JP4017657B1 - Treatment method of wastewater containing organic matter - Google Patents

Treatment method of wastewater containing organic matter Download PDF

Info

Publication number
JP4017657B1
JP4017657B1 JP2007129781A JP2007129781A JP4017657B1 JP 4017657 B1 JP4017657 B1 JP 4017657B1 JP 2007129781 A JP2007129781 A JP 2007129781A JP 2007129781 A JP2007129781 A JP 2007129781A JP 4017657 B1 JP4017657 B1 JP 4017657B1
Authority
JP
Japan
Prior art keywords
sludge
microaerobic
atmosphere
dissolved oxygen
wastewater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007129781A
Other languages
Japanese (ja)
Other versions
JP2008284428A (en
Inventor
敏夫 間部
照文 山下
Original Assignee
株式会社日本プラント建設
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本プラント建設 filed Critical 株式会社日本プラント建設
Priority to JP2007129781A priority Critical patent/JP4017657B1/en
Application granted granted Critical
Publication of JP4017657B1 publication Critical patent/JP4017657B1/en
Publication of JP2008284428A publication Critical patent/JP2008284428A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

【解決課題】有機物含有排水を効果的に処理できると共に、汚泥の抜き取り処理を要さず結果として余剰汚泥を十分に減容化できる、有機物含有排水の処理方法を提供する。
【解決手段】有機物含有排水の処理方法は、有機物含有排水を溶存酸素量が1.0mg/lを超える好気性雰囲気下に維持して排水の流量を調整する流量調整工程1、排水を溶存酸素量が0.1〜1.0mg/lである微好気性雰囲気下で微生物処理する微好気性微生物処理工程2及び3、次いで、微好気性微生物処理工程からの排水を嫌気性雰囲気下で汚泥と上澄み液とに沈降分離させる汚泥沈殿工程4、得られた汚泥を嫌気性雰囲気下で濃縮沈降させる汚泥濃縮工程5、汚泥濃縮工程で処理された汚泥を溶存酸素量が0.1〜1.0mg/lである微好気性雰囲気下で更に消化する微好気性汚泥消化工程6、微好気性汚泥消化工程で得られた上澄み液を回収し、溶存酸素量が0.1〜1.0mg/lである微好気性雰囲気下で貯留する上澄み液貯留工程7を含み、汚泥沈殿工程4で得られた汚泥を微好気整備生物処理工程2に返送し、汚泥濃縮工程5から上澄み液を流量調整工程1に返送し、上澄み液貯留工程7から流量調整工程1及び/又は微好気性微生物処理工程2に上澄み液を戻す。
【選択図】図1
An organic matter-containing wastewater treatment method is provided that can effectively treat wastewater containing organic matter and does not require removal of sludge, resulting in sufficient volume reduction of excess sludge.
SOLUTION: A method for treating organic matter-containing wastewater is a flow rate adjustment step 1 in which wastewater containing organic matter is maintained in an aerobic atmosphere in which the dissolved oxygen amount exceeds 1.0 mg / l and the flow rate of the wastewater is adjusted. The microaerobic microorganism treatment steps 2 and 3 for treating microorganisms in a microaerobic atmosphere with 0.1 to 1.0 mg / l, and then the waste water from the microaerobic microorganism treatment step is treated with sludge and supernatant under anaerobic atmosphere. Sludge sedimentation step 4 for sedimentation and separation into sludge, sludge concentration step 5 for concentration and sedimentation of the obtained sludge in an anaerobic atmosphere, and sludge treated in the sludge concentration step with a dissolved oxygen content of 0.1 to 1.0 mg / l Microaerobic sludge digestion process 6 for further digestion in aerobic atmosphere, recovering the supernatant liquid obtained in the microaerobic sludge digestion process and storing it in a microaerobic atmosphere with a dissolved oxygen content of 0.1 to 1.0 mg / l The sludge obtained in the sludge precipitation step 4 Mud is returned to the microaerobic maintenance biological treatment process 2, the supernatant liquid from the sludge concentration process 5 is returned to the flow rate adjustment process 1, and the supernatant liquid storage process 7 to the flow rate adjustment process 1 and / or the microaerobic microorganism treatment process 2 Return the supernatant to.
[Selection] Figure 1

Description

本発明は、有機物含有排水の処理方法に関し、更に詳細には、有機物含有排水を効果的に処理できると共に、汚泥の抜き取りを要せず結果的に処理すべき余剰汚泥を十分に減容化できる、有機物含有排水の処理方法に関する。   The present invention relates to a method for treating organic matter-containing wastewater, and more specifically, can treat organic matter-containing wastewater effectively, and can sufficiently reduce the volume of excess sludge to be treated as a result without requiring removal of sludge. The present invention relates to a method for treating organic wastewater.

従来、有機物含有排水の処理に際しては、主として活性汚泥法が用いられている。活性汚泥法では、酸素呼吸する好気性バクテリアを主に使用し、分解させて流入汚水を浄化する方法を採用している。しかし、酸素呼吸する好気性バクテリアは増殖速度が速く処理槽内で必要以上に増加するため、この増加したバクテリア及びバクテリアの死骸や排泄物など余剰汚泥となりこれらを引き抜く作業が必要となる。この余剰汚泥は、産業廃棄物の約半数を占めるといわれ、最終処分場での埋め立て余地が少なくなっていることからその減容化対策が急務となっている。また、食品リサイクル法の施行により食品関連事業でも廃棄物の発生抑制や減容化対策が急務となっている。   Conventionally, the activated sludge method has been mainly used for the treatment of wastewater containing organic matter. In the activated sludge method, aerobic bacteria that breathe oxygen are mainly used, and a method of decomposing and purifying the influent sewage is adopted. However, since aerobic bacteria that breathe oxygen have a high growth rate and increase more than necessary in the treatment tank, it is necessary to work to extract these increased bacteria and surplus sludge such as dead bodies and excrement of bacteria. This excess sludge is said to occupy about half of industrial waste. Since there is less room for landfill at the final disposal site, measures to reduce the volume are urgently needed. In addition, due to the enforcement of the Food Recycling Law, there is an urgent need to reduce waste generation and reduce volume in food related businesses.

そこで、余剰汚泥を処理するか、又は余剰汚泥を排出しない排水の処理方法が種々提案されている。
例えば、特許文献1には、微好気性の曝気処理により廃水処理を行う廃水処理装置が記載されている。
Therefore, various wastewater treatment methods that treat excess sludge or do not discharge excess sludge have been proposed.
For example, Patent Document 1 describes a wastewater treatment apparatus that performs wastewater treatment by microaerobic aeration treatment.

特許文献2には、活性汚泥方式と生物膜方式の両方の特性を有する曝気処理方式が提案されている。
特許文献3には、曝気処理槽内において、汚水の曝気処理と汚泥沈殿とを同時に効果的に行うと共に、スカムの発生を極力抑え、わずかにでも発生したスカムは浄化水から自然に分離できるようにしてなる汚水処理装置が提案されている。
Patent Document 2 proposes an aeration treatment method having characteristics of both an activated sludge method and a biofilm method.
In Patent Document 3, the aeration treatment and sludge precipitation of the sewage are effectively performed simultaneously in the aeration treatment tank, and the generation of scum is suppressed as much as possible, so that the generated scum can be naturally separated from the purified water. A sewage treatment apparatus is proposed.

特許文献4には、沈殿槽の底部に堆積した汚泥を吸い上げて、一定量の汚泥を曝気処理槽に返送できるようにし、残りの汚泥を沈殿槽に液面を乱すことなく戻し、かつ沈殿槽底部の堆積汚泥を適度に撹拌するようになされた汚水処理装置が提案されている。   In Patent Document 4, the sludge accumulated at the bottom of the settling tank is sucked up so that a certain amount of sludge can be returned to the aeration treatment tank, and the remaining sludge is returned to the settling tank without disturbing the liquid level. There has been proposed a sewage treatment apparatus adapted to appropriately agitate the sediment sludge at the bottom.

また、特許文献5には、廃水原水に微生物の電子受容体調整水を混入し、溶存酸素量が実質的に1mg/l以下の条件で曝気し、汚泥を沈殿分離処理した後、更に溶存酸素量が実質的に1mg/l以下の条件で曝気すると共に上澄み水を電子受容体調整水として廃水原水に返送する処理方法を行うための処理装置が提案されている。   Further, in Patent Document 5, microbial electron acceptor adjustment water is mixed into raw waste water, and the amount of dissolved oxygen is aerated under substantially 1 mg / l or less. A treatment apparatus has been proposed for carrying out a treatment method in which the amount of aeration is substantially 1 mg / l or less and the supernatant water is returned to the raw wastewater as electron acceptor adjustment water.

しかし、上述の従来提案されている処理方法では、未だ十分に余剰汚泥を減容化できないか、又は余剰汚泥が発生しないとしても十分に効果的な有機物含有排水の処理ができないという問題がある。   However, the above-described conventionally proposed treatment methods still have a problem that the excess sludge cannot be sufficiently reduced, or even if the excess sludge is not generated, the organic matter-containing wastewater cannot be treated sufficiently effectively.

要するに、未だ十分に余剰汚泥を減容化できていないのが現状であり、余剰汚泥をさらに減容化できる有機物含有排水の処理方法の開発が要望されている。   In short, the current situation is that the surplus sludge has not been sufficiently reduced in volume, and there is a demand for the development of a treatment method for organic matter-containing wastewater that can further reduce the excess sludge.

特開2004-188281号公報JP 2004-188281 A 特開2004-223320号公報JP 2004-223320 A 特開2004-223432号公報JP 2004-223432 A 特開2004-237156号公報JP 2004-237156 A 特許第3667254号公報Japanese Patent No. 3667254

従って、本発明の目的は、有機物含有排水を効果的に処理できると共に、汚泥の抜き取り処理を要さず余剰汚泥を十分に減容化できる、有機物含有排水の処理方法を提供することにある。   Accordingly, an object of the present invention is to provide an organic matter-containing wastewater treatment method that can effectively treat organic matter-containing wastewater and can sufficiently reduce the volume of excess sludge without requiring sludge extraction treatment.

本発明者らは、上記課題を解消すべく鋭意検討した結果、有機物含有排水の好気性雰囲気下での微生物処理と微好気性雰囲気下での微生物処理とを組み合わせると共に、嫌気性雰囲気下で処理後の排水を汚泥と上澄み液とに沈降分離させることにより、上記目的を達成しうることを知見し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors combined microbial treatment in an aerobic atmosphere of organic matter-containing wastewater with microbial treatment in a microaerobic atmosphere, and treated in an anaerobic atmosphere. It was found that the above-mentioned purpose can be achieved by allowing the subsequent drainage to settle and separate into sludge and supernatant, and the present invention has been completed.

すなわち、本発明は、有機物含有排水を溶存酸素量が1.0mg/lを超える好気性雰囲気下に維持して前記排水の流量を調整する流量調整工程、前記排水を溶存酸素量が0.1〜1.0mg/l、好ましくは0.5〜0.8mg/lである微好気性雰囲気下で微生物処理する微好気性微生物処理工程、次いで、微好気性微生物処理工程からの排水を嫌気性雰囲気下で汚泥と上澄み液とに沈降分離させる汚泥沈殿工程、得られた汚泥を嫌気性雰囲気下で濃縮沈降させる汚泥濃縮工程、汚泥濃縮工程で濃縮された汚泥を溶存酸素量が0.1〜1.0mg/l、好ましくは0.5〜0.8mg/lである微好気性雰囲気下で更に消化する微好気性汚泥消化工程、微好気性汚泥消化工程で得られた上澄み液を回収して溶存酸素量が0.1〜1.0mg/l、好ましくは0.5〜0.8mg/lである微好気性雰囲気下で貯留する上澄み液貯留工程を含み、汚泥沈殿工程で得られた汚泥を微好気性微生物処理工程に返送して、微好気性微生物を活性化させ、汚泥濃縮工程で得られた上澄み液を流量調整工程に返送し、上澄み液貯留工程から上澄み液を流量調整工程及び/又は微好気性微生物処理工程に定量注入する有機物含有排水の処理方法である。   That is, the present invention is a flow rate adjustment step of adjusting the flow rate of the waste water by maintaining the organic matter-containing waste water in an aerobic atmosphere in which the dissolved oxygen amount exceeds 1.0 mg / l, and the waste water has a dissolved oxygen amount of 0.1 to 1.0 mg. / l, preferably 0.5 to 0.8 mg / l of microaerobic microorganism treatment step for treating microorganisms in a microaerobic atmosphere, and then the waste water from the microaerobic microorganism treatment step is treated with sludge and supernatant under anaerobic atmosphere The sludge sedimentation step for sedimentation and separation into sludge, the sludge concentration step for concentration and sedimentation of the obtained sludge in an anaerobic atmosphere, the amount of dissolved oxygen in the sludge concentrated in the sludge concentration step is 0.1 to 1.0 mg / l, preferably 0.5 to The supernatant obtained from the microaerobic sludge digestion process and the microaerobic sludge digestion process, which are further digested in a microaerobic atmosphere of 0.8 mg / l, is recovered and the dissolved oxygen amount is preferably 0.1 to 1.0 mg / l, preferably Is a supernatant storage process for storing in a microaerobic atmosphere of 0.5 to 0.8 mg / l The sludge obtained in the sludge precipitation process is returned to the microaerobic microorganism treatment process to activate the microaerobic microorganisms, and the supernatant liquid obtained in the sludge concentration process is returned to the flow rate adjustment process. It is the processing method of the organic matter containing waste_water | drain which carries out quantitative injection | pouring of a supernatant liquid from a storage process to a flow volume adjustment process and / or a microaerobic microorganism processing process.

本処理方法において、微好気性微生物処理工程は、流量調整工程からの排水を溶存酸素量が0.1〜1.0mg/lである微好気性雰囲気下で微生物処理する第1微好気性微生物処理工程と、前記第1微好気性微生物処理工程からの排水を溶存酸素量が0.1〜1.0mg/lである微好気性雰囲気下で微生物処理して有機物の分解を進行させる第2微好気性微生物処理工程とを含むことが好ましい。   In this treatment method, the microaerobic microorganism treatment step includes a first microaerobic microorganism treatment step in which the wastewater from the flow rate adjustment step is subjected to microorganism treatment in a microaerobic atmosphere having a dissolved oxygen amount of 0.1 to 1.0 mg / l. , A second microaerobic microorganism treatment step in which the wastewater from the first microaerobic microorganism treatment step is subjected to a microorganism treatment in a microaerobic atmosphere having a dissolved oxygen amount of 0.1 to 1.0 mg / l to advance decomposition of organic matter. Are preferably included.

本発明の処理方法によれば、有機物含有排水を微好気性雰囲気下で処理するので、増殖速度が遅く、必要最低限の菌体合成で有機物を分解する硝酸呼吸を主とする微生物の増殖が促され、逆に余剰汚泥を発生させる好気性微生物(酸素呼吸を主とする微生物)の増殖が抑制される。よって、有機物含有排水を効果的に処理できると共に、汚泥の抜き取り処理を要さず余剰汚泥を十分に減容化でき、特にメンテナンスなしに有機物含有排水を連続処理することができる。   According to the treatment method of the present invention, since organic matter-containing wastewater is treated in a microaerobic atmosphere, the growth rate is slow, and the growth of microorganisms mainly consisting of nitrate respiration that decomposes organic matter with the minimum necessary cell synthesis is possible. On the contrary, the growth of aerobic microorganisms (microorganisms mainly oxygen respiration) that generate excess sludge is suppressed. Therefore, the organic matter-containing wastewater can be effectively treated, and the excess sludge can be sufficiently reduced without requiring the sludge extraction treatment, and the organic matter-containing wastewater can be continuously treated without maintenance.

以下、本発明について図面を参照して更に詳細に説明する。
本発明で処理できる有機物含有排水としては、屎尿排水、家畜糞尿排水、農業排水、生活排水、工場排水などが挙げられる。
Hereinafter, the present invention will be described in more detail with reference to the drawings.
Examples of the organic matter-containing wastewater that can be treated in the present invention include manure wastewater, livestock manure wastewater, agricultural wastewater, domestic wastewater, and factory wastewater.

図1は、本発明の処理方法の概要を示す模式図である。
本発明の有機物含有排水の処理方法は、図1に示すように、流量調整槽1、第1微好気反応槽2、第2微好気反応槽3、沈殿槽4、汚泥濃縮槽5、微好気性汚泥消化槽6、上澄み液貯留槽7、上澄み液貯留槽7から流量調整槽1に至る循環用配管(消化上澄み液返送管)8、上澄み液貯留槽7から第1微好気反応槽2に至る循環用配管(消化上澄み液返送管)9及び汚泥濃縮槽5から流量調整槽1に至る循環用配管(濃縮汚泥返送管)10を具備するシステムで行うことができる。なお、本実施形態では、微好気性反応槽を第1及び第2微好気反応槽の2槽構造を採用しているが、必ずしも2槽構造である必要はない。
FIG. 1 is a schematic diagram showing an outline of the processing method of the present invention.
As shown in FIG. 1, the organic matter-containing wastewater treatment method of the present invention comprises a flow rate adjustment tank 1, a first microaerobic reaction tank 2, a second microaerobic reaction tank 3, a precipitation tank 4, a sludge concentration tank 5, Microaerobic sludge digestion tank 6, supernatant liquid storage tank 7, circulation pipe (digestion supernatant return pipe) 8 from the supernatant liquid storage tank 7 to the flow rate adjustment tank 1, and the first microaerobic reaction from the supernatant liquid storage tank 7 It can be carried out by a system including a circulation pipe (digested supernatant liquid return pipe) 9 leading to the tank 2 and a circulation pipe (concentrated sludge return pipe) 10 extending from the sludge concentration tank 5 to the flow rate adjustment tank 1. In the present embodiment, the micro-aerobic reaction tank has a two-tank structure of the first and second micro-aerobic reaction tanks. However, the two-tank structure is not necessarily required.

流量調整槽1において、有機物含有排水(以下、「原水」ともいう)を溶存酸素量が1.0mg/lを超える好気性雰囲気下に維持して前記排水の流量を調整する流量調整工程を行う。第1微好気反応槽2において、前記排水を溶存酸素量が0.1〜1.0mg/lである微好気性雰囲気下で処理する第1微好気性微生物処理工程を行う。第2微好気反応槽3において、前記第1微好気性微生物処理工程からの排水を0.1〜1.0mg/lである微好気性雰囲気下で処理して有機物の分解を進行させる第2微好気性微生物処理工程を行う。次いで、沈殿槽4において、第2微好気性微生物処理工程からの排水を嫌気性雰囲気下で汚泥と上澄み液とに沈降分離させる汚泥沈殿工程を行う。ここまでの工程は、本システムに供給される原水の自然流に従って連続的に行われる。沈殿槽4で得られる上澄み液は排水基準を満たしている限り、一般流域に放流してよい。一方、沈殿槽4で得られる汚泥は、通常は第1微好気性微生物処理工程に返送されて再び微生物の活性化に供されるが、1日に1〜2回の割合で汚泥濃縮槽5に送られ、嫌気性雰囲気下で濃縮沈降させる汚泥濃縮工程に供される。次いで、微好気性汚泥消化槽6において、汚泥濃縮工程で処理された汚泥を溶存酸素量が0.1〜1.0mg/lである微好気性雰囲気下で更に消化する微好気性汚泥消化工程を行う。微好気性汚泥消化工程は、滞留時間を約12〜24時間程度とすることが好ましい。次に、上澄み液貯留槽7において、微好気性汚泥消化工程で得られた消化上澄み液を回収し、溶存酸素量が0.1〜1.0mg/lである微好気性雰囲気下で貯留する上澄み液貯留工程を行う。この上澄み液貯留工程も滞留時間を約12〜24時間程度として、消化還元用微生物の繁殖を促すことが好ましい。   In the flow rate adjustment tank 1, an organic matter-containing wastewater (hereinafter also referred to as “raw water”) is maintained in an aerobic atmosphere in which the dissolved oxygen amount exceeds 1.0 mg / l, and a flow rate adjustment step of adjusting the flow rate of the wastewater is performed. In the 1st microaerobic reaction tank 2, the 1st microaerobic microorganisms process process which processes the said waste_water | drain in the microaerobic atmosphere whose dissolved oxygen amount is 0.1-1.0 mg / l is performed. In the second microaerobic reaction tank 3, the wastewater from the first microaerobic microorganism treatment step is treated in a microaerobic atmosphere of 0.1 to 1.0 mg / l to promote decomposition of organic matter. The aerobic microorganism treatment process is performed. Next, in the sedimentation tank 4, a sludge precipitation step is performed in which the waste water from the second microaerobic microorganism treatment step is settled and separated into sludge and a supernatant in an anaerobic atmosphere. The process so far is continuously performed according to the natural flow of raw water supplied to the system. The supernatant obtained in the settling tank 4 may be discharged into a general basin as long as the drainage standard is satisfied. On the other hand, the sludge obtained in the sedimentation tank 4 is usually returned to the first microaerobic microorganism treatment step and again used for microbial activation, but the sludge concentration tank 5 is once or twice a day. And is subjected to a sludge concentration step for concentration and sedimentation in an anaerobic atmosphere. Subsequently, in the microaerobic sludge digestion tank 6, a microaerobic sludge digestion process is performed in which the sludge treated in the sludge concentration process is further digested in a microaerobic atmosphere having a dissolved oxygen content of 0.1 to 1.0 mg / l. In the microaerobic sludge digestion step, the residence time is preferably about 12 to 24 hours. Next, the supernatant liquid storage tank 7 collects the digestive supernatant liquid obtained in the microaerobic sludge digestion step and stores it in a microaerobic atmosphere with a dissolved oxygen amount of 0.1 to 1.0 mg / l. Perform the process. In this supernatant liquid storage step, it is preferable to promote the propagation of microorganisms for digestion and reduction by setting the residence time to about 12 to 24 hours.

汚泥沈殿工程で得られた汚泥は、微好気性微生物処理工程に返送されて、微好気性微生物を活性化させる。汚泥濃縮工程で得られた上澄み液は、流量調整工程に返送され、再度、排水処理工程に利用される。上澄み液貯留工程から消化上澄み液を流量調整工程及び/又は微好気性微生物処理工程に定量注入する。   The sludge obtained in the sludge precipitation step is returned to the microaerobic microorganism treatment step to activate the microaerobic microorganisms. The supernatant liquid obtained in the sludge concentration step is returned to the flow rate adjustment step and again used in the wastewater treatment step. The digestive supernatant is quantitatively injected from the supernatant liquid storage process into the flow rate adjustment process and / or the microaerobic microorganism treatment process.

以下、各工程をさらに詳細に説明する。
1)流量調整工程
流量調整工程は、前記有機物含有排水を溶存酸素量が1.0mg/lを超える好気性雰囲気下、好ましくは1.0超過〜2.0mg/lに維持して、前記排水の流量を調整する工程である。有機物含有排水は、水質・溶存酸素量・流入量など、常に変動し安定していない。続く第1及び第2微好気処理工程において、すばやく微生物を増殖活性化させる為に流量調整工程で有機物含有排水の溶存酸素量を1.0超過〜2.0mg/lの範囲で安定させて流出させ、第1微好気反応槽において溶存酸素量を1.0mg/l以下に調整するのが好ましい。
Hereinafter, each process will be described in more detail.
1) Flow rate adjustment step The flow rate adjustment step adjusts the flow rate of the waste water containing the organic matter-containing waste water in an aerobic atmosphere in which the dissolved oxygen amount exceeds 1.0 mg / l, preferably more than 1.0 to 2.0 mg / l. It is a process to do. Wastewater containing organic matter is constantly changing and unstable, such as water quality, dissolved oxygen, and inflow. In the following first and second microaerobic treatment steps, the dissolved oxygen content of the organic matter-containing wastewater is stabilized and discharged in the range of 1.0 to 2.0 mg / l in the flow rate adjustment step in order to quickly grow and activate microorganisms. It is preferable to adjust the dissolved oxygen amount to 1.0 mg / l or less in the first microaerobic reaction tank.

溶存酸素量の調整は、本実施形態においては、図1に示すように流量調整槽1内に設けた曝気用配管1aから空気を送り込むことによって調整している。ここで、曝気用配管1aから供給される空気の流れによって流量調整槽1内の液の循環も行われる。   In this embodiment, the dissolved oxygen amount is adjusted by sending air from the aeration pipe 1a provided in the flow rate adjusting tank 1 as shown in FIG. Here, the liquid in the flow rate adjusting tank 1 is also circulated by the flow of air supplied from the aeration pipe 1a.

流量は、図1に示すように、流量調整槽1内に存在する有機物含有排水並びに後述する汚泥濃縮槽5及び上澄み液貯留槽7から流量調整槽1に戻される上澄み液が、流量調整槽1から第1微好気反応槽2に1時間当たり日平均排水量の24分の1乃至1.5倍以下で流出するように調整する。第1微好気反応槽以降の処理槽容量は、基本的に1日の流入排水を16〜24時間以内で処理するように計画汚濁負荷量で設計されるため、前記流出量を超えて流出させると各処理に必要な滞留時間が確保できず好ましくない。一般的には、流量調整槽1へ戻される上澄み液は処理水量全体の約0.3〜約1.0vol%となるように設定するのが好ましい。   As shown in FIG. 1, the flow rate of the organic matter-containing wastewater present in the flow rate adjustment tank 1 and the supernatant liquid returned to the flow rate adjustment tank 1 from the sludge concentration tank 5 and the supernatant liquid storage tank 7 described later are the flow rate adjustment tank 1. To 1st slightly aerobic reaction tank 2 so that it will flow out to 1/24 to 1.5 times or less of daily average drainage per hour. The capacity of the treatment tank after the first microaerobic reaction tank is basically designed with the planned pollution load so that the daily influent wastewater is treated within 16 to 24 hours. This is not preferable because the residence time required for each treatment cannot be secured. In general, the supernatant liquid returned to the flow rate adjusting tank 1 is preferably set to be about 0.3 to about 1.0 vol% of the entire treated water amount.

2)第1微好気性微生物処理工程
第1微好気性微生物処理工程は、前記排水を溶存酸素量が0.1〜1.0mg/l、好ましくは0.5〜0.8mg/lである微好気性雰囲気下で微生物処理する工程である。
2) First microaerobic microbial treatment step The first microaerobic microbial treatment step is a microaerobic atmosphere in which the wastewater has a dissolved oxygen content of 0.1 to 1.0 mg / l, preferably 0.5 to 0.8 mg / l. It is a process of microbial treatment.

本工程では、硝酸塩及びリン酸塩を消費する消臭微生物(化学合成菌、メトファイル菌など)が優占化する。化学合成菌は硝酸を産生し、メトファイル菌は硫化物を産生する。被処理液中に硫化物が増加すると、硫化物を電子受容体として消費する硫黄還元微生物(古細菌を含む)が増殖する。   In this step, deodorizing microorganisms (such as chemically synthesized bacteria and Metofile bacteria) that consume nitrates and phosphates dominate. Chemosynthetic bacteria produce nitric acid, and Metofil bacteria produce sulfide. When sulfide increases in the liquid to be treated, sulfur-reducing microorganisms (including archaea) that consume sulfide as an electron acceptor grow.

溶存酸素量が0.1mg/l未満であると消臭微生物(化学合成菌、メトファイル菌など)の増殖が著しく低下し、逆に1.0mg/lを超えると好気性微生物が増殖活性化してしまい微好気性雰囲気下で増殖活性化する微生物の発生を妨げる。また、好気性微生物は増殖力が強いため、汚泥の発生が増加する。   If the amount of dissolved oxygen is less than 0.1 mg / l, the growth of deodorant microorganisms (chemically synthesized bacteria, Metofile bacteria, etc.) will decrease significantly, and if it exceeds 1.0 mg / l, aerobic microorganisms will proliferate and activate. Prevents the generation of microorganisms that grow and activate in a microaerobic atmosphere. In addition, since aerobic microorganisms have a strong growth potential, the generation of sludge increases.

この工程での処理は、周囲温度、好ましくは20℃〜30℃の温度条件で行うのが好ましい。また、処理時間である滞留時間は、4〜12時間の範囲で、有機物含有排水の負荷により設計することが好ましい。本実施形態においては、連続的に処理を行い流量調整槽1より流入したと同じ量の被処理液が第2微好気反応槽3に流出するため、被処理液が短絡し難い構造とする。一般的には、流量調整槽1から第1微好気反応槽2へ流れる水量は処理水量全体の1時間あたり日平均排水量の24分の1〜1.5となるように設定するのが好ましい。   The treatment in this step is preferably performed at ambient temperature, preferably 20 ° C to 30 ° C. Moreover, it is preferable to design the residence time which is processing time in the range of 4 to 12 hours by the load of organic matter containing waste_water | drain. In the present embodiment, since the same amount of liquid to be processed flows out to the second slightly aerobic reaction tank 3 as a result of continuous processing and flowing from the flow rate adjustment tank 1, the liquid to be processed is not easily short-circuited. . Generally, the amount of water flowing from the flow rate adjusting tank 1 to the first slightly aerobic reaction tank 2 is preferably set to be 1/24 to 1.5 of the daily average drainage amount per hour of the entire treated water amount.

第1微好気反応槽2においても溶存酸素量の調整は、図1に示すように第1微好気反応槽2内に設けた曝気用配管2aから空気を送り込むことによって調整している。ここで、曝気用配管2aから供給される空気の流れによって第1微好気反応槽2内の液の循環も行われる。   Also in the 1st microaerobic reaction tank 2, adjustment of the amount of dissolved oxygen is adjusted by sending in air from the aeration pipe 2a provided in the 1st microaerobic reaction tank 2, as shown in FIG. Here, the liquid in the first microaerobic reaction tank 2 is also circulated by the flow of air supplied from the aeration pipe 2a.

3)第2微好気性微生物処理工程
第2微好気性微生物処理工程は、前記第1微好気性微生物処理工程からの排水を0.1〜1.0mg/l、好ましくは0.5〜0.8mg/lである微好気性雰囲気下で処理して有機物の分解を進行させる工程である。
3) Second microaerobic microorganism treatment step The second microaerobic microorganism treatment step is a waste water from the first microaerobic microorganism treatment step of 0.1 to 1.0 mg / l, preferably 0.5 to 0.8 mg / l. This is a step of proceeding decomposition of organic matter by treatment in a microaerobic atmosphere.

本工程では、被処理液に含まれる有機物を消費する発酵性微生物(酵母、バシラス、アルカリゲネス、クロストリジウム、シュードモナス、乳酸菌など)を優占化させ、脱窒(N2ガス生成放出)を進行させると共に、有機物を電子供与体とする発酵反応により有機物の分解(H2、CO2等の生成)を進行させる。有機物の分解により発生したH2は、硫黄化合物を電子受容体とする硫黄還元微生物により分解されるので発酵性微生物の活性増殖が促進される。有機物の分解により発生する臭気物質(硫化メチル:メタン臭がなかったことからメタンの発生はないと考えられる)は消臭微生物(化学合成菌、メトファイル菌など)により消費される。 In this process, fermentable microorganisms (yeast, bacillus, alkaligenes, Clostridium, Pseudomonas, lactic acid bacteria, etc.) that consume organic substances contained in the liquid to be treated prevail, and denitrification (N 2 gas generation and release) proceeds. Then, decomposition of organic matter (production of H 2 , CO 2, etc.) proceeds by a fermentation reaction using the organic matter as an electron donor. H 2 generated by the decomposition of organic matter is decomposed by sulfur-reducing microorganisms that use sulfur compounds as electron acceptors, so that active growth of fermentable microorganisms is promoted. Odorous substances generated by the decomposition of organic substances (methyl sulfide: no methane generation due to the absence of methane odor) are consumed by deodorizing microorganisms (chemically synthesized bacteria, Metofile bacteria, etc.).

溶存酸素量が0.1mg/l未満であると、発酵性微生物(酵母、バシラス、アルカリゲネス、クロストリジウム、シュードモナス、乳酸菌など)の増殖が著しく低下し、逆に1.0mg/lを超えると好気性微生物が増殖活性化してしまい、微好気性雰囲気下で増殖活性化する微生物の活性を妨げる。また、好気性微生物は増殖力が強いため、汚泥の発生が増加する。   If the amount of dissolved oxygen is less than 0.1 mg / l, the growth of fermentable microorganisms (yeast, bacillus, alkaligenes, Clostridium, Pseudomonas, lactic acid bacteria, etc.) is significantly reduced, and conversely if it exceeds 1.0 mg / l, aerobic microorganisms It proliferates and inhibits the activity of microorganisms that proliferate and activate in a microaerobic atmosphere. In addition, since aerobic microorganisms have a strong growth potential, the generation of sludge increases.

この工程での処理は、周囲温度、好ましくは20℃〜30℃の温度条件で行うことができる。また、処理時間である滞留時間は、4〜12時間の範囲で、有機物含有排水の負荷により設計することが好ましい。本実施形態においては、連続的に処理を行い第1微好気反応槽2より流入があると同量が沈殿槽3に流出するため、被処理液が短絡し難い構造とする。   The treatment in this step can be performed at ambient temperature, preferably 20 ° C to 30 ° C. Moreover, it is preferable to design the residence time which is processing time in the range of 4 to 12 hours by the load of organic matter containing waste_water | drain. In this embodiment, since it processes continuously and inflow from the 1st microaerobic reaction tank 2 will flow out to the sedimentation tank 3, it is set as the structure where a to-be-processed liquid is hard to short-circuit.

第2微好気反応槽3においても空気を供給する曝気用配管3aが設けられ、溶存酸素量の調整を行うと共に被処理液の循環を行っている。   The second slightly aerobic reaction tank 3 is also provided with an aeration pipe 3a for supplying air, adjusting the amount of dissolved oxygen and circulating the liquid to be treated.

4)汚泥沈殿工程
汚泥沈殿工程は、第2微好気性微生物処理工程からの排水を嫌気性雰囲気下で汚泥と上澄み液とに沈降分離させる工程である。
4) Sludge precipitation step The sludge precipitation step is a step of allowing the waste water from the second microaerobic microorganism treatment step to settle and separate into sludge and supernatant liquid in an anaerobic atmosphere.

汚泥沈殿工程では、嫌気性雰囲気下に維持することによって発酵性微生物の増殖を停止させ、嫌気性微生物(通性嫌気性菌、硫黄還元菌)及びリン吸収性微生物(ポリリン酸蓄積菌などと考えられる)が増殖して汚泥を消化して、メタン、硝酸塩、硫黄化合物、リン酸塩などを産生する。   In the sludge precipitation process, the growth of fermentable microorganisms is stopped by maintaining in an anaerobic atmosphere, and considered as anaerobic microorganisms (facultative anaerobic bacteria, sulfur-reducing bacteria) and phosphorus-absorbing microorganisms (polyphosphate accumulating bacteria, etc.) ) Grow and digest sludge to produce methane, nitrates, sulfur compounds, phosphates, etc.

沈降分離は、貯留させた被処理液を一定時間、好ましくは3〜4時間、周囲温度、好ましくは20℃〜30℃の温度条件下に放置することにより行うことが好ましい。沈殿槽4には、処理済みの上澄み液を一般流域に放出するための上澄み液放出用配管4aが設けられている。また、汚泥を自然沈降させるため、沈殿槽4下部にはホッパー4bが設けられ、日平均排水量の1〜2倍の量で常時沈降汚泥を第1微好気反応槽2に返送し、汚泥濃縮槽5にも分配調整できる構造とする。なお、沈殿槽4内に貯留させた被処理液の高さ方向に分離用水準線(図中、点線で示す)を設定し、分離用水準線よりも上側に存在する被処理液を上澄み液とし、第2微好気反応槽3からの被処理液の流入は分離水準線よりも下側にて行うようにしてもよい。第2微好気反応槽からの流入速度は1時間当たり日平均排水量の24分の2〜3とするのが好ましい。   The sedimentation separation is preferably performed by leaving the stored liquid to be treated for a certain period of time, preferably 3 to 4 hours, at ambient temperature, preferably 20 ° C to 30 ° C. The sedimentation tank 4 is provided with a supernatant discharge pipe 4a for discharging the processed supernatant to the general watershed. In addition, in order to allow the sludge to settle naturally, a hopper 4b is provided at the bottom of the settling tank 4, and the settling sludge is always returned to the first microaerobic reaction tank 2 in an amount 1 to 2 times the daily average amount of drainage to concentrate the sludge. The tank 5 has a structure that can be distributed and adjusted. In addition, a separation level line (indicated by a dotted line in the figure) is set in the height direction of the liquid to be treated stored in the settling tank 4, and the liquid to be treated existing above the separation level line is a supernatant liquid. The inflow of the liquid to be treated from the second slightly aerobic reaction tank 3 may be performed below the separation level line. The inflow rate from the second slightly aerobic reaction tank is preferably 2 to 3/24 of the daily average drainage amount per hour.

5)汚泥濃縮工程
汚泥濃縮工程は、汚泥沈殿工程で得られた汚泥を嫌気性雰囲気下でさらに濃縮沈降させて、上澄み水と汚泥とに分離させる工程である。
5) Sludge concentration process The sludge concentration process is a process in which the sludge obtained in the sludge precipitation process is further concentrated and settled in an anaerobic atmosphere to separate into supernatant water and sludge.

汚泥濃縮工程では、汚泥沈殿工程で精製された沈殿汚泥を、さらに嫌気性雰囲気下に維持することによって発酵性微生物の増殖を抑制し、消化性微生物(メタン生成菌、硫黄還元菌など)の増殖を促し、汚泥の消化がさらに進行し、余剰汚泥が減量する。   In the sludge concentration process, the precipitation sludge purified in the sludge precipitation process is further maintained in an anaerobic atmosphere to suppress the growth of fermentable microorganisms and the growth of digestive microorganisms (methane-producing bacteria, sulfur-reducing bacteria, etc.) The digestion of sludge further proceeds, and the excess sludge is reduced.

本実施形態においては、約12〜24時間に1回の割合で沈殿槽4の下端から汚泥を抜き取り汚泥濃縮槽5に投入し、任意の所定量貯留した後、周囲温度、好ましくは20℃〜30℃の温度条件下で約12〜24時間の滞留時間で濃縮させることが好ましい。   In the present embodiment, the sludge is extracted from the lower end of the sedimentation tank 4 at a rate of about once every 12 to 24 hours, put into the sludge concentration tank 5 and stored in an arbitrary predetermined amount, and then the ambient temperature, preferably 20 ° C to It is preferred to concentrate at a temperature of 30 ° C. with a residence time of about 12-24 hours.

汚泥濃縮槽5には、分離された上澄み液を流量調整槽1に戻すための循環用配管10が設けられている。また、汚泥を自然沈降させるため、汚泥濃縮槽5下部にはホッパー5bが設けられている。   The sludge concentration tank 5 is provided with a circulation pipe 10 for returning the separated supernatant liquid to the flow rate adjustment tank 1. Further, a hopper 5b is provided at the lower part of the sludge concentration tank 5 in order to allow the sludge to settle naturally.

本実施形態の濃縮処理は連続的に行うものであるが、汚泥濃縮工程には所定量の汚泥の存在が必要となり、汚泥沈降工程で所定量の汚泥が沈降するまでの時間を要し、また汚泥が消化されて所定量まで減量するまでの時間を要するので、汚泥の移送は約12〜24時間に1回の割合で行うことが好ましい。   Although the concentration treatment of this embodiment is performed continuously, the sludge concentration step requires the presence of a predetermined amount of sludge, and it takes time until the predetermined amount of sludge settles in the sludge settling step. Since it takes time until the sludge is digested and reduced to a predetermined amount, the sludge is preferably transferred at a rate of about once every 12 to 24 hours.

6)微好気性汚泥消化工程
微好気性汚泥消化工程は、汚泥濃縮工程で濃縮された汚泥を溶存酸素量が0.1〜1.0mg/l、好ましくは0.5〜0.8mg/lである微好気性雰囲気下で更に消化する工程である。
6) Microaerobic sludge digestion process The microaerobic sludge digestion process is a microaerobic atmosphere in which the amount of dissolved oxygen in the sludge concentrated in the sludge concentration process is 0.1 to 1.0 mg / l, preferably 0.5 to 0.8 mg / l. It is the process of further digesting below.

汚泥濃縮工程で濃縮された汚泥中の有機物はほとんど消化されてほぼ無機物となっており、発酵性微生物は激減している。微好気性汚泥消化工程では、消化性微生物(メタン生成菌、硫黄還元菌など)及び消臭微生物(化学合成菌、メトファイル菌など)の共存により、微量に残存している有機物を分解消化して、硝酸塩、硫黄化合物、リン酸塩などの無機成分に富む溶液(消化上澄み液)が生成される。   The organic matter in the sludge concentrated in the sludge concentration process is almost digested to become almost inorganic, and fermentable microorganisms are drastically reduced. In the microaerobic sludge digestion process, digestive microorganisms (methane-producing bacteria, sulfur-reducing bacteria, etc.) and deodorizing microorganisms (chemosynthetic bacteria, Metofile bacteria, etc.) coexist and decompose and digest residual organic matter. Thus, a solution (digestion supernatant) rich in inorganic components such as nitrates, sulfur compounds and phosphates is produced.

溶存酸素量を0.1〜1.0mg/l、好ましくは0.5〜0.8mg/lに維持し、消化性微生物と消臭性微生物を適度に増殖させることで、結果的に汚泥は減容される。
溶存酸素量が1.0mg/lを超えると消化性微生物や消臭性微生物の活性が低下する。
The amount of dissolved oxygen is maintained at 0.1 to 1.0 mg / l, preferably 0.5 to 0.8 mg / l, and digestive microorganisms and deodorant microorganisms are allowed to grow appropriately, resulting in a reduction in sludge volume.
If the amount of dissolved oxygen exceeds 1.0 mg / l, the activity of digestible microorganisms and deodorant microorganisms decreases.

本実施形態においては、汚泥濃縮槽5の下端から汚泥を抜き取り微好気性汚泥消化槽6に投入し、任意の所定量貯留した後、周囲温度、好ましくは20℃〜30℃の温度条件下、12〜24時間の滞留時間で反応を行うことが好ましい。   In this embodiment, after sludge is extracted from the lower end of the sludge concentration tank 5 and put into the microaerobic sludge digestion tank 6 and stored in an arbitrary predetermined amount, ambient temperature, preferably 20 ° C to 30 ° C, The reaction is preferably carried out with a residence time of 12 to 24 hours.

本実施形態の処理方法は連続的に行うものであるが、微好気性汚泥消化工程には所定量の汚泥の存在が必要となり、先行する汚泥濃縮工程と同様に約12〜24時間に1回の割合で汚泥の移送を行うのが好ましい。   Although the treatment method of this embodiment is performed continuously, the presence of a predetermined amount of sludge is required in the microaerobic sludge digestion step, and about once every 12 to 24 hours as in the preceding sludge concentration step. It is preferable to transfer sludge at a ratio of

微好気性汚泥消化槽6においても曝気用配管6aが設けられ、溶存酸素量の調整を行うと共に被処理液の循環を行っている。
微好気性汚泥消化工程により得られた無機成分に富む上澄み液は、自然流出により次の上澄み液貯留工程に送られる。
The aerobic sludge digestion tank 6 is also provided with an aeration pipe 6a for adjusting the amount of dissolved oxygen and circulating the liquid to be treated.
The supernatant liquid rich in inorganic components obtained by the microaerobic sludge digestion process is sent to the next supernatant liquid storage process by natural outflow.

7)上澄み液貯留工程
上澄み液貯留工程は、微好気性汚泥消化工程で得られた上澄み液(以下、この上澄み液を「消化上澄み液」という)を回収し、溶存酸素量が0.1〜1.0mg/l、好ましくは0.5〜0.8mg/lである微好気性雰囲気下で貯留する工程である。また、わずかに残存している汚泥を消化させる工程でもある。
7) Supernatant liquid storage process The supernatant liquid storage process collects the supernatant liquid obtained in the microaerobic sludge digestion process (hereinafter, this supernatant liquid is referred to as “digested supernatant liquid”), and the dissolved oxygen amount is 0.1 to 1.0 mg. / l, preferably a step of storing in a microaerobic atmosphere of 0.5 to 0.8 mg / l. It is also a process of digesting the sludge that remains slightly.

消化上澄み液には、微生物がエネルギー源とする化学物質が多量に含まれている。例えば、微生物学的に産生される硝酸塩、硫黄化合物、リン酸塩などを多量に含む無機液体などである。したがって、この消化上澄み液を流量調整槽1又は微好気反応槽2に戻すことによって、原水中の微生物の代謝を助長することができ、微生物を活性な状態に維持することが容易となる。このため、消化上澄み液を微生物の餌として好適な硝酸4.0〜6.0mg/Lとなる濃度範囲となるように調整しながら貯留するのが好ましい。   The digestive supernatant contains a large amount of chemical substances that microorganisms use as an energy source. For example, an inorganic liquid containing a large amount of nitrates, sulfur compounds, phosphates and the like produced microbiologically. Therefore, by returning the digested supernatant to the flow rate adjustment tank 1 or the microaerobic reaction tank 2, the metabolism of microorganisms in the raw water can be promoted, and the microorganisms can be easily maintained in an active state. For this reason, it is preferable to store digestive supernatant liquid, adjusting so that it may become the density | concentration range used as nitric acid 4.0-6.0 mg / L suitable as bait for microorganisms.

溶存酸素量が0.1mg/l未満であると、消臭微生物(化学合成菌、メトファイル菌など)の活性が著しく低下し、逆に1.0mg/lを超えると消化性微生物や消臭性微生物の活性が低下する。   If the amount of dissolved oxygen is less than 0.1 mg / l, the activity of deodorizing microorganisms (chemically synthesized bacteria, Metofir bacteria, etc.) is significantly reduced, and conversely if it exceeds 1.0 mg / l, digestive microorganisms and deodorizing microorganisms Activity decreases.

本実施形態においては、微好気性汚泥消化槽6の上端部分から上澄み液を自然流出により抜き取り上澄み液貯留槽7に投入し、周囲温度、好ましくは20℃〜30℃の温度条件下で約12〜24時間貯留する。   In the present embodiment, the supernatant liquid is extracted from the upper end portion of the microaerobic sludge digestion tank 6 by natural outflow and is introduced into the supernatant liquid storage tank 7 and is about 12 at ambient temperature, preferably 20 ° C. to 30 ° C. Store for ~ 24 hours.

上澄み液貯留槽7においても曝気用配管7aが設けられ、溶存酸素量の調整を行うと共に被処理液の循環を行っている。   The supernatant liquid storage tank 7 is also provided with an aeration pipe 7a for adjusting the amount of dissolved oxygen and circulating the liquid to be treated.

8)循環工程
本発明において、循環工程には、汚泥沈殿工程で得られた汚泥を微好気性微生物処理工程に返送して微好気性微生物を活性化させる工程と、汚泥濃縮工程で得られた上澄み液を流量調整工程に返送する工程と、上澄み液貯留工程から上澄み液を流量調整工程及び/又は微好気性微生物処理工程に定量注入する工程とがある。
8) Circulation process In the present invention, the circulation process was obtained by returning the sludge obtained in the sludge precipitation process to the microaerobic microorganism treatment process and activating the microaerobic microorganisms, and the sludge concentration process. There are a step of returning the supernatant liquid to the flow rate adjustment step and a step of quantitatively injecting the supernatant liquid from the supernatant liquid storage step into the flow rate adjustment step and / or the microaerobic microorganism treatment step.

汚泥沈殿槽4からの汚泥は、汚泥返送管4cを通して微好気性微生物処理工程(第1微好気反応槽2)に返送される。汚泥濃縮槽5からの上澄み液は、上澄み液返送管10を通して流量調整槽1に返送される。上澄み液貯留槽7からの消化上澄み液は、消化上澄み液返送管8及び9を通して流量調整槽1及び微好気性微生物処理工程(第1微好気反応槽2)にそれぞれ返送される。   The sludge from the sludge settling tank 4 is returned to the microaerobic microorganism treatment step (first microaerobic reaction tank 2) through the sludge return pipe 4c. The supernatant liquid from the sludge concentration tank 5 is returned to the flow rate adjustment tank 1 through the supernatant liquid return pipe 10. The digestive supernatant liquid from the supernatant liquid storage tank 7 is returned to the flow rate adjustment tank 1 and the microaerobic microorganism treatment step (first microaerobic reaction tank 2) through the digestive supernatant liquid return pipes 8 and 9, respectively.

消化上澄み液を流量調整工程及び/又は微好気性微生物処理工程に戻す際には、一日に処理する排水の総量を基準としてそれぞれ0.3〜1.0vol%となるように各槽に投入するのが好ましい。   When returning the digestive supernatant to the flow rate adjustment step and / or the microaerobic microorganism treatment step, it is necessary to put it into each tank so that the total amount of wastewater to be treated per day is 0.3 to 1.0 vol%. preferable.

以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明はこれらに何ら制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not restrict | limited at all to these.

[実験系]
図1に示す装置を用いて、1日あたりの処理量を20m3として有機物含有排水の処理を行った。
[Experimental system]
Using the apparatus shown in FIG. 1, the wastewater containing organic matter was treated at a daily throughput of 20 m 3 .

流量調整槽1の溶存酸素量を1.0超過〜2.0mg/l、第1微好気反応槽2及び第2微好気反応槽3の溶存酸素量を0.1〜1.0mg/l、沈殿槽4及び汚泥濃縮槽5を嫌気性条件とし、微好気性汚泥消化槽6の溶存酸素量を0.1〜1.0mg/l、上澄み液貯留槽7の溶存酸素量を0.1〜1.0mg/lに調整した。流量調整槽1への原水の流入量を20m3/日として、流量調整槽から第1微好気性反応槽2への流出量を0.9 m3/分に調製して連続供給した。第1微好気反応槽2から第2微好気反応槽3、沈殿槽4まではオーバーフローにより連続供給とした。沈殿槽4にて、処理済みの上澄み液を処理水放流へ回し、汚泥を沈降させた。約24時間かけて沈降させた汚泥を槽底部から抜き出して汚泥濃縮槽5に移送し、さらに約24時間かけて汚泥を沈降させて活性汚泥を濃縮させた。その後、汚泥濃縮槽5の上澄み液を流量調整槽1及び第1微好気反応槽2にそれぞれ返送すると共に、濃縮後の汚泥を汚泥濃縮槽5の底部から抜き出して微好気性汚泥消化槽6に移送し、さらに約24時間かけて汚泥を消化させた。微好気性汚泥消化槽6で得られる上澄み液を上澄み液貯留槽7に移送して、さらに約24時間かけて微好気性雰囲気下で微生物代謝を進行させて無機塩類などに富む上済み液を調製した。上澄み液を流量調整槽1及び/又は第1微好気反応槽2に移送して、次の水処理を行った。 The amount of dissolved oxygen in the flow adjustment tank 1 exceeds 1.0 to 2.0 mg / l, the amount of dissolved oxygen in the first microaerobic reaction tank 2 and the second microaerobic reaction tank 3 is 0.1 to 1.0 mg / l, the precipitation tank 4 and The sludge concentration tank 5 was made anaerobic, and the dissolved oxygen amount in the microaerobic sludge digestion tank 6 was adjusted to 0.1 to 1.0 mg / l, and the dissolved oxygen amount in the supernatant liquid storage tank 7 was adjusted to 0.1 to 1.0 mg / l. The flow rate of raw water into the flow rate adjustment tank 1 was 20 m 3 / day, and the flow rate from the flow rate adjustment tank to the first microaerobic reaction tank 2 was adjusted to 0.9 m 3 / min and continuously supplied. The first microaerobic reaction tank 2 to the second microaerobic reaction tank 3 and the precipitation tank 4 were continuously supplied by overflow. In the sedimentation tank 4, the treated supernatant liquid was turned to the treated water discharge, and the sludge was settled. The sludge settled over about 24 hours was extracted from the bottom of the tank and transferred to the sludge concentration tank 5, and the sludge was further settled over about 24 hours to concentrate the activated sludge. Thereafter, the supernatant liquid of the sludge concentration tank 5 is returned to the flow rate adjustment tank 1 and the first slightly aerobic reaction tank 2, respectively, and the concentrated sludge is extracted from the bottom of the sludge concentration tank 5, and the slightly aerobic sludge digestion tank 6 is removed. The sludge was digested for about 24 hours. The supernatant liquid obtained in the microaerobic sludge digestion tank 6 is transferred to the supernatant liquid storage tank 7, and the microbial metabolism is advanced in a microaerobic atmosphere for about 24 hours to obtain a supernatant liquid rich in inorganic salts. Prepared. The supernatant liquid was transferred to the flow rate adjustment tank 1 and / or the first microaerobic reaction tank 2 to perform the following water treatment.

用いた排水は、学校給食設備から排出された有機物含有排水であった。
原水、第2微好気反応槽3から採取した微好気処理水、微好気性汚泥消化槽6から採取した微好気性汚泥消化水、沈殿槽4の上澄み液から採取した処理水について、pH(JIS K 0102 12.1)、BOD(JIS K 0102 21)、COD(JIS K 0102 17)、SS(昭和46年環境庁告示第59号付表8)、N−Hx(ノルマルヘキサン抽出物含有量:昭和49年環境庁告示第64号付表4)、T-N(総窒素含有量:JIS K 0102 54.2)、T-P(総リン含有量:JIS K 0102 46.3.1)、透視度(クリンメジャー法による測定)、30分間で沈降する汚泥の高さの比率であるSV30(活性汚泥沈殿率30分値)、活性汚泥浮遊物質の指標であるMLSS(透過光式MLSS計による測定)、ORP(酸化還元電位計:JIS C 0920)をJIS法に準拠して測定した。水質測定結果を表1〜表2に示す。
The wastewater used was organic matter-containing wastewater discharged from school meal facilities.
PH of raw water, microaerobic treated water collected from the second microaerobic reaction tank 3, microaerobic sludge digested water collected from the microaerobic sludge digestion tank 6, and treated water collected from the supernatant of the precipitation tank 4 (JIS K 0102 12.1), BOD (JIS K 0102 21), COD (JIS K 0102 17), SS (Appendix Table No. 59, 1971, Environment Agency), N-Hx (normal hexane extract content: Showa 49, Environmental Agency Notification No. 64, Appendix 4), TN (total nitrogen content: JIS K 0102 54.2), TP (total phosphorus content: JIS K 0102 46.3.1), transparency (measured by the clean measure method), SV 30 (active sludge sedimentation rate 30-minute value), which is the ratio of the sludge height that settles in 30 minutes, MLSS (measured with a transmitted light type MLSS meter) that is an index of activated sludge suspended matter, ORP (redox potential meter) : JIS C 0920) according to the JIS method. The water quality measurement results are shown in Tables 1 and 2.

[対照系1]
図1に示す同じ装置を用いて、実験系と同様の実験を行った。ただし、流量調整槽1の溶存酸素量を1.0超過〜2.0mg/l、第1好気反応槽2及び第2好気反応槽3の溶存酸素量を2.55〜3.20mg/l、沈殿槽4及び汚泥濃縮槽5を嫌気性条件(0.8mg/l以下)とし、汚泥消化槽6の溶存酸素量を0mg/l、上澄み液貯留槽7の溶存酸素量を0mg/lに調整した。結果を表3〜表4に示す。
[Control system 1]
An experiment similar to the experimental system was performed using the same apparatus shown in FIG. However, the amount of dissolved oxygen in the flow adjustment tank 1 exceeds 1.0 to 2.0 mg / l, the amount of dissolved oxygen in the first aerobic reaction tank 2 and the second aerobic reaction tank 3 is 2.55 to 3.20 mg / l, the precipitation tank 4 and The sludge concentration tank 5 was set to anaerobic conditions (0.8 mg / l or less), the dissolved oxygen amount in the sludge digestion tank 6 was adjusted to 0 mg / l, and the dissolved oxygen amount in the supernatant liquid storage tank 7 was adjusted to 0 mg / l. The results are shown in Tables 3-4.

[対照系2]
図1に示す同じ装置を用いて、実験系と同様の実験を行った。ただし、流量調整槽1の溶存酸素量を1.0mg/l未満、第1微好気反応槽2及び第2微好気反応槽3の溶存酸素量を0.1〜1.0mg/l、沈殿槽4を嫌気性条件とし、汚泥濃縮槽5を溶存酸素量を1.0mg/l未満の微好気性条件とし、微好気性汚泥消化槽6の溶存酸素量を0.1〜1.0mg/l、上澄み液貯留槽7の溶存酸素量を0.1〜1.0mg/lに調整した。結果を表5〜表6に示す。
[Control system 2]
An experiment similar to the experimental system was performed using the same apparatus shown in FIG. However, the amount of dissolved oxygen in the flow rate adjustment tank 1 is less than 1.0 mg / l, the amount of dissolved oxygen in the first microaerobic reaction tank 2 and the second microaerobic reaction tank 3 is 0.1 to 1.0 mg / l, and the precipitation tank 4 is Anaerobic conditions, sludge concentration tank 5 with a dissolved oxygen content of less than 1.0 mg / l, aerobic sludge digestion tank 6 with dissolved oxygen content of 0.1-1.0 mg / l, supernatant liquid storage tank 7 The amount of dissolved oxygen was adjusted to 0.1 to 1.0 mg / l. The results are shown in Tables 5-6.

実験系及び対照系1〜2の水質測定結果をグラフに示す(図2〜図14)。図2〜図13に示す水質推移グラフから、BOD、COD、SS、ノルマルヘキサン抽出物含有量(N-Hex)、総窒素含有量(T-N)及び総リン含有量(T-P)の全ての項目において実験系が対照系1及び2よりも処理水中含有量が少なく、良好な処理が達成されていることがわかる。特に、それぞれの原水からの処理率を比較すると本発明の実験系ではBODで86%以上、CODで70%以上、SSで85%以上ときわめて良好に処理されていることがわかる。また、総窒素含有量では実験系が対照系1及び2の1/2〜1/4と非常に低い値を示し、及び総リン含有量では実験系が対照系1及び2の1/4〜1/10と極めて低い値を示している。このように、本発明の方法では、BOD、COD、SSをきわめて良好に処理できるだけでなく、窒素及びリンの含有量を著しく低下させることができる。また、本発明の方法により処理した場合には、BOD、COD、SS、N-Hex、T-Pについて常に公共用水域への排水基準(たとえば、水質汚濁防止法に基づいて各地方自治体が定めることができる上乗せ基準として、BOD:20mg/L以下、COD:10mg/L以下、SS:20mg/L以下、N-Hex:5mg/L以下、T-N:20mg/L以下、T-P:1mg/L以下)を満たし、原水の変動に関わらず一定となり、良好に処理されていることがわかる。   The water quality measurement results of the experimental system and the control systems 1 and 2 are shown in a graph (FIGS. 2 to 14). From the water quality transition graph shown in FIGS. 2 to 13, in all items of BOD, COD, SS, normal hexane extract content (N-Hex), total nitrogen content (TN) and total phosphorus content (TP) It can be seen that the experimental system has less treated water content than the control systems 1 and 2, and that good treatment has been achieved. In particular, comparing the treatment rates from each raw water, it can be seen that the experimental system of the present invention is very well treated with BOD of 86% or more, COD of 70% or more, and SS of 85% or more. In addition, the experimental system shows a very low value of 1/2 to 1/4 of the control systems 1 and 2 in terms of the total nitrogen content, and the experimental system is 1/4 to that of the control systems 1 and 2 in terms of the total phosphorus content. 1/10 is extremely low. Thus, according to the method of the present invention, not only BOD, COD and SS can be treated very well, but also the contents of nitrogen and phosphorus can be significantly reduced. In addition, when treated by the method of the present invention, BOD, COD, SS, N-Hex, TP are always drainage standards for public water bodies (for example, local governments may determine based on the Water Pollution Control Law). Possible addition standards include BOD: 20 mg / L or less, COD: 10 mg / L or less, SS: 20 mg / L or less, N-Hex: 5 mg / L or less, TN: 20 mg / L or less, TP: 1 mg / L or less) It can be seen that it is filled and constant regardless of fluctuations in the raw water, and it is treated well.

また、図14に示すSV30の推移グラフから、本発明の実験系では、微好気性汚泥消化工程においてSV30の値が10日目くらいから95%〜98%で安定して推移しており、一方、対照系1では27日目に100%に達したことがわかる。対照系1では、29日目に汚泥の抜き出しを行ったので30日目には75%程度に低下した。SV30の値が100%であるということは、汚泥が飽和状態になり、汚泥の消化がもはや進行せず、汚泥の抜き取りを必要とする状態、すなわち余剰汚泥の発生を意味する。これに対して、本発明の実験系では、80日目を経過してもSV30の値が100%に達していない。これは、汚泥の消化が進行しており、汚泥の抜き取りを要せずに、上澄み液をそのまま流量調整工程及び/又は微好気性微生物処理工程に戻して再利用できるので、結果的に廃棄処分しなければならない汚泥(余剰汚泥)はほとんど発生せず、減容化が達成されたことを意味する。 Moreover, from the transition graph of SV 30 shown in FIG. 14, in the experimental system of the present invention, the value of SV 30 has been stable from 95% to 98% from the 10th day in the microaerobic sludge digestion process. On the other hand, it can be seen that the control system 1 reached 100% on the 27th day. In the control system 1, since sludge was extracted on the 29th day, it decreased to about 75% on the 30th day. A value of SV 30 of 100% means that the sludge is saturated, the digestion of the sludge no longer proceeds and the sludge needs to be extracted, that is, the generation of excess sludge. On the other hand, in the experimental system of the present invention, the SV 30 value does not reach 100% even after the 80th day. This is because the digestion of the sludge is progressing, and the supernatant liquid can be returned to the flow rate adjustment process and / or the microaerobic microorganism treatment process for reuse without requiring removal of the sludge. Almost no sludge (surplus sludge) has to be generated, which means that volume reduction has been achieved.

以上の結果より、本発明の処理方法によれば、廃棄処分しなければならない汚泥(余剰汚泥)をほとんど発生させずに余剰汚泥の減容化を達成することができると共に、水質基準分析項目のすべて(BOD、COD、SS、ノルマルヘキサン抽出物含有量、総窒素含有量及び総リン含有量)において極めて良好な処理効率を達成でき、特に総リン含有量に関して極めて優れた処理を達成できる。   From the above results, according to the treatment method of the present invention, it is possible to reduce the volume of surplus sludge without generating sludge that needs to be disposed of (surplus sludge). Very good processing efficiencies can be achieved in all (BOD, COD, SS, normal hexane extract content, total nitrogen content and total phosphorus content), and particularly excellent processing can be achieved with respect to the total phosphorus content.

図1は、本発明の処理方法の概要を示す模式図である。FIG. 1 is a schematic diagram showing an outline of the processing method of the present invention. 図2は、実験プラントでの実験系及び対照系のBOD測定値の推移を示すグラフである。FIG. 2 is a graph showing the transition of the BOD measurement values of the experimental system and the control system in the experimental plant. 図3は、実験プラントでの実験系及び対照系のBOD処理率の推移を示すグラフであるFIG. 3 is a graph showing the transition of the BOD treatment rate of the experimental system and the control system in the experimental plant. 図4は、実験プラントでの実験系及び対照系のCOD測定値の推移を示すグラフである。FIG. 4 is a graph showing the transition of the COD measurement values of the experimental system and the control system in the experimental plant. 図5は、実験プラントでの実験系及び対照系のCOD処理率の推移を示すグラフである。FIG. 5 is a graph showing the transition of the COD treatment rate of the experimental system and the control system in the experimental plant. 図6は、実験プラントでの実験系及び対照系のSS測定値の推移を示すグラフである。FIG. 6 is a graph showing changes in SS measurement values of the experimental system and the control system in the experimental plant. 図7は、実験プラントでの実験系及び対照系のSS処理率の推移を示すグラフである。FIG. 7 is a graph showing the transition of the SS treatment rate of the experimental system and the control system in the experimental plant. 図8は、実験プラントでの実験系及び対照系のN-Hex測定値の推移を示すグラフである。FIG. 8 is a graph showing the transition of N-Hex measurement values of the experimental system and the control system in the experimental plant. 図9は、実験プラントでの実験系及び対照系のN-Hex処理率の推移を示すグラフである。FIG. 9 is a graph showing the transition of the N-Hex treatment rate of the experimental system and the control system in the experimental plant. 図10は、実験プラントでの実験系及び対照系のT-N測定値の推移を示すグラフである。FIG. 10 is a graph showing the transition of the TN measurement values of the experimental system and the control system in the experimental plant. 図11は、実験プラントでの実験系及び対照系のT-N処理率の推移を示すグラフである。FIG. 11 is a graph showing the transition of the TN treatment rate of the experimental system and the control system in the experimental plant. 図12は、実験プラントでの実験系及び対照系のT-P測定値の推移を示すグラフである。FIG. 12 is a graph showing the transition of the T-P measurement values of the experimental system and the control system in the experimental plant. 図13は、実験プラントでの実験系及び対照系のT-P処理率の推移を示すグラフである。FIG. 13 is a graph showing transition of the TP treatment rate of the experimental system and the control system in the experimental plant. 図14は、実験プラントでの実験系及び対照系のSV30推移を示すグラフである。FIG. 14 is a graph showing the SV 30 transition of the experimental system and the control system in the experimental plant.

符号の説明Explanation of symbols

1 流量調整槽
2 第1微好気反応槽
3 第2微好気反応槽
4 沈殿槽
5 汚泥濃縮槽
6 微好気性汚泥消化槽
7 上澄み液貯留槽
8〜10 再循環用配管
DESCRIPTION OF SYMBOLS 1 Flow control tank 2 1st microaerobic reaction tank 3 2nd microaerobic reaction tank 4 Sedimentation tank 5 Sludge concentration tank 6 Microaerobic sludge digestion tank 7 Supernatant liquid storage tank 8-10 Piping for recirculation

Claims (5)

有機物含有排水を溶存酸素量が1.0mg/lを超える好気性雰囲気下に維持して、前記排水の流量を調整する流量調整工程、
前記排水を溶存酸素量が0.1〜1.0mg/lである微好気性雰囲気下で微生物処理する微好気性微生物処理工程、
次いで、微好気性微生物処理工程からの排水を嫌気性雰囲気下で汚泥と上澄み液とに沈降分離させる汚泥沈殿工程、
汚泥沈殿工程で得られた汚泥を嫌気性雰囲気下で濃縮沈降させる汚泥濃縮工程、
汚泥濃縮工程で濃縮された汚泥を溶存酸素量が0.1〜1.0mg/lである微好気性雰囲気下で更に消化する微好気性汚泥消化工程、
微好気性汚泥消化工程で得られた消化上澄み液を回収し、溶存酸素量が0.1〜1.0mg/lである微好気性雰囲気下で貯留する上澄み液貯留工程、
を含み、
汚泥沈殿工程で得られた汚泥を微好気性微生物処理工程に返送し、
汚泥濃縮工程で得られた上澄み液を流量調整工程に返送し、
上澄み液貯留工程から消化上澄み液を流量調整工程及び/又は微好気性微生物処理工程に定量注入する有機物含有排水の処理方法。
Maintaining the organic wastewater in an aerobic atmosphere in which the dissolved oxygen amount exceeds 1.0 mg / l, and adjusting the flow rate of the wastewater;
A microaerobic microbial treatment step of microbially treating the wastewater in a microaerobic atmosphere having a dissolved oxygen content of 0.1 to 1.0 mg / l;
Next, a sludge sedimentation process in which wastewater from the microaerobic microorganism treatment process is separated into sludge and supernatant liquid in an anaerobic atmosphere,
A sludge concentration step in which the sludge obtained in the sludge precipitation step is concentrated and settled in an anaerobic atmosphere,
A microaerobic sludge digestion process for further digesting the sludge concentrated in the sludge concentration process in a microaerobic atmosphere with a dissolved oxygen content of 0.1 to 1.0 mg / l,
Collecting the supernatant liquid obtained in the microaerobic sludge digestion process and storing it in a microaerobic atmosphere with a dissolved oxygen content of 0.1 to 1.0 mg / l,
Including
Return the sludge obtained in the sludge precipitation process to the microaerobic microorganism treatment process,
Return the supernatant obtained in the sludge concentration process to the flow rate adjustment process,
A method for treating wastewater containing organic matter, wherein the digestive supernatant is quantitatively injected from the supernatant storage step into the flow rate adjustment step and / or the microaerobic microorganism treatment step.
前記微好気性微生物処理工程、前記微好気性汚泥消化工程及び前記上澄み液貯留工程における溶存酸素量が0.5〜0.8mg/lである請求項1に記載の処理方法。   2. The treatment method according to claim 1, wherein the dissolved oxygen amount in the microaerobic microorganism treatment step, the microaerobic sludge digestion step, and the supernatant liquid storage step is 0.5 to 0.8 mg / l. 前記微好気性微生物処理工程は、前記流量調整工程からの排水を溶存酸素量が0.1〜1.0mg/lである微好気性雰囲気下で微生物処理する第1微好気性微生物処理工程と、前記第1微好気性微生物処理工程からの排水を溶存酸素量が0.1〜1.0mg/lである微好気性雰囲気下で微生物処理して有機物の分解を進行させる第2微好気性微生物処理工程とを含む請求項1又は2に記載の処理方法。   The microaerobic microorganism treatment step includes a first microaerobic microorganism treatment step in which the wastewater from the flow rate adjustment step is treated in a microaerobic atmosphere having a dissolved oxygen amount of 0.1 to 1.0 mg / l, Including a second microaerobic microbial treatment process in which the wastewater from the microaerobic microbial treatment process is microbially treated in a microaerobic atmosphere having a dissolved oxygen content of 0.1 to 1.0 mg / l to promote decomposition of organic matter. The processing method according to claim 1 or 2. 前記上澄み液貯留工程からの消化上澄み液は前記第1微好気性微生物処理工程に返送される請求項3に記載の処理方法。   The processing method according to claim 3, wherein the digestive supernatant liquid from the supernatant liquid storage step is returned to the first microaerobic microorganism processing step. 前記汚泥濃縮工程及び前記微好気性汚泥消化工程において、滞留時間を12〜24時間とする請求項1〜4のいずれか1項に記載の処理方法。   The processing method according to any one of claims 1 to 4, wherein a residence time is 12 to 24 hours in the sludge concentration step and the microaerobic sludge digestion step.
JP2007129781A 2007-05-15 2007-05-15 Treatment method of wastewater containing organic matter Expired - Fee Related JP4017657B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007129781A JP4017657B1 (en) 2007-05-15 2007-05-15 Treatment method of wastewater containing organic matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007129781A JP4017657B1 (en) 2007-05-15 2007-05-15 Treatment method of wastewater containing organic matter

Publications (2)

Publication Number Publication Date
JP4017657B1 true JP4017657B1 (en) 2007-12-05
JP2008284428A JP2008284428A (en) 2008-11-27

Family

ID=38857802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007129781A Expired - Fee Related JP4017657B1 (en) 2007-05-15 2007-05-15 Treatment method of wastewater containing organic matter

Country Status (1)

Country Link
JP (1) JP4017657B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102807302A (en) * 2012-08-27 2012-12-05 广西玉林市大智环保工程有限公司 Method for treating livestock and poultry breeding waste water
CN104591409A (en) * 2015-02-06 2015-05-06 哈尔滨工业大学 Micro-aerobic biological treatment device for low-C/N-ratio manure dry-collection pig farm wastewater and method for treating pig farm wastewater
CN107010794A (en) * 2017-06-06 2017-08-04 宁波德欣科技有限公司 A kind of dye wastewater treatment device and its method
CN111170462A (en) * 2020-03-16 2020-05-19 南京大学 Alternate starvation micro-aerobic anaerobic coupling filler sludge side flow in-situ reduction strengthening process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012013332B1 (en) * 2009-12-01 2019-10-29 Li Dayong method and apparatus for biological sewage treatment
CN102642926B (en) * 2012-04-28 2013-07-03 哈尔滨工业大学水资源国家工程研究中心有限公司 Sewage treatment system and sewage treatment method of anaerobic fluidized bed-micro aerobic membrane bioreactor
JP7337560B2 (en) * 2019-06-25 2023-09-04 多美子 定家 Organic wastewater treatment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102807302A (en) * 2012-08-27 2012-12-05 广西玉林市大智环保工程有限公司 Method for treating livestock and poultry breeding waste water
CN104591409A (en) * 2015-02-06 2015-05-06 哈尔滨工业大学 Micro-aerobic biological treatment device for low-C/N-ratio manure dry-collection pig farm wastewater and method for treating pig farm wastewater
CN107010794A (en) * 2017-06-06 2017-08-04 宁波德欣科技有限公司 A kind of dye wastewater treatment device and its method
CN107010794B (en) * 2017-06-06 2022-11-01 宁波德欣科技有限公司 Dye wastewater treatment device and method
CN111170462A (en) * 2020-03-16 2020-05-19 南京大学 Alternate starvation micro-aerobic anaerobic coupling filler sludge side flow in-situ reduction strengthening process
CN111170462B (en) * 2020-03-16 2021-05-28 南京大学 Alternate starvation micro-aerobic anaerobic coupling filler sludge side flow in-situ reduction strengthening process

Also Published As

Publication number Publication date
JP2008284428A (en) 2008-11-27

Similar Documents

Publication Publication Date Title
US9884779B2 (en) Biological wastewater treatment and reuse utilizing sulfur compounds as electron carrier to minimize sludge production
CA2807881C (en) Treatment of municipal wastewater with anaerobic digestion
JP4017657B1 (en) Treatment method of wastewater containing organic matter
JP4729718B2 (en) Organic waste treatment methods
JP2008284427A (en) Apparatus and method for treating waste water
KR101018587B1 (en) Membrane treatment device for eliminating nitrogen and/or phosphorus
US6387264B1 (en) Unified fermentation and thickening process
US10556816B2 (en) Wastewater treatment apparatus
JP2009186438A (en) Method and apparatus for treating nitrate waste liquid
KR100430382B1 (en) Treatment method for livestock waste water including highly concentrated organoc, nitrogen and phosphate and treatment system used therein
KR100763640B1 (en) Liquid-waste treating apparatus and liquid-waste treating method
KR100274534B1 (en) Nitrogen and phosphorus removal methods with using fermented organic wastes
Cao et al. Coupled UASB-activated sludge process for COD and nitrogen removals in municipal sewage treatment in warm climate
JP2013202511A (en) Removing device and removing method of nitrogen and phosphorus
KR20100046936A (en) Combined sulfur autotrophic denitrification and bioelectrochemical denitrification system
Choi et al. Strategy for nitrogen removal from piggery waste
KR20010076873A (en) Organic and nitrogen compound removal methods from landfill leachate using an anaerobic-aerobic-anoxic system
KR101306805B1 (en) The method and Treatment process of Wastewater containing organic matter and nitrogen compounds-livestock wastewater, digestive wastewater, food wastewater
JP5199794B2 (en) Nitrogen-containing organic wastewater treatment method
KR100314744B1 (en) Nitrogen & Phosphorous Removing Methods from Waste Water with using Organic Wastes
Yilmaz et al. Nutrient removal of ammonia rich effluents in a sequencing batch reactor
KR20050081251A (en) A high-strength organic wastewater treatment system composed of biofilm fermentator and anaerobic-anoxic-aerobic reactor
JP2005238185A (en) High-efficiency general organic drainage and waste treatment system and device of the same
JP2004188281A (en) Method and apparatus for wastewater treatment
JP7398601B1 (en) Organic wastewater treatment equipment and organic wastewater treatment method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees