多次近似曲線の差を積分計算して、多次方程式近似曲線間の乖離度合いを数値化する方法の採用により、上記課題が解決されることを、本発明者は見出した。 As a result, for each of the above approximated multi-order equation approximate curves, a corrected multi-order approximate curve in which the load values on the approximate curve are uniformly corrected is created, and the difference between the obtained corrected multi-order approximate curves is integrated and calculated. Thus, the present inventor has found that the above-mentioned problem can be solved by adopting a method of quantifying the degree of divergence between the approximated polynomial equations.

また、上記方法は、例えば、焼き菓子類について、開封直後からどれだけ食感が劣化したかを数値で表すことができるため、同一食品において、硬さ、食感、及びテクスチャ−の経時変化の度合いを数値的に把握して、食品の品質管理に適用できることを、本発明者は見出した。 In addition, the above-mentioned method can express, for example, how much the texture deteriorates immediately after opening for baked confectionery, so in the same food, the change in hardness, texture, and texture with time The present inventor has found that the degree can be grasped numerically and applied to quality control of food.

かくして、本発明は、食品の試料(A)をプランジャ−で押圧し、同時に押圧中の荷重及び歪率を連続的に測定し、前記の荷重及び歪率の値を基に、最小自乗法により計算を行って、X軸を歪率、Y軸を荷重とする五次以上の多次近似曲線の歪率一荷重曲線を作成し、該多次近似曲線における極大値(MaxA)を計算して求め、
他方、食品の試料(B)について、上記と同様にして、同次の多次近似曲線の歪率一荷重曲線を作成し、該多次近似曲線における極大値(MaxB)を計算して求め、
次いで、極大値(MaxA)と極大値(MaxB)の荷重値が同一の値となるように、前記多次近似曲線上の荷重値を統一的に補正した補正多次近似曲線を、前記多次近似曲線のそれぞれについて作成し、
次いで、作成した2つの補正多次近似曲線の差を積分し、得られた積分値を用いて、食品の試料(A)と食品の試料(B)の硬さ、食感、及びテクスチャ−の違いを評価することを特徴とする、食品の硬さ、食感、及びテクスチャ−のパターン認識による相対的評価方法を提供するものである。
Thus, in the present invention, the food sample (A) is pressed with the plunger, and simultaneously, the load and the strain rate during pressing are continuously measured. Based on the values of the load and the strain rate, the least square method is used. Perform a calculation to create a strain rate-one-load curve of a fifth order or higher order approximate curve with the X axis as the strain rate and the Y axis as the load, and calculate the maximum value (MaxA) in the multiorder approximate curve. Seeking
On the other hand, for the food sample (B), in the same manner as described above, a strain rate-one load curve of a homogeneous approximation curve is created, and the maximum value (MaxB) in the approximation curve is calculated and obtained.
Next, a corrected multi-order approximate curve obtained by uniformly correcting the load values on the multi-order approximate curve so that the load values of the maximum value (Max A) and the maximum value (Max B) are the same value is obtained as the multi-order approximate curve. Create for each of the fitted curves,
Next, the difference between the two corrected multi-order approximate curves prepared is integrated, and the obtained integrated value is used to determine the hardness, texture, and texture of the food sample (A) and the food sample (B). The present invention provides a relative evaluation method based on pattern recognition of food hardness, texture, and texture, characterized by evaluating differences.

本発明によれば、クッキー、ビスケット、パイなどの焼き菓子類、ゼラチン、寒天、豆腐類などのゲル状食品、あるいは、その他の食品に関して、食品咀嚼時における食品の硬さ、食感、及びテクスチャーの質の違いを正確に把握して、簡単かつ高精度で統計的に判別することが可能となる。   According to the present invention, with regard to baked confectionery such as cookies, biscuits and pies, gelatinous foods such as gelatin, agar, and tofu, or other foods, the hardness, texture and texture of the food when chewing the food It is possible to accurately grasp the difference in quality and statistically distinguish it with high accuracy.

食品試料の荷重及び歪率のデータを基に作成した多次近似曲線の歪率―荷重曲線の一例を示す図である。It is a figure which shows an example of the distortion-load curve of the multi-order approximation curve created based on the data of the load and distortion of a food sample. 多次近似曲線の差の領域例を示す図である。It is a figure which shows the example of an area | region of the difference of a multi-order approximate curve. クッキーAの五次近似曲線(A)、補正五次近似曲線(B)を示す図である。It is a figure which shows the 5th order approximate curve (A) and corrected 5th order approximate curve (B) of cookie A. クッキーAの五次近似曲線(A)、補正五次近似曲線(B)を示す図である。Fifth order approximation curve cookies A 2 (A), is a diagram illustrating a correction fifth order approximation curve (B). ビスケットBの五次近似曲線(A)、補正五次近似曲線(B)を示す図である。It is a figure which shows the 5th order approximate curve (A) of biscuit B, and a correction | amendment 5th order approximate curve (B). ビスケットCの五次近似曲線(A)、補正五次近似曲線(B)を示す図である。It is a figure which shows the 5th order approximate curve (A) of biscuit C, and a correction | amendment 5th order approximate curve (B). クッキーAの六次近似曲線(A)、補正六次近似曲線(B)を示す図である。It is a figure which shows the 6th approximation curve (A) and corrected 6th approximation curve (B) of cookie A. クッキーAの六次近似曲線(A)、補正六次近似曲線(B)を示す図である。Next six trendline Cookie A 2 (A), is a diagram illustrating a correction six linear approximation curve (B). ビスケットBの六次近似曲線(A)、補正六次近似曲線(B)を示す図である。It is a figure which shows the 6th approximation curve (A) of biscuit B, and a correction | amendment 6th approximation curve (B). ビスケットCの六次近似曲線(A)、補正六次近似曲線(B)を示す図である。It is a figure which shows the 6th order approximate curve (A) of biscuit C, and a correction | amendment 6th order approximate curve (B). クッキーSの六次近似曲線(A)、補正六次近似曲線(B)を示す図である。Six-order approximation curve cookie S 0 (A), it is a diagram illustrating a correction six linear approximation curve (B). クッキーS’の六次近似曲線(A)、補正六次近似曲線(B)を示す図である。Next six trendline cookie S 0 '(A), is a diagram illustrating a correction six linear approximation curve (B). クッキーSの六次近似曲線(A)、補正六次近似曲線(B)を示す図である。Six-order approximation curve cookie S 1 (A), it is a diagram illustrating a correction six linear approximation curve (B). クッキーSの六次近似曲線(A)、補正六次近似曲線(B)を示す図である。Six-order approximation curve cookie S 2 (A), it is a diagram illustrating a correction six linear approximation curve (B). クッキーSの六次近似曲線(A)、補正六次近似曲線(B)を示す図である。Six-order approximation curve cookie S 3 (A), it is a diagram illustrating a correction six linear approximation curve (B). ゼラチンDの六次近似曲線(A)、補正六次近似曲線(B)を示す図である。It is a figure which shows the 6th approximation curve (A) of gelatin D, and a correction | amendment 6th approximation curve (B). ゼラチンEの六次近似曲線(A)、補正六次近似曲線(B)を示す図である。It is a figure which shows the 6th approximation curve (A) of gelatin E, and a correction | amendment 6th approximation curve (B). 寒天Fの六次近似曲線(A)、補正六次近似曲線(B)を示す図である。It is a figure which shows the 6th approximation curve (A) of agar F, and a correction | amendment 6th approximation curve (B). 木綿豆腐Gの六次近似曲線(A)、補正六次近似曲線(B)を示す図である。It is a figure which shows the 6th approximation curve (A) of cotton tofu G, and a correction | amendment 6th approximation curve (B). 絹ごし豆腐Hの六次近似曲線(A)、補正六次近似曲線(B)を示す図である。It is a figure which shows the 6th approximation curve (A) of the silken tofu H, and a correction | amendment 6th approximation curve (B). 玉子豆腐Iの六次近似曲線(A)、補正六次近似曲線(B)を示す図である。It is a figure which shows the 6th approximation curve (A) of the egg tofu I, and a correction | amendment 6th approximation curve (B).

以下、本発明について、さらに詳細に説明する。
本発明は、食品試料の歪率―荷重曲線の多次近似曲線を統一的に補正して、得られた2つの補正多次近似曲線(パターン)の差を積分値として求め、得られた積分値が、どの程度の硬さ、食感、あるいは、テクスチャ−の違いに該当するかを、あらかじめ収集しておいたデータに基づいて判断する方法であり、食品の硬さ、食感、及びテクスチャーを、試料の間で相対的に評価する方法である。
本発明の評価方法を実施するにあたっては、まず、食品の試料(A)及び食品の試料(B)をプランジャ−で押圧し、同時に押圧中の荷重及び歪率を連続的に測定する。
ここで、食品の試料(A)及び食品の試料(B)は、食品の硬さ、食感、及びテクスチャーの質の違いを相対的に評価する対象物であり、異なる種類の食品の試料であってもよいし、同一種類の食品の試料であってもよい。また、ある時間が経過した同一試料であってもよい。
Hereinafter, the present invention will be described in more detail.
The present invention uniformly corrects a multi-order approximate curve of a strain rate-load curve of a food sample, obtains a difference between the two obtained corrected multi-order approximate curves (patterns) as an integral value, and obtains the obtained integral It is a method of judging how hard, texture, or texture the value corresponds to based on the data collected in advance, the hardness, texture, and texture of the food Is relatively evaluated between samples.
In carrying out the evaluation method of the present invention, first, the food sample (A) and the food sample (B) are pressed with a plunger, and at the same time, the load and distortion rate during pressing are continuously measured.
Here, the food sample (A) and the food sample (B) are objects for relatively evaluating differences in the hardness, texture, and texture quality of the food. It may be a sample of the same type of food. Moreover, the same sample which a certain time passed may be sufficient.

本発明で評価が可能な食品は、例えば、クッキー、ビスケット、パイ、スナック菓子、米菓子、などの焼き菓子類;寒天、ゼラチン、ナタデココ、豆腐類、コンニャクゲル、アロエなどのゲル状食品;リンゴ、ナシ、黄桃、白桃、ブドウ、ブルーベリー、イチゴ、バナナ、メロン、スイカ、パイナップル、マンゴ、パパイヤなどの果実;ダイコン、カブ、ニンジン、カボチャ、ナス、ミニトマトなどの野菜を挙げることができるが、これらの食品に限定されるわけではない。これらの食品のうち、クッキー、ビスケット、パイ、スナック菓子、米菓子、などの焼き菓子類、寒天、ゼラチン、豆腐類などのゲル状食品の評価が特に好ましい。このように、本発明は、多岐に渡る食品を評価の対象とすることができる。   Foods that can be evaluated in the present invention include, for example, baked confectionery such as cookies, biscuits, pies, snack confectionery, rice confectionery; gel foods such as agar, gelatin, nata de coco, tofu, konjac gel, and aloe; apple, Fruits such as pear, yellow peach, white peach, grape, blueberry, strawberry, banana, melon, watermelon, pineapple, mango, papaya; radish, turnip, carrot, pumpkin, eggplant, cherry tomato, etc. It is not limited to these foods. Of these foods, evaluation of baked confectionery such as cookies, biscuits, pies, snack confectionery, rice confectionery, and gel food such as agar, gelatin, and tofu is particularly preferable. Thus, the present invention can target a wide variety of foods.

試料(A)及び試料(B)のサイズは、押圧する際に使用するプランジャーに基づいて、荷重及び歪率の測定に適した範囲のサイズにすればよい。また、測定に適した形状は問わず、通常ホールの形状、円柱体、直方体、立方体、球体及びこれに類似する形状が採用される。例えば、直径20mm×高さ2mmないし直径50mm×高さ8mmの円柱体、底辺30mm×底辺20mm×高さ2mmないし底辺20mm×底辺20mm×高さ20mmの直方体ないし立方体、直径5mmないし20mmの球体などが例示される。なお、本発明の評価方法において、評価に供する試料の個数は特に限定されない。   The size of the sample (A) and the sample (B) may be set to a size suitable for the measurement of the load and the distortion rate based on the plunger used for pressing. Moreover, the shape suitable for the measurement is not limited, and the shape of a hole, a cylinder, a rectangular parallelepiped, a cube, a sphere, and a similar shape are usually employed. For example, a cylinder having a diameter of 20 mm × a height of 2 mm to a diameter of 50 mm × a height of 8 mm; Is exemplified. In the evaluation method of the present invention, the number of samples used for evaluation is not particularly limited.

食品試料を押圧するために使用しうる装置としては、一般にプランジャーと呼ばれる、圧縮破断試験を行うことができる装置、すなわち、通常円柱状の部品を有し、その先端部分で食品試料を一定速度(通常、0.01〜50mm/秒)で押し潰し、同時に押圧中に負荷される荷重とその荷重に対する歪率を連続的に測定することができる装置であるならば、特に制限はない。食品試料を押圧するプランジャー部分の形状は、測定する食品の実際の咀嚼態様を考慮して選択することが好ましく、例えば、主として前歯で噛む食品の場合はくさび形、奥歯で噛む食品の場合は円柱形のプランジャーを選択することが好ましい。市販品としては、クリープメータRE2−33005B、クリープメータRE2−3305B(以上、株式会社山電製、商品名)、レオメータCR−500DX−S(株式会社レオテック製、商品名)などを挙げることができるが、これらに限定されるわけではない。なお、これらの装置には、測定結果を外部に出力するためのソフトが予め組み込まれている。   A device that can be used to press a food sample is a device that is generally called a plunger that can perform a compression rupture test. There is no particular limitation as long as the apparatus can continuously measure the load applied during pressing (usually 0.01 to 50 mm / sec) and simultaneously the load applied during pressing and the distortion rate with respect to the load. The shape of the plunger part that presses the food sample is preferably selected in consideration of the actual chewing mode of the food to be measured. A cylindrical plunger is preferably selected. Examples of commercially available products include creep meter RE2-30005B, creep meter RE2-3305B (manufactured by Yamaden Co., Ltd., trade name), rheometer CR-500DX-S (manufactured by Rheotech Co., Ltd., trade name), and the like. However, it is not limited to these. Note that software for outputting measurement results to the outside is incorporated in these devices in advance.

食品の試料(A)及び食品の試料(B)について、荷重及び歪率を連続的に測定した後、試料(A)及び試料(B)のそれぞれについて、上記の測定装置の出力データである荷重及び歪率の値を基に、最小自乗法により計算を行って、X軸を歪率、Y軸を荷重とする多次近似曲線、例えば、五次近似曲線の歪率−荷重曲線を作成する。上記の測定によって得られた出力データである荷重及び歪率は、前述の多次方程式で近似すると、出力データ分布のほぼ中央を通過する多次近似曲線として描くことができる。多次近似曲線は、五次以上の多次近似曲線であればよく、通常は、計算の便宜を考慮すると、五次ないし六次である。
この多次近似曲線の歪率−荷重曲線を作成するには、まず、荷重及び歪率のデータを、例えば、表計算ソフトなどのデータとしてコンピュータに取り込む。ここで、歪率(%)とは、荷重を加えない場合に比べて、試料がどれだけ変形したかを表す数値であり、{(荷重をかける前の試料の高さ−ある所定の荷重をかけたときの試料の高さ)/(荷重をかける前の試料の高さ)}×100(%)で求めることができる。例えば、実際の測定で、試料の高さが20%減少したときは、歪率は20%となる。1個の食品試料に対して、荷重及び歪率を測定する回数は食品の種類によって異なるが、破断点の前後を合わせて合計で5〜100回、好ましくは10〜80回、より好ましくは10〜50回を挙げることができる。
For food sample (A) and food sample (B), the load and strain rate are measured continuously, and then the load that is the output data of the measuring device for each of sample (A) and sample (B). Then, based on the values of the distortion rate, the calculation is performed by the method of least squares, and a multi-order approximation curve having the distortion rate on the X axis and the load on the Y axis, for example, a distortion rate-load curve of a fifth approximation curve is created. . When the load and distortion rate, which are output data obtained by the above measurement, are approximated by the above-described multi-order equation, they can be drawn as a multi-order approximate curve that passes through substantially the center of the output data distribution. The multi-order approximate curve only needs to be a multi-order approximate curve of 5th order or higher, and usually 5th order to 6th order for convenience of calculation.
In order to create a distortion rate-load curve of this multi-order approximation curve, first, load and distortion rate data is taken into a computer as data such as spreadsheet software, for example. Here, the distortion rate (%) is a numerical value indicating how much the sample is deformed as compared with the case where no load is applied, and {(the height of the sample before applying the load−a predetermined load). The height of the sample when applied) / (the height of the sample before applying a load)} × 100 (%). For example, in actual measurement, when the height of the sample is reduced by 20%, the distortion rate is 20%. The number of times the load and strain rate are measured for one food sample varies depending on the type of food, but the total before and after the breaking point is 5 to 100 times, preferably 10 to 80 times, more preferably 10 times. -50 times can be mentioned.

コンピュータに取り込んだ荷重及び歪率のデータは、最小自乗法を用いて、X軸を歪率、Y軸を荷重とする五次以上の多次近似曲線の歪率−荷重曲線を作成するために使用される。具体的には、荷重及び歪率のデータから、最小自乗法を用いて多次方程式の方程式を求め、それをグラフ化することにより歪率−荷重曲線が作成される。これらは市販ソフトを利用することによって自動的に行うことができる。   Load and distortion data captured by a computer is used to create a distortion-load curve of a fifth-order or higher order approximate curve with the X-axis distortion and the Y-axis load using the least square method. used. Specifically, an equation of a multi-order equation is obtained from load and strain rate data using the least square method, and a strain rate-load curve is created by graphing it. These can be automatically performed by using commercially available software.

この多次近似曲線について、例えば、五次近似した歪率−荷重曲線について詳しく説明すると、通常は破断点に相当する極大値、続いて荷重が最も減衰した点である極小値がそれぞれ少なくとも1つ存在する(図1参照)。また、各極大値と極小値間には通常変曲点が存在する。食品を咀嚼した場合、ある時点で組織が壊れる、すなわち破断が起こるが、この破断点は歪率−荷重曲線の五次近似曲線における最初のピーク値である極大値に相当する。この図1から分かるように、五次近似曲線である歪率−荷重曲線を用いて食品を咀嚼したときの荷重−歪率の関係は、荷重(gf)=0から荷重が増加するに伴って歪率も増加し、破断点で極大値を迎え、その後、極小値に到達するまで歪率は増加するが荷重は減少し、極小値を過ぎると再び、歪率の増加に伴って荷重も増大すると説明できる。   Regarding this multi-order approximation curve, for example, a fifth-order approximation distortion rate-load curve will be described in detail. Usually, there is at least one maximum value corresponding to the breaking point and subsequently at least one minimum value at which the load is most attenuated. Exists (see FIG. 1). There is usually an inflection point between each local maximum and local minimum. When the food is chewed, the tissue breaks at a certain point, that is, breaks. This break point corresponds to the maximum value that is the first peak value in the fifth-order approximation curve of the strain rate-load curve. As can be seen from FIG. 1, the relationship between the load and the strain rate when the food is chewed using the strain rate-load curve which is a fifth-order approximation curve is as the load increases from load (gf) = 0. The strain rate also increases, reaches a maximum at the breaking point, then increases until the minimum value is reached, but the load decreases, and when the minimum value is exceeded, the load increases again as the strain rate increases. Then you can explain.

次いで、試料(A)及び試料(B)について作成された、X軸を歪率、Y軸を荷重とする多次近似曲線から、それぞれ極大値(MaxA)、極大値(MaxB)を計算して求める。多くの食品は1つ以上の極大値を有するが、極大値を1つだけ有する場合は、その値を極大値(MaxA)、極大値(MaxB)とし、極大値を複数有する場合は、それらの極大値の中で最大の荷重値を示す極大値を、極大値(MaxA)、極大値(MaxB)として採用する。前述したように、極大値(MaxA)、極大値(MaxB)は、破断点に相当すると考えられる。   Next, the local maximum value (MaxA) and the local maximum value (MaxB) are calculated from the multi-order approximate curves created for the sample (A) and the sample (B) with the X-axis being the distortion rate and the Y-axis being the load. Ask. Many foods have one or more maximum values, but if there is only one maximum value, that value is the maximum value (MaxA), the maximum value (MaxB), and if there are multiple maximum values, The maximum value indicating the maximum load value among the maximum values is adopted as the maximum value (MaxA) and the maximum value (MaxB). As described above, the maximum value (MaxA) and the maximum value (MaxB) are considered to correspond to the breaking point.

極大値(MaxA)と極大値(MaxB)を決定した後、極大値(MaxA)と極大値(MaxB)の荷重値が同一の値となるように、前記多次近似曲線上の荷重値を統一的に補正した補正多次近似曲線を、試料(A)及び試料(B)のそれぞれについて作成する。これにより、前記多次近似曲線を直接対比できるようになる。荷重値を統一的に補正するには、例えば、(式1):(一定の値)/(多次近似曲線において、最大荷重値をもつ極大値の荷重値)=補正係数C、に基づいて、補正係数Cを算出し、元の多次近似曲線上の全ての荷重値に補正係数Cを乗じることによって行う。一定の値は、極大値の荷重値を考慮して適宜決定すればよく、例えば、1,000が例示される。そして、この手段によって得られた補正後の荷重を歪率毎に連結して、得られた曲線を補正近似曲線とする。補正近似曲線を作成するには、例えば、歪率を0.01%〜2%毎に区切って補正後の荷重をプロットするが、これに限定されるものではない。 After determining the maximum value (MaxA) and the maximum value (MaxB), the load values on the multi-order approximation curve are unified so that the load values of the maximum value (MaxA) and the maximum value (MaxB) are the same. A corrected multi-order approximate curve is generated for each of the sample (A) and the sample (B). As a result, the multi-order approximate curve can be directly compared. In order to uniformly correct the load value, for example, based on (Equation 1): (constant value) / (maximum load value having the maximum load value in a multi-order approximation curve) = correction coefficient C The correction coefficient C is calculated, and all the load values on the original multi-order approximate curve are multiplied by the correction coefficient C. The constant value may be appropriately determined in consideration of the maximum load value, and for example, 1,000 is exemplified. Then, the corrected load obtained by this means is connected for each distortion rate, and the obtained curve is used as a corrected approximate curve. In order to create the corrected approximate curve, for example, the corrected load is plotted by dividing the distortion rate by 0.01% to 2%, but the present invention is not limited to this.

補正多次近似曲線を作成した後、補正多次近似曲線の差を積分する。作成した2つの補正多次近似曲線の概形が似ていれば、補正多次近似曲線の差の積分は小さくなり、概形が似ていなければ、積分が大きくなる。すなわち、2つの補正多次近似曲線の乖離の度合いが、補正多次近似曲線の差の積分に反映され、結局、食品の硬さ、食感、及びテクスチャ−の質の違いを表す。補正多次近似曲線の差の積分計算は、例えば、歪率0.01%〜2%毎に区切って計算を行うが、これに限定されるものではない。また、積分計算は、通常は、測定区間の開始点から終点まで、すなわち、測定区間全体を通して計算を行うが、適宜、積分区間を選択することは任意である。ここで、図2は、補正多次近似曲線の差の領域を例示した図である。図2に示した例では、歪率0〜85(%)の積分区間において、2つの補正多次近似曲線の差の積分値が、補正多次近似曲線間の斜線部分の面積として計算される。 After creating the corrected multi-order approximate curve, the difference of the corrected multi-order approximate curve is integrated. If the approximate shapes of the two corrected multi-order approximate curves are similar, the integral of the difference between the corrected multi-order approximate curves is small, and if the general shapes are not similar, the integral is large. That is, the degree of divergence between the two corrected multi-order approximate curves is reflected in the integration of the difference between the corrected multi-order approximate curves, and eventually represents the difference in food hardness, texture, and texture quality. For example, the integral calculation of the difference between the corrected multi-order approximate curves is performed by dividing the distortion every 0.01% to 2%, but is not limited thereto. In addition, the integration calculation is normally performed from the start point to the end point of the measurement interval, that is, throughout the measurement interval, but it is arbitrary to select the integration interval as appropriate. Here, FIG. 2 is a diagram exemplifying a difference area of the corrected multi-order approximate curve. In the example shown in FIG. 2, the integral value of the difference between the two corrected multi-order approximate curves is calculated as the area of the hatched portion between the corrected multi-order approximate curves in the integration interval of the distortion rate 0 to 85 (%). .

以下、本発明を実施例により、さらに具体的に説明するが、本発明は以下に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to the following.

(実施例1)
市販されているクッキーA(直径55mm×厚さ8.5mm円柱体)を、試料台の上に、室温で載置し、クリープメータRE2−33005B(山電社製、商品名)を用いて、該クッキーの上面方向から、接触面積50mmの円柱状のプランジャーを、1.0mm/秒の速度で押圧することにより、荷重(gf)及び歪率(%)を測定した。荷重(gf)及び歪率(%)の測定は、同一試料に対して30回測定した。
上記測定によって得られた荷重(gf)及び歪率(%)の測定値から、コンピュータを用いて最小自乗法により計算を行って、X軸を歪率、Y軸を荷重とする五次近似曲線の歪率−荷重曲線を作成した。その歪率−荷重曲線は、五次関数式:y=0.0000383757x−0.008799127x+0.7339137120x−26.2147611253x+334.0712521236x+418.9238208917で表された。上記式で与えられる五次近似曲線の歪率−荷重曲線を図3(A)に示す。該五次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は1788.2gfであった。
次いで、該荷重値が1,000gfとなるように、上記五次近似曲線の荷重値に対して統一補正を行った(この場合、前述した補正係数Cは、0.55922である。)。すなわち、該補正係数Cを元の五次近似曲線全域の荷重値に乗じて、補正五次近似曲線の歪率−荷重曲線を作成した。該補正五次近似曲線を図3(B)に示す。
Example 1
A commercially available cookie A (55 mm diameter × 8.5 mm thick cylinder) was placed on a sample stage at room temperature, and a creep meter RE2-30005B (manufactured by Yamaden Co., Ltd., trade name) was used. A load (gf) and a distortion rate (%) were measured by pressing a cylindrical plunger having a contact area of 50 mm 2 from the top surface of the cookie at a speed of 1.0 mm / second. The load (gf) and strain rate (%) were measured 30 times for the same sample.
A fifth order approximate curve with the X-axis being the distortion factor and the Y-axis being the load is calculated from the measured values of the load (gf) and the distortion factor (%) obtained by the above measurement by the least square method using a computer. A strain rate-load curve was prepared. The strain rate-load curve was expressed by a quintic function formula: y = 0.0000383757x 5 -0.008799127x 4 + 0.7339137120x 3 -262.214112153x 2 + 334.00712521236x + 418.9238208917. A strain rate-load curve of the fifth order approximate curve given by the above equation is shown in FIG. In the fifth-order approximation curve, the maximum value with the maximum load value was calculated, and the load value was 1788.2 gf.
Next, unified correction was performed on the load value of the fifth-order approximation curve so that the load value was 1,000 gf (in this case, the correction coefficient C described above is 0.55922). That is, the distortion coefficient-load curve of the corrected fifth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original fifth-order approximate curve. The corrected fifth order approximate curve is shown in FIG.

次いで、クッキーA(クッキーAと同一製品、製造ロット違い品。直径55mm×厚さ8.5mm円柱体)について、上記クッキーAと同様の処理を行った。
上記測定によって得られた荷重(gf)及び歪率(%)の測定値から、コンピュータを用いて最小自乗法により計算を行って、X軸を歪率、Y軸を荷重とする五次近似曲線の歪率−荷重曲線を作成した。その歪率−荷重曲線は、五次関数式:y=0.0000414359x−0.0093631409x+0.7721593387x−27.4403963291x+353.6380397024x+344.9865083471で表された。上記式で与えられる五次近似曲線の歪率−荷重曲線を図4(A)に示す。該五次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は1820.0gfであった。
次いで、該荷重値が1,000gfとなるように、上記五次近似曲線の荷重値に対して統一補正を行った(この場合、前述した補正係数Cは、0.54945である。)。すなわち、該補正係数Cを元の五次近似曲線全域の荷重値に乗じて、補正五次近似曲線の歪率−荷重曲線を作成した。該補正五次近似曲線を図4(B)に示す。
Next, the same processing as the cookie A was performed on the cookie A 2 (the same product as the cookie A, a product with a different production lot. Diameter 55 mm × thickness 8.5 mm cylinder).
A fifth order approximate curve with the X-axis being the distortion factor and the Y-axis being the load is calculated from the measured values of the load (gf) and the distortion factor (%) obtained by the above measurement by the least square method using a computer. A strain rate-load curve was prepared. The distortion-load curve was expressed by a quintic function formula: y = 0.0000414359x 5 −0.00936361409x 4 + 0.772159393387x 3 −27.4403963291x 2 + 353.63803997024x + 344.9865083471. A strain rate-load curve of the fifth order approximate curve given by the above equation is shown in FIG. In the fifth-order approximate curve, when the maximum value with the maximum load value was calculated, the load value was 1820.0 gf.
Next, unified correction was performed on the load value of the fifth-order approximation curve so that the load value becomes 1,000 gf (in this case, the correction coefficient C described above is 0.54945). That is, the distortion coefficient-load curve of the corrected fifth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original fifth-order approximate curve. The corrected fifth order approximate curve is shown in FIG.

クッキーAの補正五次近似曲線を標準とし、クッキーAの補正五次近似曲線との差の積分計算を、歪率0%から70%までの範囲で、また、歪率0.1%間隔の解析条件で実施して、積分値を算出したところ、13,128の値が得られた。 The correction fifth order approximation curve cookies A as a standard, the integration calculation of the difference between the corrected quintic trendline Cookie A 2, ranging from the distortion rate of 0% to 70%, also, distortion of 0.1% Interval When the integrated value was calculated under the analysis conditions, 13,128 values were obtained.

(実施例2)
市販されているビスケットB(底辺60mm×底辺48mm×厚さ9mm直方体)について、実施例1と同様の処理を行った。
上記測定によって得られた荷重(gf)及び歪率(%)の測定値から、コンピュータを用いて最小自乗法により計算を行って、X軸を歪率、Y軸を荷重とする五次近似曲線の歪率−荷重曲線を作成した。その歪率−荷重曲線は、五次関数式:y=0.0000478682x−0.0108325413x+0.8968073150x−32.0799328004x+421.7423101608x+35.1647268115で表された。上記式で与えられる五次近似曲線の歪率−荷重曲線を図5(A)に示す。該五次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は1839.4gfであった。
次いで、該荷重値が1,000gfとなるように、上記五次近似曲線の荷重値に対して統一補正を行った(この場合、前述した補正係数Cは、0.54365である。)。すなわち、該補正係数Cを元の五次近似曲線全域の荷重値に乗じて、補正五次近似曲線の歪率−荷重曲線を作成した。該補正五次近似曲線を図5(B)に示す。
(Example 2)
A commercially available biscuit B (base 60 mm × base 48 mm × thickness 9 mm cuboid) was subjected to the same treatment as in Example 1.
A fifth order approximate curve with the X-axis being the distortion factor and the Y-axis being the load is calculated from the measured values of the load (gf) and the distortion factor (%) obtained by the above measurement by the least square method using a computer. A strain rate-load curve was prepared. The distortion-load curve was expressed by a quintic function formula: y = 0.0000478682x 5 -0.0108325413x 4 + 0.8968807150x 3 -32.0799328044 x 2 + 4211.74231016088 + 35.1647268115. FIG. 5A shows a distortion rate-load curve of the fifth order approximate curve given by the above equation. In the fifth-order approximation curve, the maximum value with the maximum load value was calculated, and the load value was 1839.4 gf.
Next, unified correction was performed on the load value of the fifth-order approximation curve so that the load value becomes 1,000 gf (in this case, the correction coefficient C described above is 0.54365). That is, the distortion coefficient-load curve of the corrected fifth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original fifth-order approximate curve. The corrected fifth order approximate curve is shown in FIG.

実施例1に示したクッキーAの補正五次近似曲線を標準とし、クッキーBの補正五次近似曲線との差の積分計算を、歪率0%から70%までの範囲で、また、歪率0.1%間隔の解析条件で実施して、積分値を算出したところ、21,542の値が得られた。 The integral calculation of the difference from the corrected fifth-order approximate curve of cookie B, using the corrected fifth-order approximate curve of cookie A shown in Example 1 as a standard, is performed in the range of the distortion rate from 0% to 70%. When integrated values were calculated under analysis conditions of 0.1% intervals, values of 21,542 were obtained.

(実施例3)
市販されているビスケットC(直径60mm×厚さ6mm円柱体)について実施例1と同様の処理を行った。
上記測定によって得られた荷重(gf)及び歪率(%)の測定値から、コンピュータを用いて最小自乗法により計算を行って、X軸を歪率、Y軸を荷重とする五次近似曲線の歪率−荷重曲線を作成した。その歪率−荷重曲線は、五次関数式:y=0.0000309152x−0.0067157687x+0.5748110521x−23.4186267445x+412.4118587289x−549.4356481123で表された。上記式で与えられる五次近似曲線の歪率−荷重曲線を図6(A)に示す。該五次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は2001.8gfであった。
次いで、該荷重値が1,000gfとなるように、上記五次近似曲線の荷重値に対して統一補正を行った(この場合、前述した補正係数Cは、0.49955である。)。すなわち、該補正係数Cを元の五次近似曲線全域の荷重値に乗じて、補正五次近似曲線の歪率−荷重曲線を作成した。該補正五次近似曲線を図6(B)に示す。
(Example 3)
A commercially available biscuit C (diameter 60 mm × thickness 6 mm cylinder) was treated in the same manner as in Example 1.
A fifth order approximate curve with the X-axis being the distortion factor and the Y-axis being the load is calculated from the measured values of the load (gf) and the distortion factor (%) obtained by the above measurement by the least square method using a computer. A strain rate-load curve was prepared. The strain rate-load curve was expressed by a quintic function formula: y = 0.0003000152x 5 -0.0067157687x 4 + 0.57488110521x 3 -23.4186267445x 2 + 412.41187858289x-549.4355481123. FIG. 6A shows a distortion rate-load curve of the fifth order approximate curve given by the above equation. In the fifth-order approximate curve, when the maximum value with the maximum load value was calculated, the load value was 2001.8 gf.
Next, unified correction was performed on the load value of the fifth-order approximation curve so that the load value becomes 1,000 gf (in this case, the correction coefficient C described above is 0.49955). That is, the distortion coefficient-load curve of the corrected fifth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original fifth-order approximate curve. The corrected fifth order approximate curve is shown in FIG.

実施例1に示したクッキーAの補正五次近似曲線を標準とし、クッキーCの補正五次近似曲線との差の積分計算を、歪率0%から70%までの範囲で、また、歪率0.1%間隔の解析条件で実施して、積分値を算出したところ、255,680の値が得られた。 The integral calculation of the difference from the corrected fifth-order approximate curve of cookie C, using the corrected fifth-order approximate curve of cookie A shown in Example 1 as a standard, is performed in the range from 0% to 70% of the distortion rate. When the integration value was calculated under the analysis conditions of 0.1% intervals, 255 and 680 values were obtained.

(実施例1〜3の評価)
官能評価において、クッキーAとクッキーAは、全く同質の食感を有し、ビスケットBはクッキーAと類似の食感を有し、ビスケットCはクッキーAと全く異質の食感を有すると評価されている。
それに対し、クッキーAとクッキーAに関する実施例1で得られた差の積分値は、13,128であり、実施例1〜3の中では、値が最小であった。クッキーAとビスケットBに関する実施例2で得られた差の積分値は、21,542であり、値は小さかった。クッキーAとビスケットCに関する実施例3で得られた差の積分値は、255,680であり、値は大きかった。
この結果から分かるように、実施例1〜3で得られた積分値は、実際の官能評価の結果を正確に反映していた。
(Evaluation of Examples 1 to 3)
In sensory evaluation, Cookie A and Cookie A 2 have the same texture, biscuits B have a texture similar to Cookie A, and biscuits C have a texture that is completely different from Cookie A. Has been.
On the other hand, the integral value of the difference obtained in Example 1 regarding Cookie A and Cookie A 2 was 13,128, and the value was the smallest among Examples 1 to 3. The integrated value of the difference obtained in Example 2 for Cookie A and Biscuit B was 21,542, which was small. The integrated value of the difference obtained in Example 3 for Cookie A and Biscuit C was 255,680, which was large.
As can be seen from this result, the integrated values obtained in Examples 1 to 3 accurately reflected the actual sensory evaluation results.

(実施例4)
実施例1に示したクッキーAの測定結果についての破断曲線の近似を五次方程式近似から六次方程式近似に変更し、解析した。その歪率−荷重曲線は、六次関数式:y=−0.000000584790x+0.000196067443x−0.024898494982x+1.504695292018x−43.484080118127x+488.194709349773x+96.927401822060で表された。上記式で与えられる六次近似曲線の歪率−荷重曲線を図7(A)に示す。該六次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は1913.7gfであった。
次いで、該荷重値が1,000gfとなるように、上記六次近似曲線の荷重値に対して統一補正を行った(この場合、補正係数Cは、0.52254である。)。すなわち、該補正係数Cを元の六次近似曲線全域の荷重値に乗じて、補正六次近似曲線の歪率−荷重曲線を作成した。該補正六次近似曲線を図7(B)に示す。
Example 4
The fracture curve approximation of the measurement result of cookie A shown in Example 1 was changed from the fifth-order equation approximation to the sixth-order equation approximation and analyzed. The distortion-load curve was represented by a sixth-order function formula: y = −0.0000000584790x 6 + 0.000196064433x 5 −0.024898944982x 4 + 1.5044695292018x 3 −43.4480801118127x 2 + 488.1947093497773x + 96.927740182060 A distortion rate-load curve of the sixth-order approximation curve given by the above equation is shown in FIG. In the sixth-order approximation curve, when the maximum value with the maximum load value was calculated, the load value was 1913.7 gf.
Next, unified correction was performed on the load value of the sixth approximation curve so that the load value becomes 1,000 gf (in this case, the correction coefficient C is 0.52254). That is, the distortion factor-load curve of the corrected sixth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original sixth-order approximate curve. The corrected sixth order approximate curve is shown in FIG.

続いて、実施例1に示したクッキーAの測定結果についての破断曲線の近似を五次方程式近似から六次方程式近似に変更し、解析した。その歪率−荷重曲線は、六次関数式:y=−0.000000260260x+0.000111622367x−0.016529353287x+1.115279757758x−35.128535536380x+422.255776902195x+201.634992864681で表された。上記式で与えられる六次近似曲線の歪率−荷重曲線を図8(A)に示す。該六次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は1873.2gfであった。
次いで、該荷重値が1,000gfとなるように、上記六次近似曲線の荷重値に対して統一補正を行った(この場合、補正係数Cは、0.53385である。)。すなわち、該補正係数Cを元の六次近似曲線全域の荷重値に乗じて、補正六次近似曲線の歪率−荷重曲線を作成した。該補正六次近似曲線を図8(B)に示す。
Subsequently, the approximation of the break curve for the measurement result of cookie A 2 shown in Example 1 was changed from the quintic equation approximation to the sixth equation approximation and analyzed. The strain rate-load curve was represented by a sixth-order function formula: y = −0.00000000260260x 6 + 0.00011162367x 5 −0.0165529353287x 4 +1.1152797575858 x 3 −35.128535536380x 2 + 422.2257769022195x + 201.634992668681 A distortion rate-load curve of the sixth-order approximation curve given by the above equation is shown in FIG. In the sixth-order approximation curve, the maximum value with the maximum load value was calculated, and the load value was 1873.2 gf.
Next, unified correction was performed on the load value of the sixth approximation curve so that the load value becomes 1,000 gf (in this case, the correction coefficient C is 0.53385). That is, the distortion factor-load curve of the corrected sixth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original sixth-order approximate curve. The corrected sixth order approximate curve is shown in FIG.

クッキーAの補正六次近似曲線を標準とし、クッキーAの補正六次近似曲線との差の積分計算を、歪率0%から70%までの範囲で、また、歪率0.1%間隔の解析条件で実施して、積分値を算出したところ、22,000の値が得られた。 A correction next six trendline Cookie A as a standard, the integration calculation of the difference between the corrected six-order approximation curve cookies A 2, ranging from the distortion rate of 0% to 70%, also, distortion of 0.1% Interval When the integrated value was calculated under the analysis conditions, a value of 22,000 was obtained.

(実施例5)
実施例2に示したビスケットBの測定結果についての破断曲線の近似を五次方程式近似から六次方程式近似に変更し、解析した。その歪率−荷重曲線は、六次関数式:y=−0.000000269589x+0.000120635174x−0.018268161597x+1.253053850107x−40.064671302505x+492.970779391471x−113.057557536754で表された。上記式で与えられる六次近似曲線の歪率−荷重曲線を図9(A)に示す。該六次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は1892.3gfであった。
次いで、該荷重値が1,000gfとなるように、上記六次近似曲線の荷重値に対して統一補正を行った(この場合、前述した補正係数Cは、0.52844である。)。すなわち、該補正係数Cを元の六次近似曲線全域の荷重値に乗じて、補正六次近似曲線の歪率−荷重曲線を作成した。該補正六次近似曲線を図9(B)に示す。
(Example 5)
The fracture curve approximation for the measurement result of biscuit B shown in Example 2 was changed from the quintic equation approximation to the sixth equation approximation and analyzed. The distortion-load curve was expressed by a sixth-order function formula: y = −0.0000000269589x 6 + 0.000120635174x 5 −0.01826815597x 4 + 1.2530538850107x 3 −40.067130250505x 2 + 492.9707077931471x-11.057555575364 FIG. 9A shows a distortion rate-load curve of a sixth-order approximation curve given by the above equation. In the sixth-order approximation curve, when the maximum value with the maximum load value was calculated, the load value was 1892.3 gf.
Next, unified correction was performed on the load value of the sixth approximation curve so that the load value becomes 1,000 gf (in this case, the correction coefficient C described above is 0.52844). That is, the distortion factor-load curve of the corrected sixth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original sixth-order approximate curve. The corrected sixth order approximate curve is shown in FIG.

実施例4に示したクッキーAの補正六次近似曲線を標準とし、ビスケットBの補正六次近似曲線との差の積分計算を、歪率0%から70%までの範囲で、また、歪率0.1%間隔の解析条件で実施して、積分値を算出したところ、60,197の値が得られた。 The integral calculation of the difference from the corrected sixth-order approximate curve of cookie A shown in Example 4 and the correction sixth-order approximate curve of biscuit B is performed in the range from 0% to 70%, and the distortion rate. When integrated values were calculated under analysis conditions at 0.1% intervals, values of 60,197 were obtained.

(実施例6)
実施例3に示したビスケットCの測定結果についての破断曲線の近似を五次方程式近似から六次方程式近似に変更し、解析した。その歪率−荷重曲線は、六次関数式:y=0.000000476258x−0.000097663788x+0.006422710726x−0.054388249102x−9.334177145618x+287.202060697600x−292.115734149701で表された。上記式で与えられる六次近似曲線の歪率−荷重曲線を図10(A)に示す。該六次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は2042.2gfであった。
次いで、該荷重値が1,000gfとなるように、上記六次近似曲線の荷重値に対して統一補正を行った(この場合、前述した補正係数Cは、0.48967である。)。すなわち、該補正係数Cを元の六次近似曲線全域の荷重値に乗じて、補正六次近似曲線の歪率−荷重曲線を作成した。該補正六次近似曲線を図10(B)に示す。
(Example 6)
The fracture curve approximation for the measurement result of the biscuit C shown in Example 3 was changed from the fifth-order equation approximation to the sixth-order equation approximation and analyzed. The distortion-load curve was represented by a sixth-order function formula: y = 0.00000476258x 6 -0.0000976633788x 5 + 0.006422710726x 4 -0.0543882492102x 3 -9.3334177475618x 2 + 287.202060697600x-292.1157341497011. FIG. 10A shows a distortion rate-load curve of the sixth-order approximation curve given by the above formula. In the sixth-order approximate curve, when the maximum value with the maximum load value was calculated, the load value was 2042.2 gf.
Next, unified correction was performed on the load value of the sixth approximation curve so that the load value was 1,000 gf (in this case, the correction coefficient C described above is 0.48967). That is, the distortion factor-load curve of the corrected sixth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original sixth-order approximate curve. The corrected sixth order approximate curve is shown in FIG.

実施例4に示したクッキーAの補正六次近似曲線を標準とし、ビスケットCの補正六次近似曲線との差の積分計算を、歪率0%から70%までの範囲で、また、歪率0.1%間隔の解析条件で実施して、積分値を算出したところ、269,068の値が得られた。 The integral calculation of the difference from the corrected sixth-order approximation curve of cookie A shown in Example 4 and the correction sixth-order approximation curve of biscuit C is performed in the range from 0% to 70% distortion. When integrated values were calculated under analysis conditions of 0.1% intervals, values of 269,068 were obtained.

(実施例4〜6の評価)
クッキーAとクッキーAに関する実施例4で得られた差の積分値は、22,000であり、実施例4〜6の中では、値が最小であった。クッキーAとビスケットBに関する実施例5で得られた差の積分値は、60,197であり、値は小さかった。クッキーAとビスケットCに関する実施例6で得られた差の積分値は、269,068であり、値は大きかった。
この結果から分かるように、実施例4〜6で得られた積分値は、実際の官能評価の結果を正確に反映していた。
このように、五次方程式近似に限らず、六次方程式近似においても同様に差の積分値にて食感の質を評価することが可能であった。
(Evaluation of Examples 4 to 6)
The integrated value of the difference obtained in Example 4 with respect to Cookie A and Cookie A 2 was 22,000, and the value among Examples 4 to 6 was the smallest. The integrated value of the difference obtained in Example 5 for Cookie A and Biscuit B was 60,197, which was small. The integrated value of the difference obtained in Example 6 for Cookie A and Biscuit C was 269,068, which was large.
As can be seen from this result, the integrated values obtained in Examples 4 to 6 accurately reflected the actual sensory evaluation results.
As described above, it is possible to evaluate the quality of the texture with the integral value of the difference in the sixth-order equation approximation as well as the fifth-order equation approximation.

(実施例7)
開封直後の実施例1に示したクッキーA(以下、「クッキーS」という。)について、実施例1と同様の処理を行い、その測定結果についての歪率−荷重曲線を六次方程式近似して、解析した。その歪率−荷重曲線は、六次関数式:y=−0.000000584790x+0.000196067443x−0.024898494982x+1.504695292018x−43.484080118127x+488.194709349773x+96.927401822060で表された。上記式で与えられる六次近似曲線の歪率−荷重曲線を図11(A)に示す。該六次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は1913.7gfであった。
次いで、該荷重値が1,000gfとなるように、上記六次近似曲線の荷重値に対して統一補正を行った(この場合、前述した補正係数Cは、0.52254である。)。すなわち、該補正係数Cを元の六次近似曲線全域の荷重値に乗じて、補正六次近似曲線の歪率−荷重曲線を作成した。該補正六次近似曲線を図11(B)に示す。
(Example 7)
For the cookie A shown in Example 1 immediately after opening (hereinafter referred to as “cookie S 0 ”), the same processing as in Example 1 was performed, and the distortion-load curve for the measurement result was approximated to a sixth-order equation. And analyzed. The distortion-load curve was represented by a sixth-order function formula: y = −0.0000000584790x 6 + 0.000196064433x 5 −0.024898944982x 4 + 1.5044695292018x 3 −43.4480801118127x 2 + 488.1947093497773x + 96.927740182060 FIG. 11A shows a distortion rate-load curve of a sixth-order approximation curve given by the above equation. In the sixth-order approximation curve, when the maximum value with the maximum load value was calculated, the load value was 1913.7 gf.
Next, unified correction was performed on the load value of the sixth-order approximation curve so that the load value was 1,000 gf (in this case, the correction coefficient C described above is 0.52254). That is, the distortion factor-load curve of the corrected sixth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original sixth-order approximate curve. The corrected sixth order approximate curve is shown in FIG.

開封直後の実施例1に示したクッキーAと同製品ロット違い品(以下、「クッキーS’」という。)について、実施例1と同様の処理を行い、その測定結果についての歪率−荷重曲線を六次方程式近似、解析した。その歪率−荷重曲線は、六次関数式:y=−0.000000260260x+0.000111622367x−0.016529353287x+1.115279757758x−35.128535536380x+422.255776902195x+201.634992864681で表された。上記式で与えられる六次近似曲線の歪率−荷重曲線を図12(A)に示す。該六次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は1873.2gfであった。
次いで、該荷重値が1,000gfとなるように、上記六次近似曲線の荷重値に対して統一補正を行った(この場合、前述した補正係数Cは、0.53385である。)。すなわち、該補正係数Cを元の六次近似曲線全域の荷重値に乗じて、補正六次近似曲線の歪率−荷重曲線を作成した。該補正六次近似曲線を図12(B)に示す。
For the cookie A shown in Example 1 immediately after opening and the same product lot different product (hereinafter referred to as “cookie S 0 ′”), the same processing as in Example 1 was performed, and the distortion rate-load for the measurement result The curve was approximated and analyzed by a sixth-order equation. The strain rate-load curve was represented by a sixth-order function formula: y = −0.00000000260260x 6 + 0.00011162367x 5 −0.0165529353287x 4 +1.1152797575858 x 3 −35.128535536380x 2 + 422.2257769022195x + 201.634992668681 FIG. 12A shows a distortion rate-load curve of the sixth-order approximation curve given by the above formula. In the sixth-order approximation curve, the maximum value with the maximum load value was calculated, and the load value was 1873.2 gf.
Next, unified correction was performed on the load value of the sixth approximation curve so that the load value was 1,000 gf (in this case, the correction coefficient C described above is 0.53385). That is, the distortion factor-load curve of the corrected sixth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original sixth-order approximate curve. The corrected sixth order approximate curve is shown in FIG.

クッキーSの補正六次近似曲線を標準とし、クッキーS’の補正六次近似曲線との差の積分計算を、歪率0%から70%までの範囲で、また、歪率0.1%間隔の解析条件で実施して、積分値を算出したところ、22,000の値が得られた。 A correction next six trendline cookie S 0 as a standard, the integration calculation of the difference between the corrected six-order approximation curve cookie S 0 ', ranging from the distortion rate of 0% to 70%, also, distortion 0.1 When the integrated value was calculated under the analysis conditions of% intervals, a value of 22,000 was obtained.

(実施例8)
クッキーSについて、気温20 ℃、湿度60%の恒温恒湿槽にて1日間湿気虐待を施した、開封1日後のクッキーSをクッキーSとし、測定結果についての破断曲線を六次方程式近似して、解析した。その歪率−荷重曲線は、六次関数式:y=−0.000000395313x+0.000154665504x−0.021838118211x+1.428950883531x−43.999744926667x+526.890794571256x−86.780080367811で表された。上記式で与えられる六次近似曲線の歪率−荷重曲線を図13(A)に示す。該六次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は2008.1gfであった。
次いで、該荷重値が1,000gfとなるように、上記六次近似曲線の荷重値に対して統一補正を行った(この場合、前述した補正係数Cは、0.494797である。)。すなわち、該補正係数Cを元の六次近似曲線全域の荷重値に乗じて、補正六次近似曲線の歪率−荷重曲線を作成した。該補正六次近似曲線を図13(B)に示す。
(Example 8)
About cookies S, temperature 20 ℃, was subjected to a moisture abuse one day at a humidity of 60% of the constant temperature and humidity chamber, the cookies S after one day opening a cookie S 1, the approximate six equations breaking curve for the measurement result And analyzed. The distortion-load curve was expressed by a sixth-order function formula: y = −0.00000003953313x 6 + 0.0001546665504x 5 −0.021838118211x 4 + 1.428950883531x 3 −43.9999744926266x 2 + 526.8890794571256x−86.780080367811 FIG. 13A shows a distortion rate-load curve of a sixth-order approximation curve given by the above equation. In the sixth-order approximation curve, when the maximum value with the maximum load value was calculated, the load value was 2008. 1gf.
Next, unified correction was performed on the load value of the sixth approximation curve so that the load value was 1,000 gf (in this case, the correction coefficient C described above is 0.494797). That is, the distortion factor-load curve of the corrected sixth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original sixth-order approximate curve. The corrected sixth-order approximate curve is shown in FIG.

実施例7に示したクッキーSの補正六次近似曲線を標準とし、クッキーSの補正六次近似曲線との差の積分計算を、歪率0%から70%までの範囲で、また、歪率0.1%間隔の解析条件で実施して、積分値を算出したところ、37,303の値が得られた。 Using the corrected sixth-order approximate curve of cookie S 0 shown in Example 7 as a standard, the integral calculation of the difference from the corrected sixth-order approximate curve of cookie S 1 is performed in the range from 0% to 70% distortion, When integrated values were calculated under analysis conditions with a distortion rate of 0.1% intervals, 37,303 values were obtained.

(実施例9)
クッキーSについて、気温20 ℃、湿度60%の恒温恒湿槽にて2日間湿気虐待を施した、開封2日後のクッキーSをクッキーSとし、測定結果についての破断曲線を六次方程式近似して、解析した。その歪率−荷重曲線は、六次関数式:y=−0.000000161969x+0.000103176285x−0.018184664872x+1.376031928162x−48.017703747610x+671.531265459721x−590.920064011588で表された。上記式で与えられる六次近似曲線の歪率−荷重曲線を図14(A)に示す。該六次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は2578.8gfであった。
次いで、該荷重値が1,000gfとなるように、上記六次近似曲線の荷重値に対して統一補正を行った(この場合、前述した補正係数Cは、0.38777である。)。すなわち、該補正係数Cを元の六次近似曲線全域の荷重値に乗じて、補正六次近似曲線の歪率−荷重曲線を作成した。該補正六次近似曲線を図14(B)に示す。
Example 9
Cookies S, temperature 20 ℃, was subjected to a moisture abuse for 2 days at a humidity of 60% of the constant temperature and humidity chamber, the cookies S 2 days after opening a cookie S 2, and approximate six equations breaking curve for the measurement result And analyzed. The distortion-load curve was represented by a sixth-order function formula: y = −0.00000000161969x 6 + 0.000103176285x 5 −0.011818466472x 4 + 1.3766031926282x 3 −48.017703747610x 2 + 671.5316554559721x−590.9200640115888 FIG. 14A shows a distortion rate-load curve of a sixth-order approximation curve given by the above formula. In the sixth-order approximate curve, when the maximum value with the maximum load value was calculated, the load value was 2578.8 gf.
Next, unified correction was performed on the load value of the sixth approximation curve so that the load value becomes 1,000 gf (in this case, the correction coefficient C described above is 0.38777). That is, the distortion factor-load curve of the corrected sixth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original sixth-order approximate curve. The corrected sixth-order approximate curve is shown in FIG.

実施例7に示したクッキーSの補正六次近似曲線を標準とし、クッキーSの補正六次近似曲線との差の積分計算を、歪率0%から70%までの範囲で、また、歪率0.1%間隔の解析条件で実施して、積分値を算出したところ、133,528の値が得られた。 A correction next six trendline cookie S 0 shown in Example 7 as the standard, the integration calculation of the difference between the corrected six-order approximation curve cookies S 2, in the range of from strain of 0% to 70%, and, When integrated values were calculated under analysis conditions with a distortion rate of 0.1% interval, values of 133 and 528 were obtained.

(実施例10)
クッキーSについて、気温20 ℃、湿度60%の恒温恒湿槽にて3日間湿気虐待を施した、開封3日後のクッキーSをクッキーSとし、測定結果についての破断曲線を六次方程式近似して、解析した。その歪率−荷重曲線は、六次関数式:y=0.000000760962x−0.000176227065x+0.014608909896x−0.467809894535x+0.548007850302x+227.745507641695x−330.827401001006で表された。上記式で与えられる六次近似曲線の歪率−荷重曲線を図15(A)に示す。該六次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は2573.3gfであった。
次いで、該荷重値が1,000gfとなるように、上記六次近似曲線の荷重値に対して統一補正を行った(この場合、前述した補正係数Cは、0.38861である。)。すなわち、該補正係数Cを元の六次近似曲線全域の荷重値に乗じて、補正六次近似曲線の歪率−荷重曲線を作成した。該補正六次近似曲線を図15(B)に示す。
(Example 10)
Cookies S, temperature 20 ℃, was subjected to a 3-day moisture abuse at a humidity of 60% of the constant temperature and humidity chamber, the cookies S of three days after opening and cookies S 3, and approximate six equations breaking curve for the measurement result And analyzed. The distortion-load curve was expressed by a sixth-order function formula: y = 0.0000000760962x 6 -0.0001762227065x 5 + 0.014608809896x 4 -0.467809894535x 3 + 0.5480078750302x 2 + 227.7745507761695x-330.827401001006. FIG. 15A shows a distortion-load curve of a sixth-order approximation curve given by the above formula. In the sixth-order approximation curve, when the maximum value with the maximum load value was calculated, the load value was 2573.3 gf.
Next, unified correction was performed on the load value of the sixth approximation curve so that the load value becomes 1,000 gf (in this case, the correction coefficient C described above is 0.38861). That is, the distortion factor-load curve of the corrected sixth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original sixth-order approximate curve. The corrected sixth order approximate curve is shown in FIG.

実施例7に示したクッキーSの補正六次近似曲線を標準とし、クッキーSの補正六次近似曲線との差の積分計算を、歪率0%から70%までの範囲で、また、歪率0.1%間隔の解析条件で実施して、積分値を算出したところ、388,330の値が得られた。 And a correction next six trendline cookie S 0 shown in Example 7 as the standard, the integration calculation of the difference between the corrected six-order approximation curve cookies S 3, in a range from the strain of 0% to 70%, and, When integrated values were calculated under analysis conditions with a distortion rate of 0.1% interval, values of 388 and 330 were obtained.

(実施例7〜10の評価)
実施例7〜10においては、食品の品質管理への本発明の応用を想定し、モデルとしてクッキーの湿気に対する食感の変化を追跡するため、本発明の方法を供した。
官能評価によれば、標準であるクッキーSと同製品、製造ロット違い品であるクッキーS’は、全く同質の食感を有し、クッキーSはクッキーSとの比較においては僅かに湿気を感じる程度の食感変化があり、クッキーSはクッキーSとの比較において、サクサク感が明らかに失われた程度の食感変化があり、クッキーSはクッキーSとの比較において完全にサクサク感が失われ、重たい食感に変化したと評価されている。
一方、クッキーSとクッキーS’に関する実施例7で得られた差の積分値は、22,000であり、実施例7〜11の中では、値が最小であった。クッキーSとクッキーSに関する実施例8で得られた差の積分値は、37,303であり、開封1日目では値は小さかった。クッキーSとクッキーSに関する実施例9で得られた差の積分値は、133,528で、開封2日目では値の拡大が見られた。クッキーSとクッキーSに関する実施例10で得られた差の積分値は、差の積分値は388,330であり、開封3日目では値は非常に大きくなった。
この結果から分かるように、実施例7〜10で得られた積分値は、実際の官能評価の結果を正確に反映していた。
このように、焼き菓子類について、湿気による食感変化を評価する目的に、本発明を応用できることが分かった。
(Evaluation of Examples 7 to 10)
In Examples 7 to 10, assuming the application of the present invention to food quality control, the method of the present invention was used to track changes in texture with respect to moisture of cookies as a model.
According to the sensory evaluation, cookies S 0 and the product is a standard, and is a cookie S 0 'is production lot differences article, at all has a texture homogeneous, slightly in comparison to the cookies S 1 Cookies S 0 to have texture varying degrees feel moisture, comparison of the comparison cookies S 2 cookies S 0, there is texture changes in the extent to which crispness is lost clearly, the cookie S 3 cookies S 0 It has been evaluated that the crispness has been completely lost and has changed to a heavy texture.
On the other hand, the integrated value of the difference obtained in Example 7 regarding cookie S 0 and cookie S 0 ′ was 22,000, and was the smallest among Examples 7-11. The integrated value of the difference obtained in Example 8 for cookie S 0 and cookie S 1 was 37,303, which was small on the first day of opening. The integrated value of the difference obtained in Example 9 with respect to cookie S 0 and cookie S 2 was 133,528, and an increase in value was observed on the second day of opening. The integrated value of the difference obtained in Example 10 for cookie S 0 and cookie S 3 was 388,330, and the value was very large on the third day of opening.
As can be seen from this result, the integrated values obtained in Examples 7 to 10 accurately reflected the actual sensory evaluation results.
Thus, it was found that the present invention can be applied to baked confectionery for the purpose of evaluating the change in texture due to moisture.

(実施例11)
市販されているゼラチンD(底辺10mm×底辺10mm×厚さ10mm立方体)を、試料台の上に、品温4
℃で載置し、クリープメータRE2−33005B(山電社製、商品名)を用いて、該ゼラチンの上面方向から、接触面積50mm2の円柱状のプランジャーを、1.0mm/秒の速度で押圧することにより、荷重(gf)及び歪率(%)を測定した。荷重(gf)及び歪率(%)の測定は、同一試料に対して30回測定した。
上記測定によって得られた荷重(gf)及び歪率(%)の測定値から、コンピュータを用いて最小自乗法により計算を行って、X軸を歪率、Y軸を荷重とする六次近似曲線の歪率−荷重曲線を作成した。その歪率−荷重曲線は、六次関数式:y=0.000000016752x−0.000002911588x+0.000122187228x+0.001896019425x−0.144374709116x+2.028373387700x−2.577150862664で表された。上記式で与えられる六次近似曲線の歪率−荷重曲線を図16(A)に示す。該六次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は110.1gfであった。
次いで、該荷重値が1,000gfとなるように、上記六次近似曲線の荷重値に対して統一補正を行った(この場合、補正係数Cは、9.08554である。)。すなわち、該補正係数Cを元の六次近似曲線全域の荷重値に乗じて、補正六次近似曲線の歪率−荷重曲線を作成した。該補正六次近似曲線を図16(B)に示す。
(Example 11)
A commercially available gelatin D (bottom 10 mm × bottom 10 mm × thickness 10 mm cube) was placed on a sample stage with a product temperature of 4
The columnar plunger with a contact area of 50 mm 2 was placed at a speed of 1.0 mm / sec from the top surface of the gelatin using a creep meter RE2-30005B (trade name, manufactured by Yamaden Co., Ltd.). The load (gf) and the strain rate (%) were measured by pressing with. The load (gf) and strain rate (%) were measured 30 times for the same sample.
A sixth-order approximate curve with the X-axis being the distortion factor and the Y-axis being the load is calculated from the measured values of the load (gf) and the distortion factor (%) obtained by the above measurement by the least square method using a computer. A strain rate-load curve was prepared. The distortion-load curve was expressed by a sixth-order function formula: y = 0.000000016752x 6 -0.0000029111588x 5 + 0.000122187228x 4 + 0.0018996019425x 3 -0.1443437709116x 2 + 2.0283737387700x-2.5777150862664 FIG. 16A shows a distortion rate-load curve of a sixth-order approximation curve given by the above equation. In the sixth-order approximate curve, when the maximum value with the maximum load value was calculated, the load value was 110.1 gf.
Next, unified correction was performed on the load value of the sixth-order approximate curve so that the load value was 1,000 gf (in this case, the correction coefficient C is 9.08554). That is, the distortion factor-load curve of the corrected sixth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original sixth-order approximate curve. The corrected sixth order approximate curve is shown in FIG.

市販されているゼラチンE(底辺10mm×底辺10mm×厚さ10mm立方体)について、上記ゼラチンDと同様の処理を行った。
上記測定によって得られた荷重(gf)及び歪率(%)の測定値から、コンピュータを用いて最小自乗法により計算を行って、X軸を歪率、Y軸を荷重とする六次近似曲線の歪率−荷重曲線を作成した。その歪率−荷重曲線は、六次関数式:y=0.000000053977x−0.000013689109x+0.001284817030x−0.055535504777x+1.142779167087x−8.946977781481x+17.650545045704で表された。上記式で与えられる六次近似曲線の歪率−荷重曲線を図17(A)に示す。該六次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は136.3gfであった。
次いで、該荷重値が1,000gfとなるように、上記六次近似曲線の荷重値に対して統一補正を行った(この場合、補正係数Cは、7.33786である。)。すなわち、該補正係数Cを元の六次近似曲線全域の荷重値に乗じて、補正六次近似曲線の歪率−荷重曲線を作成した。該補正六次近似曲線を図17(B)に示す。
Commercially available gelatin E (bottom 10 mm × bottom 10 mm × thickness 10 mm cube) was processed in the same manner as gelatin D above.
A sixth-order approximate curve with the X-axis being the distortion factor and the Y-axis being the load is calculated from the measured values of the load (gf) and the distortion factor (%) obtained by the above measurement by the least square method using a computer. A strain rate-load curve was prepared. Its distortion - load curve, six order function formula expressed by y = 0.000000053977x 6 -0.000013689109x 5 + 0.001284817030x 4 -0.055535504777x 3 + 1.142779167087x 2 -8.946977781481x + 17.650545045704. FIG. 17A shows a distortion rate-load curve of the sixth-order approximation curve given by the above equation. In the sixth-order approximation curve, when the maximum value with the maximum load value was calculated, the load value was 136.3 gf.
Next, unified correction was performed on the load value of the sixth approximation curve so that the load value becomes 1,000 gf (in this case, the correction coefficient C is 7.33786). That is, the distortion factor-load curve of the corrected sixth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original sixth-order approximate curve. The corrected sixth order approximate curve is shown in FIG.

ゼラチンDの補正六次近似曲線を標準とし、ゼラチンEの補正六次近似曲線との差の積分計算を、歪率0%から70%までの範囲で、また、歪率0.1%間隔の解析条件で実施して、積分値を算出したところ、67,858の値が得られた。 The integral calculation of the difference from the corrected sixth-order approximate curve of gelatin E with the corrected sixth-order approximate curve of gelatin D as a standard is performed in the range from 0% to 70% distortion, and at intervals of 0.1% distortion. When the integration value was calculated under the analysis conditions, 67,858 values were obtained.

(実施例12)
市販されている寒天F(底辺10mm×底辺10mm×厚さ10mm立方体)について、実施例11と同様の処理を行った。
上記測定によって得られた荷重(gf)及び歪率(%)の測定値から、コンピュータを用いて最小自乗法により計算を行って、X軸を歪率、Y軸を荷重とする六次近似曲線の歪率−荷重曲線を作成した。その歪率−荷重曲線は、六次関数式:y=0.000000068333x−0.000021035464x+0.002476495285x−0.137178869942x+3.455996737710x−28.190001217736x+54.041370813822で表された。上記式で与えられる六次近似曲線の歪率−荷重曲線を図18(A)に示す。該六次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は160.3gfであった。
次いで、該荷重値が1,000gfとなるように、上記六次近似曲線の荷重値に対して統一補正を行った(この場合、補正係数Cは、6.24017である。)。すなわち、該補正係数Cを元の六次近似曲線全域の荷重値に乗じて、補正六次近似曲線の歪率−荷重曲線を作成した。該補正六次近似曲線を図18(B)に示す。
(Example 12)
A commercially available agar F (bottom 10 mm × bottom 10 mm × thickness 10 mm cube) was treated in the same manner as in Example 11.
A sixth-order approximate curve with the X-axis being the distortion factor and the Y-axis being the load is calculated from the measured values of the load (gf) and the distortion factor (%) obtained by the above measurement by the least square method using a computer. A strain rate-load curve was prepared. The strain rate-load curve was expressed by a sixth-order function formula: y = 0.000000068333x 6 -0.0000210354464x 5 + 0.002476495285x 4 -0.137178869942x 3 + 3.4595967737710x 2 -28.190001217736x + 54.0413708813822. FIG. 18A shows a distortion-load curve of a sixth-order approximation curve given by the above formula. In the sixth-order approximation curve, when the maximum value with the maximum load value was calculated, the load value was 160.3 gf.
Next, unified correction was performed on the load value of the sixth approximation curve so that the load value becomes 1,000 gf (in this case, the correction coefficient C is 6.24017). That is, the distortion factor-load curve of the corrected sixth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original sixth-order approximate curve. The corrected sixth order approximate curve is shown in FIG.

実施例11に示したゼラチンDの補正六次近似曲線を標準とし、寒天Fの補正六次近似曲線との差の積分計算を、歪率0%から70%までの範囲で、また、歪率0.1%間隔の解析条件で実施して、積分値を算出したところ、260,391の値が得られた。 Using the corrected sixth-order approximate curve of gelatin D shown in Example 11 as a standard, the integral calculation of the difference from the corrected sixth-order approximate curve of agar F is performed in the range of the distortion rate from 0% to 70%. When integrated values were calculated under analysis conditions of 0.1% intervals, 260 and 391 values were obtained.

(実施例13)
市販されている木綿豆腐G(底辺10mm×底辺10mm×厚さ10mm立方体)について、実施例11と同様の処理を行った。
上記測定によって得られた荷重(gf)及び歪率(%)の測定値から、コンピュータを用いて最小自乗法により計算を行って、X軸を歪率、Y軸を荷重とする六次近似曲線の歪率−荷重曲線を作成した。その歪率−荷重曲線は、六次関数式:y=−0.000000002563x+0.000001170355x−0.000152598958x+0.007497843979x−0.130113219928x+1.651196821156x+0.279851148574で表された。上記式で与えられる六次近似曲線の歪率−荷重曲線を図19(A)に示す。該六次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は67.1gfであった。
次いで、該荷重値が1,000gfとなるように、上記六次近似曲線の荷重値に対して統一補正を行った(この場合、補正係数Cは、14.8943である。)。すなわち、該補正係数Cを元の六次近似曲線全域の荷重値に乗じて、補正六次近似曲線の歪率−荷重曲線を作成した。該補正六次近似曲線を図19(B)に示す。
(Example 13)
A commercially available cotton tofu G (bottom 10 mm × bottom 10 mm × thickness 10 mm cube) was subjected to the same treatment as in Example 11.
A sixth-order approximate curve with the X-axis being the distortion factor and the Y-axis being the load is calculated from the measured values of the load (gf) and the distortion factor (%) obtained by the above measurement by the least square method using a computer. A strain rate-load curve was prepared. The distortion-load curve was expressed by a sixth-order function formula: y = −0.000000000002563x 6 + 0.000001170355x 5 -0.0001525598958x 4 + 0.0074978843979x 3 -0.130113219928x 2 + 1.65119621156x + 0.2798151108574. FIG. 19A shows a distortion rate-load curve of a sixth-order approximation curve given by the above formula. In the sixth-order approximation curve, the maximum value with the maximum load value was calculated, and the load value was 67.1 gf.
Next, unified correction was performed on the load value of the sixth approximation curve so that the load value becomes 1,000 gf (in this case, the correction coefficient C is 14.8943). That is, the distortion factor-load curve of the corrected sixth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original sixth-order approximate curve. The corrected sixth-order approximate curve is shown in FIG.

実施例11に示したゼラチンDの補正六次近似曲線を標準とし、木綿豆腐Gの補正六次近似曲線との差の積分計算を、歪率0%から70%までの範囲で、また、歪率0.1%間隔の解析条件で実施して、積分値を算出したところ、137,858の値が得られた。 Using the corrected sixth-order approximate curve of gelatin D shown in Example 11 as a standard, the integral calculation of the difference from the corrected sixth-order approximate curve of cotton tofu G is performed in the range from 0% to 70% distortion, When integrated values were calculated under analysis conditions with a rate of 0.1% intervals, values of 137 and 858 were obtained.

(実施例14)
市販されている絹ごし豆腐H(底辺10mm×底辺10mm×厚さ10mm立方体)について、実施例11と同様の処理を行った。
上記測定によって得られた荷重(gf)及び歪率(%)の測定値から、コンピュータを用いて最小自乗法により計算を行って、X軸を歪率、Y軸を荷重とする六次近似曲線の歪率−荷重曲線を作成した。その歪率−荷重曲線は、六次関数式:y=0.000000017437x−0.000004846631x+0.000514129432x−0.025520889205x+0.567539614379x−3.212350461217x+7.253306625033で表された。上記式で与えられる六次近似曲線の歪率−荷重曲線を図20(A)に示す。該六次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は44.9gfであった。
次いで、該荷重値が1,000gfとなるように、上記六次近似曲線の荷重値に対して統一補正を行った(この場合、補正係数Cは、22.2832である。)。すなわち、該補正係数Cを元の六次近似曲線全域の荷重値に乗じて、補正六次近似曲線の歪率−荷重曲線を作成した。該補正六次近似曲線を図20(B)に示す。
(Example 14)
A commercially available silken tofu H (bottom 10 mm × bottom 10 mm × thickness 10 mm cube) was subjected to the same treatment as in Example 11.
A sixth-order approximate curve with the X-axis being the distortion factor and the Y-axis being the load is calculated from the measured values of the load (gf) and the distortion factor (%) obtained by the above measurement by the least square method using a computer. A strain rate-load curve was prepared. The distortion-load curve was expressed by a sixth-order function formula: y = 0.000000017437x 6 -0.000004846631x 5 + 0.000514129432x 4 -0.025520889205x 3 + 0.5675339614379x 2 -3.221335041217x + 7.22533306625033 A distortion rate-load curve of a sixth-order approximation curve given by the above equation is shown in FIG. In the sixth-order approximation curve, when the maximum value with the maximum load value was calculated, the load value was 44.9 gf.
Next, unified correction was performed on the load value of the sixth approximation curve so that the load value becomes 1,000 gf (in this case, the correction coefficient C is 22.2832). That is, the distortion factor-load curve of the corrected sixth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original sixth-order approximate curve. The corrected sixth order approximate curve is shown in FIG.

実施例11に示したゼラチンDの補正六次近似曲線を標準とし、絹ごし豆腐Hの補正六次近似曲線との差の積分計算を、歪率0%から70%までの範囲で、また、歪率0.1%間隔の解析条件で実施して、積分値を算出したところ、283,227の値が得られた。 Using the corrected sixth-order approximate curve of gelatin D shown in Example 11 as a standard, the integral calculation of the difference from the corrected sixth-order approximate curve of silken tofu H was performed in the range from 0% to 70% distortion, When integrated values were calculated under analysis conditions with a rate of 0.1% intervals, values of 283 and 227 were obtained.

(実施例15)
市販されている玉子豆腐I(底辺10mm×底辺10mm×厚さ10mm立方体)について、実施例11と同様の処理を行った。
上記測定によって得られた荷重(gf)及び歪率(%)の測定値から、コンピュータを用いて最小自乗法により計算を行って、X軸を歪率、Y軸を荷重とする六次近似曲線の歪率−荷重曲線を作成した。その歪率−荷重曲線は、六次関数式:y=0.000000002270x−0.000000639133x+0.000071964588x−0.004021489511x+0.100948442288x−0.164074870849x+1.571008583218で表された。上記式で与えられる六次近似曲線の歪率−荷重曲線を図21(A)に示す。該六次近似曲線において、荷重値が最大である極大値を算出したところ、その荷重値は28.6gfであった。
次いで、該荷重値が1,000gfとなるように、上記六次近似曲線の荷重値に対して統一補正を行った(この場合、補正係数Cは、34.9578である。)。すなわち、該補正係数Cを元の六次近似曲線全域の荷重値に乗じて、補正六次近似曲線の歪率−荷重曲線を作成した。該補正六次近似曲線を図21(B)に示す。
(Example 15)
A commercially available egg tofu I (bottom 10 mm × bottom 10 mm × thickness 10 mm cube) was processed in the same manner as in Example 11.
A sixth-order approximate curve with the X-axis being the distortion factor and the Y-axis being the load is calculated from the measured values of the load (gf) and the distortion factor (%) obtained by the above measurement by the least square method using a computer. A strain rate-load curve was prepared. The distortion-load curve was represented by a sixth-order function formula: y = 0.0000000002270x 6 -0.0000000639133x 5 + 0.0000719644588x 4 -0.0040214889511x 3 + 0.100948442288x 2 -0.1640407488849x + 1.571008583218 A distortion rate-load curve of the sixth-order approximation curve given by the above equation is shown in FIG. In the sixth-order approximate curve, when the maximum value with the maximum load value was calculated, the load value was 28.6 gf.
Next, unified correction was performed on the load value of the sixth-order approximation curve so that the load value was 1,000 gf (in this case, the correction coefficient C is 34.9578). That is, the distortion factor-load curve of the corrected sixth-order approximate curve was created by multiplying the correction coefficient C by the load value of the entire original sixth-order approximate curve. The corrected sixth-order approximate curve is shown in FIG.

実施例11に示したゼラチンDの補正六次近似曲線を標準とし、玉子豆腐Iの補正六次近似曲線との差の積分計算を、歪率0%から70%までの範囲で、また、歪率0.1%間隔の解析条件で実施して、積分値を算出したところ、201,231の値が得られた。 Using the corrected sixth-order approximation curve of gelatin D shown in Example 11 as a standard, the integral calculation of the difference from the corrected sixth-order approximation curve of egg tofu I is performed in the range of distortion rate from 0% to 70%, When integrated values were calculated under analysis conditions with a rate of 0.1% intervals, 201 and 231 values were obtained.

(実施例11〜15の評価)
実施例11〜15においては、ゲル状食品に対して、本発明の方法を供した。
官能評価によれば、標準であるゼラチンDとゼラチンEは異なる製品であるが、食感の質は、同質の食感であり、ここで準備したサンプルの中で最も近しいものであり、寒天F、絹ごし豆腐G、玉子豆腐Iは、標準であるゼラチンDとは異質の食感を有し、木綿豆腐Gは張りのある食感の質がゼラチンDとやや類似していると評価されている。
一方、ゼラチンDとゼラチンEに関する実施例11で得られた差の積分値は、67,858となり、実施例11〜15の中では、値が最小であった。ゼラチンDと寒天F、絹ごし豆腐G、玉子豆腐Iに関する実施例12、14、15で得られた差の積分値は、それぞれ260,391、283,227、201,231となり、値はやや大きかった。木綿豆腐Gに関する実施例13で得られた差の積分値は、137,858であり、中程度の値であった。
この結果から分かるように、実施例11〜15で得られた積分値は、実際の官能評価の結果を正確に反映していた。
このように、焼き菓子類のみならずゲル状食品においても、本発明を適用することにより、食感の質を評価することが可能であった。
(Evaluation of Examples 11-15)
In Examples 11-15, the method of this invention was provided with respect to the gel-like foodstuff.
According to sensory evaluation, the standard gelatin D and gelatin E are different products, but the texture quality is the same texture, which is the closest of the samples prepared here. Silken tofu G and egg tofu I have a texture different from that of standard gelatin D, and cotton tofu G is evaluated to have a slightly similar texture to gelatin D. .
On the other hand, the integrated value of the difference obtained in Example 11 with respect to gelatin D and gelatin E was 67,858, which was the smallest among Examples 11-15. The integrated values of the differences obtained in Examples 12, 14, and 15 for gelatin D, agar F, silken tofu G, and egg tofu I were 260, 391, 283, 227, 201, and 231 respectively, and the values were slightly large. . The integrated value of the difference obtained in Example 13 for cotton tofu G was 137,858, which was a medium value.
As can be seen from the results, the integrated values obtained in Examples 11 to 15 accurately reflected the actual sensory evaluation results.
Thus, the quality of the texture could be evaluated by applying the present invention not only to baked confectionery but also to gel food.

Claims (2)

食品の試料(A)をプランジャ−で押圧し、同時に押圧中の荷重及び歪率を連続的に測定し、前記の荷重及び歪率の値を基に、最小自乗法により計算を行って、X軸を歪率、Y軸を荷重とする五次以上の多次近似曲線の歪率一荷重曲線を作成し、該多次近似曲線における極大値(MaxA)を計算して求め、
他方、食品の試料(B)について、上記と同様にして、同次の多次近似曲線の歪率一荷重曲線を作成し、該多次近似曲線における極大値(MaxB)を計算して求め、
次いで、極大値(MaxA)と極大値(MaxB)の荷重値が同一の値となるように、前記多次近似曲線上の荷重値を統一的に補正した補正多次近似曲線を、前記多次近似曲線のそれぞれについて作成し、
次いで、作成した2つの補正多次近似曲線の差を積分し、得られた積分値を用いて、食品の試料(A)と食品の試料(B)の食感の違いを評価することを特徴とする、食品の食感のパターン認識による相対的評価方法。
A food sample (A) is pressed with a plunger, and simultaneously the load and strain rate during pressing are measured continuously. Based on the values of the load and strain rate, calculation is performed by the method of least squares, and X Creating a strain-one-load curve of a fifth-order or higher order approximate curve with the axis as the strain rate and the Y-axis as the load, and calculating the maximum value (MaxA) in the multi-order approximate curve,
On the other hand, for the food sample (B), in the same manner as described above, a strain rate-one load curve of a homogeneous approximation curve is created, and the maximum value (MaxB) in the approximation curve is calculated and obtained.
Next, a corrected multi-order approximate curve obtained by uniformly correcting the load values on the multi-order approximate curve so that the load values of the maximum value (Max A) and the maximum value (Max B) are the same value is obtained as the multi-order approximate curve. Create for each of the fitted curves,
Next, the difference between the created two corrected multi-order approximate curves is integrated, and using the obtained integrated value, the difference in food texture between the food sample (A) and the food sample (B) is evaluated. Relative evaluation method by pattern recognition of food texture.
多次近似曲線が、五次近似曲線又は六次近似曲線である請求項1に記載の相対的評価方法。









The relative evaluation method according to claim 1, wherein the multi-order approximate curve is a fifth-order approximate curve or a sixth-order approximate curve.









JP2010170015A 2010-07-29 2010-07-29 Relative evaluation method based on pattern recognition of food hardness, texture and texture Active JP5348798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010170015A JP5348798B2 (en) 2010-07-29 2010-07-29 Relative evaluation method based on pattern recognition of food hardness, texture and texture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010170015A JP5348798B2 (en) 2010-07-29 2010-07-29 Relative evaluation method based on pattern recognition of food hardness, texture and texture

Publications (2)

Publication Number Publication Date
JP2012032193A JP2012032193A (en) 2012-02-16
JP5348798B2 true JP5348798B2 (en) 2013-11-20

Family

ID=45845797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010170015A Active JP5348798B2 (en) 2010-07-29 2010-07-29 Relative evaluation method based on pattern recognition of food hardness, texture and texture

Country Status (1)

Country Link
JP (1) JP5348798B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6004333B2 (en) * 2012-10-04 2016-10-05 学校法人立教学院 Method for obtaining stress-strain relationship of cellulose hydrogel
WO2021033583A1 (en) * 2019-08-21 2021-02-25 国立大学法人神戸大学 Food texture evaluation method and standard food texture model

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3250508B2 (en) * 1997-12-26 2002-01-28 株式会社島津製作所 Material testing machine
JP2000039430A (en) * 1998-07-22 2000-02-08 Ajinomoto Co Inc Method for measuring collapse of formed rice
JP3338397B2 (en) * 1999-03-29 2002-10-28 雪印乳業株式会社 Food physical property measuring instrument and food physical property measuring method using the same
JP2001133374A (en) * 1999-08-24 2001-05-18 Nisshin Oil Mills Ltd:The Method and system for evaluating feeling of crunch
JP4697764B2 (en) * 2001-09-28 2011-06-08 株式会社高井製作所 Method for judging the quality of gel-forming foods
JP4802322B2 (en) * 2005-08-26 2011-10-26 国立大学法人広島大学 Food texture measuring method and food texture measuring device
JP4587044B2 (en) * 2006-02-24 2010-11-24 山崎製パン株式会社 Texture evaluation method for layered food
JP5004253B2 (en) * 2009-03-23 2012-08-22 長谷川香料株式会社 Method for evaluating food hardness, texture and texture

Also Published As

Publication number Publication date
JP2012032193A (en) 2012-02-16

Similar Documents

Publication Publication Date Title
JP5419181B2 (en) Relative evaluation method based on average value analysis of food hardness, texture and texture
Chen et al. Texture measurement approaches in fresh and processed foods—A review
JP5004253B2 (en) Method for evaluating food hardness, texture and texture
Zdunek et al. New contact acoustic emission detector for texture evaluation of apples
KIM et al. Fundamental fracture properties associated with sensory hardness of brittle solid foods
Kohyama Food texture–sensory evaluation and instrumental measurement
Saeleaw et al. A review: Crispness in dry foods and quality measurements based on acoustic–mechanical destructive techniques
Roudaut et al. Crispness: a critical review on sensory and material science approaches
JP5854516B2 (en) Measuring method and measuring apparatus for texture index
Meullenet et al. Instrumental single and double compression tests to predict sensory texture characteristics of foods
JP3567199B2 (en) Apparatus and method for measuring physical properties of food
Van Vliet et al. Interplay between product characteristics, oral physiology and texture perception of cellular brittle foods
Bejosano et al. Rheological and sensory evaluation of wheat flour tortillas during storage
Contador et al. Texture phenotyping in fresh fleshy fruit
Tang et al. ANALYZING AND CORRELATING INSTRUMENTAL AND SENSORY DATA: A MULTWARIATE STUDY OF PHYSICAL PROPERTIES OF COOKED WHEAT NOODLES 1
JP5348798B2 (en) Relative evaluation method based on pattern recognition of food hardness, texture and texture
JP5311680B2 (en) Method for evaluating food hardness, texture and texture
JP4802322B2 (en) Food texture measuring method and food texture measuring device
Primo-Martín et al. Fracture behaviour of bread crust: Effect of bread cooling conditions
Varela et al. On the assessment of fracture in brittle foods II. Biting or chewing?
JP2004294173A (en) Method and apparatus for measuring food property
Duizer et al. Use of a panel knowledgeable in material science to study sensory perception of texture
Mallikarjunan Understanding and measuring consumer perceptions of cripness
Cui et al. Texture profile of herbal gel affected by instrumental parameters and correlations of instrumental and sensory evaluation
ANTONOVA et al. Sensory assessment of crispness in a breaded fried food held under a heat lamp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

R150 Certificate of patent or registration of utility model

Ref document number: 5348798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150