JP5332836B2 - Plated steel sheet for cans - Google Patents

Plated steel sheet for cans Download PDF

Info

Publication number
JP5332836B2
JP5332836B2 JP2009093150A JP2009093150A JP5332836B2 JP 5332836 B2 JP5332836 B2 JP 5332836B2 JP 2009093150 A JP2009093150 A JP 2009093150A JP 2009093150 A JP2009093150 A JP 2009093150A JP 5332836 B2 JP5332836 B2 JP 5332836B2
Authority
JP
Japan
Prior art keywords
tin
steel sheet
amount
plated steel
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009093150A
Other languages
Japanese (ja)
Other versions
JP2010242182A (en
Inventor
博充 伊達
浩雅 莊司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009093150A priority Critical patent/JP5332836B2/en
Publication of JP2010242182A publication Critical patent/JP2010242182A/en
Application granted granted Critical
Publication of JP5332836B2 publication Critical patent/JP5332836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、飲料缶、食缶等に使用される、有機皮膜の二次密着性、耐食性に優れた缶用めっき鋼板に関する。   The present invention relates to a plated steel sheet for cans, which is used for beverage cans, food cans and the like, and has excellent secondary adhesion and corrosion resistance of organic coatings.

従来、缶用材料として使用されてきた表面処理鋼板は、ブリキやLTS、TNS等の錫(Sn)めっき鋼板、ニッケルめっき鋼板(TFS-NT)、電解クロムめっき鋼板(TFS-CT)が主なものである。通常、これらの鋼板のめっき表面には化成処理が施され、それによって塗料や樹脂フィルムとの密着性を確保している。   Conventionally, surface-treated steel sheets that have been used as can materials are tin (Sn) plated steel sheets such as tinplate, LTS, and TNS, nickel plated steel sheets (TFS-NT), and electrolytic chromium plated steel sheets (TFS-CT). Is. Usually, the plating surface of these steel plates is subjected to chemical conversion treatment, thereby ensuring adhesion with paints and resin films.

現在、商品化されている缶用表面処理鋼板の化成処理の殆どは、重クロム酸塩又はクロム酸を主成分とする水溶液を用いた、浸漬処理又は陰極電解処理である。例外として、特許文献1及び2に開示されているブリキのりん酸塩水溶液中での陰陽極電解処理が知られているが、用途は内面を無塗装のまま使用する粉乳用缶に限定されている。この陰陽極電解処理が粉乳用缶以外の飲料缶、食缶に使用されない主たる理由は、塗料や樹脂フィルムのような有機皮膜の密着性が不十分であるためである。   Most of the chemical conversion treatment of the surface-treated steel sheet for cans currently commercialized is immersion treatment or cathodic electrolysis treatment using an aqueous solution mainly composed of dichromate or chromic acid. As an exception, the negative anodization treatment in tin phosphate aqueous solution disclosed in Patent Documents 1 and 2 is known, but the application is limited to cans for powdered milk using the inner surface unpainted. Yes. The main reason why this negative anodization treatment is not used in beverage cans and food cans other than powdered milk cans is that the adhesion of organic coatings such as paints and resin films is insufficient.

一方、重クロム酸塩又はクロム酸を主成分とする水溶液を用いた、浸漬処理又は陰極電解処理によって得られたクロム(III)酸化膜は、有機皮膜の密着性を向上させる効果が大きく、これに代わる化成処理は、種々検討されているものの、実用化には至っていないのが現状である。例えば、特許文献3には、浸漬処理によってりん酸系皮膜を形成させたDI缶用電気めっきブリキが開示されている。また、特許文献4には、フィチン酸又はフィチン酸塩溶液中で陽極処理する方法が開示されている。   On the other hand, the chromium (III) oxide film obtained by dipping or cathodic electrolysis using an aqueous solution containing dichromate or chromic acid as a main component has a great effect of improving the adhesion of the organic film. Although various chemical conversion treatments have been studied, they have not yet been put into practical use. For example, Patent Document 3 discloses an electroplating tin for a DI can in which a phosphoric acid-based film is formed by immersion treatment. Patent Document 4 discloses a method of anodizing in a phytic acid or phytate solution.

近年は、錫めっき層上に、シランカップリング剤を使用した皮膜を施す技術が多く開示されている。例えば、特許文献5には、錫めっき鋼板のSn層又はFe-Sn合金層上に、シランカップリング剤塗布層を設けた鋼板及び缶が開示されており、特許文献6には、錫めっき層上に、下層としてP、Snを含有する化成皮膜、上層としてシランカップリング層を有する錫めっき鋼板が開示されている。また、特許文献6に類似した技術として、特許文献7乃至16が開示されている。   In recent years, many techniques for applying a film using a silane coupling agent on a tin plating layer have been disclosed. For example, Patent Document 5 discloses a steel sheet and a can provided with a silane coupling agent coating layer on a Sn layer or Fe-Sn alloy layer of a tin-plated steel sheet, and Patent Document 6 discloses a tin-plated layer. A tin-plated steel sheet having a chemical conversion film containing P and Sn as a lower layer and a silane coupling layer as an upper layer is disclosed. Further, Patent Documents 7 to 16 are disclosed as techniques similar to Patent Document 6.

特開昭52-68832号公報JP 52-68832 A 特開昭52-75626号公報JP 52-75626 A 特開昭59-47396号公報JP 59-47396 A 特開昭52-92837号公報JP 52-92837 A 特開2002-285354号公報JP 2002-285354 A 特開2001-316851号公報JP 2001-316851 特開2002-275643号公報JP 2002-275643 A 特開2002-206191号公報JP 2002-206191 A 特開2002-275657号公報JP 2002-275657 A 特開2002-339081号公報Japanese Patent Laid-Open No. 2002-339081 特開2003-3281号公報JP2003-3281 特開2003-175564号公報JP2003-175564A 特開2003-183853号公報Japanese Patent Laid-Open No. 2003-183853 特開2003-239084号公報JP2003-239084 特開2003-253466号公報JP 2003-253466 A 特開2004-68063号公報JP 2004-68063 A

しかしながら、前記特許文献に記載された化成皮膜はいずれも、缶用めっき鋼板として用いるに必要な有機皮膜の二次密着性、耐食性等の性能を備えているとは言い難い。
そこで、本発明は、上記従来技術の問題点を解決し、有機皮膜の二次密着性、耐食性に優れた缶用めっき鋼板を提供することを目的とする。
However, it is difficult to say that any of the chemical conversion films described in the above-mentioned patent documents has performances such as secondary adhesion and corrosion resistance of an organic film necessary for use as a plated steel sheet for cans.
Then, this invention solves the problem of the said prior art, and aims at providing the plated steel plate for cans excellent in the secondary adhesiveness of an organic membrane | film | coat, and corrosion resistance.

本発明者らは、上記の課題に対して鋭意検討し、極めて良好な有機皮膜の二次密着性が得られる錫めっき鋼板の皮膜構成を見出して本発明に至ったものである。   The inventors of the present invention have made extensive studies on the above-mentioned problems, and have found a film configuration of a tin-plated steel sheet that can obtain a very good secondary adhesion of an organic film, and have achieved the present invention.

(1) 鋼板表面上又は鋼板表面に形成した鉄および錫(Sn)を含む合金層上に、金属錫を連続的又は断続的に有するめっき鋼板であって、該めっき鋼板上に、P量として0.5〜5.0mg/mのりん酸塩層、さらに該りん酸塩層上に、鋼板面に投影した粒の像の径が円換算で0.1〜0.4μmである粒状のZrの酸化物及び/又はZrの水酸化物をZr量として2〜15mg/m、並びにSiの酸化物及び/又はSiの水酸化物をSi量として2〜15mg/m含み、かつ前記Zr量及び前記Si量の合計が5〜30mg/mであるシリカ−ジルコニア処理層を有することを特徴とする缶用めっき鋼板、
(1) A plated steel sheet having metal tin continuously or intermittently on a steel sheet surface or an alloy layer containing iron and tin (Sn) formed on the steel sheet surface, and on the plated steel sheet, A 0.5 to 5.0 mg / m 2 phosphate layer, and on the phosphate layer, a granular image projected on the steel plate surface has a diameter of 0.1 to 0.4 μm in terms of a circle. 2 to 15 mg / m 2 oxides of Zr and / or hydroxide of Zr as Zr amount, as well as oxides of Si and / or Si to the hydroxide comprises 2 to 15 mg / m 2 as the amount of Si, and the A plated steel sheet for cans having a silica-zirconia treated layer in which the total amount of Zr and Si is 5 to 30 mg / m 2 ;

(2) 前記シリカ−ジルコニア処理層における金属量で表したSiの割合Si/(Zr+Si)が0.2〜0.8であることを特徴とする前記(1)に記載の缶用めっき鋼板、 (2) The can-plated steel sheet according to (1) above, wherein the Si ratio Si / (Zr + Si) represented by the amount of metal in the silica-zirconia-treated layer is 0.2 to 0.8,

(3) 前記鉄および錫を含む合金層が、Sn量として0.1〜1.8g/m2のFe-Sn合金層、又はNi量として2〜100mg/m2のFe-Ni-Sn合金層から成ることを特徴とする前記(1)又は(2)に記載の缶用めっき鋼板、
である。
(3) The alloy layer containing iron and tin is composed of an Fe-Sn alloy layer having an Sn content of 0.1 to 1.8 g / m 2 or an Fe-Ni-Sn alloy layer having an Ni content of 2 to 100 mg / m 2. The plated steel sheet for cans as described in (1) or (2) above,
It is.

本発明により、極めて良好な有機皮膜の二次密着性、耐食性を具備した缶用めっき鋼板を提供することができる。   According to the present invention, it is possible to provide a plated steel sheet for cans having very good secondary adhesion and corrosion resistance of an organic film.

以下に、本発明を詳細に説明する。
本発明で使用する鋼板には、特に制限を設ける必要はない。従来から缶用鋼板に使用されているアルミキルド鋼や低炭素鋼等の成分系の鋼板が使用できる。また、鋼板の厚みや調質度は、使用目的に適したグレードを選択すればよい。
The present invention is described in detail below.
There is no particular limitation on the steel sheet used in the present invention. Component steel plates such as aluminum killed steel and low carbon steel that have been conventionally used for steel plates for cans can be used. Moreover, what is necessary is just to select the grade suitable for the intended purpose for the thickness and tempering degree of a steel plate.

本発明の主たる構成は、鋼板表面上又は鋼板表面に形成した鉄および錫を含む合金層上に、金属錫を連続的又は断続的に有するめっき鋼板であって、該めっき鋼板上に、P量として0.5〜5.0mg/m2のりん酸塩層、さらに該りん酸塩層上にZrの酸化物及び/又はZrの水酸化物をZr量として2〜15mg/m2、並びにSiの酸化物及び/又はSiの水酸化物をSi量として2〜15mg/m2含み、かつ前記Zr量及び前記Si量の合計が5〜30mg/m2であるシリカ−ジルコニア処理層を有することを特徴とする缶用めっき鋼板である。 The main structure of the present invention is a plated steel sheet having metal tin continuously or intermittently on the steel sheet surface or on an alloy layer containing iron and tin formed on the steel sheet surface, and the P amount on the plated steel sheet. 0.5 to 5.0 mg / m 2 of the phosphate layer, and Zr oxide and / or Zr hydroxide on the phosphate layer as the Zr amount of 2 to 15 mg / m 2 , and Si oxide And / or a silica-zirconia treatment layer containing 2 to 15 mg / m 2 of Si hydroxide as a Si amount, and the total of the Zr amount and the Si amount being 5 to 30 mg / m 2. It is a plated steel sheet for cans.

鋼板表面上又は鉄および錫を含む合金層上の金属錫は、適切な有機添加剤を添加した酸性浴からの電気めっきによって付着させることで、比較的少ない付着量でも鋼板表面、又は、鉄および錫を含む合金層上を連続的に被覆することが可能である。錫付着量は限定しないが、外観、溶接性の観点から、金属錫量が0.4g/ m2以上あることが好ましい。金属錫量が0.4g/ m2未満では鋼板表面や合金層面の露出面積が大きくなるため、錫めっき鋼板としては黒味が強い外観となるし、溶接性を確保するのが難しい。リフロー処理を施す前提では、金属錫と合金錫の合計量で表される全Sn量が0.5〜15g/m2がであることが好ましい。15g/m2を超える量の錫を付着させても、著しく向上する性能はなく、経済的なデメリットが大きくなるので避けた方がよい。 Metal tin on the steel sheet surface or on the alloy layer containing iron and tin can be deposited by electroplating from an acidic bath to which appropriate organic additives are added, so that even with a relatively small amount of adhesion, the surface of the steel sheet or iron and It is possible to continuously coat the alloy layer containing tin. Although the tin adhesion amount is not limited, the metal tin amount is preferably 0.4 g / m 2 or more from the viewpoint of appearance and weldability. If the amount of metallic tin is less than 0.4 g / m 2 , the exposed area of the steel plate surface or alloy layer surface becomes large, so that the tin-plated steel plate has a strong black appearance and it is difficult to ensure weldability. Assuming that the reflow treatment is performed, it is preferable that the total Sn amount represented by the total amount of metal tin and alloy tin is 0.5 to 15 g / m 2 . Even if the amount of tin exceeding 15 g / m 2 is deposited, it should be avoided because there is no significant improvement in performance and the economic disadvantage increases.

特定の条件下でリフロー処理を施すことで、金属錫を断続的な分布とすることも可能であり、そのような錫めっき鋼板が必要な用途に供する場合に選択すればよい。   By performing the reflow treatment under specific conditions, it is possible to make the metal tin intermittently distributed, and it may be selected when such a tin-plated steel sheet is used for a necessary application.

本発明においては、前記の金属錫上および/または合金層上に、P量として0.5〜5.0mg/m2のりん酸塩層、さらに該りん酸塩層上にZrの酸化物及び/又はZrの水酸化物をZr量として2〜15mg/m2、並びにSiの酸化物及び/又はSiの水酸化物をSi量として2〜15mg/m2含み、かつ前記Zr量及び前記Si量の合計が5〜30mg/m2であるシリカ−ジルコニア処理層を有することが必要である。 In the present invention, a phosphate layer having a P content of 0.5 to 5.0 mg / m 2 on the metal tin and / or the alloy layer, and an oxide of Zr and / or Zr on the phosphate layer. the total of the hydroxide include 2~15mg / m 2 2~15mg / m 2 , as well as oxides of Si and / or Si to the hydroxide as Si amount of Zr weight and the Zr amount and the Si amount There silica is 5 to 30 mg / m 2 - it is necessary to have a zirconia treated layer.

P量として0.5〜5.0mg/m2のりん酸塩層は、その上層であるシリカ−ジルコニア処理層と基板とを強固に密着させる役割を担っている。すなわち、錫めっき鋼板に直接ZrやSiの酸化物や水酸化物を付着させても、両者の密着力は不十分であり、その表面に塗料や樹脂皮膜を積層させても、密着力の劣る錫めっき鋼板−Zr化合物界面や錫めっき鋼板−Si化合物界面で剥離しやすい。りん酸塩は、ZrやSiの酸化物や水酸化物とも密着性が高いため、中間層として適している。 The phosphate layer having a P content of 0.5 to 5.0 mg / m 2 plays a role of firmly adhering the silica-zirconia treatment layer, which is an upper layer, to the substrate. That is, even if Zr or Si oxides or hydroxides are directly attached to a tin-plated steel sheet, the adhesion between them is insufficient, and even if a paint or resin film is laminated on the surface, the adhesion is poor. It is easy to peel off at the tin-plated steel sheet-Zr compound interface and the tin-plated steel sheet-Si compound interface. Phosphate is suitable as an intermediate layer because it has high adhesion to Zr and Si oxides and hydroxides.

りん酸塩は、主にりん酸鉄とりん酸錫とからなり、その合計のP付着量は予め作成した検量線を用いて、蛍光X線強度から測定することができる。りん酸塩の合計量は、Pとして0.5〜5.0mg/m2であることが必要である。0.5mg/m2未満ではりん酸塩によって被覆されない錫層、錫合金層及び鋼板面の面積率が高くなるため、ZrやSiの酸化物や水酸化物が剥離しやすい。一方、P量として5.0mg/m2を超えるりん酸塩は、凝集破壊し易くなるため、有機皮膜の密着性が確保できない。 Phosphate mainly consists of iron phosphate and tin phosphate, and the total amount of deposited P can be measured from fluorescent X-ray intensity using a calibration curve prepared in advance. The total amount of phosphate needs to be 0.5 to 5.0 mg / m 2 as P. If it is less than 0.5 mg / m 2 , the area ratio of the tin layer, the tin alloy layer and the steel plate surface that are not covered with phosphate increases, so that the oxides and hydroxides of Zr and Si are easy to peel off. On the other hand, phosphates with an amount of P exceeding 5.0 mg / m 2 are liable to cohesive failure, so that the adhesion of the organic film cannot be ensured.

シリカ−ジルコニア処理層は、Zr量として2〜15mg/m2、Si量として2〜15mg/m2 、かつ両者の合計が5〜30mg/m2であることが必要である。 The silica-zirconia-treated layer needs to have a Zr amount of 2 to 15 mg / m 2 , a Si amount of 2 to 15 mg / m 2 , and a total of both of 5 to 30 mg / m 2 .

錫めっき鋼板のりん酸塩層上のZrの酸化物、水酸化物の形状は粒状であり、粒径は、鋼板面に投影した粒の像の面積と同じ面積の円換算で0.1〜0.4μmであることが望ましい。塗料や樹脂フィルムは粘度の低い状態で積層させるため、このような粒状のZr酸化物又は水酸化物を包み込むように流動した後に硬化することで、いわゆるアンカー効果が得られるため、有機皮膜の密着性に寄与するのだと考えられる。しかるに、Zr量として2mg/m2未満では、Zrの酸化物、水酸化物は前記の形状とならないため、十分な有機皮膜密着性を得にくい。一方、Zr量として15mg/m2を超えると次に述べるSiの酸化物、水酸化物の面積率が十分に確保されないため、耐食性の確保が難しくなる。 The shape of Zr oxide and hydroxide on the phosphate layer of tin-plated steel sheet is granular, and the particle diameter is 0.1 to 0.4 μm in terms of a circle with the same area as the image of the grain projected on the steel sheet surface. It is desirable that Since coatings and resin films are laminated in a low viscosity state, the so-called anchor effect can be obtained by hardening after flowing so as to enclose such granular Zr oxides or hydroxides, so that the adhesion of the organic film It is thought to contribute to sex. However, when the amount of Zr is less than 2 mg / m 2 , Zr oxides and hydroxides do not have the above-mentioned shape, and it is difficult to obtain sufficient organic film adhesion. On the other hand, if the amount of Zr exceeds 15 mg / m 2 , the area ratio of the oxides and hydroxides of Si described below is not sufficiently ensured, so that it is difficult to ensure corrosion resistance.

錫めっき鋼板のりん酸塩層上のSiの酸化物、水酸化物の形状は層状であり、Zrの酸化物、水酸化物のない、または少ない部分に均一に分布する。Siの酸化物、水酸化物は極性基を有する有機皮膜と恐らく水素結合によって結合し、界面への水溶液の浸入を防止するため、二次密着性の向上に寄与する。Si量として2mg/m2 未満では、りん酸塩層を被覆するのに不十分で、前記の効果を得にくい。一方、15mg/m2を超えると凝集破壊しやすくなり、むしろ有機皮膜の密着性が低下する。 The shape of the Si oxide and hydroxide on the phosphate layer of the tin-plated steel sheet is layered, and is uniformly distributed in a portion where there is no or little Zr oxide or hydroxide. Si oxides and hydroxides are bonded to the organic film having a polar group, possibly by hydrogen bonding, and prevent penetration of the aqueous solution into the interface, thereby contributing to the improvement of secondary adhesion. If the amount of Si is less than 2 mg / m 2, it is insufficient to cover the phosphate layer, and the above effect is difficult to obtain. On the other hand, if it exceeds 15 mg / m 2 , it tends to cause cohesive failure, rather the adhesion of the organic film is lowered.

Zr量とSi量との合計は5〜30mg/m2であることが必要である。5mg/m2未満では上記特性が不十分な場合がある。一方、30mg/m2を超えると上記特性が飽和もしくは低下すると共に経済的ではない。 The sum of the Zr amount and the Si amount needs to be 5 to 30 mg / m 2 . If it is less than 5 mg / m 2 , the above characteristics may be insufficient. On the other hand, if it exceeds 30 mg / m 2 , the above properties are saturated or deteriorated and it is not economical.

前記シリカ−ジルコニア処理層における金属量で表したSiの割合Si/(Zr+Si)は、0.2〜0.8であることが好ましい。上記の付着量でSiの割合がこの範囲であれば、Zrの酸化物及び又はZrの水酸化物、並びにSiの酸化物及び/又はSiの水酸化物の面積比が最適であり、両者の特性がよく発揮されて、極めて良好な有機皮膜の密着性が得られる。   The Si ratio Si / (Zr + Si) expressed by the amount of metal in the silica-zirconia-treated layer is preferably 0.2 to 0.8. If the ratio of Si in the above adhesion amount is within this range, the area ratio of Zr oxide and / or Zr hydroxide, and Si oxide and / or Si hydroxide is optimal. The properties are exhibited well and extremely good organic film adhesion is obtained.

鋼板表面に鉄および錫を含む合金層を有する場合、Sn量として0.1〜1.8g/m2のFe-Sn合金層、又はNi量として2〜100mg/m2のFe-Ni-Sn合金層から成ることが好ましい。Fe-Sn合金の場合、組成はFeSn2となるが、この量はSn量として0.1〜1.8g/m2であることが好ましい。錫めっき後に錫の加熱溶融工程(リフロー処理)を経る錫めっき鋼板では、必然的に0.1g/m2の錫合金層は不可避的に生じるものであるし、一方、1.8g/m2を超えると、曲げ、カーリング等の加工工程で微小なクラックが生じ易くなり、腐食の起点となる恐れがあるため、好ましくない。Fe-Ni-Sn合金の場合、この量はNi量として2〜100mg/m2であることが好ましい。Niを添加するのは合金層の過剰な生成を妨げるためであるが、Niが2mg/m2未満では、その効果が不十分である。一方、100mg/m2を超えると、Ni-Sn合金量が増加し、合金層中の鉄比率が低下することにより、りん酸鉄の生成量が少なくなってしまって有機皮膜の一次及び二次密着性の確保が難しくなるため、好ましくない。 When having an alloy layer containing iron and tin on the steel sheet surface, from an Fe-Sn alloy layer of 0.1 to 1.8 g / m 2 as the Sn amount, or from an Fe-Ni-Sn alloy layer of 2 to 100 mg / m 2 as the Ni amount Preferably it consists of: In the case of the Fe—Sn alloy, the composition is FeSn 2, and this amount is preferably 0.1 to 1.8 g / m 2 as the Sn amount. In a tin-plated steel sheet that undergoes a tin heating and melting step (reflow treatment) after tin plating, a tin alloy layer of 0.1 g / m 2 is inevitably formed, whereas it exceeds 1.8 g / m 2 Then, it is not preferable because minute cracks are likely to be generated in processing steps such as bending and curling, and there is a risk of starting corrosion. In the case of the Fe—Ni—Sn alloy, this amount is preferably 2 to 100 mg / m 2 as the Ni amount. Ni is added to prevent excessive formation of the alloy layer, but if Ni is less than 2 mg / m 2 , the effect is insufficient. On the other hand, if it exceeds 100 mg / m 2 , the amount of Ni-Sn alloy increases, and the iron ratio in the alloy layer decreases, resulting in a decrease in the amount of iron phosphate produced and the primary and secondary organic coatings. It is not preferable because it is difficult to ensure adhesion.

本願発明である缶用めっき鋼板の製造方法については限定しないが、下記の方法により製造することができる。   Although it does not limit about the manufacturing method of the plated steel plate for cans which is this invention, it can manufacture by the following method.

鋼板のめっき前処理の方法及び用いる錫めっき浴については、本発明では特に限定しないが、前処理として電解アルカリ脱脂及び希硫酸酸洗を施した後、有機光沢添加剤を含むフェノールスルホン酸浴、硫酸浴等の酸性錫めっき浴で電気錫めっきを施すと、良好な錫めっきが得られる。なお、錫めっきの前に、Fe-Ni合金めっきを施してもよい。あるいは、ニッケルめっきを施した後、加熱してニッケルを鋼板表面層に拡散させて、Fe-Ni合金層を形成させてもよい。   The method of plating pretreatment of the steel sheet and the tin plating bath to be used are not particularly limited in the present invention, but after performing electrolytic alkaline degreasing and dilute sulfuric acid pickling as pretreatment, a phenolsulfonic acid bath containing an organic gloss additive, When tin is electroplated in an acidic tin plating bath such as a sulfuric acid bath, good tin plating is obtained. Note that Fe—Ni alloy plating may be performed before tin plating. Or after giving nickel plating, it may heat and diffuse nickel to a steel plate surface layer, and may form an Fe-Ni alloy layer.

錫めっき後の鋼板は、水又は錫めっき液が希釈された液の入った槽に浸漬され、乾燥された後、リフロー処理を施してもよい。リフロー処理は、錫めっき鋼板を錫の融点である232℃以上に加熱する工程であるが、300℃を超えると、Fe-Sn合金化が過度に促進されてしまうので、好ましくない。加熱の手段としては、電気抵抗加熱や誘導加熱、又は、それらを組み合わせて用いるとよい。リフロー処理の直後にクエンチ処理することで、Fe-Sn合金層又はFe-Ni-Sn合金層や、表面の酸化錫層の過剰な生成を防ぐことが必要である。クエンチ処理は、錫を溶融した錫めっき鋼板を水に浸漬して行う。ストリップを連続的にリフロー処理及びクエンチ処理すると、クエンチ槽の水は80℃程度が好ましい。   The steel plate after tin plating may be subjected to a reflow treatment after being dipped in a bath containing water or a solution in which a tin plating solution is diluted and dried. The reflow treatment is a step of heating the tin-plated steel sheet to 232 ° C. or higher, which is the melting point of tin, but if it exceeds 300 ° C., Fe—Sn alloying is excessively promoted, which is not preferable. As a heating means, electric resistance heating, induction heating, or a combination thereof may be used. It is necessary to prevent excessive formation of the Fe—Sn alloy layer or the Fe—Ni—Sn alloy layer or the surface tin oxide layer by quenching immediately after the reflow treatment. The quenching process is performed by immersing a tin-plated steel sheet in which tin is melted in water. When the strip is continuously reflowed and quenched, the water in the quench bath is preferably about 80 ° C.

次に、以下に述べる方法で化成処理を施すとよい。
まず、液温30〜55℃、pH1.5〜3.5のりん酸系水溶液中で、陰極電流密度2〜30A/dm2、0.1〜2秒の陰極電解処理を施す。pH1.5〜3.5のりん酸系水溶液におけるりん酸の化学種は、主としてりん酸とりん酸二水素イオンであり、微量のりん酸水素イオンも存在する。前記りん酸系水溶液中の水素イオンのほかのカチオン成分としては、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン、アンモニウムイオンの中から選ばれる1種又は2種以上が問題なく使用できる。
Next, chemical conversion treatment may be performed by the method described below.
First, cathodic electrolysis is performed in a phosphoric acid aqueous solution having a liquid temperature of 30 to 55 ° C. and a pH of 1.5 to 3.5 at a cathode current density of 2 to 30 A / dm 2 for 0.1 to 2 seconds. The chemical species of phosphoric acid in a phosphoric acid aqueous solution having a pH of 1.5 to 3.5 are mainly phosphoric acid and dihydrogen phosphate ion, and a trace amount of hydrogen phosphate ion is also present. As the cation component other than hydrogen ions in the phosphoric acid aqueous solution, one or more selected from sodium ions, potassium ions, calcium ions, magnesium ions, and ammonium ions can be used without any problem.

りん酸塩水溶液中での陰極電解処理は、主としてリフロー処理で錫めっき鋼板の表面に生じた酸化錫や酸化鉄を、金属に還元するとともに、りん酸塩層を形成させる工程である。酸化錫が多く残存すると、りん酸塩皮膜の形成の妨げになる。陰極電流密度は2A/dm2未満では、リフロー処理で生じた酸化錫や酸化鉄の還元が十分にできない場合がある。一方、陰極電流密度を30A/dm2より高くしても、陰極表面で発生する水素ガスの量が多くなるばかりで効率的ではない。電解時間は0.1秒より短いと、酸化錫や酸化鉄の還元が十分にできない場合がある。一方、電解2秒間で酸化錫や酸化鉄は十分に還元されるため、これより長くしても生産性を低下させるばかりで、性能の向上は認められない。 Cathodic electrolysis in an aqueous phosphate solution is a step of reducing tin oxide and iron oxide produced on the surface of a tin-plated steel sheet mainly by reflow treatment to a metal and forming a phosphate layer. When a large amount of tin oxide remains, formation of a phosphate film is hindered. When the cathode current density is less than 2 A / dm 2 , tin oxide or iron oxide generated by the reflow treatment may not be sufficiently reduced. On the other hand, even if the cathode current density is made higher than 30 A / dm 2 , the amount of hydrogen gas generated on the cathode surface is increased, which is not efficient. If the electrolysis time is shorter than 0.1 second, tin oxide or iron oxide may not be sufficiently reduced. On the other hand, tin oxide and iron oxide are sufficiently reduced within 2 seconds of electrolysis, so even if the length is longer than this, productivity is reduced and no improvement in performance is observed.

りん酸塩水溶液中での陰極電解処理に次いで、適当な条件で陽極電解処理を施すと、りん酸塩皮膜の形成がより進行するので好ましい。陽極電解処理では、鋼板表面の錫や鉄がゆっくりと酸化溶解し、処理液中のりん酸イオンと結合することでりん酸鉄やりん酸錫が形成すると考えられる。陽極電解処理の陽極電流密度は0.2〜5A/dm2、電解時間は0.1〜2秒が適当である。0.2A/dm2未満、あるいは0.1秒未満では、りん酸塩の生成を促進する効果が不十分であり、陰極電解処理だけ行った場合と比べて改善する効果がない。一方、5A/dm2超えると錫や鉄の溶解速度が速すぎて、生成するりん酸塩層が疎で脆くなる。電解時間が2秒を超えると、生産性を低下させるし、りん酸塩層が厚くなって、かえって脆い皮膜となってしまう。 Subsequent to cathodic electrolysis in an aqueous phosphate solution, anodic electrolysis is preferably performed under suitable conditions, since the formation of a phosphate film proceeds further. In the anodic electrolytic treatment, tin and iron on the steel sheet surface are slowly oxidized and dissolved, and iron phosphate and tin phosphate are formed by combining with phosphate ions in the treatment solution. The anode current density of the anodic electrolysis is suitably 0.2 to 5 A / dm 2 , and the electrolysis time is suitably 0.1 to 2 seconds. If it is less than 0.2 A / dm 2 or less than 0.1 second, the effect of promoting the formation of phosphate is insufficient, and there is no improvement effect compared to the case where only cathodic electrolysis is performed. On the other hand, if it exceeds 5 A / dm 2, the dissolution rate of tin and iron is too fast, and the resulting phosphate layer becomes sparse and brittle. When the electrolysis time exceeds 2 seconds, the productivity is lowered, and the phosphate layer becomes thick, resulting in a brittle film.

前記の化成処理後、鋼板をさらに、1〜10g/Lのジルコニウム(IV)、1〜10g/Lのけい素(IV)と5〜50g/Lのフッ化物イオン、1〜5g/Lの硝酸イオンの1種または2種を含む、pH2.5〜6、浴温10〜55℃の水溶液中で、電流密度1〜15A/dm2、電解時間0.1〜2秒で陰極電解処理を施すことで、粒状のZrの酸化物および/または水酸化物と層状のSiの酸化物および/または水酸化物とが適量分布する表面となり、良好な有機皮膜密着性を示す本願発明の錫めっき鋼板が得られる。 After the chemical conversion treatment, the steel plate is further processed with 1-10 g / L of zirconium (IV), 1-10 g / L of silicon (IV), 5-50 g / L of fluoride ions, 1-5 g / L of nitric acid. By performing cathodic electrolysis in an aqueous solution containing one or two ions, pH 2.5-6, bath temperature 10-55 ° C, current density 1-15 A / dm 2 , electrolysis time 0.1-2 seconds Thus, a tin-plated steel sheet of the present invention showing good organic film adhesion can be obtained with a surface in which an appropriate amount of granular Zr oxide and / or hydroxide and layered Si oxide and / or hydroxide are distributed. It is done.

処理浴に添加する好ましいジルコニウム(IV)化合物として、フッ化ジルコニウムアンモニウム、硝酸酸化ジルコニウム、また、好ましいけい素(IV)化合物として、けいフッ化アンモニウムを挙げることができる。   Preferred zirconium (IV) compounds to be added to the treatment bath include ammonium zirconium fluoride and zirconium nitrate oxide, and preferred silicon (IV) compounds include ammonium fluorofluoride.

以下、実施例によって、本発明をさらに詳細に説明する。
低炭素冷延鋼帯を連続焼鈍、次いで、調質圧延して得た板厚0.18mm、調質度T-5CAの鋼帯を使用した。めっき前処理として、10mass%水酸化ナトリウム溶液中で電解脱脂した後、5mass%希硫酸で酸洗した。
Hereinafter, the present invention will be described in more detail by way of examples.
A steel strip having a thickness of 0.18 mm and a tempering degree of T-5CA obtained by continuous annealing and then temper rolling of a low carbon cold rolled steel strip was used. As a pretreatment for plating, electrolytic degreasing was carried out in a 10 mass% sodium hydroxide solution, followed by pickling with 5 mass% dilute sulfuric acid.

一部の鋼帯には、Fe-Ni合金めっき、又は、Niめっきを施した。Niめっきを施した鋼帯は、その後に焼鈍してNiを拡散させて、Fe-Ni合金層を形成させた。   Some steel strips were plated with Fe-Ni alloy or Ni. The steel strip subjected to Ni plating was then annealed to diffuse Ni and form a Fe—Ni alloy layer.

次いで、フェロスタン浴を用いて電気錫めっきを施した。錫イオンを20g/L、フェノールスルホン酸イオンを75g/L、界面活性剤を5g/L含む43℃のめっき液中で、陰極電流密度20A/dm2で陰極電解した。陽極には、白金めっきしたチタンを用いた。全錫めっき付着量は1.5g/dm2とした。 Subsequently, electrotin plating was performed using a ferrostan bath. Cathodic electrolysis was performed at a cathode current density of 20 A / dm 2 in a plating solution at 43 ° C. containing 20 g / L of tin ions, 75 g / L of phenolsulfonic acid ions, and 5 g / L of surfactant. As the anode, platinum-plated titanium was used. The total amount of tin plating was 1.5 g / dm 2 .

一部の錫めっき鋼帯は、錫めっき液を10倍希釈した溶液に浸漬し、ゴムロールで液切りをした後、冷風で乾燥し、通電加熱によって5秒間で250℃まで昇温させて錫をリフローし、直ちに80℃の水でクエンチした。   Some tin-plated steel strips are immersed in a 10-fold diluted tin plating solution, drained with a rubber roll, dried with cold air, heated to 250 ° C for 5 seconds by energization heating, and tin is Reflowed and immediately quenched with 80 ° C. water.

引き続き、錫めっき鋼板に、下記のように化成処理を施した。
全りん酸濃度をりん酸換算で35g/L、ナトリウムイオンを4g/L含む液温40℃の処理液中で陰極電解処理した。いくつかの実施例では、同じ組成の水溶液中で陽極電解処理を施した。
Subsequently, the tin-plated steel sheet was subjected to chemical conversion treatment as follows.
Cathodic electrolysis was performed in a treatment solution containing 35 g / L of total phosphoric acid in terms of phosphoric acid and 4 g / L of sodium ion at a solution temperature of 40 ° C. In some examples, anodic electrolysis was performed in an aqueous solution of the same composition.

次いで、1〜10g/Lのジルコニウム(IV)、1〜10g/Lのけい素(IV)と20g/Lのフッ化物イオン、2.5g/Lの硝酸イオンを含む、pH4.0、浴温40℃の水溶液中で、電流密度10A/dm2、電解時間0.4秒で陰極電解処理を施した。電解処理後、ゴムロールで液を絞った後、速やかに水洗、乾燥した。 Next, 1 to 10 g / L zirconium (IV), 1 to 10 g / L silicon (IV) and 20 g / L fluoride ions, 2.5 g / L nitrate ions, pH 4.0, bath temperature 40 Cathodic electrolysis was performed in an aqueous solution at 0 ° C. with a current density of 10 A / dm 2 and an electrolysis time of 0.4 seconds. After the electrolytic treatment, the solution was squeezed with a rubber roll, and then quickly washed with water and dried.

P、Zr、Niの付着量は、蛍光X線強度から、予め作成した検量線を使って算出した。Sn付着量は、1mol/Lの希塩酸中で錫めっき鋼板を陽極とする電解剥離法により求めた。なお、Pがりん酸錫、りん酸鉄として存在することは、AES(オージェ電子分光分析)による微小領域におけるSn、Fe、P、Oの比率と、XPS(X線光電子分光分析)によるSn、Fe、P、Oの結合状態の解析によって確認した。   The adhesion amount of P, Zr, and Ni was calculated from the fluorescent X-ray intensity using a calibration curve prepared in advance. The amount of Sn deposited was determined by an electrolytic stripping method using a tin-plated steel sheet as an anode in 1 mol / L dilute hydrochloric acid. In addition, the presence of P as tin phosphate and iron phosphate means that the ratio of Sn, Fe, P, O in a small region by AES (Auger electron spectroscopy), Sn by XPS (X-ray photoelectron spectroscopy), This was confirmed by analysis of the bonding state of Fe, P, and O.

上記処理材について、以下に示す(A)〜(C)の各項目について評価試験を実施した。
(A) 塗料一次密着性
About the said processing material, the evaluation test was implemented about each item of (A)-(C) shown below.
(A) Paint primary adhesion

評価材に、エポキシ・フェノール系塗料を60mg/dm2塗布し、210℃で10分間の焼き付けを行った。さらに、190℃で15分間、230℃で90秒間の追い焼きを行った。この塗装板から、5mm×100mmの大きさの試料を切り出した。2枚の同一水準の試料を、塗装面が向かい合わせになるようにし、間に厚さ100μmのフィルム状のナイロン接着剤を挟んだ。これを、つかみ代を残して、ホットプレスで200℃で60秒間予熱した後、2.9×105Paの圧力をかけて200℃で50秒間圧着し、引張試験片とした。つかみ部をそれぞれ90゜の角度で曲げてT字状とし、引張試験機のチャックでつかんで引っ張り、剥離強度を測定して、塗料一次密着性を評価した。試験片幅5mm当たりの測定強度が、70N以上を◎、55N以上70N未満を○、40N以上55N未満を△、40N未満を×とした。
(B) 塗料二次密着性
The evaluation material was coated with 60 mg / dm 2 of epoxy / phenolic paint and baked at 210 ° C. for 10 minutes. Further, the baking was performed at 190 ° C. for 15 minutes and at 230 ° C. for 90 seconds. A sample having a size of 5 mm × 100 mm was cut out from the coated plate. Two samples of the same level were coated with the coated surfaces facing each other, and a film-like nylon adhesive having a thickness of 100 μm was sandwiched between them. This was left pre-heated with a hot press at 200 ° C. for 60 seconds, and then pressure-bonded at 2.9 × 10 5 Pa for 50 seconds at 200 ° C. to obtain a tensile test piece. Each of the grip portions was bent at a 90 ° angle to form a T shape, and was pulled with a chuck of a tensile tester, and the peel strength was measured to evaluate the primary adhesion of the paint. The measured strength per test piece width of 5 mm was evaluated as ◎ for 70 N or more, ◯ for 55 N or more and less than 70 N, Δ for 40 N or more and less than 55 N, and × for less than 40 N.
(B) Paint secondary adhesion

評価材に、前記(A)と同様の方法で、塗装、焼付け、ナイロン接着剤を挟んで圧着を施し、試験片を作製した。これを125℃、30分のレトルト処理をし、直後につかみ部をそれぞれ90゜の角度で曲げてT字状とし、引張試験機のチャックでつかんで引っ張り、剥離強度を測定して、塗料二次密着性を評価した。試験片幅5mm当たりの測定強度が、50N以上を◎、40N以上50N未満を○、30N以上40N未満を△、30N未満を×とした。
(C) 耐食性
The evaluation material was coated, baked, and pressure-bonded with a nylon adhesive sandwiched in the same manner as in (A) to prepare a test piece. This was retorted at 125 ° C for 30 minutes. Immediately after that, the gripping portions were bent at 90 ° angles to form a T-shape. The next adhesion was evaluated. The measured strength per 5 mm of the test piece width was 50N or more, 40, 40N or more and less than 50N, ○, 30N or more and less than 40N, or less than 30N, ×.
(C) Corrosion resistance

評価材の缶内面に相当する面の塩化物イオンを含む酸性溶液中における耐食性を評価するため、UCC(アンダーカッティング・コロージョン)試験を行った。エポキシ・フェノール系塗料を50mg/dm2塗布し、205℃で10分間の焼き付けを行った。さらに180℃で10分間の追い焼きを行った。この塗装板から、50mm×50mmの大きさの試料を切り出した。塗膜にカッターで地鉄に達するまでクロスカットを入れ、端面と裏面を塗料でシールした後、1.5%クエン酸と1.5%塩化ナトリウムからなる55℃の試験液中に、大気開放下で96時間浸漬した。水洗・乾燥後、スクラッチ部及び平面部にセロテープ(登録商標)(ニチバンNo.405)を貼り付けた後、勢いよく剥離し、クロスカット部近傍の腐食状況、クロスカット部のピッティング腐食及び平面部の塗膜剥離状況を観察して、耐食性を評価した。テープによる剥離も腐食も認められないものを◎(非常に良好)、スクラッチ部から0.2mm未満のテープ剥離又は目視で認められない僅かな腐食の一方又は両方が認められたものを○(良好)、スクラッチ部から0.2mm以上0.4mm以下のテープ剥離又は目視で認められる小さい腐食の一方又は両方が認められたものを△(やや不良)、0.4mmを超えるテープ剥離が生じたものを×(不良)とした。 In order to evaluate the corrosion resistance in an acidic solution containing chloride ions on the surface corresponding to the inner surface of the can of the evaluation material, a UCC (Under Cutting Corrosion) test was performed. An epoxy / phenolic paint was applied at 50 mg / dm 2 and baked at 205 ° C. for 10 minutes. Further, it was baked for 10 minutes at 180 ° C. A sample having a size of 50 mm × 50 mm was cut out from the coated plate. Cross-cut the coating film until it reaches the ground iron with a cutter, seal the end and back with paint, and then in a test solution at 1.5C consisting of 1.5% citric acid and 1.5% sodium chloride for 96 hours in the open air Soaked. After washing and drying, after attaching cello tape (registered trademark) (Nichiban No. 405) to the scratch part and the flat part, it peels off vigorously, and the corrosion situation near the cross cut part, the pitting corrosion of the cross cut part and the flat part The coating film peeling state of the part was observed to evaluate the corrosion resistance. ◎ (excellent) where no peeling or corrosion due to tape is observed, ○ (good) where one or both of tape peeling less than 0.2 mm from scratch or slight corrosion not visually recognized △ (slightly defective) when one or both of tape peeling of 0.2 mm or more and 0.4 mm or less or small corrosion visually recognized from the scratch part was observed, and × (bad) when tape peeling exceeding 0.4 mm occurred ).

以上の性能評価結果から、総合評価を◎(非常に良好)、○(良好)、△(やや不良)、×(不良)の4段階に分類し、◎、○を合格レベルとした。   Based on the above performance evaluation results, the overall evaluation was classified into four stages: ◎ (very good), ○ (good), △ (slightly bad), and × (bad), and ◎ and ○ were regarded as acceptable levels.

上記に記載しなかった試験条件を表1及び表2に、評価結果を表3及び表4に示した。   The test conditions not described above are shown in Tables 1 and 2, and the evaluation results are shown in Tables 3 and 4.

Figure 0005332836
Figure 0005332836

Figure 0005332836
Figure 0005332836

Figure 0005332836
Figure 0005332836

Figure 0005332836
本発明の実施例1〜35は、全ての評価項目及び総合評価で、◎又は○であり、求められる性能を満足した。中でもSi/(Si+Zr)が0.2〜0.8の範囲の水準は良好な塗料密着性を示しており、好適である事が判る。
Figure 0005332836
Examples 1-35 of this invention were (double-circle) or (circle) in all the evaluation items and comprehensive evaluation, and satisfy | filled the calculated | required performance. Above all, the level of Si / (Si + Zr) in the range of 0.2 to 0.8 indicates good paint adhesion, which proves preferable.

比較例1は、酸化けい素、酸化ジルコニウムともに付着量が少ない例である。十分な塗料密着性と耐食性が得られなかった。比較例2は、酸化けい素の付着量が少ない例である。十分な塗料密着性と耐食性が得られなかった。比較例3は、酸化けい素、酸化ジルコニウムの合計量が少ない例である。十分な塗料密着性と耐食性が得られなかった。比較例4は、酸化ジルコニウムの付着量、酸化けい素、酸化ジルコニウムの合計量が少ない例である。十分な塗料密着性と耐食性が得られなかった。比較例5と6は、酸化ジルコニウムの付着量が少ない例である。十分な塗料密着性と耐食性が得られなかった。比較例7は、酸化ジルコニウムの付着量が多い例である。十分な塗料密着性と耐食性が得られなかった。比較例8は、酸化ジルコニウムの付着量が多い例である。十分な二次塗料密着性と耐食性が得られなかった。比較例9は、酸化ジルコニウムの付着量と酸化けい素、酸化ジルコニウムの合計量が多い例である。十分な塗料密着性と耐食性が得られなかった。比較例10と11は、酸化けい素の付着量が多い例である。十分な塗料密着性と耐食性が得られなかった。比較例12は、酸化けい素の付着量と酸化けい素、酸化ジルコニウムの合計量が多い例である。十分な塗料密着性と耐食性が得られなかった。比較例13は、りん酸塩の付着量が少ない例である。十分な塗料密着性と耐食性が得られなかった。比較例14は、りん酸塩の付着量が多い例である。十分な塗料密着性と耐食性が得られなかった。   Comparative Example 1 is an example in which both silicon oxide and zirconium oxide have a small amount of adhesion. Sufficient paint adhesion and corrosion resistance were not obtained. Comparative Example 2 is an example in which the amount of silicon oxide attached is small. Sufficient paint adhesion and corrosion resistance were not obtained. Comparative Example 3 is an example in which the total amount of silicon oxide and zirconium oxide is small. Sufficient paint adhesion and corrosion resistance were not obtained. Comparative Example 4 is an example in which the adhesion amount of zirconium oxide and the total amount of silicon oxide and zirconium oxide are small. Sufficient paint adhesion and corrosion resistance were not obtained. Comparative Examples 5 and 6 are examples in which the adhesion amount of zirconium oxide is small. Sufficient paint adhesion and corrosion resistance were not obtained. Comparative Example 7 is an example in which the amount of zirconium oxide attached is large. Sufficient paint adhesion and corrosion resistance were not obtained. Comparative Example 8 is an example in which the amount of zirconium oxide attached is large. Sufficient secondary paint adhesion and corrosion resistance were not obtained. Comparative Example 9 is an example in which the adhesion amount of zirconium oxide and the total amount of silicon oxide and zirconium oxide are large. Sufficient paint adhesion and corrosion resistance were not obtained. Comparative Examples 10 and 11 are examples in which the amount of silicon oxide attached is large. Sufficient paint adhesion and corrosion resistance were not obtained. Comparative Example 12 is an example in which the amount of silicon oxide attached and the total amount of silicon oxide and zirconium oxide are large. Sufficient paint adhesion and corrosion resistance were not obtained. Comparative Example 13 is an example in which the amount of phosphate adhered is small. Sufficient paint adhesion and corrosion resistance were not obtained. Comparative Example 14 is an example in which the amount of phosphate adhered is large. Sufficient paint adhesion and corrosion resistance were not obtained.

Claims (3)

鋼板表面上又は鋼板表面に形成した鉄および錫(Sn)を含む合金層上に、金属錫を連続的又は断続的に有するめっき鋼板であって、該めっき鋼板上に、P量として0.5〜5.0mg/mのりん酸塩層、さらに該りん酸塩層上に、鋼板面に投影した粒の像の径が円換算で0.1〜0.4μmである粒状のZrの酸化物及び/又はZrの水酸化物をZr量として2〜15mg/m、並びにSiの酸化物及び/又はSiの水酸化物をSi量として2〜15mg/m含み、かつ前記Zr量及び前記Si量の合計が5〜30mg/mであるシリカ−ジルコニア処理層を有することを特徴とする缶用めっき鋼板。 A plated steel sheet having a metal tin continuously or intermittently on a steel sheet surface or an alloy layer containing iron and tin (Sn) formed on the steel sheet surface, the P amount being 0.5 on the plated steel sheet Oxidation of granular Zr having a diameter of 0.1 to 0.4 μm in terms of a circle on the surface of a steel sheet on a phosphate layer of ˜5.0 mg / m 2 and further on the phosphate layer things and / or hydroxide of Zr include 2~15mg / m 2 2~15mg / m 2 , as well as oxides of Si and / or Si to the hydroxide as Si amount of Zr weight and the Zr amount and A plated steel sheet for cans comprising a silica-zirconia-treated layer having a total amount of Si of 5 to 30 mg / m 2 . 前記、シリカ−ジルコニア処理層における金属量で表したSiの割合Si/(Zr+Si)が0.2〜0.8であることを特徴とする請求項1に記載の缶用めっき鋼板。   2. The plated steel sheet for cans according to claim 1, wherein the Si ratio Si / (Zr + Si) expressed by the amount of metal in the silica-zirconia-treated layer is 0.2 to 0.8. 前記鉄および錫を含む合金層が、Sn量として0.1〜1.8g/mのFe−Sn合金層、又はNi量として2〜100mg/mのFe−Ni−Sn合金層から成ることを特徴とする請求項1又は2に記載の缶用めっき鋼板。 The alloy layer containing iron and tin is composed of a Fe—Sn alloy layer having a Sn content of 0.1 to 1.8 g / m 2 or a Fe—Ni—Sn alloy layer having a Ni content of 2 to 100 mg / m 2. The plated steel sheet for cans according to claim 1 or 2, characterized in that
JP2009093150A 2009-04-07 2009-04-07 Plated steel sheet for cans Active JP5332836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009093150A JP5332836B2 (en) 2009-04-07 2009-04-07 Plated steel sheet for cans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009093150A JP5332836B2 (en) 2009-04-07 2009-04-07 Plated steel sheet for cans

Publications (2)

Publication Number Publication Date
JP2010242182A JP2010242182A (en) 2010-10-28
JP5332836B2 true JP5332836B2 (en) 2013-11-06

Family

ID=43095513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009093150A Active JP5332836B2 (en) 2009-04-07 2009-04-07 Plated steel sheet for cans

Country Status (1)

Country Link
JP (1) JP5332836B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5978923B2 (en) * 2012-10-29 2016-08-24 Jfeスチール株式会社 Steel plate for container, treatment liquid used for manufacturing the same, and method for manufacturing steel plate for container
JP6040716B2 (en) * 2012-11-09 2016-12-07 Jfeスチール株式会社 Treatment liquid, steel plate for container, and method for producing steel plate for container
JP5884191B2 (en) * 2013-05-29 2016-03-15 Jfeスチール株式会社 Steel plate for containers
WO2015012176A1 (en) * 2013-07-24 2015-01-29 Jfeスチール株式会社 Steel sheet for container
JP6003912B2 (en) * 2014-01-30 2016-10-05 Jfeスチール株式会社 Steel plate for container and method for producing the same
JP6003910B2 (en) * 2014-01-30 2016-10-05 Jfeスチール株式会社 Steel plate for container and method for producing the same
TWI563099B (en) * 2014-11-10 2016-12-21 Nippon Steel & Sumitomo Metal Corp A plated steel and a method of producing thereof
JP6197911B2 (en) * 2016-04-19 2017-09-20 Jfeスチール株式会社 Treatment liquid and method for producing steel plate for container
CN111394770B (en) * 2020-05-08 2021-10-22 湖北启宏热工设备有限公司 Magnesium-aluminum alloy surface coating process

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492224B2 (en) * 2004-06-22 2010-06-30 東洋製罐株式会社 Surface-treated metal material, surface treatment method thereof, and resin-coated metal material
TWI391530B (en) * 2007-04-04 2013-04-01 Nippon Steel Corp A plated steel sheet for use in a tank and a method for manufacturing the same

Also Published As

Publication number Publication date
JP2010242182A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5015239B2 (en) Plated steel sheet for can and manufacturing method thereof
JP5332836B2 (en) Plated steel sheet for cans
JP4920627B2 (en) Plated steel sheet for can and manufacturing method thereof
JP4864493B2 (en) Plated steel sheet for cans
JP5754099B2 (en) Manufacturing method of steel plate for containers
JP5304000B2 (en) Steel plate for containers with excellent weldability, appearance, and can manufacturing process adhesion
EP2589685A1 (en) Steel sheet for container and method of producing same
JPWO2011118588A1 (en) Manufacturing method of steel plate for containers
WO2012036199A1 (en) Steel plate for containers and manufacturing method for same
JP6146541B2 (en) Plated steel sheet and manufacturing method thereof
JP4681672B2 (en) Plated steel sheet for can and manufacturing method thereof
JP4869976B2 (en) Plated steel sheet for can and manufacturing method thereof
JP5365335B2 (en) Tin-plated steel sheet and method for producing the same
TWI424098B (en) Can-making steel sheet with excellent corrosion resistance
JP2010180452A (en) Plated steel sheet for can and method for producing the same
JP6156299B2 (en) Steel plate for container and method for producing the same
JP4720459B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP5338823B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP5626417B2 (en) Tinned steel sheet
JP2010255080A (en) Tin-plated steel sheet and method for manufacturing the same
JPH0971878A (en) Production of steel sheet for welded can excellent in weldability, corrosion resistance, appearance and adhesion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R151 Written notification of patent or utility model registration

Ref document number: 5332836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350