JP5304000B2 - Steel plate for containers with excellent weldability, appearance, and can manufacturing process adhesion - Google Patents

Steel plate for containers with excellent weldability, appearance, and can manufacturing process adhesion Download PDF

Info

Publication number
JP5304000B2
JP5304000B2 JP2008099478A JP2008099478A JP5304000B2 JP 5304000 B2 JP5304000 B2 JP 5304000B2 JP 2008099478 A JP2008099478 A JP 2008099478A JP 2008099478 A JP2008099478 A JP 2008099478A JP 5304000 B2 JP5304000 B2 JP 5304000B2
Authority
JP
Japan
Prior art keywords
layer
film
amount
plating
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008099478A
Other languages
Japanese (ja)
Other versions
JP2009249691A (en
Inventor
浩 西田
茂 平野
光 立木
信介 濱口
利明 ▲高▼宮
博一 横矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2008099478A priority Critical patent/JP5304000B2/en
Publication of JP2009249691A publication Critical patent/JP2009249691A/en
Application granted granted Critical
Publication of JP5304000B2 publication Critical patent/JP5304000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は製缶加工用素材として、特に、絞りしごき加工、溶接性、耐食性、塗料密着性、フィルム密着性に優れた容器用鋼板に関するものである。   The present invention relates to a steel plate for containers excellent in drawing ironing, weldability, corrosion resistance, paint adhesion, and film adhesion as a material for can manufacturing.

飲料や食品に用いられる金属容器は、2ピース缶と3ピース缶に大別される。DI缶に代表される2ピース缶は、絞りしごき加工が行われた後、缶内面側に塗装が、缶外面側には塗装及び印刷が行われる。3ピース缶は、缶内面に相当する面に塗装が、缶外面側に相当する面に印刷が行われた後、缶胴部の溶接が行われる。   Metal containers used for beverages and foods are roughly classified into two-piece cans and three-piece cans. A two-piece can represented by a DI can is squeezed and ironed, then painted on the inner surface of the can and painted and printed on the outer surface of the can. The three-piece can is coated on the surface corresponding to the inner surface of the can and printed on the surface corresponding to the outer surface of the can, and then the can body is welded.

何れの缶種においても、製缶前後に塗装工程が不可欠となる。塗装には、溶剤系もしくは水系の塗料が使用され、その後焼付けが行われるが、この塗装工程において、塗料に起因する廃棄物(廃溶剤等)が産業廃棄物として排出され、排ガス(主に炭酸ガス)が大気に放出されている。近年、地球環境保全を目的とし、これら産業廃棄物や排ガスを低減しようとする取組みが行われている。この中で、塗装に代わるものとしてフィルムをラミネートする技術が注目され、急速に広まってきた。   In any type of can, a coating process is indispensable before and after making the can. For painting, solvent-based or water-based paints are used, followed by baking. In this painting process, wastes (waste solvents, etc.) resulting from the paints are discharged as industrial wastes and exhaust gases (mainly carbon dioxide). Gas) is released to the atmosphere. In recent years, efforts have been made to reduce these industrial waste and exhaust gas for the purpose of protecting the global environment. Among these, the technique of laminating films as an alternative to painting has attracted attention and has spread rapidly.

これまでに、2ピース缶においては、フィルムをラミネートし製缶する缶の製造方法やこれに関連する発明が多数提供されている。例えば、絞りしごき罐の製造方法(特許文献1参照)、絞りしごき罐(特許文献2参照)、薄肉化深絞り缶の製造方法(特許文献3参照)、絞りしごき罐用被覆鋼板(特許文献4参照)が挙げられる。   So far, in the two-piece can, there have been provided a large number of methods for producing a can in which a film is laminated and made, and related inventions. For example, a method for producing a squeezed iron cake (see Patent Document 1), a squeezed iron cake (see Patent Document 2), a method for producing a thinned deep-drawn can (see Patent Document 3), a coated steel plate for a drawn iron cake (Patent Document 4) Reference).

また、3ピース缶においては、スリーピース缶用フィルム積層鋼帯およびその製造方法(特許文献5参照)、缶外面に多層有機皮膜を有するスリーピース缶用鋼板(特許文献6参照)、「ストライプ状の多層有機皮膜を有すスリーピース缶用鋼板(特許文献7参照)、3ピース缶ストライプラミネート鋼板の製造方法(特許文献8参照)が挙げられる。   In a three-piece can, a three-piece can film laminated steel strip and a manufacturing method thereof (see Patent Document 5), a steel sheet for a three-piece can (see Patent Document 6) having a multilayer organic film on the outer surface of the can, and "a striped multilayer" Examples include a steel plate for a three-piece can having an organic film (see Patent Document 7) and a method for producing a three-piece can striped laminated steel sheet (see Patent Document 8).

特許第1571783号公報Japanese Patent No. 1571783 特許第1670957号公報Japanese Patent No. 1670957 特開平2−263523号公報JP-A-2-263523 特許第1601937号公報Japanese Patent No. 1601937 特開平3−236954号公報Japanese Patent Laid-Open No. 3-236554 特開平3−113494号公報JP-A-3-113494 特開平5−111979号公報JP-A-5-111979 特開平5−147181号公報JP-A-5-147181

一方、ラミネートフィルムの下地に用いられる鋼板には、多くの場合、電解クロメート処理を施したクロメート皮膜を有する鋼板が用いられている。クロメート皮膜は、2層構造を有し、金属Cr層の上層に水和酸化Cr層が存在している。従って、ラミネートフィルム(接着剤付きのフィルムであれば接着層)はクロメート皮膜の水和酸化Cr層を介して鋼板との密着性を確保している。この密着発現の機構について、詳細は明らかにされていないが、水和酸化Crの水酸基とラミネートフィルムのカルボニル基あるいはエステル基などの官能基との水素結合であると言われている。   On the other hand, in many cases, a steel plate having a chromate film subjected to electrolytic chromate treatment is used as a steel plate used for the base of the laminate film. The chromate film has a two-layer structure, and a hydrated Cr oxide layer is present on the metal Cr layer. Therefore, the laminate film (adhesive layer in the case of a film with an adhesive) ensures adhesion to the steel sheet through the hydrated Cr oxide layer of the chromate film. Although the details of the mechanism of this adhesion development are not clarified, it is said to be a hydrogen bond between a hydroxyl group of hydrated Cr oxide and a functional group such as a carbonyl group or an ester group of a laminate film.

上記の発明は、産業廃棄物や排ガスの低減という観点からは、確かに、地球環境の保全を大きく前進せしめる効果が得られるが、その一方で、近年、飲料容器市場では、PETボトル、瓶、紙等の素材とのコスト並びに品質競争が激化しており、上記のラミネート容器用鋼板に対しても、従来技術である塗装用途に対して、優れた密着性、耐食性を確保した上で、より優れた製缶加工性、特に、フィルム密着性、加工フィルム密着性、耐食性などが求められるようになった。   From the viewpoint of reducing industrial waste and exhaust gas, the above-mentioned invention can certainly have the effect of greatly advancing the conservation of the global environment. On the other hand, in the beverage container market in recent years, PET bottles, bottles, Costs and quality competition with materials such as paper are intensifying, and for the above-mentioned laminated container steel sheets, with excellent adhesion and corrosion resistance for conventional coating applications, more Excellent can-making processability, in particular, film adhesion, processed film adhesion, corrosion resistance, and the like have been demanded.

しかし、クロメート処理を施さない場合には、耐食性、塗装密着性、フィルム密着性等が著しく低下することが予想される。そのため、容器用鋼板の表面にクロメート処理に替わる防錆処理を施し、良好な耐食性、塗装密着性、フィルム密着性等を有する防錆層を形成することが要求されるようになってきている。   However, when the chromate treatment is not performed, it is expected that the corrosion resistance, paint adhesion, film adhesion, etc. will be significantly reduced. For this reason, it has been demanded that the surface of the steel plate for containers is subjected to a rust prevention treatment instead of the chromate treatment to form a rust prevention layer having good corrosion resistance, coating adhesion, film adhesion and the like.

そこで、本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、優れた密着性、耐食性、溶接性を確保した上で、より優れた製缶加工性を備えた溶接性、製缶加工性、外観に優れた容器用鋼板を提供することにある。   Therefore, the present invention has been devised in view of the above-mentioned problems, and the object of the present invention is to ensure excellent adhesion, corrosion resistance, weldability, and more excellent can manufacturing processability. It is providing the steel plate for containers excellent in the weldability, can manufacturing process, and external appearance provided with.

本発明者等は、クロメート皮膜に代わる新たな皮膜として、Zr皮膜の活用を鋭意検討した結果、Zr皮膜あるいはZr皮膜にリン酸皮膜やフェノール樹脂皮膜を複合されたZr含有皮膜が塗装あるいはラミネートフィルムと非常に強力な共有結合を形成し、優れた密着性、耐食性、溶接性を確保した上で、従来のクロメート皮膜以上の優れた製缶加工性が得られることを知見し本発明に至ったものである。   As a result of intensive studies on the use of a Zr film as a new film that replaces the chromate film, the present inventors have applied a Zr film or a Zr-containing film in which a phosphate film or a phenol resin film is combined with a Zr film or a laminated film. And formed a very strong covalent bond, ensuring excellent adhesion, corrosion resistance, and weldability, and found that excellent can processability over conventional chromate films was obtained, leading to the present invention. Is.

なお、Snメッキ層上に酸化錫とリン酸錫を含む化成処理層を有するブリキが、化成処理層が無いSnめっきと比較して塗料密着性等優れることから、粉乳缶用途に限定されて実用化されているが、2次密着性等が不十分であり、広範囲な用途適用が可能なものではない。   In addition, since tinplate having a chemical conversion treatment layer containing tin oxide and tin phosphate on the Sn plating layer is superior in paint adhesion, etc., compared to Sn plating without a chemical conversion treatment layer, it is practically limited to milk powder can applications. However, secondary adhesion and the like are insufficient, and a wide range of uses is not possible.

即ち本発明は、
(1)鋼板表面に形成され、NiめっきまたはFe−Ni合金めっきを施したNiを5〜150mg/m含む下地Ni層と、前記下地Ni層の上に300〜3000mg/mのSnめっきが施され、溶融溶錫処理により、前記下地Ni層の一部または全部と前記Snめっき層の一部が合金化されて前記Snめっき層の合金化していない残部から形成された島状のSnめっき層と、前記Snめっき層の上層に形成され、還元に要する電気量として0.3〜5.0mC/cmの酸化錫とP量として0.5〜5.0mg/mのリン酸錫とを含む化成処理層と、前記化成処理層の上層に形成され、金属Zr量で1〜500mg/mのZr皮膜、P量で0.1〜100mg/m リン酸皮膜、C量で0.1〜100mg/mのフェノール樹脂皮膜のうち、2種以上からなる皮膜層と、を有する、容器用鋼板。
(2)前記皮膜層は、金属Zr量で1〜15mg/mのZr皮膜、P量で0.1〜15mg/mのリン酸皮膜、C量で0.1〜15mg/mのフェノール樹脂皮膜のうち、2種以上からなることを特徴とする、(1)に記載の容器用鋼板。
(3)前記皮膜層は、金属Zr量で1〜9mg/mのZr皮膜、P量で0.1〜8mg/mのリン酸皮膜、C量で0.1〜8mg/mのフェノール樹脂皮膜のうち、2種以上からなることを特徴とする、(2)に記載の容器用鋼板。
(4)鋼板表面に560〜5600mg/mのSnめっきが施され、溶融溶錫処理により、Snめっき層の一部が合金化して形成されたSnめっき層と、前記Snめっきの上層に形成され、還元に要する電気量として0.3〜5.0mC/cmの酸化錫とP量として0.5〜5.0mg/mのリン酸錫とを含む化成処理層と、前記化成処理層の上層に形成され、金属Zr量で1〜500mg/mのZr皮膜、P量で0.1〜100mg/m リン酸皮膜、C量で0.1〜100mg/mフェノール樹脂皮膜のうち、2種以上からなる皮膜層と、を有する、容器用鋼板。
(5)前記Zr含有皮膜層は、金属Zr量で1〜15mg/mのZr皮膜、P量で0.1〜15mg/mのリン酸皮膜、C量で0.1〜15mg/mのフェノール樹脂皮膜のうち、2種以上からなることを特徴とする、(4)に記載の容器用鋼板。
(6)前記皮膜層は、金属Zr量で1〜9mg/mのZr皮膜、P量で0.1〜8mg/mのリン酸皮膜、C量で0.1〜8mg/mのフェノール樹脂皮膜のうち、2種以上からなることを特徴とする、(5)に記載の容器用鋼板。
(7)前記皮膜層は、陰極電解処理により形成されることを特徴とする、(1)〜(6)のうち何れか1項記載の容器用鋼板。
(8)前記皮膜層は、Zr皮膜、リン酸皮膜、フェノール樹脂皮膜の3種からなることを特徴とする、(7)記載の容器用鋼板。
(9)前記陰極電解処理は、酸性溶液あるいはタンニン酸を含んだ酸性溶液中で行われることを特徴とする、(7)又は(8)に記載の容器用鋼板。
(10)(1)〜(9)のうち何れかに記載の容器用鋼板を製造する方法であって、鋼板を電解脱脂、酸洗してから、電気錫メッキ、及び、錫の加熱溶融処理した後、リン酸塩水溶液中で、1〜20A/dm、0.1〜2秒の陰極電解処理、次いで、0.2〜5A/dm、0.1〜2秒の陽極電解処理を施して、酸化錫とリン酸錫とを含む化成処理層を形成する工程を含むことを特徴とする、容器用鋼板の製造方法。
である。
That is, the present invention
(1) A base Ni layer containing 5 to 150 mg / m 2 of Ni formed on the steel plate surface and subjected to Ni plating or Fe—Ni alloy plating, and 300 to 3000 mg / m 2 of Sn plating on the base Ni layer The island-shaped Sn formed from the unalloyed portion of the Sn plating layer by alloying a part or the whole of the base Ni layer and a part of the Sn plating layer by the molten tin treatment a plating layer, the formed above the Sn plating layer, phosphoric acid 0.5 to 5.0 / m 2 as tin oxide and P of 0.3~5.0mC / cm 2 as the quantity of electricity required for reduction a chemical conversion layer comprising tin, is formed on an upper layer of the chemical conversion treatment layer, Zr film of 1-500 mg / m 2 of metal Zr content, the phosphate coating of 0.1-100 mg / m 2 in the amount of P, C 0.1-100 mg / m 2 of pheno in an amount Of Lumpur resin film has a peel film layer composed of two or more, a container for steel.
(2) Prior Symbol skin layer, Zr coating of 1-15 mg / m 2 of metal Zr content, the phosphate coating of 0.1 to 15 mg / m 2 in the amount of P, 0.1 to 15 mg / m in C content The steel plate for containers according to (1), comprising two or more of the two phenolic resin films.
(3) before Symbol skin layer, Zr coating 1~9mg / m 2 of metal Zr content, the phosphate coating 0.1~8mg / m 2 in the amount of P, 0.1~8mg / m in C content The steel plate for containers according to (2), comprising two or more of the two phenolic resin films.
(4) Sn plating of 560 to 5600 mg / m 2 is applied to the surface of the steel sheet, and a Sn plating layer formed by alloying a part of the Sn plating layer by molten molten tin treatment and formed on the upper layer of the Sn plating And a chemical conversion treatment layer containing tin oxide of 0.3 to 5.0 mC / cm 2 as the amount of electricity required for reduction and 0.5 to 5.0 mg / m 2 of tin phosphate as the amount of P, and the chemical conversion treatment 1 to 500 mg / m 2 of Zr film in the amount of metal Zr, 0.1 to 100 mg / m 2 of phosphoric acid film in the amount of P, 0.1 to 100 mg / m 2 of phenolic resin in the amount of C among the film has a skin layer composed of two or more, a container for steel.
(5) The Zr-containing coating layer has a metal Zr content of 1 to 15 mg / m 2 , a P content of 0.1 to 15 mg / m 2 , and a C content of 0.1 to 15 mg / m 2. The steel plate for containers according to (4), comprising two or more of the two phenolic resin films.
(6) before Symbol skin layer, Zr coating 1~9mg / m 2 of metal Zr content, the phosphate coating 0.1~8mg / m 2 in the amount of P, 0.1~8mg / m in C content The steel plate for containers according to (5), comprising two or more of the two phenolic resin films.
(7) before Symbol skin layer, characterized by being formed by a cathodic electrolysis treatment, (1) a container for steel according to any one of one to (6).
(8) before Symbol skin layer, Zr coating, the phosphoric acid coating, characterized in that it consists of three phenolic resin coating (7) for containers steel sheet according.
(9) The container steel plate according to (7) or (8), wherein the cathodic electrolysis treatment is performed in an acidic solution or an acidic solution containing tannic acid.
(10) A method for producing a container steel plate according to any one of (1) to (9), wherein the steel plate is electrolytically degreased and pickled, and then electroplated and heated and melted with tin. Then, in a phosphate aqueous solution, 1 to 20 A / dm 2 , 0.1 to 2 seconds of cathodic electrolysis, and then 0.2 to 5 A / dm 2 and 0.1 to 2 seconds of anodic electrolysis The manufacturing method of the steel plate for containers characterized by including the process of forming and forming the chemical conversion treatment layer containing a tin oxide and a tin phosphate.
It is.

本発明により製造されたラミネート容器用鋼板は、優れた絞りしごき加工等の製缶加工性、溶接性、耐食性、塗料密着性、フィルム密着性、外観を有する。   The steel sheet for laminated containers produced by the present invention has excellent can processability such as drawing and ironing, weldability, corrosion resistance, paint adhesion, film adhesion, and appearance.

以下、本発明を実施するための最良の形態としての、溶接性、製缶加工性、外観に優れた容器用鋼板について詳細に説明する。   Hereinafter, the steel plate for containers excellent in weldability, can manufacturing processability, and appearance as the best mode for carrying out the present invention will be described in detail.

本発明で用いられる原板は特に規制されるものではなく、通常、容器材料として使用される鋼板を用いる。この原板の製造法、材質なども特に規制されるものではなく、通常の鋼片製造工程から熱間圧延、酸洗、冷間圧延、焼鈍、調質圧延等の工程を経て製造され、鋼板表面に金属表面処理層が付与される。付与する方法については特に規制するものでは無い。例えば、電気めっき法や真空蒸着法やスパッタリング法などの公知技術を用いてもよく、拡散層を付与するための加熱処理を組み合わせるようにしてもよい。   The original plate used in the present invention is not particularly restricted, and usually a steel plate used as a container material is used. There are no particular restrictions on the manufacturing method and material of the original plate, and the steel plate surface is manufactured from the normal steel slab manufacturing process through hot rolling, pickling, cold rolling, annealing, temper rolling, and the like. Is provided with a metal surface treatment layer. There is no particular restriction on the method of granting. For example, a known technique such as an electroplating method, a vacuum deposition method, or a sputtering method may be used, or a heat treatment for providing a diffusion layer may be combined.

本発明の金属表面処理層の一実施の形態として、鋼板表面にNiを5〜150mg/m 含むNiめっき層またはFe−Ni合金めっきを施した下地Ni層が形成され、その上に300〜3000mg/m のSnめっきが施され、溶融溶錫処理により、一部または全部の下地Ni層とSnめっき層の一部が合金化せしめられて島状のSnめっき層が形成される。 As one embodiment of the metal surface treatment layer of the present invention, a Ni plating layer containing 5 to 150 mg / m 2 of Ni or a base Ni layer plated with Fe—Ni alloy is formed on the steel sheet surface, and 300 to 300 is formed thereon. 3000 mg / m 2 of Sn plating is performed, and a part or all of the underlying Ni layer and part of the Sn plating layer are alloyed by a molten tin treatment to form an island-shaped Sn plating layer.

鋼板にNiまたはFe−Ni合金めっきのNi系めっきを行い、下地Ni層を付与する目的は、耐食性の確保である。Niは高耐食金属のため、鋼板表面にNiをめっきすることにより、溶融溶錫処理時に形成される合金層の耐食性を向上させることが出来る。Niによる合金層の耐食性向上効果は、めっきされるNi量が5mg/m 以上から発現し始めることから、Ni量は5mg/m 以上必要である。Ni量が多くなるにつれて、合金層の耐食性向上効果は増加する。しかし、このNi量が150mg/m を超えると、その向上効果は飽和する。また、Niは高価な金属であることから、150mg/m以上のNiをめっきすることは経済的にも不利である。従って、Ni量は5〜150mg/m にする必要がある。 The purpose of performing Ni-based plating of Ni or Fe—Ni alloy plating on the steel sheet to provide a base Ni layer is to ensure corrosion resistance. Since Ni is a highly corrosion-resistant metal, the corrosion resistance of the alloy layer formed during the molten tin treatment can be improved by plating Ni on the surface of the steel sheet. The effect of improving the corrosion resistance of the alloy layer by Ni starts to appear when the amount of Ni to be plated starts from 5 mg / m 2 or more, so the Ni amount needs to be 5 mg / m 2 or more. As the amount of Ni increases, the effect of improving the corrosion resistance of the alloy layer increases. However, when the amount of Ni exceeds 150 mg / m 2 , the improvement effect is saturated. Moreover, since Ni is an expensive metal, it is economically disadvantageous to plate 150 mg / m 2 or more of Ni. Therefore, the amount of Ni needs to be 5 to 150 mg / m 2 .

また、Ni拡散めっきを行う場合は、Niめっきをした後に、焼鈍炉で拡散処理が行われ、Ni拡散層が形成されるが、Ni拡散処理の前後或いは同時に窒化処理を行っても、本発明における、Ni系めっき層としてのNiの効果及び窒化処理層の効果を奏することができる。Niめっき及びFe−Ni合金めっきの方法については、一般的に電気めっき法によって行われている公知の方法を用いるようにしてもよい。   In addition, when Ni diffusion plating is performed, after Ni plating, diffusion treatment is performed in an annealing furnace to form a Ni diffusion layer. However, the present invention can be performed even before or after or simultaneously with the Ni diffusion treatment. The effect of Ni as the Ni-based plating layer and the effect of the nitriding layer can be obtained. About the method of Ni plating and Fe-Ni alloy plating, you may make it use the well-known method generally performed by the electroplating method.

Ni系めっきの後にSnめっきが行われる。ここでいうSnめっきとは、金属Snを用いためっきであるが、不可避的不純物が混入する場合があり、微量元素が添加される場合もある。Snめっきの方法については、特に限定されるものではなく、公知の電気めっき法や溶融したSnに浸漬してめっきする方法等を用いれば良い。Snめっきの目的は、耐食性と溶接性の確保である。Snはそれ自体が高い耐食性を有していることから、金属Snとしても、また、次に述べる溶融溶錫処理によって形成される合金Snとしても、優れた耐食性を発揮する。このSnの優れた耐食性は、300mg/m 以上から顕著に向上し、Snめっき量が多くなるにつれて、耐食性は向上するが、3000mg/m 以上になるとその効果は飽和する。従って、経済的な観点からSnのめっき量は3000mg/m 以下にすることが望ましい。 Sn plating is performed after the Ni-based plating. Sn plating here is plating using metal Sn, but inevitable impurities may be mixed, and trace elements may be added. The Sn plating method is not particularly limited, and a known electroplating method, a method of plating by immersing in molten Sn, or the like may be used. The purpose of Sn plating is to ensure corrosion resistance and weldability. Since Sn itself has high corrosion resistance, it exhibits excellent corrosion resistance both as metal Sn and as an alloy Sn formed by the molten tin treatment described below. The excellent corrosion resistance of Sn is remarkably improved from 300 mg / m 2 or more, and the corrosion resistance is improved as the Sn plating amount is increased, but the effect is saturated when it is 3000 mg / m 2 or more. Therefore, the Sn plating amount is desirably 3000 mg / m 2 or less from an economical viewpoint.

また、電気抵抗の低いSnは軟らかく、溶接時に電極間でSnが加圧されることにより広がり、安定した通電域を確保できることから、特に優れた溶接性を発揮する。この優れた溶接性は、金属Sn量として100mg/m 以上あれば発揮される。また、本発明のSnめっき量の範囲であれば、金属Sn量の上限量を規定する必要はない。したがって、上記2点のことから、Snめっき量を300〜3000mg/mの範囲に限定することとした。 In addition, Sn with low electric resistance is soft and spreads by pressurizing Sn between the electrodes during welding, so that a stable energization region can be secured, and thus particularly excellent weldability is exhibited. This excellent weldability is exhibited if the amount of metal Sn is 100 mg / m 2 or more. Moreover, if it is the range of Sn plating amount of this invention, it is not necessary to prescribe | regulate the upper limit of metal Sn amount. Therefore, from the above two points, the Sn plating amount is limited to the range of 300 to 3000 mg / m 2 .

Snめっき後には、溶融溶錫処理が行われる。溶融溶錫処理を行う目的は、Snを溶融し下地鋼板や下地金属と合金化させ、Sn−FeまたはSn−Fe−Ni合金層を形成させ、合金層の耐食性を向上せしめるとともに、島状Snを形成させることにある。溶融溶錫処理を制御することにより島状Snが形成され、金属Snの存在しない塗料及びフィルム密着性の優れたFe−NiまたはFe−Ni−Sn合金めっき層が露出するめっき構造を有する鋼板とすることができる。   After Sn plating, molten tin treatment is performed. The purpose of the molten tin treatment is to melt Sn and alloy it with an underlying steel plate or an underlying metal to form an Sn—Fe or Sn—Fe—Ni alloy layer to improve the corrosion resistance of the alloy layer and to form island-shaped Sn. Is to form. A steel plate having a plating structure in which island-shaped Sn is formed by controlling the molten tin treatment, and a coating layer in which metal Sn is not present and an Fe—Ni or Fe—Ni—Sn alloy plating layer having excellent film adhesion is exposed; can do.

また、本発明の金属表面処理層における他の形態としては、鋼板表面に560〜5600mg/m のSnめっきを施し、溶融溶錫処理により、Snめっき層の一部が合金化させるものである。Snは優れた加工性、優れた溶接性、耐食性を有するが、Snめっきのみでは耐食性の点から560mg/m以上が必要である。Snめっき量が多くなるにつれて、耐食性は向上するが、5600mg/m 以上になるとその効果は飽和する。従って、経済的な観点からSnのめっき量は5600mg/m 以下にすることが望ましい。また、Snめっき後に溶融溶錫処理を行うことによりSn合金層が形成され耐食性がより一層向上する。 Moreover, as another form in the metal surface treatment layer of this invention, Sn plating of 560-5600 mg / m < 2 > is given to the steel plate surface, and a part of Sn plating layer is alloyed by a molten tin process. . Sn has excellent workability, excellent weldability, and corrosion resistance, but Sn plating alone requires 560 mg / m 2 or more from the viewpoint of corrosion resistance. The corrosion resistance improves as the Sn plating amount increases, but the effect is saturated when the Sn plating amount is 5600 mg / m 2 or more. Therefore, the Sn plating amount is desirably 5600 mg / m 2 or less from an economical viewpoint. Further, by performing molten tin treatment after Sn plating, an Sn alloy layer is formed and the corrosion resistance is further improved.

ここで、上記下地Ni層やSnめっき層中の金属Ni量および金属Sn量は、例えば、蛍光X線法によって測定することができる。この場合、金属Ni量既知のNi付着量サンプルを用いて、金属Ni量に関する検量線をあらかじめ特定しておき、この検量線を用いて相対的に金属Ni量を特定する。金属Sn量の場合も同様にして、金属Sn量既知のSn付着量サンプルを用いて、金属Sn量に関する検量線をあらかじめ特定しておき、この検量線を用いて相対的に金属Sn量を特定する。   Here, the amount of metallic Ni and the amount of metallic Sn in the base Ni layer and Sn plating layer can be measured, for example, by the fluorescent X-ray method. In this case, a calibration curve related to the amount of metal Ni is specified in advance using a sample of the amount of deposited Ni that has a known amount of metal Ni, and the amount of metal Ni is relatively specified using this calibration curve. Similarly, in the case of the amount of metal Sn, a calibration curve related to the amount of metal Sn is specified in advance using a sample of the amount of Sn deposited with a known amount of metal Sn, and the amount of metal Sn is specified relatively using this calibration curve. To do.

溶融溶錫処理されたSnの上層に、還元に要する電気量として0.3〜5.0mC/cmの酸化錫とP量として0.5〜5.0mg/mのリン酸錫とを含む化成処理層、さらにその層上に金属表面化成処理層の上層に、本発明の本質とする処である、Zr皮膜、リン酸皮膜、フェノール樹脂皮膜の内、2種以上を含むZr含有皮膜が付与される。 An upper layer of Sn treated with molten tin is charged with 0.3 to 5.0 mC / cm 2 of tin oxide as an amount of electricity required for reduction and 0.5 to 5.0 mg / m 2 of tin phosphate as an amount of P. Zr-containing film containing two or more of Zr film, phosphoric acid film, and phenolic resin film, which is the essence of the present invention, on the chemical conversion treatment layer, and further on the metal surface chemical conversion treatment layer. Is granted.

以下に詳細に化成処理皮膜について説明する。   The chemical conversion treatment film will be described in detail below.

先ず、溶融溶錫処理されたSnの上層に形成される酸化錫とリン酸錫とからなる化成処理層について説明する。この層中の酸化錫量は、還元に要する電気量として0.3〜5.0mC/cmであることが必要である。酸化錫層の還元に要する電気量は、錫めっき鋼板を、窒素ガスのバブリング等の手段によって溶存酸素を除去した0.001mol/Lの臭化水素酸水溶液中で0.05mA/cmの定電流で陰極電解し、得られる電位−時間曲線から求めることができる。酸化錫層が還元に要する電気量として、0.3mC/cmより少ない場合も、5.0mC/cmを超える場合も、共に有機皮膜の二次密着性が低下してしまう。有機皮膜の二次密着性確保という観点から、酸化錫層量のより好ましい範囲は0.5〜5.0mC/cmである。さらに好ましい範囲は、1.0〜5.0mC/cmであり、この範囲であれば、塗装後耐食性及びラミネート後耐食性が極めて良好な薄錫めっき鋼板となる。 First, the chemical conversion treatment layer composed of tin oxide and tin phosphate formed in the upper layer of Sn subjected to the molten tin treatment will be described. The amount of tin oxide in this layer needs to be 0.3 to 5.0 mC / cm 2 as the amount of electricity required for reduction. The amount of electricity required for the reduction of the tin oxide layer is a constant value of 0.05 mA / cm 2 in a 0.001 mol / L hydrobromic acid aqueous solution obtained by removing dissolved oxygen from a tin-plated steel sheet by means such as bubbling of nitrogen gas. Cathodic electrolysis with current can be obtained from the obtained potential-time curve. When the amount of electricity required for the reduction of the tin oxide layer is less than 0.3 mC / cm 2 or more than 5.0 mC / cm 2 , the secondary adhesion of the organic film is lowered. From the viewpoint of securing the secondary adhesion of the organic film, a more preferable range of the tin oxide layer amount is 0.5 to 5.0 mC / cm 2 . A more preferable range is 1.0 to 5.0 mC / cm 2 , and within this range, a thin tin-plated steel sheet having extremely good corrosion resistance after coating and corrosion resistance after lamination is obtained.

酸化錫とリン酸錫とから成る化成処理層中のリン酸錫は、P量として0.5〜5.0mg/mであることが必要である。P量は、0.5mg/m未満でも、有機皮膜の一次密着性は確保可能であるが、二次密着性は確保できない。一方、P量として5.0mg/mを超えるリン酸錫は、凝集破壊し易くなるため、有機皮膜の一次密着性、二次密着性の確保ができない。 The tin phosphate in the chemical conversion treatment layer composed of tin oxide and tin phosphate needs to be 0.5 to 5.0 mg / m 2 as the amount of P. Even if the amount of P is less than 0.5 mg / m 2 , the primary adhesion of the organic film can be secured, but the secondary adhesion cannot be secured. On the other hand, tin phosphate exceeding 5.0 mg / m 2 as the amount of P is likely to cohesively break, and thus cannot secure primary adhesion and secondary adhesion of the organic film.

次にその上層に形成されるZr皮膜、リン酸皮膜、フェノール樹脂皮膜の内、2種以上からなる皮膜について説明する。   Next, a film composed of two or more of Zr film, phosphoric acid film and phenol resin film formed on the upper layer will be described.

Zr皮膜の役割は、耐食性と密着性の確保である。Zr皮膜は、酸化Zr、水酸化Zr、フッ化Zr、リン酸Zr等のZr化合物あるいはこれらの複合皮膜から構成されるが、これらのZr化合物は優れた耐食性と密着性を有している。従って、Zr皮膜が増加すると、耐食性や密着性が向上し始め、金属Zr量で、1mg/m以上になると、実用上、問題ないレベルの耐食性と密着性が確保される。更に、Zr皮膜量が増加すると耐食性、密着性の向上効果も増加するが、Zr皮膜量が金属Zr量で500mg/mを超えると、Zr皮膜が厚くなり過ぎZr皮膜自体の密着性が劣化すると共に電気抵抗が上昇し溶接性が劣化する。従って、Zr皮膜量は金属Zr量で1〜500mg/mにする必要がある。 The role of the Zr film is to ensure corrosion resistance and adhesion. The Zr coating is composed of a Zr compound such as Zr oxide, hydroxide Zr, Zr fluoride, Zr phosphate, or a composite coating thereof, and these Zr compounds have excellent corrosion resistance and adhesion. Therefore, when the Zr film increases, the corrosion resistance and adhesion start to improve, and when the amount of metal Zr is 1 mg / m 2 or more, practically satisfactory levels of corrosion resistance and adhesion are secured. Furthermore, when the amount of Zr film increases, the effect of improving corrosion resistance and adhesion also increases. However, when the amount of Zr film exceeds 500 mg / m 2 in terms of metal Zr, the Zr film becomes too thick and the adhesion of the Zr film itself deteriorates. In addition, the electrical resistance increases and the weldability deteriorates. Therefore, the amount of Zr film needs to be 1 to 500 mg / m 2 in terms of metal Zr.

また、Zr皮膜量が金属Zr量で15mg/mを超えると、皮膜の付着ムラが外観ムラとなって発現することがあるため、より好ましくはZr皮膜量が金属Zr量で1〜15mg/mである。さらに、より外観ムラを良好安定化するためには、好ましくはZr皮膜量が金属Zr量で1〜9mg/mである。 Further, if the amount of Zr film exceeds 15 mg / m 2 in terms of metal Zr, uneven adhesion of the film may appear as appearance unevenness. Therefore, the amount of Zr film is more preferably 1 to 15 mg / m in terms of metal Zr. a m 2. Furthermore, in order to better stabilize the appearance unevenness, the Zr film amount is preferably 1 to 9 mg / m 2 in terms of metal Zr amount.

リン酸皮膜の役割は、耐食性と密着性の確保である。リン酸皮膜は、下地と反応して形成されるリン酸Fe、リン酸Sn、リン酸Niやリン酸Zrやリン酸−フェノール樹脂皮膜等の皮膜あるいはこれらの複合皮膜から構成されるが、これらのリン酸皮膜は優れた耐食性と密着性を有している。従って、リン酸皮膜が増加すると、耐食性や密着性が向上し始め、P量で、0.1mg/m以上になると、実用上、問題ないレベルの耐食性と密着性が確保される。更に、リン酸皮膜量が増加すると耐食性、密着性の向上効果も増加するが、リン酸皮膜量がP量で100mg/mを超えると、リン酸皮膜が厚くなり過ぎリン酸皮膜自体の密着性が劣化すると共に電気抵抗が上昇し溶接性が劣化する。従って、リン酸皮膜量はP量で0.1〜100mg/mにする必要がある。 The role of the phosphate film is to ensure corrosion resistance and adhesion. The phosphate film is composed of a film such as Fe phosphate, Sn phosphate, Ni phosphate, Zr phosphate, phosphate-phenol resin film or a composite film of these formed by reacting with the base. The phosphoric acid film has excellent corrosion resistance and adhesion. Therefore, when the phosphoric acid film increases, the corrosion resistance and adhesion begin to improve, and when the P amount is 0.1 mg / m 2 or more, a practically satisfactory level of corrosion resistance and adhesion are secured. Furthermore, when the amount of phosphoric acid film increases, the effect of improving corrosion resistance and adhesion also increases, but when the amount of phosphoric acid film exceeds 100 mg / m 2 in terms of P amount, the phosphoric acid film becomes too thick and adhesion of the phosphoric acid film itself is increased. As a result, the electrical resistance increases and the weldability deteriorates. Therefore, the amount of phosphoric acid film needs to be 0.1 to 100 mg / m 2 in terms of P amount.

また、リン酸皮膜量がP量で15mg/mを超えると、皮膜の付着ムラが外観ムラとなって発現することがあるため、より好ましくリン酸皮膜量がP量で0.1〜15mg/mである。さらに、より外観ムラを良好安定化するためには、好ましくはリン酸皮膜量がP量で0.1〜8mg/mである。 Further, if the amount of phosphoric acid film exceeds 15 mg / m 2 in terms of P, uneven adhesion of the film may appear as appearance unevenness. Therefore, the amount of phosphoric acid film is more preferably 0.1 to 15 mg in terms of P amount. / M 2 . Furthermore, in order to better stabilize the appearance unevenness, the phosphoric acid film amount is preferably 0.1 to 8 mg / m 2 in terms of P amount.

フェノール樹脂皮膜の役割は密着性の確保である。フェノール樹脂自体が有機物であることから塗料やラミネートフィルムと非常に優れた密着性を有している。従って、フェノール樹脂皮膜が増加すると密着性が向上し始め、C量で、0.1mg/m以上になると、実用上、問題ないレベルの密着性が確保される。更に、フェノール樹脂皮膜量が増加すると密着性の向上効果も増加するが、フェノール樹脂皮膜量がC量で100mg/mを超えると、電気抵抗が上昇し溶接性が劣化する。従って、フェノール樹脂皮膜量はC量で0.1〜100mg/mにする必要がある。 The role of the phenolic resin film is to ensure adhesion. Since the phenol resin itself is an organic substance, it has excellent adhesion to paints and laminate films. Therefore, when the phenol resin film increases, the adhesion begins to improve, and when the C amount is 0.1 mg / m 2 or more, a practically satisfactory level of adhesion is secured. Furthermore, when the amount of the phenol resin film increases, the effect of improving the adhesion also increases. However, when the amount of the phenol resin film exceeds 100 mg / m 2 in terms of the C amount, the electrical resistance increases and the weldability deteriorates. Therefore, the phenol resin film amount needs to be 0.1 to 100 mg / m 2 in terms of C amount.

また、フェノール樹脂皮膜量がC量で15mg/mを超えると、皮膜の付着ムラが外観ムラとなって発現することがあるため、より好ましくフェノール樹脂皮膜量がC量で0.1〜15mg/mである。さらに、より外観ムラを良好安定化するためには、好ましくはフェノール樹脂皮膜量がC量で0.1〜8mg/mである。 Further, if the amount of the phenol resin film exceeds 15 mg / m 2 in terms of C, uneven adhesion of the film may appear as appearance unevenness, and therefore the amount of phenol resin film is more preferably 0.1 to 15 mg in terms of C. / M 2 . Furthermore, in order to better stabilize the appearance unevenness, the amount of the phenol resin film is preferably 0.1 to 8 mg / m 2 in terms of C.

上述したようなZr皮膜、リン酸皮膜、フェノール樹脂皮膜は単独に使用してもある程度の効果は認められるのみで、十分な実用性能を有していない。しかし、Zr皮膜、リン酸皮膜、フェノール樹脂皮膜の内の2種以上を複合した皮膜では優れた実用性能を発揮する。また、Zr皮膜にリン酸皮膜あるいはフェノール皮膜の1種以上複合するとより一層優れた実用性能が発揮される。さらに、皮膜量が少ない範囲においては各々の特性を補完しあうためZr皮膜、リン酸皮膜、フェノール樹脂皮膜の3種類を複合した皮膜がより実用性能が安定して発揮される。   Even if the Zr film, the phosphoric acid film, and the phenol resin film as described above are used alone, only a certain degree of effect is recognized and they do not have sufficient practical performance. However, a film obtained by combining two or more of a Zr film, a phosphoric acid film, and a phenol resin film exhibits excellent practical performance. In addition, when the Zr film is combined with one or more of a phosphoric acid film or a phenol film, a further excellent practical performance is exhibited. Furthermore, in a range where the amount of the film is small, a film composed of three kinds of Zr film, phosphoric acid film, and phenol resin film is more stable in practical performance in order to complement each characteristic.

また、本実施形態に係るZr含有皮膜層中に含有される金属Zr量、P量は、例えば、蛍光X線分析等の定量分析法により測定することが可能である。一方、C量は、TOC(全有機体炭素計)を用い、鋼板中に存するC量を差し引くことにより測定することが可能である。   Further, the amount of metal Zr and the amount of P contained in the Zr-containing coating layer according to the present embodiment can be measured by a quantitative analysis method such as fluorescent X-ray analysis, for example. On the other hand, the amount of C can be measured by subtracting the amount of C existing in the steel sheet using a TOC (total organic carbon meter).

さらに、本実施形態に係るZr含有皮膜層の構造は、例えば、X線光電子分光分析(X‐ray photoelectron spectroscopy:XPS)によるZr含有皮膜層の深さ方向分析を含む組成状態分析の結果から特定することができる。   Furthermore, the structure of the Zr-containing coating layer according to the present embodiment is specified from the result of the composition state analysis including the depth direction analysis of the Zr-containing coating layer by, for example, X-ray photoelectron spectroscopy (XPS). can do.

次に皮膜を形成する方法について述べる。   Next, a method for forming a film will be described.

先ず、溶融溶錫処理されたSnの上層に形成される酸化錫とリン酸錫とからなる化成処理皮膜を付与する方法について説明する。皮膜の付与方法としてはリン酸塩水溶液中で陰極電解処理、次いで、同一溶液中で陽極電解処理を施す方法が最適である。本処理液はpH2〜3で良好な結果(良好な有機皮膜の1次密着性及び2次密着性)が得られるが、このpH域ではリン酸塩水溶液中のリン酸の化学種は、主としてリン酸とリン酸二水素イオンであって、リン酸二水素イオンの対カチオンとしては、Na、Sn,Al、Mg、Caが電解処理に影響を与えることがなく、好ましい。Na、Sn,Al、Mg、Caのカチオンは、1種又は2種以上共存してもよい。リン酸の全濃度はリン酸換算で5〜80g/L、液温25〜60℃の範囲が適当である。   First, a method of applying a chemical conversion treatment film composed of tin oxide and tin phosphate formed on the upper layer of Sn that has been subjected to molten tin treatment will be described. The most suitable method for applying the coating is a method of cathodic electrolysis in an aqueous phosphate solution and then an anodic electrolysis in the same solution. The treatment solution has good results at pH 2 to 3 (good primary adhesion and secondary adhesion of the organic film). In this pH range, the chemical species of phosphoric acid in the phosphate aqueous solution is mainly Among phosphoric acid and dihydrogen phosphate ions, Na, Sn, Al, Mg, and Ca are preferred as counter cations of dihydrogen phosphate ions without affecting the electrolytic treatment. Na, Sn, Al, Mg, and Ca cations may be present alone or in combination of two or more. The total concentration of phosphoric acid is suitably in the range of 5 to 80 g / L in terms of phosphoric acid and a liquid temperature of 25 to 60 ° C.

陰極電解処理は、溶融溶錫処理で錫めっき鋼板表面に生じた、有機皮膜の密着性を阻害する錫酸化物を還元する工程であり、陰極電解処理の陰極電流密度は1〜20A/dm、電解時間は0.1〜2秒が好ましい。陰極電流密度が1A/dmより低いと、溶融溶錫処理で生じた酸化錫の還元が十分にできず、良好な有機皮膜密着性を得にくい。一方、陰極電流密度を20A/dmより高くしても、陰極表面で発生する水素ガスの量が多くなるばかりで、有機皮膜密着性の向上は認められない。陰極電解時間が0.1秒より短いと、溶融溶錫処理で生じた酸化錫の還元が十分にできず、良好な有機皮膜密着性を得にくい。一方、溶融溶錫処理で生じた酸化錫は2秒以内の陰極電解処理でほとんど還元されるため、これより長くしても有機皮膜の密着性などの性能向上は認められない。 Cathodic electrolysis is a step of reducing tin oxide that inhibits the adhesion of the organic film, which occurs on the surface of the tin-plated steel sheet by molten tin treatment, and the cathode current density of the cathodic electrolysis is 1 to 20 A / dm 2. The electrolysis time is preferably 0.1 to 2 seconds. When the cathode current density is lower than 1 A / dm 2, tin oxide generated by the molten tin treatment cannot be sufficiently reduced, and it is difficult to obtain good organic film adhesion. On the other hand, even if the cathode current density is higher than 20 A / dm 2 , only the amount of hydrogen gas generated on the cathode surface increases, and no improvement in the adhesion of the organic film is observed. When the cathodic electrolysis time is shorter than 0.1 seconds, tin oxide generated by the molten tin treatment cannot be sufficiently reduced, and good organic film adhesion is difficult to obtain. On the other hand, tin oxide generated by the molten tin treatment is almost reduced by the cathodic electrolysis treatment within 2 seconds. Therefore, even if the tin oxide is made longer than this, no improvement in performance such as adhesion of the organic film is observed.

陽極電解処理は、陰極電解処理によって還元することで現れた金属錫表面に酸化錫を生じさせると共に、錫をゆっくりと溶解させ、処理液中のリン酸イオンと結合させることでリン酸錫を付与する工程である。陽極電解処理によって生じる酸化錫は、溶融溶錫処理で生じる酸化錫と質的な違いがあると考えられ、有機皮膜の密着を阻害するものではない。陽極電解処理の陽極電流密度は0.2〜5A/dm、電解時間は0.1〜2秒が適当である。陽極電流密度が0.2A/dmより低いと、表面錫の溶解が不十分で、有機皮膜の二次密着性を確保するのに十分な量のリン酸錫を得るのに時間がかかるため、実用的でない。一方、陽極電流密度が5A/dmを超えると、表面錫の溶解が速過ぎ、疎で脆いリン酸錫が生成するため、この層の凝集破壊によって、有機皮膜の密着性は著しく劣化する。電解時間が0.1秒より短いと、Pの付着量が不足で、十分な二次塗料密着性と耐食性が得られない。一方、電解時間が2秒より長いと、錫酸化層が厚くなって、一次塗料密着性、二次塗料密着性と耐食性が悪くなる。 Anodic electrolytic treatment produces tin oxide on the surface of metallic tin that appears as a result of reduction by cathodic electrolytic treatment. At the same time, tin is dissolved slowly and bonded to phosphate ions in the treatment solution to give tin phosphate. It is a process to do. The tin oxide produced by the anodic electrolytic treatment is considered to have a qualitative difference from the tin oxide produced by the molten tin treatment, and does not inhibit the adhesion of the organic film. The anode current density of the anodic electrolysis treatment is suitably 0.2 to 5 A / dm 2 , and the electrolysis time is suitably 0.1 to 2 seconds. If the anode current density is lower than 0.2 A / dm 2 , the dissolution of surface tin is insufficient, and it takes time to obtain a sufficient amount of tin phosphate to ensure the secondary adhesion of the organic film. Not practical. On the other hand, when the anode current density exceeds 5 A / dm 2 , the dissolution of surface tin is too fast and sparse and brittle tin phosphate is generated, and the cohesive failure of this layer significantly deteriorates the adhesion of the organic film. When the electrolysis time is shorter than 0.1 seconds, the adhesion amount of P is insufficient, and sufficient secondary paint adhesion and corrosion resistance cannot be obtained. On the other hand, if the electrolysis time is longer than 2 seconds, the tin oxide layer becomes thick, and the primary paint adhesion, the secondary paint adhesion and the corrosion resistance deteriorate.

次にその上層に形成されるZr皮膜、リン酸皮膜、フェノール樹脂皮膜の内、2種以上からなる皮膜を付与する方法について説明する。   Next, a method for applying a film composed of two or more of Zr film, phosphoric acid film and phenol resin film formed on the upper layer will be described.

これらの皮膜を付与する方法は、Zrイオン、リン酸イオン、低分子のフェノール樹脂を溶解させた酸性溶液に鋼板を浸漬する方法や陰極電解処理により行う方法があるが、浸漬処理では、下地をエッチングして各種の皮膜が形成される為、付着が不均一になり、また、処理時間も長くなる為、工業生産的には不利である。一方、陰極電解処理では、強制的な電荷移動および鋼板界面での水素発生による表面清浄化とpH上昇による付着促進効果も相俟って、均一な皮膜が数秒から数十秒程度の短時間処理が可能である事から、工業的には極めて有利である。従って、本発明のZr皮膜、リン酸皮膜、フェノール樹脂皮膜が付与には陰極電解処理が望ましい。   Methods for applying these films include a method of immersing a steel plate in an acidic solution in which Zr ions, phosphate ions, and low molecular weight phenolic resins are dissolved, and a method of performing cathodic electrolysis. Since various films are formed by etching, the adhesion becomes non-uniform, and the processing time becomes longer, which is disadvantageous for industrial production. On the other hand, in the cathode electrolysis treatment, a uniform film can be treated for a short time of several seconds to several tens of seconds, combined with forced charge transfer, surface cleaning by hydrogen generation at the steel plate interface, and adhesion promotion effect due to pH increase. Therefore, it is extremely advantageous industrially. Therefore, cathodic electrolytic treatment is desirable for providing the Zr film, phosphoric acid film, and phenol resin film of the present invention.

陰極電解処理の浴組成としては、Zrイオンが0.3〜6.0g/L、リン酸イオン0.3〜20g/L、質量平均分子量5000程度の低分子のフェノール樹脂が0.3〜60g/Lが望ましい。陰極電解処理条件としては、電流密度0.5〜40A/dm、解時間0.1〜5秒、浴温10〜70℃の範囲が好ましく、さらに工業生産性を考慮すると電流密度1〜5A/dm、電解時間0.1〜2、浴温20〜40℃の範囲が好ましい。 The bath composition of the cathodic electrolysis treatment is 0.3 to 60 g of low molecular weight phenol resin having a Zr ion of 0.3 to 6.0 g / L, a phosphate ion of 0.3 to 20 g / L, and a mass average molecular weight of about 5000. / L is desirable. Cathodic electrolytic treatment conditions are preferably a current density of 0.5 to 40 A / dm 2 , a solution time of 0.1 to 5 seconds, and a bath temperature of 10 to 70 ° C., and further considering the industrial productivity, the current density of 1 to 5 A. / Dm 2 , electrolysis time of 0.1 to 2 , and bath temperature of 20 to 40 ° C. are preferable.

また、浸漬処理や陰極電解処理に使用する酸性溶液中にタンニン酸を添加すると、タンニン酸がFeと結合し、表面にタンニン酸Feの皮膜を形成し耐錆性や密着性を向上させる効果がある事から、用途に依ってはタンニン酸を添加した溶液中で処理してもよい。前述の陰極電解処理の浴にさらにタンニン酸を0.3〜5.0g/L含む範囲が望ましい。   In addition, when tannic acid is added to an acidic solution used for immersion treatment or cathodic electrolysis, tannic acid is combined with Fe, and a film of Fe tannic acid is formed on the surface, thereby improving rust resistance and adhesion. Therefore, depending on the application, the treatment may be performed in a solution to which tannic acid is added. A range in which 0.3 to 5.0 g / L of tannic acid is further included in the above-described cathode electrolytic treatment bath is desirable.

以下に本発明の実施例及び比較例について述べ、その条件及び結果を表1〜表3に示す。   Examples and Comparative Examples of the present invention are described below, and the conditions and results are shown in Tables 1 to 3.

以下の(1)〜(3)の処理方法を用いて板厚0.17〜0.23mmの鋼板上に表面処理層を形成させた。
(1)冷間圧延後、焼鈍、調圧された原板を脱脂、酸洗後、フェロスタン浴を用いてSnをめっきし、その後、溶融溶錫処理を行い,Sn合金層を有するSnめっき鋼板を作製した。
(2)冷間圧延後、焼鈍、調圧された原板を脱脂、酸洗後、硫酸−塩酸浴を用いてFe−Ni合金めっきを施し、引き続き、フェロスタン浴を用いてSnめっきを施し、その後、溶融溶錫処理を行い、Sn合金層を有するNi、Snめっき鋼板を作製した。
(3)冷間圧延後、ワット浴を用いてNiめっきを施し、焼鈍時にNi拡散層を形成させ、脱脂、酸洗後、フェロスタン浴を用いてSnめっきを施し、その後、溶融溶錫処理を行い、Sn合金層を有するNi、Snめっき鋼板を作製した。
A surface treatment layer was formed on a steel plate having a thickness of 0.17 to 0.23 mm using the following treatment methods (1) to (3).
(1) After cold rolling, the annealed and pressure-regulated original sheet is degreased, pickled, plated with Sn using a ferrostan bath, and then subjected to molten tin treatment to prepare an Sn-plated steel sheet having an Sn alloy layer Produced.
(2) After cold rolling, the annealed and pressure-adjusted original plate is degreased, pickled, then subjected to Fe-Ni alloy plating using a sulfuric acid-hydrochloric acid bath, and subsequently subjected to Sn plating using a ferrostan bath, Then, a molten tin treatment was performed to produce a Ni and Sn plated steel sheet having a Sn alloy layer.
(3) After cold rolling, Ni plating is performed using a watt bath, a Ni diffusion layer is formed during annealing, degreasing, pickling, Sn plating using a ferrostan bath, and then molten tin treatment. Then, a Ni and Sn plated steel sheet having a Sn alloy layer was produced.

上記(1)〜(3)の処理により表面処理層を形成させた後、その上に(4)の処理法で化成処理層を形成させ、さらにその上に(5)〜(13)の処理方法でZr皮膜、リン酸皮膜、フェノール樹脂皮膜を形成させた。
(4)全リン酸濃度をリン酸換算で35g/L、対カチオンを4g/L含むpH2.5、液温40℃の処理液中で陰極電解処理、次いで、同一溶液中で陽極電解処理を施した。
(5)フッ化Zr、リン酸、フェノール樹脂を溶解させた処理液に、上記鋼板を浸漬し、陰極電解後、乾燥し、Zr皮膜、リン酸皮膜、フェノール樹脂皮膜を形成させた。
(6)リン酸、フェノール樹脂を溶解させた処理液に、上記鋼板を浸漬し、陰極電解後、乾燥し、リン酸皮膜、フェノール樹脂皮膜を形成させた。
(7)フッ化Zr、リン酸を溶解させた処理液に、上記鋼板を浸漬し、陰極電解後、乾燥し、Zr皮膜、リン酸皮膜を形成させた。
(8)フッ化Zr、フェノール樹脂を溶解させた処理液に、上記鋼板を浸漬し、陰極電解後、乾燥し、Zr皮膜、フェノール樹脂皮膜を形成させた。
(9)フッ化Zr、リン酸、タンニン酸を溶解させた処理液に、上記鋼板を浸漬し、陰極電解後、乾燥し、Zr皮膜、リン酸皮膜を形成させた。
(10)フッ化Zr、リン酸、フェノール樹脂を溶解させた処理液に、上記鋼板を浸漬し、乾燥し、Zr皮膜、リン酸皮膜、フェノール樹脂皮膜を形成させた。
(11)リン酸、フェノール樹脂を溶解させた処理液に、上記鋼板を浸漬し、乾燥し、リン酸皮膜、フェノール樹脂皮膜を形成させた。
(12)フッ化Zr、リン酸を溶解させた処理液に、上記鋼板を浸漬し、乾燥し、Zr皮膜、リン酸皮膜を形成させた。
(13)フッ化Zr、フェノール樹脂を溶解させた処理液に、上記鋼板を浸漬し、乾燥し、Zr皮膜、フェノール樹脂皮膜を形成させた。
After the surface treatment layer is formed by the above treatments (1) to (3), a chemical conversion treatment layer is formed thereon by the treatment method (4), and the treatments (5) to (13) are further formed thereon. A Zr film, a phosphoric acid film, and a phenol resin film were formed by the method.
(4) Cathodic electrolysis treatment in a treatment solution having a total phosphoric acid concentration of 35 g / L in terms of phosphoric acid, pH 2.5 containing a counter cation of 4 g / L, and a liquid temperature of 40 ° C., and then anodic electrolysis treatment in the same solution gave.
(5) The steel sheet was immersed in a treatment solution in which fluorinated Zr, phosphoric acid, and a phenol resin were dissolved, and after cathodic electrolysis, dried to form a Zr film, a phosphoric acid film, and a phenol resin film.
(6) The steel sheet was immersed in a treatment solution in which phosphoric acid and a phenol resin were dissolved, and after cathodic electrolysis, it was dried to form a phosphoric acid film and a phenol resin film.
(7) The steel sheet was immersed in a treatment solution in which Zr fluoride and phosphoric acid were dissolved, and after cathodic electrolysis, dried to form a Zr film and a phosphoric acid film.
(8) The steel sheet was immersed in a treatment solution in which Zr fluoride and a phenol resin were dissolved, and after cathodic electrolysis, dried to form a Zr film and a phenol resin film.
(9) The steel sheet was immersed in a treatment solution in which fluorinated Zr, phosphoric acid, and tannic acid were dissolved, and after cathodic electrolysis, dried to form a Zr film and a phosphoric acid film.
(10) The steel sheet was immersed in a treatment solution in which Zr fluoride, phosphoric acid, and phenol resin were dissolved, and dried to form a Zr film, a phosphoric acid film, and a phenol resin film.
(11) The steel sheet was immersed in a treatment solution in which phosphoric acid and a phenol resin were dissolved, and dried to form a phosphoric acid film and a phenol resin film.
(12) The steel sheet was immersed in a treatment solution in which Zr fluoride and phosphoric acid were dissolved, and dried to form a Zr film and a phosphoric acid film.
(13) The steel sheet was immersed in a treatment solution in which Zr fluoride and phenol resin were dissolved, and dried to form a Zr film and a phenol resin film.

尚、表1〜表2に示す本発明の実施例及び比較例の化成処理層を形成するに際し、リン酸塩水溶液中で、1〜20A/dm、0.1〜2秒の陰極電解処理、次いで、0.2〜5A/dm、0.1〜2秒の陽極電解処理を施して、酸化錫とリン酸錫とを含む化成処理層を形成した。 In addition, when forming the chemical conversion treatment layer of the Example of this invention shown in Table 1-Table 2, and a comparative example, it is 1-20 A / dm < 2 >, 0.1-2 second cathodic electrolysis process in the phosphate aqueous solution. Then, anodic electrolytic treatment of 0.2 to 5 A / dm 2 and 0.1 to 2 seconds was performed to form a chemical conversion treatment layer containing tin oxide and tin phosphate.

上記の処理を行った試験材について、以下に示す(A)〜(H)の各項目について性能評価を行った。
(A)加工性
試験材の両面に厚さ20μmのPETフィルムを200℃でラミネートし、絞り加工としごき加工による製缶加工を段階的に行い、フィルムの疵、浮き、剥離を観察しそれらの面積率から成型を4段階(◎:フィルムの疵、浮き、剥離が全くない、○:フィルムの疵、浮き、剥離の面積率が0〜0.5%、△:フィルムの疵、浮き、剥離の面積率が0.5〜15%、×:フィルムの疵、浮き、剥離の面積率が15%超または破断し加工不能)で評価した。
(B)溶接性
ワイヤーシーム溶接機を用いて、溶接ワイヤースピード80m/minの条件で、電流を変更して試験材を溶接し、十分な溶接強度が得られる最小電流値とチリ及び溶接スパッタなどの溶接欠陥が目立ち始める最大電流値からなる適正電流範囲の広さから総合的に判断し、4段階(◎:二次側の適正電流範囲:1500A以上、○:二次側の電流適正電流範囲:800A以上1500A未満、△:二次側の電流適正電流範囲:100A以上800A未満、×:二次側の電流適正電流範囲:100A未満)で溶接性を評価した。
(C)フィルム密着性
試験材の両面に厚さ20μmのPETフィルムを200℃でラミネートし、絞りしごき加工を行い、缶体を作製し、125℃、30minのレトルト処理を行い、フィルムの剥離状況を観察し、剥離面積率から、4段階(◎:剥離面積率:0%、○:剥離面積率0%超〜2%、△:剥離面積率:2%超〜10%:、×:剥離面積率:10%超)で評価した。
(D)塗料密着性
試験材にエポキシ−フェノール樹脂を塗布し、200℃、30minで焼付けた後、1mm間隔で地鉄に達する深さのゴメン目を入れ、テープで剥離し、剥離状況を観察し、剥離面積率から、4段階(◎:剥離面積率:0%、○:剥離面積率0%超〜5%、△:剥離面積率:5%超〜30%:、×:剥離面積率:30%超)で評価した。
(E)耐食性
試験材にエポキシ−フェノール樹脂を塗布し、200℃、30minで焼付けた後、地鉄に達する深さのクロスカットを入れ、1.5%クエン酸−1.5%食塩混合液からなる試験液に、45℃、72時間浸漬し、洗浄、乾燥後、テープ剥離を行い、クロスカット部の塗膜下腐食状況と平板部の腐食状況を観察し、塗膜下腐食の幅及び平坦部の腐食面積率の両評価から、4段階(◎:塗膜下腐食幅0.2mm未満かつ平坦部の腐食面積率0%、○:塗膜下腐食幅0.2〜0.3mm未満かつ平坦部の腐食面積率0%超〜1%、△:塗膜下腐食幅0.3〜0.45mm未満かつ平坦部の腐食面積率1%超〜5%、×:塗膜下腐食幅0.45mm超または平坦部の腐食面積率5%超)で判断して評価した。
(F)耐錆性
試験材を乾湿繰返し(湿度90%、2hr⇔湿度40%、2hr)の雰囲気中に2ヶ月間放置し、錆の発生状況を観察し、錆発生面積率から4段階(◎:錆発生面積率0%、○:錆発生面積率0%超〜1%、△:錆発生面積率1%超〜5%、×:錆発生面積率5%超)で評価した。
(G)外観
試験材を目視で観察、Zr皮膜、リン酸皮膜、フェノール樹脂皮膜のムラの発生状況を5段階(◎◎:全くムラ無し、◎:実用上問題無い程度の極僅かなムラ有り、○:僅かなムラ有り、△:ムラ有り、×:著しいムラ発生)で評価した。
(H)島状Sn状況
Ni系めっきの後にSnめっきを行った場合の島状Sn状況を光学顕微鏡にて表面を観察し、島状Sn状況を3段階(○:全体的に島が形成されている、△:部分的に島が形成されていない部分がある、×:島が形成されていない)で評価した。
皮膜付着量は、Zr、P量については蛍光X線にて定量分析を行い、C付着量については全炭素量測定法により求めた。
About the test material which performed said process, performance evaluation was performed about each item of (A)-(H) shown below.
(A) Workability A 20 μm thick PET film is laminated on both sides of the test material at 200 ° C., and the can making process by drawing and ironing is performed in stages, and the wrinkles, floats, and peeling of the film are observed. There are 4 stages of molding from the area ratio (◎: No film wrinkling, floating, peeling, ○: Area ratio of film wrinkling, floating, peeling is 0 to 0.5%, Δ: Film wrinkling, floating, peeling Area ratio of 0.5 to 15%, x: the area ratio of film wrinkles, floats, and peeling exceeds 15% or breaks and cannot be processed).
(B) Weldability Using a wire seam welder, the current is changed under the conditions of a welding wire speed of 80 m / min, and the test material is welded. Judging comprehensively from the width of the appropriate current range consisting of the maximum current value at which the welding defects of the steel become conspicuous, 4 stages (◎: secondary current current range: 1500 A or more, ○: secondary current proper current range : 800 A or more and less than 1500 A, Δ: secondary current appropriate current range: 100 A or more and less than 800 A, x: secondary current proper current range: less than 100 A), and the weldability was evaluated.
(C) Film adhesion A 20 μm thick PET film is laminated on both sides of the test material at 200 ° C., drawn and ironed to produce a can, and subjected to a retort treatment at 125 ° C. for 30 min. The peeled area ratio was observed in four stages (◎: peeled area ratio: 0%, ○: peeled area ratio of more than 0% to 2%, Δ: peeled area ratio: more than 2% to 10%, x: peeled Area ratio: more than 10%).
(D) Paint adhesion After applying epoxy-phenolic resin to the test material and baking it at 200 ° C for 30 minutes, put the grain of the depth reaching the iron core at intervals of 1 mm, peel it off with tape, and observe the peeling situation From the peeled area ratio, four stages (◎: peeled area ratio: 0%, ○: peeled area ratio over 0% to 5%, Δ: peeled area ratio: over 5% to 30%: x: peeled area ratio : More than 30%).
(E) Corrosion resistance After applying an epoxy-phenol resin to the test material and baking it at 200 ° C. for 30 minutes, a cross cut with a depth reaching the base iron is added, and a 1.5% citric acid-1.5% salt mixed solution Dipping in a test solution consisting of 72 ° C. for 72 hours, washing, drying, tape peeling, observing the corrosion condition under the coating film in the cross-cut portion and the corrosion condition in the flat plate portion, From both evaluations of the corrosion area rate of the flat part, 4 stages (◎: Under-coating corrosion width less than 0.2 mm and flat part corrosion area rate of 0%, ○: Under-coating corrosion width of 0.2 to less than 0.3 mm And the corrosion area ratio of the flat part is more than 0% to 1%, Δ: the corrosion width under the coating film is less than 0.3 to 0.45 mm, and the corrosion area ratio of the flat part is more than 1% to 5%, ×: the corrosion width under the coating film Evaluation was made based on a judgment of 0.45 mm or more than 5% of the corrosion area of the flat portion.
(F) Rust resistance The test material is left in an atmosphere of repeated dry and wet conditions (humidity 90%, 2hr⇔humidity 40%, 2hr) for 2 months, and the rust generation status is observed. A: Rust generation area ratio 0%, B: Rust generation area ratio 0% to 1%, Δ: Rust generation area ratio 1% to 5%, X: Rust generation area ratio 5%).
(G) Appearance Visual observation of test material, Zr film, phosphoric acid film, phenol resin film unevenness occurrence in 5 stages (◎: No unevenness, ◎: Very slight unevenness to the extent that there is no practical problem , ○: slight unevenness, Δ: unevenness, x: significant unevenness).
(H) Island-like Sn situation The surface of the island-like Sn situation when Sn plating was performed after Ni-based plating was observed with an optical microscope. △: there is a part where no island is formed, x: no island is formed).
The amount of coating was determined by quantitative analysis with X-ray fluorescence for the amounts of Zr and P, and the amount of C was determined by the total carbon content measurement method.

この表において、実施例1−1〜1−32、2−1〜2−30及び3−1〜3−69は、本発明で規定した条件を満たす。これに対して、比較例1−1〜1−12、2−1〜2−11及び3−1から3−18は、いずれも本発明で規定した条件を逸脱している。実施例1−1〜1−32、2−1〜2−30及び3−1〜3−69は、上記(A)〜(G)の全ての評価項目において、いずれも良好な評価結果が得られた。これに対して、比較例1−1〜1−12、2−1〜2−11及び3−1は、上記(A)〜(G)の全ての評価項目において良好な評価結果を得ることができなかった。また、上記表から、Sn付着量が少ない試験材では溶接性を確保するために、島状Snの形成が有効であることがわかる。なお、Sn付着量が多い試験材では溶接性は良好である。   In this table, Examples 1-1 to 1-32, 2-1 to 2-30, and 3-1 to 3-69 satisfy the conditions defined in the present invention. On the other hand, Comparative Examples 1-1 to 1-12, 2-1 to 2-11, and 3-1 to 3-18 all deviate from the conditions defined in the present invention. In Examples 1-1 to 1-32, 2-1 to 2-30, and 3-1 to 3-69, good evaluation results were obtained in all the evaluation items (A) to (G). It was. On the other hand, Comparative Examples 1-1 to 1-12, 2-1 to 2-11, and 3-1 can obtain good evaluation results in all the evaluation items (A) to (G). could not. Further, from the above table, it can be seen that formation of island-shaped Sn is effective for the test material with a small amount of Sn adhesion in order to ensure weldability. In addition, the weldability is good in the test material having a large amount of Sn adhesion.

以上、本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。

As mentioned above, although preferred embodiment of this invention was described, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

Claims (10)

鋼板表面に形成され、NiめっきまたはFe−Ni合金めっきを施したNiを5〜150mg/m含む下地Ni層と、
前記下地Ni層の上に300〜3000mg/mのSnめっきが施され、溶融溶錫処理により、前記下地Ni層の一部または全部と前記Snめっき層の一部が合金化されて前記Snめっき層の合金化していない残部から形成された島状のSnめっき層と、
前記Snめっき層の上層に形成され、還元に要する電気量として0.3〜5.0mC/cmの酸化錫とP量として0.5〜5.0mg/mのリン酸錫とを含む化成処理層と、
前記化成処理層の上層に形成され、金属Zr量で1〜500mg/mのZr皮膜、P量で0.1〜100mg/m リン酸皮膜、C量で0.1〜100mg/mのフェノール樹脂皮膜のうち、2種以上からなる皮膜層と、
を有する、容器用鋼板。
A base Ni layer containing 5 to 150 mg / m 2 of Ni formed on a steel plate surface and subjected to Ni plating or Fe—Ni alloy plating;
300 to 3000 mg / m 2 of Sn plating is applied on the base Ni layer, and a part or all of the base Ni layer and a part of the Sn plating layer are alloyed by molten tin treatment to form the Sn. An island-shaped Sn plating layer formed from the non-alloyed portion of the plating layer;
It is formed in the upper layer of the Sn plating layer, and contains 0.3 to 5.0 mC / cm 2 of tin oxide as the amount of electricity required for reduction and 0.5 to 5.0 mg / m 2 of tin phosphate as the amount of P. A chemical conversion treatment layer;
Formed in the upper layer of the chemical conversion treatment layer, 1 to 500 mg / m 2 of Zr film in the amount of metal Zr, 0.1 to 100 mg / m 2 of phosphoric acid film in the amount of P, 0.1 to 100 mg / m in the amount of C of the two phenolic resin film, a skin film layer composed of two or more,
A steel plate for containers.
記皮膜層は、金属Zr量で1〜15mg/mのZr皮膜、P量で0.1〜15mg/mのリン酸皮膜、C量で0.1〜15mg/mのフェノール樹脂皮膜のうち、2種以上からなることを特徴とする、請求項1に記載の容器用鋼板。 Prior Symbol skin layer, Zr coating of 1-15 mg / m 2 of metal Zr content, the phosphate coating of 0.1 to 15 mg / m 2 in the amount of P, phenol 0.1 to 15 mg / m 2 in C content The steel plate for containers according to claim 1, comprising two or more types of resin films. 記皮膜層は、金属Zr量で1〜9mg/mのZr皮膜、P量で0.1〜8mg/mのリン酸皮膜、C量で0.1〜8mg/mのフェノール樹脂皮膜のうち、2種以上からなることを特徴とする、請求項2に記載の容器用鋼板。 Prior Symbol skin layer, Zr coating 1~9mg / m 2 of metal Zr content, the phosphate coating 0.1~8mg / m 2 in the amount of P, phenol 0.1~8mg / m 2 in C content The steel plate for containers according to claim 2, comprising two or more kinds of resin films. 鋼板表面に560〜5600mg/mのSnめっきが施され、溶融溶錫処理により、Snめっき層の一部が合金化して形成されたSnめっき層と、
前記Snめっきの上層に形成され、還元に要する電気量として0.3〜5.0mC/cmの酸化錫とP量として0.5〜5.0mg/mのリン酸錫とを含む化成処理層と、
前記化成処理層の上層に形成され、金属Zr量で1〜500mg/mのZr皮膜、P量で0.1〜100mg/m リン酸皮膜、C量で0.1〜100mg/mフェノール樹脂皮膜のうち、2種以上からなる皮膜層と、
を有する、容器用鋼板。
A Sn plating layer formed by alloying a part of the Sn plating layer by subjecting the surface of the steel sheet to Sn plating of 560 to 5600 mg / m 2 , and molten tin processing,
Chemical conversion formed on the upper layer of the Sn plating and containing 0.3 to 5.0 mC / cm 2 of tin oxide as the amount of electricity required for reduction and 0.5 to 5.0 mg / m 2 of tin phosphate as the amount of P Processing layer,
Formed in the upper layer of the chemical conversion treatment layer, 1 to 500 mg / m 2 of Zr film in the amount of metal Zr, 0.1 to 100 mg / m 2 of phosphoric acid film in the amount of P, 0.1 to 100 mg / m in the amount of C of the two phenolic resin film, a skin film layer composed of two or more,
A steel plate for containers.
記皮膜層は、金属Zr量で1〜15mg/mのZr皮膜、P量で0.1〜15mg/mのリン酸皮膜、C量で0.1〜15mg/mのフェノール樹脂皮膜のうち、2種以上からなることを特徴とする、請求項4に記載の容器用鋼板。 Prior Symbol skin layer, Zr coating of 1-15 mg / m 2 of metal Zr content, the phosphate coating of 0.1 to 15 mg / m 2 in the amount of P, phenol 0.1 to 15 mg / m 2 in C content The steel plate for containers according to claim 4, comprising two or more of the resin films. 記皮膜層は、金属Zr量で1〜9mg/mのZr皮膜、P量で0.1〜8mg/mのリン酸皮膜、C量で0.1〜8mg/mのフェノール樹脂皮膜のうち、2種以上からなることを特徴とする、請求項5に記載の容器用鋼板。 Prior Symbol skin layer, Zr coating 1~9mg / m 2 of metal Zr content, the phosphate coating 0.1~8mg / m 2 in the amount of P, phenol 0.1~8mg / m 2 in C content The steel plate for containers according to claim 5, comprising two or more kinds of resin films. 記皮膜層は、陰極電解処理により形成されることを特徴とする、請求項1〜6のうち何れか1項記載の容器用鋼板。 Prior Symbol skin layer, characterized by being formed by a cathodic electrolysis treatment, container steel sheet according to any one of claims 1 to 6. 記皮膜層は、Zr皮膜、リン酸皮膜、フェノール樹脂皮膜の3種からなることを特徴とする、請求項7記載の容器用鋼板。 Prior Symbol skin layer, Zr coating, the phosphoric acid coating, characterized in that it consists of three phenolic resin film, container steel sheet according to claim 7 wherein. 前記陰極電解処理は、酸性溶液あるいはタンニン酸を含んだ酸性溶液中で行われることを特徴とする、請求項7又は8に記載の容器用鋼板。   The steel plate for containers according to claim 7 or 8, wherein the cathodic electrolysis is performed in an acidic solution or an acidic solution containing tannic acid. 請求項1〜9のうち何れか1項記載の容器用鋼板を製造する方法であって、
鋼板を電解脱脂、酸洗してから、電気錫メッキ、及び、錫の加熱溶融処理した後、リン酸塩水溶液中で、1〜20A/dm、0.1〜2秒の陰極電解処理、次いで、0.2〜5A/dm、0.1〜2秒の陽極電解処理を施して、酸化錫とリン酸錫とを含む化成処理層を形成する工程を含むことを特徴とする、容器用鋼板の製造方法。
A method for producing the steel plate for containers according to any one of claims 1 to 9,
After electrolytically degreasing and pickling the steel plate, electrotin plating, and heating and melting treatment of tin, in a phosphate aqueous solution, 1-20 A / dm 2 , 0.1-2 seconds of cathodic electrolytic treatment, Next, a container comprising a step of forming a chemical conversion treatment layer containing tin oxide and tin phosphate by performing an anodic electrolytic treatment of 0.2 to 5 A / dm 2 for 0.1 to 2 seconds. Steel plate manufacturing method.
JP2008099478A 2008-04-07 2008-04-07 Steel plate for containers with excellent weldability, appearance, and can manufacturing process adhesion Active JP5304000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008099478A JP5304000B2 (en) 2008-04-07 2008-04-07 Steel plate for containers with excellent weldability, appearance, and can manufacturing process adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008099478A JP5304000B2 (en) 2008-04-07 2008-04-07 Steel plate for containers with excellent weldability, appearance, and can manufacturing process adhesion

Publications (2)

Publication Number Publication Date
JP2009249691A JP2009249691A (en) 2009-10-29
JP5304000B2 true JP5304000B2 (en) 2013-10-02

Family

ID=41310662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008099478A Active JP5304000B2 (en) 2008-04-07 2008-04-07 Steel plate for containers with excellent weldability, appearance, and can manufacturing process adhesion

Country Status (1)

Country Link
JP (1) JP5304000B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920627B2 (en) * 2008-04-16 2012-04-18 新日本製鐵株式会社 Plated steel sheet for can and manufacturing method thereof
WO2011126137A1 (en) * 2010-04-06 2011-10-13 新日本製鐵株式会社 Process for production of steel sheet for container material which has reduced load on environments, steel sheet for container material which has reduced load on environments, and laminate steel sheet for container material and coated precoat steel sheet for container material which are produced using the steel sheet
MY162565A (en) 2010-09-15 2017-06-30 Jfe Steel Corp Steel sheet for containers and manufacturing method for same
JP5754099B2 (en) 2010-09-15 2015-07-22 Jfeスチール株式会社 Manufacturing method of steel plate for containers
CN103097582B (en) 2010-09-15 2015-11-25 杰富意钢铁株式会社 Steel plate for container and manufacture method thereof
JP5861249B2 (en) * 2010-09-15 2016-02-16 Jfeスチール株式会社 Manufacturing method of steel plate for containers
DE102012000414B4 (en) * 2012-01-12 2014-03-20 Thyssenkrupp Rasselstein Gmbh Process for passivating tinplate and tinned steel strip or sheet
WO2014189081A1 (en) * 2013-05-21 2014-11-27 新日鐵住金株式会社 Steel sheet for containers, and method for producing steel sheet for container
TWI633211B (en) 2016-05-24 2018-08-21 新日鐵住金股份有限公司 Tin plated steel sheet
EP3467155A4 (en) 2016-05-24 2019-10-30 Nippon Steel Corporation Sn alloy-plated steel sheet
JP6852454B2 (en) * 2017-02-22 2021-03-31 日本製鉄株式会社 Manufacturing method of Sn-based alloy-plated steel sheet and Sn-based alloy-plated steel sheet
CN110172696B (en) * 2019-06-06 2021-07-06 扬州市顺腾不锈钢照明器材有限公司 Corrosion-resistant steel plate for container
US11859289B2 (en) 2019-12-19 2024-01-02 Nippon Steel Corporation Sn-based plated steel sheet
US11674233B2 (en) 2020-03-26 2023-06-13 Nippon Steel Corporation Sn-based plated steel sheet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5275626A (en) * 1975-12-19 1977-06-24 Nippon Steel Corp Subsequent treating process for galvanized steel sheet
JPS52103333A (en) * 1976-02-27 1977-08-30 Kawasaki Steel Co Method of fabricating tin plated steel plate
JP2000226676A (en) * 1999-02-08 2000-08-15 Nippon Steel Corp Steel sheet for laminate welded can
JP4935295B2 (en) * 2005-10-20 2012-05-23 Jfeスチール株式会社 Tin-plated steel sheet and method for producing the same
JP5093797B2 (en) * 2006-03-24 2012-12-12 新日本製鐵株式会社 Steel plate for containers with excellent can processability

Also Published As

Publication number Publication date
JP2009249691A (en) 2009-10-29

Similar Documents

Publication Publication Date Title
JP5304000B2 (en) Steel plate for containers with excellent weldability, appearance, and can manufacturing process adhesion
JP4886811B2 (en) Steel plate for containers excellent in organic film performance and method for producing the same
JP5015239B2 (en) Plated steel sheet for can and manufacturing method thereof
JP5214437B2 (en) Steel plate for containers
JP4920800B2 (en) Manufacturing method of steel plate for containers
JP5093797B2 (en) Steel plate for containers with excellent can processability
JP5196035B2 (en) Steel plate for container and method for producing the same
TWI490369B (en) Steel sheet for container
JP4864493B2 (en) Plated steel sheet for cans
JP5672775B2 (en) Steel plate for containers excellent in organic film performance and method for producing the same
JP5157487B2 (en) Steel plate for containers and manufacturing method thereof
JP5729230B2 (en) Steel plate for container and method for producing the same
JP5186817B2 (en) Steel plate for containers
JP4897818B2 (en) Steel plate for container and manufacturing method thereof
JP5186816B2 (en) Steel plate for containers and manufacturing method thereof
JP4869976B2 (en) Plated steel sheet for can and manufacturing method thereof
JP6146402B2 (en) Steel plate for containers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130610

R151 Written notification of patent or utility model registration

Ref document number: 5304000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350