JP5321475B2 - Nitrogen-containing wastewater treatment method - Google Patents

Nitrogen-containing wastewater treatment method Download PDF

Info

Publication number
JP5321475B2
JP5321475B2 JP2010010567A JP2010010567A JP5321475B2 JP 5321475 B2 JP5321475 B2 JP 5321475B2 JP 2010010567 A JP2010010567 A JP 2010010567A JP 2010010567 A JP2010010567 A JP 2010010567A JP 5321475 B2 JP5321475 B2 JP 5321475B2
Authority
JP
Japan
Prior art keywords
nitrogen
containing wastewater
methanol
waste
hydrogen donor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010010567A
Other languages
Japanese (ja)
Other versions
JP2011147873A (en
Inventor
東洋司 山口
泰弘 香月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010010567A priority Critical patent/JP5321475B2/en
Publication of JP2011147873A publication Critical patent/JP2011147873A/en
Application granted granted Critical
Publication of JP5321475B2 publication Critical patent/JP5321475B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、排水中に含まれる窒素分を生物学的脱窒素処理で除去する含窒素排水の処理方法に関し、処理で用いる水素供与体を好適に選定する方法および当該水素供与体を用いた含窒素排水の処理方法に関する。   The present invention relates to a nitrogen-containing wastewater treatment method for removing nitrogen contained in wastewater by biological denitrification, a method for suitably selecting a hydrogen donor used in the treatment, and the use of the hydrogen donor. The present invention relates to a method for treating nitrogen wastewater.

食品工場や汚水処理設備からの排水中に含まれる窒素成分は、周辺環境を悪化させるため生物学的脱窒素処理などにより地方自治体の条例などで規制された量以下となるように制御されている。   Nitrogen components contained in wastewater from food factories and sewage treatment facilities are controlled to be less than the amount regulated by local ordinances by biological denitrification to worsen the surrounding environment. .

従来、含窒素排水を生物学的脱窒素処理する場合、排水性状にもよるが、脱窒素のための有機炭素源が不足しがちであることから、系外からメタノール等の有機炭素源(水素供与体)を添加することが一般的に行われている。しかし、メタノールは高価であるため、代替となる水素供与体について検討が行われてきた。   Conventionally, when biologically denitrifying nitrogen-containing wastewater, depending on the nature of the wastewater, organic carbon sources such as methanol (hydrogen It is common practice to add donors. However, because methanol is expensive, alternative hydrogen donors have been studied.

特許文献1は有機性廃水の生物学的脱窒素処理方法に関し、生ゴミ、畜産系排出物などのメタン発酵後分離液は脱窒素処理が必要なところ、メタン発酵工程での分解・ガス化の効率が良く、脱窒の水素供与体となる有機物の比率が低くなるため、廃乳を脱窒の水素供与体(有機炭素源)として利用して安価で高効率な窒素除去を行うことが記載されている。   Patent Document 1 relates to a biological denitrification method for organic wastewater. The separation liquid after methane fermentation, such as raw garbage and livestock waste, needs to be denitrogenated. Describes the use of waste milk as a denitrification hydrogen donor (organic carbon source) to perform nitrogen removal at low cost and high efficiency because of the high efficiency and the low ratio of organic substances that serve as denitrification hydrogen donors. Has been.

特許文献2はアンモニアを含有する排水を活性汚泥で硝化および脱窒させて排水処理する排水処理方法および排水処理設備に関し、ウイスキーの製造過程において発生する廃液であるウイスキー初留物を添加することで、メタノールを添加した場合とほぼ同等の脱窒効率が得られ、アンモニア含有排水の処理コストを低減することが記載されている。   Patent Document 2 relates to a wastewater treatment method and wastewater treatment equipment for nitrifying and denitrifying wastewater containing ammonia with activated sludge, and adding a whiskey initial distillate that is a waste liquid generated in the whiskey manufacturing process. It is described that denitrification efficiency substantially equal to that obtained when methanol is added is obtained, and the treatment cost of ammonia-containing wastewater is reduced.

特開2005−74263号公報JP 2005-74263 A 特開2007−275747号公報JP 2007-275747 A

「下水試験方法 1984年版」 日本下水道協会 1985年6月25日 第2刷発行"Sewage test method 1984 version" Japan Sewerage Association June 25, 1985 Second edition issued

ところで、製鉄所の場合、冷延工場の酸洗浄過程などから窒素成分として硝酸を含んだ含窒素排水が発生し、水素供与体の存在下で硝酸イオンを還元して窒素にする生物学的脱窒素処理で処理されている。このような製鉄所由来の排水の場合には往々にして脱窒素のための有機炭素源が極端に不足しがちで、系外からメタノール等の有機炭素源を添加することが必要となっている。   By the way, in the case of steelworks, nitrogen-containing wastewater containing nitric acid as a nitrogen component is generated from the acid cleaning process of cold rolling mills, etc., and biological desorption is performed by reducing nitrate ions to nitrogen in the presence of a hydrogen donor. Treated with nitrogen treatment. In the case of wastewater derived from such steelworks, organic carbon sources for denitrification tend to be extremely short, and it is necessary to add organic carbon sources such as methanol from outside the system. .

この反応には脱窒菌が作用し、水素供与体としてメタノールを用いた場合には、式(1)で表される。
NO +5/6CHOH→5/6CO+1/2N+7/6HO+OH(1)
In this reaction, denitrifying bacteria act, and when methanol is used as a hydrogen donor, it is represented by the formula (1).
NO 3 + 5 / 6CH 3 OH → 5/6 CO 2 + 1 / 2N 2 + 7 / 6H 2 O + OH (1)

しかしながら、特許文献1,2で使用される廃乳やウイスキー初留物が排出される生産施設の存在は限られており、これらの生産施設が製鉄所の近隣にない場合には、水素供与体を十分量確保すること自体が困難で、また仮に確保することができたとしても、遠隔地からの輸送、運搬には多大なコストがかかる。   However, the existence of production facilities for discharging waste milk and whiskey first-run products used in Patent Documents 1 and 2 is limited, and when these production facilities are not in the vicinity of the steel works, hydrogen donors are used. It is difficult to secure a sufficient amount of the material itself, and even if it can be ensured, transportation and transportation from a remote place are costly.

また、製鉄所の操業状態とこれらの水素供与体の供給元となる工場の操業状態は基本的に関連がないため、製鉄所の操業状態が良好で含窒素排水の排出量が多く、多量の水素供与体が必要なときに、水素供与体供給元の操業状態が良好でなければ、十分な量の水素供与体の供給が受けられないといった事態も考えられる。   In addition, since the operation status of the steelworks and the operation status of the factories that supply these hydrogen donors are basically unrelated, the operation status of the steelworks is good and the amount of nitrogen-containing wastewater discharged is large. When a hydrogen donor is required, there may be a situation where a sufficient amount of hydrogen donor cannot be supplied unless the operating condition of the hydrogen donor supplier is good.

このような場合、メタノールを一時的に使用せざるを得ないが、処理を行う脱窒菌は、水素供与体の変化に短期間では順応できず、一定期間、脱窒能力の低下は避けられないため、処理水窒素濃度の上昇が懸念される。   In such a case, methanol must be temporarily used, but the denitrifying bacteria to be treated cannot adapt to changes in the hydrogen donor in a short period of time, and the denitrification ability is inevitably lowered for a certain period. Therefore, there is a concern about an increase in the concentration of treated water nitrogen.

従って、メタノールの代替としてこれらの水素供与体を使用することは困難で、製鉄所
由来の廃有機物より適切に選定した水素供与体を使用することが必要である。
Therefore, it is difficult to use these hydrogen donors as a substitute for methanol, and it is necessary to use a hydrogen donor appropriately selected from waste organic substances derived from steelworks.

そこで、本発明は、製鉄所由来の含窒素排水の生物学的脱窒素処理においてメタノールの代替として使用可能な水素供与体を、製鉄所から排出される廃有機物から選定する方法およびそれを用いた含窒素排水の処理方法を提供することを目的とする。   Therefore, the present invention uses a method for selecting a hydrogen donor that can be used as an alternative to methanol in biological denitrification treatment of nitrogen-containing wastewater derived from steelworks, from waste organic matter discharged from the steelworks, and the same. It aims at providing the processing method of nitrogen-containing wastewater.

本発明者等は、上記課題を解決するため、製鉄所から排出される廃有機物について水素供与体としての適合性を鋭意検討し、ある選定基準を満足するものが有効であることを見出した。本発明の課題は以下の手段で達成可能である。
1.含窒素排水である製鉄所のステンレスの酸洗工程で発生する含硝酸廃液の生物学的脱窒素処理で用いる水素供与体として、製鉄所から排出される廃油あるいは含油排水の中で、BOD/CODcr値が0.4以上のものを選定し、さらにその中から予め行う脱窒連続実験で得られる窒素除去率が仕様上目標とする窒素除去率以上であるものを選定し、該廃油あるいは含油排水を水素供与体として用いることを特徴とする含窒素排水の処理方法。
.水素供与体として、メタノールと、メタノールの他に1記載の方法で選定された製鉄所から排出される廃油あるいは含油排水を用いることを特徴とする含窒素排水の処理方法。
.上記水素供与体におけるメタノールとメタノール以外のものの添加量の比率を、少なくとも処理水中の全窒素濃度とCODMnによって決定することを特徴とするに記載の含窒素排水の処理方法。
In order to solve the above-mentioned problems, the present inventors have intensively studied the suitability as a hydrogen donor for waste organic substances discharged from steelworks, and found that those satisfying certain selection criteria are effective. The object of the present invention can be achieved by the following means.
1. As a hydrogen donor used in the biological denitrification treatment of nitric acid-containing waste liquor generated in the pickling process of stainless steel in steelworks, which is nitrogen-containing wastewater , BOD / CODcr is used as waste hydrogen or oil- containing wastewater discharged from steelworks. value selected ones of 0.4 or more, and further selects the nitrogen removal rate obtained in advance performed denitrification continuous experiment from its what is more nitrogen removal rate that the specification on the target, waste oil or oil-containing wastewater Is used as a hydrogen donor . A method for treating nitrogen-containing wastewater.
2 . A method for treating nitrogen-containing wastewater, comprising using methanol and waste oil or oil- containing wastewater discharged from an iron mill selected by the method described in 1 in addition to methanol as a hydrogen donor.
3 . 3. The method for treating nitrogen-containing wastewater according to 2 , wherein the ratio of the amount of addition of methanol and other than methanol in the hydrogen donor is determined by at least the total nitrogen concentration in the treated water and COD Mn .

本発明によれば、製鉄所由来の含窒素排水の生物学的脱窒素処理において、製鉄所から排出される廃有機物のうち水素供与体として使用可能なものを選定して、メタノール使用時とほぼ同等の処理水質を得ながら、操業コストを低減することが可能となり産業上極めて有用である。   According to the present invention, in biological denitrification treatment of nitrogen-containing wastewater derived from steelworks, waste organic substances discharged from the steelworks are selected as those that can be used as hydrogen donors. The operation cost can be reduced while obtaining the same treated water quality, which is extremely useful industrially.

本発明の実施に好適な生物学的脱窒素処理を行う含窒素排水処理装置の構成を説明する模式図。The schematic diagram explaining the structure of the nitrogen-containing wastewater treatment apparatus which performs the biological denitrification process suitable for implementation of this invention. 実験装置の構成を説明する模式図。The schematic diagram explaining the structure of an experimental apparatus. 図2に示した実験装置の運転条件を説明する図。The figure explaining the operating conditions of the experimental apparatus shown in FIG. 脱窒連続実験結果を示す図。The figure which shows the denitrification continuous experiment result.

本発明は、製鉄所由来の含窒素排水である含硝酸廃液を生物学的脱窒素処理する際に用いる水素供与体を、1.水素供与体自身のBOD/CODcr値と2.予め行う脱窒連続実験で得られる窒素除去率の値をもとに選定することを特徴とする。以下、本発明の実施形態を図面に基づいて説明する。説明において、BODは生物化学的酸素要求量(非特許文献1 p123による)で生物によって食べられた有機物量の指標となり、CODcrは重クロム酸カリウムによる酸素消費量(JIS K 0102 15)で全有機物量の指標となる。日本の水処理分野においては、CODとしては過マンガン酸カリウムによる酸素消費量CODMn(JIS K 0102 13)が一般的であるが、過マンガン酸カリウムの酸化力は重クロム酸カリウムに比較して弱いため酸化できない有機物が多く存在し、全有機物の指標としては不適切であることから、本発明においてはCODcrを全有機物の指標として用いた。 The present invention relates to a hydrogen donor used for biological denitrification treatment of nitric acid-containing waste liquid, which is nitrogen-containing wastewater derived from steelworks, as follows: 1. The hydrogen donor's own BOD / CODcr value and The selection is based on the value of the nitrogen removal rate obtained in a denitrification continuous experiment performed in advance. Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description, BOD is a biochemical oxygen demand (according to Non-Patent Document 1 p123) and is an indicator of the amount of organic matter eaten by organisms, and CODcr is the amount of oxygen consumed by potassium dichromate (JIS K 0102 15). It is an indicator of quantity. In the water treatment field in Japan, oxygen consumption by potassium permanganate COD Mn (JIS K 0102 13) is common as COD, but the oxidizing power of potassium permanganate is higher than that of potassium dichromate. Since there are many organic substances that cannot be oxidized due to their weakness and are inappropriate as an indicator of total organic substances, CODcr was used as an indicator of total organic substances in the present invention.

図1は本発明の実施に好適な生物学的脱窒素処理を行う含窒素排水処理装置の構成を説明する模式図で、図において1は原水槽、2は脱窒槽、3は曝気槽、4は沈殿槽、5は攪拌機、6は散気装置、7はブロア、8は水素供与体添加装置(1)であるメタノール添加装置、9は水素供与体添加装置(2)である廃有機物添加装置、10は返送汚泥管路、11は原水汲み上げ用モータ、12は原水送給管路示す。   FIG. 1 is a schematic diagram illustrating the configuration of a nitrogen-containing wastewater treatment apparatus that performs biological denitrification suitable for the practice of the present invention. In the figure, 1 is a raw water tank, 2 is a denitrification tank, 3 is an aeration tank, 4 Is a settling tank, 5 is a stirrer, 6 is an aeration device, 7 is a blower, 8 is a methanol addition device which is a hydrogen donor addition device (1), and 9 is a waste organic substance addition device which is a hydrogen donor addition device (2). Reference numeral 10 denotes a return sludge pipeline, 11 denotes a raw water pumping motor, and 12 denotes a raw water feed pipeline.

含窒素排水は、凝集沈殿、ろ過処理をされた後、原水槽1に貯留される。この時点で、含窒素排水のBODは非常に低濃度で、水素供与体となる有機物は殆ど存在しない排水性状となっている。ステンレスなどの酸洗工程で発生する含硝酸廃液は、凝集沈殿、ろ過処理をされた後、原水槽1に貯留される。この時点で、全窒素濃度50〜150mg/L程度で、その殆どは硝酸体窒素で、一方、BODは非常に低濃度で、水素供与体となる有機物は殆ど存在しない排水性状となっている。   The nitrogen-containing wastewater is stored in the raw water tank 1 after being subjected to coagulation sedimentation and filtration. At this point, the BOD of the nitrogen-containing wastewater has a very low concentration, and has a drainage property in which almost no organic substance serving as a hydrogen donor exists. The nitric acid-containing waste liquid generated in the pickling process such as stainless steel is stored in the raw water tank 1 after being subjected to coagulation precipitation and filtration. At this point, the total nitrogen concentration is about 50 to 150 mg / L, most of which is nitrate nitrogen, while BOD is very low in concentration, and has a drainage property with almost no organic substance serving as a hydrogen donor.

原水は原水槽1から原水汲み上げ用ポンプ11で汲み上げられて原水送給管路12を経て脱窒槽2へ送液され、ここで活性汚泥によって生物的に脱窒処理(生物学的脱窒素処理)される。原水の窒素濃度に応じて、メタノール添加装置8および廃有機物添加装置9から水素供与体が添加される。   The raw water is pumped from the raw water tank 1 by the pump 11 for pumping the raw water, and sent to the denitrification tank 2 through the raw water supply pipe 12, where it is biologically denitrified by activated sludge (biological denitrification process). Is done. A hydrogen donor is added from the methanol addition device 8 and the waste organic matter addition device 9 in accordance with the nitrogen concentration of the raw water.

脱窒槽2で生物学的に脱窒処理された排水は、次に曝気槽3に導かれる。ここでは前記脱窒工程で使用されずに残留した有機物(COD成分)を活性汚泥によって生物学的に酸化分解処理し、COと水に変換する。その後、沈殿槽4にて固液分離し、上澄を処理水とし、沈降した汚泥は一部は返送管路10を経由して循環させ、一部を余剰汚泥として引き抜く。このような処理によって、メタノールコストを大幅に抑えながら、良好な窒素およびCOD成分の除去が可能な排水処理が実現される。 The waste water biologically denitrified in the denitrification tank 2 is then guided to the aeration tank 3. Here, the organic matter (COD component) remaining without being used in the denitrification step is biologically oxidatively decomposed with activated sludge and converted into CO 2 and water. Thereafter, solid-liquid separation is performed in the sedimentation tank 4, and the supernatant is treated water. A part of the settled sludge is circulated through the return conduit 10, and a part is extracted as surplus sludge. By such treatment, waste water treatment capable of removing nitrogen and COD components with good methanol cost can be realized.

本発明では、水素供与体添加装置9から添加される水素供与体を、1.水素供与体自身のBOD/CODcr値と2.生物学的脱窒素処理による脱窒連続実験における窒素除去率の値をもとに選定する。   In the present invention, the hydrogen donor added from the hydrogen donor addition device 9 is 1. 1. The hydrogen donor's own BOD / CODcr value and Select based on the value of nitrogen removal rate in continuous denitrification experiments using biological denitrification.

図4は、実際に稼動している下水処理場と産業廃水処理設備において、仕様上設定された処理水の基準値を満たす運転状況下で採取した原水のBOD/CODcr値の度数分布と累積比率を示したものである。図4において横軸は、BOD/CODcr値が、左から順に、0.3未満、0.3以上から0.4未満、0.4以上から0.5未満、0.5以上から0.6未満、0.6以上、の範囲であることを示している。累積比率が0.5以上となるBOD/CODcr値は0.4以上であるので、この条件を満たす水素供与体を、安定した窒素除去を行うことのできる候補として選定することが適当であると考えた。このようにして選定された水素供与体は、続いて脱窒連続実験に供される。   Fig. 4 shows the frequency distribution and cumulative ratio of the BOD / CODcr value of raw water collected under operating conditions that meet the standard value of treated water set in the specifications in the sewage treatment plant and industrial wastewater treatment facility that are actually in operation. Is shown. In FIG. 4, the horizontal axis represents BOD / CODcr values in order from the left, less than 0.3, 0.3 or more and less than 0.4, 0.4 or more and less than 0.5, and 0.5 or more and 0.6. Less than, 0.6 or more. Since the BOD / CODcr value at which the cumulative ratio is 0.5 or more is 0.4 or more, it is appropriate to select a hydrogen donor that satisfies this condition as a candidate capable of performing stable nitrogen removal. Thought. The hydrogen donor thus selected is subsequently subjected to continuous denitrification experiments.

図2に脱窒連続実験の装置構成を、図3に実験手順を示す。水素供与体貯蔵槽14(図1のメタノール添加装置8に相当)より水素供与体を、メタノール貯蔵槽15(図1の廃有機物添加装置9に相当)からメタノールを、原水貯蔵槽16から含窒素排水を曝気槽21に、ポンプ20で送給し、混合液23を攪拌装置22で攪拌のみを行うことにより酸素のない嫌気状態を実現させ生物学的脱窒反応を生じさせ、その後、エアポンプ24からの空気で曝気することにより好気状態を実現させて、脱窒反応時に残存した有機物を好気的に分解させる。pHコントローラ17で混合液23のpHが適切な値となるように、酸・アルカリ貯蔵槽18から、酸・アルカリをポンプ20で送給する。混合液23は実験終了後、処理水貯蔵槽19にポンプ20で送給する。   FIG. 2 shows the apparatus configuration of the denitrification continuous experiment, and FIG. 3 shows the experimental procedure. A hydrogen donor from the hydrogen donor storage tank 14 (corresponding to the methanol addition apparatus 8 in FIG. 1), methanol from the methanol storage tank 15 (corresponding to the waste organic substance addition apparatus 9 in FIG. 1), and nitrogen from the raw water storage tank 16 The waste water is fed to the aeration tank 21 by the pump 20 and the mixed solution 23 is only stirred by the stirring device 22 to realize an anaerobic state without oxygen to cause a biological denitrification reaction, and then the air pump 24 The aerobic state is realized by aeration with air from, and the organic matter remaining during the denitrification reaction is aerobically decomposed. The acid / alkaline is fed from the acid / alkali storage tank 18 by the pump 20 so that the pH of the mixed solution 23 becomes an appropriate value by the pH controller 17. The liquid mixture 23 is fed to the treated water storage tank 19 by a pump 20 after the experiment is completed.

本脱窒連続実験の例を以下に示す。水素供与体として製鉄所由来の廃有機物として製鉄所から排出される含油排水(表1の廃有機物A)、その他(表1の廃有機物B,C)を用い、原水は製鉄所のステンレスの酸洗工程で発生する含硝酸廃液とした。当該実験例では、各廃有機物A、B、C毎に実験を行ない、使用した水素供与体中の各廃有機物の含有率はそれぞれ100%とした。   An example of this denitrification continuous experiment is shown below. Oil-containing wastewater (waste organic matter A in Table 1) and other (waste organic matter B and C in Table 1) discharged from the steelworks as waste organic matter derived from the steelworks as hydrogen donors, and the raw water is the acid of the stainless steel of the steelworks A nitric acid-containing waste liquid generated in the washing step was used. In this experimental example, an experiment was performed for each waste organic matter A, B, and C, and the content of each waste organic matter in the used hydrogen donor was 100%.

各廃有機物のBOD/CODcr値と脱窒連続実験の結果を合わせて表1に示す。廃有機物A、BはBOD/CODcr値それぞれ0.7、0.4であり、連続脱窒実験によって、それぞれ98%、97%の高い窒素除去率が得られた。一方廃有機物Cは、BOD/CODcr値は0.4であったものの、連続脱窒実験において窒素除去率は70%にとどまり、装置の仕様上目標としている窒素除去率(この実験例の場合は88%)を下回った。このことは、BOD/CODcr値による選定だけでは不十分であり、BOD/CODcr値による選定後、脱窒連続実験によって装置目標の窒素除去率(この実験例の場合は88%)以上となることを確認する必要があることを示している。一方、すべての廃有機物を初めから連続脱窒実験によって確認する選定方法では、すべての廃有機物について連続実験を実施しなければならず、実験の手間、実験時間、分析など、非常に煩雑かつ選定に時間を要することになり好ましくない。従って、まず各廃有機物のBOD/CODcr値にて選定を行い、その後、脱窒連続実験によって更なる選定を行うことで、効率よく迅速に選定を行うことができる。   Table 1 shows the BOD / CODcr value of each organic waste and the results of denitrification continuous experiments. Waste organic substances A and B had BOD / CODcr values of 0.7 and 0.4, respectively, and high nitrogen removal rates of 98% and 97% were obtained by continuous denitrification experiments, respectively. On the other hand, the waste organic matter C had a BOD / CODcr value of 0.4, but the nitrogen removal rate in the continuous denitrification experiment was only 70%, and the nitrogen removal rate targeted in the specifications of the apparatus (in this experimental example) 88%). This means that selection based on the BOD / CODcr value alone is not sufficient, and after selection based on the BOD / CODcr value, the nitrogen removal rate (88% in this example) is higher than the target nitrogen removal rate by continuous denitrification experiments. Indicates that you need to check. On the other hand, in the selection method in which all waste organic substances are confirmed by continuous denitrification experiments from the beginning, continuous experiments must be performed on all waste organic substances. This is not preferable because it takes time. Therefore, the selection can be made efficiently and quickly by first selecting the BOD / CODcr value of each waste organic substance and then further selecting by denitrification continuous experiment.

またこの実験例の場合、製鉄所のステンレスの酸洗工程で発生する含硝酸廃液を生物学的に脱窒素処理を行う実装置を想定しており、目標の窒素除去率は実機の装置仕様である88%以上として説明したが、この数値は、想定する装置によって異なり、流入水質、処理形式、求める流出水質などによって、適宜変更してよい。   In the case of this experimental example, an actual device that biologically denitrifies the nitric acid-containing waste liquid generated in the steel pickling process at a steel works is assumed, and the target nitrogen removal rate is the actual device specifications. Although described as 88% or more, this numerical value varies depending on the assumed device, and may be changed as appropriate depending on the quality of the influent water, the type of treatment, the desired effluent quality, and the like.

本発明により、製鉄所のステンレスの酸洗工程で発生する含硝酸廃液を生物学的脱窒素処理する場合、水素供与体としてメタノールの他に、製鉄所から排出される含油排水(表1の廃有機物A)を添加すると、以下の作用効果が得られる。   According to the present invention, in the case of biological denitrification treatment of nitric acid-containing waste liquid generated in the steel pickling process of steelworks, in addition to methanol as a hydrogen donor, oil-containing wastewater discharged from steelworks (the waste of Table 1) When the organic substance A) is added, the following effects are obtained.

製鉄所由来の含窒素排水には殆どBOD源がないため、メタノールの使用量は膨大であり、その一部を代替できるだけでも、十分なコストメリットが見込める。この場合の廃有機物添加割合は、少なくとも処理水中の全窒素濃度、CODMnをモニタリングしながら、逐次添加割合を上げていき、あらかじめ定められた水質を越えない範囲で、添加割合を決定することができる。 Nitrogen-containing wastewater derived from steelworks has almost no BOD source, so the amount of methanol used is enormous, and even if only a part of it can be replaced, sufficient cost merit can be expected. In this case, the waste organic matter addition ratio can be determined within a range that does not exceed the predetermined water quality by gradually increasing the addition ratio while monitoring at least the total nitrogen concentration and COD Mn in the treated water. it can.

また、廃有機物として製鉄所由来の廃油、あるいは含油排水を用いると、含窒素排水の発生量と、確保できる廃有機物の量との間に、ある程度の相関が期待できる。   In addition, when waste oil derived from steelworks or oil-containing wastewater is used as waste organic matter, a certain degree of correlation can be expected between the amount of nitrogen-containing wastewater generated and the amount of waste organic matter that can be secured.

含窒素排水、廃有機物ともに、製鉄所における鋼材の生産に伴って発生するものであり、含窒素排水、廃有機物の発生量はどちらも、鋼材の生産量にある程度比例すると考えられる。   Both nitrogen-containing wastewater and waste organic matter are generated with the production of steel materials at steelworks, and the amount of nitrogen-containing wastewater and waste organic matter generated is considered to be proportional to the production amount of steel materials.

従って、含窒素排水の発生量の増減によって、必要な廃有機物の量も増減するが、両者はある程度相関しているため、含窒素排水の発生量が多く、廃有機物を多量に確保したい時に、廃有機物が極端に不足する、などといった事態は、生じる可能性が極めて低い。従って、常にほぼ一定の添加率で、廃有機物を添加することができる。   Therefore, the amount of waste organic matter required increases or decreases depending on the increase or decrease in the amount of nitrogen-containing wastewater generated, but both are correlated to some extent, so when there is a large amount of nitrogen-containing wastewater generated and you want to secure a large amount of waste organic matter, A situation such as an extremely shortage of waste organic matter is extremely unlikely to occur. Therefore, it is possible to add waste organic matter at an almost constant addition rate.

前掲の図2に示す回分活性汚泥法を模擬したラボレベルの実験装置にて、脱窒処理実験を実施した。本装置は前掲の図3に示すタイムチャートに従って動作し、窒素、COD成分の除去を行う。   A denitrification treatment experiment was carried out in a laboratory-level experimental apparatus simulating the batch activated sludge method shown in FIG. This apparatus operates according to the time chart shown in FIG. 3 and removes nitrogen and COD components.

表2に処理条件を示す。処理対象となる含窒素排水は、製鉄所のステンレス酸洗工程から排出される排水に硝酸ナトリウムを添加し、硝酸濃度を窒素換算で150mg/Lに調製し実験に供した。このとき、排水中の全窒素濃度は、全て硝酸体窒素であった。   Table 2 shows the processing conditions. The nitrogen-containing wastewater to be treated was subjected to experiments by adding sodium nitrate to the wastewater discharged from the stainless steel pickling process at the steelworks and adjusting the nitric acid concentration to 150 mg / L in terms of nitrogen. At this time, the total nitrogen concentration in the waste water was all nitrate nitrogen.

実験において廃有機物として、製鉄所から排出される含油排水(表1の廃有機物A)を使用した。表3に分析値を示す。   In the experiment, oil-containing wastewater (waste organic matter A in Table 1) discharged from steelworks was used as waste organic matter. Table 3 shows the analysis values.

メタノールの一部を含油排水で割合を変化させて代替した。メタノールと含油排水の添加量は、理論的には硝酸体窒素を脱窒処理するために必要なBODの合計量が、添加した合計BOD/処理対象となる全窒素量=2.86となるように調整すればよい。これは以下の理由による。   Part of methanol was replaced with oil-containing wastewater by changing the ratio. The amount of methanol and oil-containing wastewater added is theoretically such that the total amount of BOD required to denitrify nitrate nitrogen is the total amount of BOD added / total amount of nitrogen to be treated = 2.86. You may adjust to. This is due to the following reason.

硝酸が水素供与体によって脱窒される反応は式(2)で表される。
2NO +5H2→N+4HO+2OH(2)
また、脱窒反応で消費されるH2(=水素供与体としての有機物)はBODに換算すると、式(3)に従って1モルのH2は1/2モルのO2に相当する。
2+1/2O2→HO (3)
従って式(2)の反応によってNO が窒素換算で1mg脱窒される場合は、
[5×(1/2)×2×Oの原子量]/(2×Nの原子量)=2.86 (4)
となることから、2.86mgのBODが消費されることが導き出される。
The reaction in which nitric acid is denitrified by a hydrogen donor is represented by formula (2).
2NO 3 + 5H 2 → N 2 + 4H 2 O + 2OH (2)
Further, H 2 (= organic substance as a hydrogen donor) consumed in the denitrification reaction is converted into BOD, and 1 mol of H 2 corresponds to 1/2 mol of O 2 according to the formula (3).
H 2 + 1 / 2O 2 → H 2 O (3)
Therefore, when NO 3 - is denitrified in terms of nitrogen by the reaction of formula (2),
[5 × (1/2) × 2 × O atomic weight] / (2 × N atomic weight) = 2.86 (4)
This leads to the consumption of 2.86 mg of BOD.

しかしながら、添加したBODはすべてが脱窒反応に用いられる訳ではなく、呼吸によるエネルギー獲得や菌体の合成などにもBODが消費される。実用上、これらの脱窒反応以外に消費されるBODは30%程度であることから、添加するメタノールと含油排水のBODの合計が、処理対象となる全窒素量の約4倍(必要な合計BOD×(1−0.3)=2.86 より、2.86/0.7≒4)となるように添加した。   However, not all of the added BOD is used for the denitrification reaction, and BOD is consumed for energy acquisition by respiration and synthesis of bacterial cells. In practice, the BOD consumed in addition to these denitrification reactions is about 30%, so the total amount of methanol to be added and the BOD of the oil-containing wastewater is about 4 times the total amount of nitrogen to be treated (required total) From BOD × (1-0.3) = 2.86, 2.86 / 0.7≈4) was added.

表4に、実験番号1〜4におけるメタノールと含油排水の配合割合を示す。いずれの条件においても1ヶ月程度の馴養期間を設定し、処理水中の硝酸体窒素とCODMnを定期的に測定し、変化が見られなくなったところで定常状態に達していると判断した。処理水中の硝酸体窒素の分析は、硝酸(パックテスト 共立理化学研究所製 亜鉛還元−ナフチルエチレンジアミン比色法 JISK0102 43.2.3変法)、亜硝酸(パックテスト 共立理化学研究所製 ナフチルエチレンジアミン吸光光度法 JIS K 0102 43.1.1)を分析し、両者の分析値を足し合わせることで求めた。CODMnは前述の方法(JIS K 0102 13)で分析した。 Table 4 shows the mixing ratio of methanol and oil-containing wastewater in Experiment Nos. 1 to 4. Also sets the acclimatization period of about one month at any conditions, nitrate body nitrogen and COD Mn in the treated water was measured periodically, and determines that the change has reached a steady state was no longer observed. The analysis of nitrate nitrogen in the treated water was carried out using nitric acid (zinc reduction-naphthylethylenediamine colorimetric method JISK0102 43.2.3 modified by Pactest Kyoritsu Riken), nitrous acid (naphtholethylenediamine absorption by Paktest Kyoritsu Riken). The photometric method JIS K 0102 (43.1.1) was analyzed, and the analysis values of both were added. COD Mn was analyzed by the method described above (JIS K 0102 13).

定常後、さらに1週間程度処理を継続し、処理水中の硝酸体窒素とCODMnを毎日測定した後、平均値を求めて処理水水質の代表値とした。さらに、窒素除去率(%)=処理水中の硝酸体窒素濃度/150mg/L×100として、窒素除去率を求めた。なお、分母の150mg/Lは、処理前の含窒素排水中に含まれる窒素換算による硝酸体窒素濃度である。 After the steady state, the treatment was continued for about one week, and nitrate nitrogen and COD Mn in the treated water were measured every day, and then an average value was obtained and used as a representative value of treated water quality. Further, the nitrogen removal rate was determined as nitrogen removal rate (%) = nitric acid nitrogen concentration in treated water / 150 mg / L × 100. In addition, 150 mg / L of the denominator is the nitrate nitrogen concentration in terms of nitrogen contained in the nitrogen-containing wastewater before treatment.

表4に実験結果を合わせて示す。なお、本実施例にて設定されている仕様上の目標値は、処理水中の全窒素濃度が18mg/L以下、CODMnが40mg/L以下である。表4に合わせて示しておく。 Table 4 also shows the experimental results. In addition, the target value on the specification set in the present embodiment is such that the total nitrogen concentration in the treated water is 18 mg / L or less and the COD Mn is 40 mg / L or less. It shows together with Table 4.

実験番号1,2では、仕様目標値を大きく下回った良好な処理水質を維持したまま、それぞれ5%、25%分の水素供与体を含油排水で代替でき、メタノールコストをそれぞれ5%、25%低減することができた。   In Experiment Nos. 1 and 2, 5% and 25% of the hydrogen donor can be replaced with oil-containing wastewater while maintaining good treated water quality well below the target specification value, and methanol costs are reduced to 5% and 25%, respectively. It was possible to reduce.

実験番号3(メタノール:含油排水=50:50)、実験番号4(メタノール:含油廃水=25:75)ともに、処理水中の全窒素濃度は実験番号1,2と変わらず、良好な窒素処理が行われていたが、CODMnは含油排水添加比率に比例して上昇し、処理水質が悪化した。これは、含油排水中に存在する生物難分解性のCODMn成分が存在し、一部は汚泥への吸着などにより処理水から除去されるものの、添加量を増加していくと除去しきれない生物難分解性のCODMn成分が処理水中に流出するためと考えられる。つまり、実験番号3においては、慎重な運転管理を要すると考えられるが、仕様目標値は満足しており、メタノールコストを50%低減可能である。一方、実験番号4では、仕様目標値を満足していない。 In both experiment number 3 (methanol: oil-containing wastewater = 50: 50) and experiment number 4 (methanol: oil-containing wastewater = 25: 75), the total nitrogen concentration in the treated water is the same as in experiment numbers 1 and 2, and good nitrogen treatment is achieved. However, COD Mn increased in proportion to the oil-containing wastewater addition ratio, and the quality of treated water deteriorated. This is because there is a biodegradable COD Mn component present in the oil-containing wastewater, and some of it is removed from the treated water by adsorption to sludge, but it cannot be removed if the amount added is increased. This is probably because the biodegradable COD Mn component flows out into the treated water. That is, in Experiment No. 3, it is considered that careful operation management is required, but the specification target value is satisfied, and the methanol cost can be reduced by 50%. On the other hand, in experiment number 4, the specification target value is not satisfied.

従って、本実施例においては含油排水のメタノール代替比率は、5〜50%程度が適切であり、含油排水の確保可能量や、実機での処理状況に応じて、5〜50%の間でメタノール代替率を決定すればよいと考えられる。   Therefore, in this embodiment, the methanol replacement ratio of oil-containing wastewater is appropriately about 5 to 50%, and methanol is between 5 and 50% depending on the amount of oil-containing wastewater that can be secured and the actual processing conditions. The replacement rate should be determined.

当然のことながら、本実施例はあくまでも一例であり、仕様上の目標値としての処理水水質は、後段の処理の有無、ある場合にはその種類(凝集沈殿、砂ろ過、活性炭処理など)、性能などに応じて決定されるべきであり、目標とする数値等は本実施例によって何ら制限を受けるものではない。   As a matter of course, this example is merely an example, and the quality of treated water as a target value in the specification is the presence or absence of subsequent treatment, and in some cases, the type (coagulation sedimentation, sand filtration, activated carbon treatment, etc.), It should be determined according to performance and the like, and the target numerical values are not limited by this embodiment.

Figure 0005321475
Figure 0005321475

Figure 0005321475
Figure 0005321475

Figure 0005321475
Figure 0005321475

Figure 0005321475
Figure 0005321475

1 原水槽
2 脱窒槽
3、21 曝気槽
4 沈殿槽
5 攪拌機
6 散気装置
7 ブロア
8 メタノール添加装置
9 廃有機物添加装置
10 返送汚泥管路
11 原水汲み上げ用モータ
12 原水送給管路
14 水素供与体貯蔵槽
15 メタノール貯蔵槽
16 原水貯蔵槽
17 pHコントローラ
18 酸・アルカリ貯蔵槽
19 処理水貯蔵槽
20 ポンプ
22 攪拌装置
23 混合液
24 エアポンプ
DESCRIPTION OF SYMBOLS 1 Raw water tank 2 Denitrification tank 3, 21 Aeration tank 4 Precipitation tank 5 Stirrer 6 Aeration device 7 Blower 8 Methanol addition device 9 Waste organic substance addition device 10 Return sludge pipeline 11 Raw water pumping motor 12 Raw water supply pipeline 14 Hydrogen supply Body storage tank 15 Methanol storage tank 16 Raw water storage tank 17 pH controller 18 Acid / alkali storage tank 19 Treated water storage tank 20 Pump 22 Stirrer 23 Mixture 24 Air pump

Claims (3)

含窒素排水である製鉄所のステンレスの酸洗工程で発生する含硝酸廃液の生物学的脱窒素処理で用いる水素供与体として、製鉄所から排出される廃油あるいは含油排水の中で、BOD/CODcr値が0.4以上のものを選定し、さらにその中から予め行う脱窒連続実験で得られる窒素除去率が仕様上目標とする窒素除去率以上であるものを選定し、該廃油あるいは含油排水を水素供与体として用いることを特徴とする含窒素排水の処理方法。 As a hydrogen donor used in the biological denitrification treatment of nitric acid-containing waste liquor generated in the pickling process of stainless steel in steelworks, which is nitrogen-containing wastewater , BOD / CODcr is used as waste hydrogen or oil- containing wastewater discharged from steelworks. value selected ones of 0.4 or more, further nitrogen removal rate obtained in advance performed denitrification continuous experiments among them is selected as at least a nitrogen removal rate of the specification on the target, the waste oil or oil-containing wastewater Is used as a hydrogen donor . A method for treating nitrogen-containing wastewater. 水素供与体として、メタノールと、メタノールの他に請求項1記載の方法で選定された製鉄所から排出される廃油あるいは含油排水を用いることを特徴とする含窒素排水の処理方法。 A method for treating nitrogen-containing wastewater, characterized by using methanol and waste oil or oil- containing wastewater discharged from a steel mill selected by the method according to claim 1 in addition to methanol as a hydrogen donor. 上記水素供与体におけるメタノールとメタノール以外のものの添加量の比率を、少なくとも処理水中の全窒素濃度とCODMnによって決定することを特徴とする請求項に記載の含窒素排水の処理方法。 The method for treating nitrogen-containing wastewater according to claim 2 , wherein the ratio of the amount of methanol added to the hydrogen donor other than methanol is determined by at least the total nitrogen concentration in the treated water and COD Mn .
JP2010010567A 2010-01-21 2010-01-21 Nitrogen-containing wastewater treatment method Expired - Fee Related JP5321475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010010567A JP5321475B2 (en) 2010-01-21 2010-01-21 Nitrogen-containing wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010010567A JP5321475B2 (en) 2010-01-21 2010-01-21 Nitrogen-containing wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2011147873A JP2011147873A (en) 2011-08-04
JP5321475B2 true JP5321475B2 (en) 2013-10-23

Family

ID=44535382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010010567A Expired - Fee Related JP5321475B2 (en) 2010-01-21 2010-01-21 Nitrogen-containing wastewater treatment method

Country Status (1)

Country Link
JP (1) JP5321475B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5966558B2 (en) * 2012-04-19 2016-08-10 Jfeスチール株式会社 Method and apparatus for treating wastewater containing nitric acid and wastewater containing iron
JP2013226508A (en) * 2012-04-25 2013-11-07 Jfe Steel Corp Treatment method of nitrogen-containing wastewater and device
CN102692415B (en) * 2012-05-31 2016-01-20 广州市怡文环境科技股份有限公司 Acid, alkali one machine permanganate index on-line monitoring system and detection method thereof
JP6007679B2 (en) * 2012-08-31 2016-10-12 Jfeスチール株式会社 Biological treatment method for wastewater containing nitrogen
CN105967346A (en) * 2016-05-26 2016-09-28 许婷 Urban domestic wastewater treating agent and preparation method thereof
CN108264166A (en) * 2018-02-06 2018-07-10 景德镇学院 A kind of chemical devil liquor recovery processing unit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4617572B2 (en) * 2000-12-26 2011-01-26 日新製鋼株式会社 Nitrogen-containing wastewater treatment method
JP2003311279A (en) * 2002-04-23 2003-11-05 Kurita Water Ind Ltd Apparatus and method for treating waste water
JP2004114002A (en) * 2002-09-30 2004-04-15 Ebara Corp Denitrification method and apparatus for wastewater

Also Published As

Publication number Publication date
JP2011147873A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
Han et al. Impact of carbon to nitrogen ratio and aeration regime on mainstream deammonification
Calli et al. Landfill leachate management in Istanbul: applications and alternatives
Fudala-Ksiazek et al. Nitrogen removal via the nitrite pathway during wastewater co-treatment with ammonia-rich landfill leachates in a sequencing batch reactor
Im et al. Simultaneous organic and nitrogen removal from municipal landfill leachate using an anaerobic-aerobic system
Diamadopoulos et al. Combined treatment of landfill leachate and domestic sewage in a sequencing batch reactor
CA2372374C (en) Waste treatment with control over biological solids
Sun et al. Achieving nitritation at low temperatures using free ammonia inhibition on Nitrobacter and real-time control in an SBR treating landfill leachate
Berrueta et al. Anaerobic treatment of leachates in UASB reactors
JP5321475B2 (en) Nitrogen-containing wastewater treatment method
Stegmann et al. Leachate treatment
EP0987224A2 (en) Method and apparatus for removing phosphorus and nitrogen from wastewater
AU2012316304B2 (en) Use of primary sludge for carbon source in an aerated-anoxic bioreactor system
Sodhi et al. Minimization of excess bio-sludge and pollution load in oxic-settling-anaerobic modified activated sludge treatment for tannery wastewater
Pire-Sierra et al. Nitrogen and COD removal from tannery wastewater using biological and physicochemical treatments
Hu et al. Centralized iron-dosing into returned sludge brings multifaceted benefits to wastewater management
Tong et al. Enhanced alure-type biological system (E-ATBS) for carbon, nitrogen and phosphorus removal from slaughterhouse wastewater: A case study
JP4017657B1 (en) Treatment method of wastewater containing organic matter
He et al. The treatment of animal manure wastewater by coupled simultaneous methanogenesis and denitrification (SMD) and shortcut nitrification–denitrification (SND)
Kulikowska et al. Removal of Organics and Nitrogen from Municipal Landfill Leachate in Two-Stage SBR Reactors.
Çelen-Erdem et al. Upflow packed bed Anammox reactor used in two-stage deammonification of sludge digester effluent
Lu et al. A case study of coupling upflow anaerobic sludge blanket (UASB) and ANITA™ Mox process to treat high-strength landfill leachate
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
Nzioka Mutua et al. Biological treatment of meat processing wastewater using lab-scale anaerobic-aerobic/anoxic sequencing batch reactors operated in series
Asadi et al. Statistical analysis and optimization of an aerobic SBR treating an industrial estate wastewater using response surface methodology (RSM)
Parravicini et al. Post-aeration of anaerobically digested sewage sludge for advanced COD and nitrogen removal: results and cost-benefit analysis at large-scale

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130701

R150 Certificate of patent or registration of utility model

Ref document number: 5321475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees