JP5317022B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP5317022B2
JP5317022B2 JP2010080305A JP2010080305A JP5317022B2 JP 5317022 B2 JP5317022 B2 JP 5317022B2 JP 2010080305 A JP2010080305 A JP 2010080305A JP 2010080305 A JP2010080305 A JP 2010080305A JP 5317022 B2 JP5317022 B2 JP 5317022B2
Authority
JP
Japan
Prior art keywords
injection amount
injection
variation
fuel
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010080305A
Other languages
Japanese (ja)
Other versions
JP2011214411A (en
Inventor
徹治 光田
邦明 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010080305A priority Critical patent/JP5317022B2/en
Priority to US13/033,785 priority patent/US20110213544A1/en
Publication of JP2011214411A publication Critical patent/JP2011214411A/en
Application granted granted Critical
Publication of JP5317022B2 publication Critical patent/JP5317022B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02T10/44

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の低負荷運転時における燃料噴射弁の噴射量ばらつきを算出する機能を備えた内燃機関の燃料噴射制御装置に関する発明である。   The present invention relates to a fuel injection control device for an internal combustion engine having a function of calculating a variation in the injection amount of a fuel injection valve during low load operation of the internal combustion engine.

近年、内燃機関の空燃比制御性を向上させるために、例えば、特許文献1(特開2008−128160号公報)に記載されているように、内燃機関の複数の気筒の排出ガスが集合して流れる排気集合部に設置した1つの空燃比センサの検出値(排気集合部の空燃比)と各気筒の空燃比とを関連付けたモデルを用いて各気筒の空燃比を推定し、その推定結果に基づいて各気筒の空燃比の気筒間ばらつきを算出して、各気筒の空燃比の気筒間ばらつきが小さくなるように各気筒の空燃比(例えば燃料噴射量)を気筒別に制御する気筒別空燃比制御を実行するようにしたものがある。その際、内燃機関の複数の運転領域(例えば高負荷運転領域と低負荷運転領域)で検出した各気筒の空燃比の気筒間ばらつきに基づいて各気筒の燃料噴射弁の噴射特性(噴射量誤差)を学習し、学習した各気筒の燃料噴射弁の噴射特性に基づいて各気筒の燃料噴射弁を制御するようにしている。   In recent years, in order to improve the air-fuel ratio controllability of an internal combustion engine, as described in, for example, Patent Document 1 (Japanese Patent Laid-Open No. 2008-128160), exhaust gases from a plurality of cylinders of the internal combustion engine are gathered. Estimate the air-fuel ratio of each cylinder using a model that associates the detection value of the air-fuel ratio sensor installed in the flowing exhaust gas collection part (the air-fuel ratio of the exhaust gas collection part) with the air-fuel ratio of each cylinder. The cylinder-to-cylinder air-fuel ratio is calculated based on the air-fuel ratio of each cylinder, and the air-fuel ratio of each cylinder (for example, fuel injection amount) is controlled for each cylinder so as to reduce the air-fuel ratio variation of each cylinder. There is something that performs control. At that time, the injection characteristics (injection amount error) of the fuel injection valve of each cylinder based on the inter-cylinder variation of the air-fuel ratio of each cylinder detected in a plurality of operation regions (for example, a high load operation region and a low load operation region) of the internal combustion engine. ) And the fuel injection valve of each cylinder is controlled based on the learned injection characteristic of the fuel injection valve of each cylinder.

特開2008−128160号公報JP 2008-128160 A

ところで、図2に示すように、高圧の燃料を筒内に噴射する筒内噴射式内燃機関の燃料噴射弁は、噴射パルス幅(噴射時間)に対する実噴射量の変化特性のリニアリティ(直線性)が噴射量の少ない領域で悪化する傾向がある。このため、アイドル運転時等の要求噴射量が少なくなる低負荷運転時に、燃料噴射弁の噴射量ばらつき(要求噴射量に対する実噴射量のずれ)が大きくなる傾向があり、燃料噴射弁の噴射量ばらつきが大きくなると、排気エミッションが悪化する可能性がある。   By the way, as shown in FIG. 2, the fuel injection valve of the in-cylinder internal combustion engine that injects high-pressure fuel into the cylinder has a linearity (linearity) of the change characteristic of the actual injection amount with respect to the injection pulse width (injection time). However, there is a tendency to deteriorate in a region where the injection amount is small. For this reason, during low load operation where the required injection amount during idle operation or the like is low, the variation in the injection amount of the fuel injection valve (deviation of the actual injection amount with respect to the required injection amount) tends to increase, and the injection amount of the fuel injection valve If the variation becomes large, exhaust emission may deteriorate.

しかし、内燃機関の低負荷運転時には、排出ガス量が少なくなって空燃比センサの出力に基づいた気筒別空燃比推定の推定精度が低下するため、各気筒の燃料噴射弁の噴射量ばらつきの情報となる各気筒の空燃比ばらつきを精度良く求めることができない。このため、内燃機関の低負荷運転時に、各気筒の燃料噴射弁の噴射量ばらつきを精度良く補正することができず、各気筒の燃料噴射弁の噴射量ばらつきを小さくすることが困難である。   However, during low-load operation of the internal combustion engine, the amount of exhaust gas decreases and the estimation accuracy of the cylinder-by-cylinder air-fuel ratio estimation based on the output of the air-fuel ratio sensor decreases. Therefore, the air-fuel ratio variation of each cylinder cannot be obtained with high accuracy. For this reason, during the low load operation of the internal combustion engine, it is difficult to accurately correct the injection amount variation of the fuel injection valve of each cylinder, and it is difficult to reduce the injection amount variation of the fuel injection valve of each cylinder.

そこで、本発明が解決しようとする課題は、内燃機関の低負荷運転時における燃料噴射弁の噴射量ばらつきを精度良く学習することができる内燃機関の燃料噴射制御装置を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a fuel injection control device for an internal combustion engine that can learn accurately the injection amount variation of the fuel injection valve during low load operation of the internal combustion engine.

上記課題を解決するために、請求項1に係る発明は、内燃機関の排気通路に設置された空燃比センサと、内燃機関の各気筒の燃料噴射弁の要求噴射量(各気筒の1サイクル当りの要求噴射量)が低負荷運転時よりも多くなる高負荷運転時に要求噴射量分の燃料を複数回に分割して噴射する分割噴射を実行し、この分割噴射の実行中に空燃比センサの出力から求めた空燃比ばらつきに基づいて、低負荷運転時における燃料噴射弁の噴射量ばらつきを学習する噴射量ばらつき学習手段とを備え、この噴射量ばらつき学習手段は、燃料噴射弁の所定の噴射量領域における噴射量ばらつきを学習する場合に該噴射量領域内の噴射量に基づいて分割噴射の噴射回数を決定し、前記燃料噴射弁の複数の噴射量領域における噴射量ばらつきを学習する場合に前記要求噴射量を前記燃料噴射弁が噴射可能な最小噴射量で除算した値(但し小数点以下を切り捨て)を前記分割噴射の噴射回数の初期値として設定し、前記分割噴射の噴射回数を前記初期値から順次減らして前記燃料噴射弁の噴射量ばらつきを学習することで、前記燃料噴射弁の複数の噴射量領域における噴射量ばらつきを学習することを特徴とするものである。 In order to solve the above-mentioned problems, an invention according to claim 1 is directed to an air-fuel ratio sensor installed in an exhaust passage of an internal combustion engine and a required injection amount of a fuel injection valve of each cylinder of the internal combustion engine (per cycle of each cylinder). Split injection in which fuel for the required injection amount is divided into a plurality of times during high load operation where the required injection amount is greater than during low load operation. Injection amount variation learning means for learning the injection amount variation of the fuel injection valve during low-load operation based on the air-fuel ratio variation obtained from the output, and this injection amount variation learning means is a predetermined injection of the fuel injection valve. when the injection number of split injection is determined based on the injection amount of the injection amount region when learning the injection quantity variation in the amount region, to learn the injection quantity variation at a plurality of injection amount region of the fuel injection valve A value obtained by dividing the required injection amount by the minimum injection amount that can be injected by the fuel injection valve (the fractional part is rounded down) is set as an initial value of the number of times of the divided injection, and the number of times of the divided injection is set to the initial value. The variation in the injection amount in the plurality of injection amount regions of the fuel injection valve is learned by learning the variation in the injection amount of the fuel injection valve by sequentially decreasing from the value.

この構成では、各気筒の燃料噴射弁の要求噴射量が多くなる高負荷運転時に分割噴射を実行することで、分割噴射の1噴射当りの要求噴射量(噴射パルス幅)を低負荷運転時の要求噴射量(噴射パルス幅)と同程度にすることができ、分割噴射を実行した燃料噴射弁の噴射量ばらつきを低負荷運転時の噴射量ばらつき相当にすることができる。この分割噴射の実行中は低負荷運転時における燃料噴射弁の噴射量ばらつき分だけ空燃比がずれて空燃比ばらつきが発生する。また、この分割噴射を実行する高負荷運転時は排出ガス量が多いため、空燃比センサの空燃比検出精度が高くなる。従って、高負荷運転時に分割噴射を実行し、この分割噴射の実行中に空燃比センサの出力から求めた空燃比ばらつきは、低負荷運転時における燃料噴射弁の噴射量ばらつきを精度良く反映した情報となり、この空燃比ばらつきを用いることで、低負荷運転時における燃料噴射弁の噴射量ばらつきを精度良く学習することができる。更に、燃料噴射弁の所定の噴射量領域における噴射量ばらつきを学習する場合に該噴射量領域内の噴射量に基づいて分割噴射の噴射回数を決定することで、分割噴射の噴射回数を適正に設定して、分割噴射の1噴射当りの噴射量を確実に今回の噴射量領域(学習を実施する噴射量領域)に設定することができ、今回の噴射量領域における噴射量ばらつきを確実に学習することができる。
更に、本発明では、燃料噴射弁の複数の噴射量領域における噴射量ばらつきを学習する場合に、要求噴射量を燃料噴射弁が噴射可能な最小噴射量で除算した値(但し小数点以下を切り捨て)を分割噴射の噴射回数の初期値として設定し、分割噴射の噴射回数を前記初期値から順次減らして燃料噴射弁の噴射量ばらつきを学習するようにしたので、分割噴射の1噴射当りの噴射量を順次変更して、学習を実施する噴射量領域を順次変更することができ、燃料噴射弁の複数の噴射量領域における噴射量ばらつきを速やかに学習することができる。
In this configuration, by performing divided injection during high load operation where the required injection amount of the fuel injection valve of each cylinder increases, the required injection amount (injection pulse width) per injection of divided injection is reduced during low load operation. The injection amount variation of the fuel injection valve that has performed the divided injection can be made equivalent to the injection amount variation during the low load operation. During the execution of this divided injection, the air-fuel ratio is shifted by the amount of variation in the injection amount of the fuel injection valve during low load operation, resulting in air-fuel ratio variations. In addition, since the amount of exhaust gas is large during the high load operation in which this divided injection is performed, the air-fuel ratio detection accuracy of the air-fuel ratio sensor is increased. Therefore, split injection is executed during high-load operation, and the air-fuel ratio variation obtained from the output of the air-fuel ratio sensor during execution of this split injection accurately reflects the injection amount variation of the fuel injection valve during low-load operation. Thus, by using this air-fuel ratio variation, it is possible to accurately learn the injection amount variation of the fuel injection valve during low load operation. Furthermore, when learning the injection amount variation in the predetermined injection amount region of the fuel injection valve, the number of divided injections is determined based on the injection amount in the injection amount region, so that the number of divided injections can be appropriately set. By setting, the injection amount per divided injection can be reliably set in the current injection amount region (the injection amount region in which learning is performed), and the injection amount variation in the current injection amount region can be reliably learned can do.
Further, in the present invention, when learning the injection amount variation in the plurality of injection amount regions of the fuel injection valve, a value obtained by dividing the required injection amount by the minimum injection amount that can be injected by the fuel injection valve (however, the fractional part is rounded down). Is set as the initial value of the number of divided injections, and the number of divided injections is sequentially decreased from the initial value so as to learn the variation in the injection amount of the fuel injection valve. Can be sequentially changed to sequentially change the injection amount region in which the learning is performed, and the variation in the injection amount in the plurality of injection amount regions of the fuel injection valve can be quickly learned.

本発明は、例えば、高負荷運転時に所定の選択気筒の燃料噴射弁のみで分割噴射を実行し、該分割噴射の実行中に空燃比センサの出力から求めた空燃比ばらつきに基づいて、低負荷運転時における選択気筒の燃料噴射弁の噴射量ばらつきを学習するようにしても良いが、この場合、低負荷運転時における各気筒(全気筒)の燃料噴射弁の噴射量ばらつきを学習するには、選択気筒を順次変更して、その選択気筒の燃料噴射弁の噴射量ばらつきを学習する処理を繰り返す必要がある。   The present invention, for example, performs split injection only with a fuel injection valve of a predetermined selected cylinder during high load operation, and based on the air-fuel ratio variation obtained from the output of the air-fuel ratio sensor during execution of the split injection, Although it is possible to learn the variation in the injection amount of the fuel injection valve of the selected cylinder during operation, in this case, to learn the variation in the injection amount of the fuel injection valve of each cylinder (all cylinders) during low load operation Therefore, it is necessary to sequentially change the selected cylinder and repeat the process of learning the injection amount variation of the fuel injection valve of the selected cylinder.

そこで、請求項2のように、空燃比センサの出力に基づいて各気筒の空燃比ばらつきを気筒別に算出する気筒別空燃比ばらつき算出手段を備え、高負荷運転時に各気筒の燃料噴射弁で分割噴射を実行し、該分割噴射の実行中に気筒別空燃比ばらつき算出手段で算出した各気筒の空燃比ばらつきに基づいて、低負荷運転時における各気筒の燃料噴射弁の噴射量ばらつきを気筒別に学習するようにしても良い。このようにすれば、低負荷運転時における各気筒(全気筒)の燃料噴射弁の噴射量ばらつきを一度に学習することができる。   Accordingly, as in claim 2, there is provided cylinder-by-cylinder air-fuel ratio variation calculating means for calculating the air-fuel ratio variation of each cylinder based on the output of the air-fuel ratio sensor, and dividing by the fuel injection valve of each cylinder during high load operation. Based on the air-fuel ratio variation of each cylinder calculated by the cylinder-by-cylinder air-fuel ratio variation calculation means during the execution of the divided injection, the variation in the injection amount of the fuel injection valve of each cylinder during low load operation is determined for each cylinder. You may make it learn. In this way, it is possible to learn the variation in the injection amount of the fuel injection valve of each cylinder (all cylinders) at the time of low load operation at a time.

また、請求項のように、燃料噴射弁の同一の噴射量領域における噴射量ばらつきを所定回数算出したときに、それらの算出値に基づいて該噴射量領域における噴射量ばらつきの学習値を決定するようにしても良い。このようにすれば、燃料噴射弁の噴射量ばらつきの学習精度を向上させることができる。 Further, when the injection amount variation in the same injection amount region of the fuel injection valve is calculated a predetermined number of times as in claim 3 , the learning value of the injection amount variation in the injection amount region is determined based on the calculated values. You may make it do. In this way, it is possible to improve the learning accuracy of the injection amount variation of the fuel injection valve.

この場合、請求項のように、燃料噴射弁の同一の噴射量領域における噴射量ばらつきを異なる運転条件で所定回数算出したときに、それらの算出値に基づいて該噴射量領域における噴射量ばらつきの学習値を決定するようにしても良い。このようにすれば、運転条件の変化に対してロバスト性を持たせることができる。
In this case, as in claim 4 , when the injection amount variation in the same injection amount region of the fuel injection valve is calculated a predetermined number of times under different operating conditions, the injection amount variation in the injection amount region is calculated based on those calculated values. The learning value may be determined. In this way, it is possible to provide robustness against changes in operating conditions.

図1は本発明の実施例1におけるエンジン制御システムの概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an engine control system in Embodiment 1 of the present invention. 図2は燃料噴射弁の噴射特性(噴射パルス幅と実噴射量との関係)を示す図である。FIG. 2 is a diagram showing the injection characteristics (relationship between the injection pulse width and the actual injection amount) of the fuel injection valve. 図3は分割噴射の噴射回数の決定方法を説明する図である。FIG. 3 is a diagram illustrating a method for determining the number of times of divided injection. 図4は実施例1の噴射量ばらつき学習補正ルーチンの処理の流れを説明するフローチャートである。FIG. 4 is a flowchart for explaining the flow of processing of the injection amount variation learning correction routine of the first embodiment. 図5は実施例2の噴射量ばらつき学習補正ルーチンの処理の流れを説明するフローチャートである。FIG. 5 is a flowchart for explaining the flow of processing of the injection amount variation learning correction routine of the second embodiment. 図6は実施例3の噴射量ばらつき学習補正ルーチンの処理の流れを説明するフローチャートである。FIG. 6 is a flowchart for explaining the flow of processing of the injection amount variation learning correction routine of the third embodiment.

以下、本発明を実施するための形態を具体化した幾つかの実施例を説明する。   Hereinafter, some embodiments embodying the mode for carrying out the present invention will be described.

本発明の実施例1を図1乃至図4に基づいて説明する。
まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。
筒内噴射式の内燃機関である筒内噴射式エンジン11の吸気管12の最上流部には、エアクリーナ13が設けられ、このエアクリーナ13の下流側に、吸入空気量を検出するエアフローメータ14が設けられている。このエアフローメータ14の下流側には、後述する排気タービン式過給機26のコンプレッサ28と、このコンプレッサ28で加圧された吸入空気を冷却するインタークーラー32とが設けられている。このインタークーラー32の下流側には、スロットルバルブ16の上流側圧力(過給圧)を検出する過給圧センサ33が設けられ、この過給圧センサ33の下流側に、モータ15によって開度調節されるスロットルバルブ16と、このスロットルバルブ16の開度(スロットル開度)を検出するスロットル開度センサ17とが設けられている。
A first embodiment of the present invention will be described with reference to FIGS.
First, a schematic configuration of the entire engine control system will be described with reference to FIG.
An air cleaner 13 is provided at the most upstream portion of the intake pipe 12 of the direct injection engine 11 that is an in-cylinder internal combustion engine, and an air flow meter 14 that detects the intake air amount is provided downstream of the air cleaner 13. Is provided. On the downstream side of the air flow meter 14, a compressor 28 of an exhaust turbine supercharger 26 described later and an intercooler 32 for cooling the intake air pressurized by the compressor 28 are provided. A supercharging pressure sensor 33 for detecting the upstream pressure (supercharging pressure) of the throttle valve 16 is provided on the downstream side of the intercooler 32, and the opening degree is adjusted by the motor 15 on the downstream side of the supercharging pressure sensor 33. There is provided a throttle valve 16 and a throttle opening sensor 17 for detecting the opening (throttle opening) of the throttle valve 16.

更に、スロットルバルブ16の下流側には、サージタンク18が設けられ、このサージタンク18には、スロットルバルブ16の下流側圧力(吸気圧)を検出する吸気圧センサ19が設けられている。また、サージタンク18には、エンジン11の各気筒に空気を導入する吸気マニホールド20が設けられ、エンジン11の各気筒には、それぞれ筒内に燃料を直接噴射する燃料噴射弁21が取り付けられている。また、エンジン11のシリンダヘッドには、各気筒毎に点火プラグ22が取り付けられ、各気筒の点火プラグ22の火花放電によって筒内の混合気に着火される。   Further, a surge tank 18 is provided on the downstream side of the throttle valve 16, and an intake pressure sensor 19 that detects a downstream pressure (intake pressure) of the throttle valve 16 is provided in the surge tank 18. The surge tank 18 is provided with an intake manifold 20 that introduces air into each cylinder of the engine 11, and each cylinder of the engine 11 is provided with a fuel injection valve 21 that directly injects fuel into the cylinder. Yes. An ignition plug 22 is attached to the cylinder head of the engine 11 for each cylinder, and the air-fuel mixture in the cylinder is ignited by spark discharge of the ignition plug 22 of each cylinder.

一方、エンジン11の排気管23(排気通路)には、排出ガスの空燃比を検出する空燃比センサ24が後述する排気タービン式過給機26の排気タービン27よりも下流側に設けられ、この空燃比センサ24の下流側に、排出ガスを浄化する三元触媒等の触媒25が設けられている。   On the other hand, in the exhaust pipe 23 (exhaust passage) of the engine 11, an air-fuel ratio sensor 24 for detecting the air-fuel ratio of the exhaust gas is provided downstream of an exhaust turbine 27 of an exhaust turbine supercharger 26 described later. A catalyst 25 such as a three-way catalyst for purifying exhaust gas is provided on the downstream side of the air-fuel ratio sensor 24.

このエンジン11には、排気タービン式過給機26が搭載されている。この排気タービン式過給機26は、排気管23のうちの空燃比センサ24よりも上流側に排気タービン27が配置され、吸気管12のうちのエアフローメータ14とスロットルバルブ16との間にコンプレッサ28が配置されている。過給機26は、排気タービン27とコンプレッサ28とが連結され、排出ガスの運動エネルギで排気タービン27を回転駆動することでコンプレッサ28を回転駆動して吸入空気を過給するようになっている。   An exhaust turbine supercharger 26 is mounted on the engine 11. In the exhaust turbine supercharger 26, an exhaust turbine 27 is disposed upstream of the air-fuel ratio sensor 24 in the exhaust pipe 23, and a compressor is interposed between the air flow meter 14 and the throttle valve 16 in the intake pipe 12. 28 is arranged. In the supercharger 26, an exhaust turbine 27 and a compressor 28 are connected, and the exhaust turbine 27 is rotationally driven by the kinetic energy of the exhaust gas, whereby the compressor 28 is rotationally driven to supercharge intake air. .

更に、吸気管12には、スロットルバルブ16の上流側においてコンプレッサ28の上流側と下流側とをバイパスさせる吸気バイパス通路29が設けられ、この吸気バイパス通路29の途中に、吸気バイパス通路29を開閉するエアバイパスバルブ(以下「ABV」と表記する)30が設けられている。このABV30は、ABV用バキュームスイッチングバルブ31を制御することでABV30の開閉動作が制御されるようになっている。   Further, the intake pipe 12 is provided with an intake bypass passage 29 that bypasses the upstream side and the downstream side of the compressor 28 on the upstream side of the throttle valve 16. The intake bypass passage 29 is opened and closed in the middle of the intake bypass passage 29. An air bypass valve (hereinafter referred to as “ABV”) 30 is provided. The ABV 30 is configured such that the opening / closing operation of the ABV 30 is controlled by controlling the ABV vacuum switching valve 31.

一方、排気管23には、排気タービン27の上流側と下流側とをバイパスさせる排気バイパス通路34が設けられ、この排気バイパス通路34の途中に、排気バイパス通路34を開閉するウェイストゲートバルブ(以下「WGV」と表記する)35が設けられている。このWGV35は、WGV用バキュームスイッチングバルブ36を制御してダイヤフラム式のアクチュエータ37を制御することでWGV35の開度が制御されるようになっている。   On the other hand, the exhaust pipe 23 is provided with an exhaust bypass passage 34 that bypasses the upstream side and the downstream side of the exhaust turbine 27, and a waste gate valve (hereinafter referred to as “open”) that opens and closes the exhaust bypass passage 34 in the middle of the exhaust bypass passage 34. 35) (denoted as “WGV”). The WGV 35 is configured such that the opening degree of the WGV 35 is controlled by controlling the WGV vacuum switching valve 36 and the diaphragm type actuator 37.

また、エンジン11のシリンダブロックには、冷却水温を検出する冷却水温センサ38や、ノッキングを検出するノックセンサ39が取り付けられている。また、クランク軸40の外周側には、クランク軸40が所定クランク角回転する毎にパルス信号を出力するクランク角センサ41が取り付けられ、このクランク角センサ41の出力信号に基づいてクランク角やエンジン回転速度が検出される。   A cooling water temperature sensor 38 that detects the cooling water temperature and a knock sensor 39 that detects knocking are attached to the cylinder block of the engine 11. A crank angle sensor 41 that outputs a pulse signal every time the crankshaft 40 rotates by a predetermined crank angle is attached to the outer peripheral side of the crankshaft 40, and the crank angle and the engine are determined based on the output signal of the crank angle sensor 41. The rotation speed is detected.

これら各種センサの出力は、電子制御回路(以下「ECU」と表記する)42に入力される。このECU42は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)に記憶されたエンジン制御用のプログラムを実行することで、エンジン運転状態に応じて燃料噴射弁21の燃料噴射量や点火プラグ22の点火時期を制御する。   Outputs of these various sensors are input to an electronic control circuit (hereinafter referred to as “ECU”) 42. The ECU 42 is mainly composed of a microcomputer, and executes a program for engine control stored in a built-in ROM (storage medium), so that the fuel injection amount of the fuel injection valve 21 according to the engine operating state and the like. The ignition timing of the spark plug 22 is controlled.

ところで、図2に示すように、高圧の燃料を筒内に噴射する筒内噴射式エンジン11の燃料噴射弁21は、噴射パルス幅(噴射時間)に対する実噴射量の変化特性のリニアリティ(直線性)が噴射量の少ない領域で悪化する傾向がある。このため、アイドル運転時等の要求噴射量が少なくなる低負荷運転時に、燃料噴射弁21の噴射量ばらつき(要求噴射量に対する実噴射量のずれ)が大きくなる傾向があり、燃料噴射弁21の噴射量ばらつきが大きくなると、排気エミッションが悪化する可能性がある。   As shown in FIG. 2, the fuel injection valve 21 of the in-cylinder injection engine 11 that injects high-pressure fuel into the cylinder has linearity (linearity) of the change characteristic of the actual injection amount with respect to the injection pulse width (injection time). ) Tends to deteriorate in a region where the injection amount is small. For this reason, during the low load operation in which the required injection amount is reduced during idle operation or the like, the injection amount variation (deviation of the actual injection amount with respect to the required injection amount) of the fuel injection valve 21 tends to increase. When the variation in the injection amount becomes large, the exhaust emission may be deteriorated.

そこで、本実施例1では、ECU42により後述する図4の噴射量ばらつき学習補正ルーチンを実行することで、エンジン11の各気筒の燃料噴射弁21の要求噴射量Qtotal (各気筒の1サイクル当りの要求噴射量)が低負荷運転時(例えばアイドル運転時)よりも多くなる高負荷運転時に要求噴射量Qtotal 分の燃料を複数回に分割して噴射する分割噴射を実行し、この分割噴射の実行中に空燃比センサ24の出力から求めた空燃比ばらつきに基づいて、低負荷運転時における燃料噴射弁21の噴射量ばらつきを学習する。   Therefore, in the first embodiment, the ECU 42 executes an injection amount variation learning correction routine shown in FIG. 4 to be described later, whereby the required injection amount Qtotal of the fuel injection valve 21 of each cylinder of the engine 11 (per cycle of each cylinder). The divided injection is executed in which the fuel for the required injection amount Qtotal is divided into a plurality of times and injected during a high load operation in which the required injection amount) is larger than that during low load operation (for example, during idle operation). Based on the air-fuel ratio variation obtained from the output of the air-fuel ratio sensor 24, the variation in the injection amount of the fuel injection valve 21 during low load operation is learned.

各気筒の燃料噴射弁21の要求噴射量Qtotal が多くなる高負荷運転時に分割噴射を実行することで、分割噴射の1噴射当りの要求噴射量(噴射パルス幅)を低負荷運転時の要求噴射量(噴射パルス幅)と同程度にすることができ、分割噴射を実行した燃料噴射弁21の噴射量ばらつきを低負荷運転時の噴射量ばらつき相当にすることができる。この分割噴射の実行中は低負荷運転時における燃料噴射弁21の噴射量ばらつき分だけ空燃比がずれて空燃比ばらつきが発生する。また、この分割噴射を実行する高負荷運転時は排出ガス量が多いため、空燃比センサ24の空燃比検出精度が高くなる。従って、高負荷運転時に分割噴射を実行し、この分割噴射の実行中に空燃比センサ24の出力から求めた空燃比ばらつきは、低負荷運転時における燃料噴射弁21の噴射量ばらつきを精度良く反映した情報となり、この空燃比ばらつきを用いることで、低負荷運転時における燃料噴射弁21の噴射量ばらつきを精度良く学習することができる。   By performing divided injection during high load operation where the required injection amount Qtotal of the fuel injection valve 21 of each cylinder increases, the required injection amount (injection pulse width) per injection of divided injection is reduced to required injection during low load operation. The injection amount variation of the fuel injection valve 21 that has executed the divided injection can be equivalent to the injection amount variation during the low load operation. During the execution of this divided injection, the air-fuel ratio varies by the amount of variation in the injection amount of the fuel injection valve 21 during low-load operation, resulting in variations in the air-fuel ratio. Further, since the amount of exhaust gas is large during the high load operation in which this divided injection is executed, the air-fuel ratio detection accuracy of the air-fuel ratio sensor 24 is increased. Therefore, the divided injection is executed during the high load operation, and the air-fuel ratio variation obtained from the output of the air-fuel ratio sensor 24 during the execution of the divided injection accurately reflects the injection amount variation of the fuel injection valve 21 during the low load operation. By using this air-fuel ratio variation, it is possible to learn accurately the injection amount variation of the fuel injection valve 21 during low-load operation.

その際、燃料噴射弁21の所定の噴射量領域における噴射量ばらつきを学習する場合に該噴射量領域内の噴射量Qapd に基づいて分割噴射の噴射回数N(Nは2以上の整数)を決定する。具体的には、図3に示すように、要求噴射量Qtotal の高負荷運転時に、噴射量Qapd (例えば、燃料噴射弁21が噴射可能な最小噴射量)を含む噴射量領域における噴射量ばらつきを学習する場合には、要求噴射量Qtotal と、学習を実施する噴射量領域内の噴射量Qapd とを用いて、次式により分割噴射の噴射回数Nを求める。
噴射回数N=Qtotal /Qapd (但し、小数点以下は切り捨て)
例えば、噴射回数N=Qtotal /Qapd =3.2の場合には噴射回数N=3とする。
At that time, when learning the injection amount variation in the predetermined injection amount region of the fuel injection valve 21, the injection number N of the divided injections (N is an integer of 2 or more) is determined based on the injection amount Qapd in the injection amount region. To do. Specifically, as shown in FIG. 3, during the high load operation of the required injection amount Qtotal, the injection amount variation in the injection amount region including the injection amount Qapd (for example, the minimum injection amount that can be injected by the fuel injection valve 21) is changed. In the case of learning, the number N of divided injections is obtained by the following equation using the required injection amount Qtotal and the injection amount Qapd in the injection amount region in which learning is performed.
Number of injections N = Qtotal / Qapd (however, the fractional part is rounded down)
For example, when the number of injections N = Qtotal / Qapd = 3.2, the number of injections N = 3.

これにより、分割噴射の噴射回数Nを適正に設定して、分割噴射の1噴射当りの噴射量(=Qtotal /N)を今回の噴射量領域(学習を実施する噴射量領域)に設定する。
以下、ECU42が実行する図4の噴射量ばらつき学習補正ルーチンの処理内容を説明する。
As a result, the number N of divided injections is set appropriately, and the injection amount (= Qtotal / N) per divided injection is set in the current injection amount region (the injection amount region in which learning is performed).
Hereinafter, the processing content of the injection amount variation learning correction routine of FIG. 4 executed by the ECU 42 will be described.

図4に示す噴射量ばらつき学習補正ルーチンは、ECU42の電源オン中に所定周期で繰り返し実行され、特許請求の範囲でいう噴射量ばらつき学習手段としての役割を果たす。本ルーチンが起動されると、まず、ステップ101で、エンジン運転状態(例えば、エンジン回転速度やエンジン負荷等)が定常状態であるか否かを判定し、定常状態であると判定されれば、ステップ102に進み、各気筒の燃料噴射弁21の要求噴射量Qtotal (各気筒の1サイクル当りの要求噴射量)が低負荷運転時(例えばアイドル運転時)よりも多くなる高負荷運転中であるか否かを、例えば、吸入空気量、吸気圧、スロットル開度、排出ガス量、要求噴射量等のいずれかが所定値以上であるか否かによって判定する。   The injection amount variation learning correction routine shown in FIG. 4 is repeatedly executed at a predetermined cycle while the ECU 42 is turned on, and serves as an injection amount variation learning means in the claims. When this routine is started, first, in step 101, it is determined whether or not the engine operating state (for example, engine speed, engine load, etc.) is in a steady state. Proceeding to step 102, the required injection amount Qtotal of the fuel injection valve 21 of each cylinder (required injection amount per cycle of each cylinder) is in a high load operation in which it is higher than in a low load operation (for example, during an idle operation). Whether or not any of the intake air amount, the intake pressure, the throttle opening, the exhaust gas amount, the required injection amount, etc. is equal to or greater than a predetermined value.

このステップ102で、高負荷運転中であると判定された場合には、ステップ103に進み、要求噴射量Qtotal と、学習を実施する噴射量領域内の噴射量Qapd (例えば、燃料噴射弁21が噴射可能な最小噴射量)とを用いて、次式により分割噴射の噴射回数Nを求める。
噴射回数N=Qtotal /Qapd (但し、小数点以下は切り捨て)
If it is determined in step 102 that the engine is operating at a high load, the routine proceeds to step 103, where the requested injection amount Qtotal and the injection amount Qapd (for example, the fuel injection valve 21 is within the injection amount region in which learning is performed). The number N of divided injections is obtained by the following equation using the minimum injection amount that can be injected).
Number of injections N = Qtotal / Qapd (however, the fractional part is rounded down)

尚、学習を実施する噴射量領域は、所定タイミング毎(例えば、噴射量ばらつきの学習が完了する毎、所定時間が経過する毎、システムが起動する毎等)に変更するようにしても良い。   Note that the injection amount region in which learning is performed may be changed at every predetermined timing (for example, every time learning of the injection amount variation is completed, every predetermined time elapses, every time the system is activated, etc.).

この後、ステップ104に進み、各気筒(全気筒)の燃料噴射弁21で要求噴射量Qtotal 分の燃料をN回に分割して噴射するN回分割噴射を実行する。これにより、分割噴射の1噴射当りの要求噴射量(噴射パルス幅)を低負荷運転時の要求噴射量(噴射パルス幅)と同程度にして、各気筒の燃料噴射弁21の噴射量ばらつきを低負荷運転時の噴射量ばらつき相当にする。   Thereafter, the routine proceeds to step 104, where the fuel injection valve 21 of each cylinder (all cylinders) executes N-time divided injection in which fuel for the required injection amount Qtotal is divided into N times and injected. As a result, the required injection amount (injection pulse width) per injection of the divided injection is set to the same level as the required injection amount (injection pulse width) at the time of low load operation, and the injection amount variation of the fuel injection valve 21 of each cylinder is varied. It is equivalent to the variation in injection amount during low-load operation.

この後、ステップ105に進み、空燃比センサ24の検出値(排気集合部32を流れる排出ガスの空燃比)と各気筒の空燃比とを関連付けたモデルを用いて、空燃比センサ24の出力に基づいて各気筒の空燃比を気筒別に推定し、各気筒の推定空燃比と基準空燃比(全気筒の推定空燃比の平均値又は制御目標値)との偏差を算出することで、各気筒の空燃比ばらつきを気筒別に算出する。このステップ105の処理が特許請求の範囲でいう気筒別空燃比ばらつき算出手段としての役割を果たす。尚、空燃比ばらつきの算出方法は適宜変更しても良い。   Thereafter, the process proceeds to step 105, and the output of the air-fuel ratio sensor 24 is calculated using a model in which the detected value of the air-fuel ratio sensor 24 (the air-fuel ratio of the exhaust gas flowing through the exhaust collecting portion 32) is associated with the air-fuel ratio of each cylinder. Based on this, the air-fuel ratio of each cylinder is estimated for each cylinder, and the deviation between the estimated air-fuel ratio of each cylinder and the reference air-fuel ratio (the average value or control target value of the estimated air-fuel ratio of all cylinders) is calculated. The air-fuel ratio variation is calculated for each cylinder. The processing in step 105 serves as a cylinder-by-cylinder air-fuel ratio variation calculating means in the claims. Note that the method of calculating the air-fuel ratio variation may be changed as appropriate.

この後、ステップ106に進み、各気筒の空燃比ばらつきに基づいて、低負荷運転時における各気筒の燃料噴射弁21の噴射量ばらつきを気筒別に算出する。この場合、例えば、空燃比がリッチ方向にX%ばらついている場合には、噴射量ばらつきを(+X%)として求め、空燃比がリーン方向にY%ばらついている場合には、噴射量ばらつきを(−Y%)として求める。尚、噴射量ばらつきの算出方法は適宜変更しても良い。これらの各気筒の燃料噴射弁21の噴射量ばらつきの算出値を、それぞれ今回の噴射量領域における各気筒の燃料噴射弁21の噴射量ばらつきの学習値としてECU42のバックアップRAM(図示せず)等の書き換え可能な不揮発性メモリ(ECU42の電源オフ中でも記憶データを保持する書き換え可能なメモリ)に記憶する。   Thereafter, the routine proceeds to step 106, where the variation in the injection amount of the fuel injection valve 21 of each cylinder during the low load operation is calculated for each cylinder based on the variation in the air-fuel ratio of each cylinder. In this case, for example, when the air-fuel ratio varies X% in the rich direction, the injection amount variation is obtained as (+ X%), and when the air-fuel ratio varies Y% in the lean direction, the injection amount variation is calculated. Calculated as (−Y%). The method for calculating the injection amount variation may be changed as appropriate. The calculated value of the injection amount variation of the fuel injection valve 21 of each cylinder is used as the learning value of the injection amount variation of the fuel injection valve 21 of each cylinder in the current injection amount region, as a backup RAM (not shown) of the ECU 42, etc. Are stored in a rewritable nonvolatile memory (a rewritable memory that holds stored data even when the ECU 42 is powered off).

一方、上記ステップ101で定常状態ではないと判定された場合、又は、上記ステップ102で高負荷運転中ではない(つまり低負荷運転中である)と判定された場合には、ステップ107に進み、ECU42のバックアップRAM等の書き換え可能な不揮発性メモリに記憶された各気筒の燃料噴射弁21の噴射量ばらつきの学習値データの中から、現在の要求噴射量に対応した噴射量領域における各気筒の燃料噴射弁21の噴射量ばらつきの学習値を読み込み、これらの各気筒の燃料噴射弁21の噴射量ばらつきの学習値を用いて、各気筒の燃料噴射弁21の噴射量を気筒別に補正する。この場合、例えば、各気筒の基本噴射量を補正するようにしても良いし、或は、各気筒の最終的な要求噴射量(又は噴射パルス幅)を補正するようにしても良い。   On the other hand, if it is determined in step 101 that it is not in a steady state, or if it is determined in step 102 that high load operation is not being performed (that is, low load operation is being performed), the process proceeds to step 107. From the learning value data of the injection amount variation of the fuel injection valve 21 of each cylinder stored in a rewritable nonvolatile memory such as a backup RAM of the ECU 42, each cylinder in the injection amount region corresponding to the current required injection amount is stored. The learning value of the injection amount variation of the fuel injection valve 21 is read, and the injection amount of the fuel injection valve 21 of each cylinder is corrected for each cylinder using the learning value of the injection amount variation of the fuel injection valve 21 of each cylinder. In this case, for example, the basic injection amount of each cylinder may be corrected, or the final required injection amount (or injection pulse width) of each cylinder may be corrected.

以上説明した本実施例1では、エンジン11の各気筒の燃料噴射弁21の要求噴射量が多くなる高負荷運転時に、各気筒の燃料噴射弁21で要求噴射量分の燃料を複数回に分割して噴射する分割噴射を実行することで、分割噴射の1噴射当りの要求噴射量(噴射パルス幅)を低負荷運転時の要求噴射量(噴射パルス幅)と同程度にすることができ、各気筒の燃料噴射弁21の噴射量ばらつきを低負荷運転時の噴射量ばらつき相当にすることができる。そして、この分割噴射の実行中に、空燃比センサ24の出力から求めた空燃比ばらつきを用いて、低負荷運転時における燃料噴射弁21の噴射量ばらつきを算出するようにしたので、低負荷運転時における燃料噴射弁21の噴射量ばらつきを精度良く学習することができる。更に、燃料噴射弁21の所定の噴射量領域における噴射量ばらつきを学習する場合に、該噴射量領域内の噴射量Qapd に基づいて分割噴射の噴射回数Nを決定するようにしたので、分割噴射の噴射回数Nを適正に設定して、分割噴射の1噴射当りの噴射量を確実に今回の噴射量領域(学習を実施する噴射量領域)に設定することができ、今回の噴射量領域における噴射量ばらつきを確実に学習することができる。   In the first embodiment described above, during the high load operation in which the required injection amount of the fuel injection valve 21 of each cylinder of the engine 11 increases, the fuel injection valve 21 of each cylinder divides the fuel for the required injection amount into a plurality of times. By executing the divided injection to inject, the required injection amount (injection pulse width) per injection of the divided injection can be made comparable to the required injection amount (injection pulse width) at the time of low load operation, The variation in the injection amount of the fuel injection valve 21 of each cylinder can be equivalent to the variation in the injection amount during low-load operation. During the execution of the split injection, the variation in the injection amount of the fuel injection valve 21 during the low load operation is calculated using the variation in the air / fuel ratio obtained from the output of the air / fuel ratio sensor 24. It is possible to accurately learn the injection amount variation of the fuel injection valve 21 at the time. Further, when the injection amount variation in the predetermined injection amount region of the fuel injection valve 21 is learned, the number N of divided injections is determined based on the injection amount Qapd in the injection amount region. The number of injections N can be set appropriately, and the injection amount per divided injection can be reliably set in the current injection amount region (the injection amount region in which learning is performed). It is possible to reliably learn the injection amount variation.

また、本実施例1では、各気筒(全気筒)の燃料噴射弁21で分割噴射を実行し、この分割噴射の実行中に、空燃比センサ24の出力に基づいて各気筒の空燃比ばらつきを気筒別に算出して、各気筒の空燃比ばらつきに基づいて、低負荷運転時における各気筒の燃料噴射弁21の噴射量ばらつきを気筒別に学習するようにしたので、低負荷運転時における各気筒(全気筒)の燃料噴射弁21の噴射量ばらつきを一度に学習することができる。   Further, in the first embodiment, split injection is executed by the fuel injection valves 21 of each cylinder (all cylinders), and variation in the air-fuel ratio of each cylinder is performed based on the output of the air-fuel ratio sensor 24 during execution of this split injection. Since it is calculated for each cylinder and the variation in the injection amount of the fuel injection valve 21 of each cylinder during low load operation is learned for each cylinder based on the air-fuel ratio variation of each cylinder, each cylinder during low load operation ( It is possible to learn the injection amount variation of the fuel injection valves 21 of all cylinders at once.

更に、本実施例1では、エンジン11の低負荷運転時に、各気筒の燃料噴射弁21の噴射量ばらつきの学習値を用いて、各気筒の燃料噴射弁21の噴射量を気筒別に補正するようにしたので、エンジン11の低負荷運転時に、各気筒の燃料噴射弁21の噴射量ばらつきを精度良く補正して、各気筒の燃料噴射弁21の噴射量ばらつきを十分に小さくすることができる。   Further, in the first embodiment, during the low load operation of the engine 11, the injection amount of the fuel injection valve 21 of each cylinder is corrected for each cylinder using the learning value of the injection amount variation of the fuel injection valve 21 of each cylinder. Therefore, during the low load operation of the engine 11, the variation in the injection amount of the fuel injection valve 21 in each cylinder can be accurately corrected, and the variation in the injection amount of the fuel injection valve 21 in each cylinder can be sufficiently reduced.

次に、図5を用いて本発明の実施例2を説明する。但し、前記実施例1と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例1と異なる部分について説明する。   Next, Embodiment 2 of the present invention will be described with reference to FIG. However, description of substantially the same parts as those in the first embodiment will be omitted or simplified, and different parts from the first embodiment will be mainly described.

本実施例2では、ECU42により後述する図5の噴射量ばらつき学習補正ルーチンを実行することで、分割噴射の噴射回数Nを順次変更して燃料噴射弁21の噴射量ばらつきを学習することで、燃料噴射弁21の複数の噴射量領域における噴射量ばらつきを学習するようにしている。   In the second embodiment, the ECU 42 executes an injection amount variation learning correction routine of FIG. 5 to be described later, thereby learning the variation in the injection amount of the fuel injection valve 21 by sequentially changing the number N of divided injections. The variation in the injection amount in the plurality of injection amount regions of the fuel injection valve 21 is learned.

図5に示す噴射量ばらつき学習補正ルーチンでは、ステップ201で、定常状態であると判定されれば、ステップ202に進み、高負荷運転中であるか否かを判定し、高負荷運転中であると判定された場合には、ステップ203に進み、今回の高負荷運転中に分割噴射の噴射回数Nの初期値Kを算出したか否かを判定する。   In the injection amount variation learning correction routine shown in FIG. 5, if it is determined in step 201 that the engine is in a steady state, the process proceeds to step 202, where it is determined whether or not a high load operation is being performed. If it is determined, the process proceeds to step 203, and it is determined whether or not the initial value K of the number N of divided injections has been calculated during the current high load operation.

このステップ203で、まだ分割噴射の噴射回数Nの初期値Kを算出していないと判定された場合には、ステップ204に進み、要求噴射量Qtotal と、最初に学習を実施する噴射量領域内の噴射量Qapd (例えば、燃料噴射弁21が噴射可能な最小噴射量)とを用いて、次式により分割噴射の噴射回数Nの初期値Kを求める。   If it is determined in step 203 that the initial value K of the number N of divided injections has not yet been calculated, the process proceeds to step 204, where the requested injection amount Qtotal and the injection amount region in which learning is performed first are performed. The initial value K of the number N of divided injections is obtained by the following equation using the injection amount Qapd (for example, the minimum injection amount that can be injected by the fuel injection valve 21).

噴射回数Nの初期値K=Qtotal /Qapd (但し、小数点以下は切り捨て)
この後、ステップ205に進み、今回の分割噴射の噴射回数Nを初期値Kに設定する(N=K)。この後、ステップ207に進み、要求噴射量Qtotal 分の燃料をN回に分割して噴射するN回分割噴射を実行可能であるか否かを、例えば、分割噴射の1噴射当りの要求噴射量(=Qtotal /N)が燃料噴射弁21の最小噴射量以上であるか否かによって判定する。
Initial value of number of injections N K = Qtotal / Qapd (however, the decimal part is rounded down)
Thereafter, the process proceeds to step 205, where the injection number N of the current divided injection is set to an initial value K (N = K). Thereafter, the process proceeds to step 207, where it is determined whether or not the N-part divided injection in which the fuel corresponding to the required injection quantity Qtotal is divided into N parts can be executed, for example, the required injection quantity per divided injection. The determination is made based on whether (= Qtotal / N) is equal to or larger than the minimum injection amount of the fuel injection valve 21.

このステップ207で、N回分割噴射を実行可能であると判定されれば、ステップ208に進み、各気筒(全気筒)の燃料噴射弁21で要求噴射量Qtotal 分の燃料をN回に分割して噴射するN回分割噴射を実行した後、ステップ209に進み、空燃比センサ24の出力に基づいて各気筒の空燃比ばらつきを気筒別に算出する。   If it is determined in step 207 that the N-part divided injection can be executed, the process proceeds to step 208, where the fuel injection valve 21 of each cylinder (all cylinders) divides the fuel for the required injection amount Qtotal into N times. After executing N times of divided injections, the process proceeds to step 209, where the air-fuel ratio variation of each cylinder is calculated for each cylinder based on the output of the air-fuel ratio sensor 24.

この後、ステップ210に進み、各気筒の空燃比ばらつきに基づいて、低負荷運転時における各気筒の燃料噴射弁21の噴射量ばらつきを気筒別に算出し、これらの各気筒の燃料噴射弁21の噴射量ばらつきの算出値を、それぞれ今回の噴射量領域における各気筒の燃料噴射弁21の噴射量ばらつきの学習値としてECU42のバックアップRAM等の書き換え可能な不揮発性メモリに記憶する。   Thereafter, the routine proceeds to step 210, where the variation in the injection amount of the fuel injection valve 21 in each cylinder during low load operation is calculated for each cylinder based on the variation in the air-fuel ratio of each cylinder, and the fuel injection valve 21 in each cylinder is calculated. The calculated value of the injection amount variation is stored in a rewritable nonvolatile memory such as a backup RAM of the ECU 42 as a learning value of the injection amount variation of the fuel injection valve 21 of each cylinder in the current injection amount region.

その後、上記ステップ203で、既に分割噴射の噴射回数Nの初期値Kを算出したと判定された場合には、ステップ206に進み、今回の分割噴射の噴射回数Nを前回よりも1回だけ少なくする(N=N−1)。これにより、分割噴射の1噴射当りの要求噴射量(=Qtotal /N)を前回よりも多くして、学習を実施する噴射量領域を変更する。   Thereafter, if it is determined in step 203 that the initial value K of the number N of divided injections has already been calculated, the process proceeds to step 206, where the number N of injections of the current divided injection is reduced by one time from the previous time. (N = N-1). As a result, the required injection amount (= Qtotal / N) per injection of the divided injection is increased from the previous time, and the injection amount region in which learning is performed is changed.

この後、N回分割噴射を実行可能であると判定されれば、各気筒(全気筒)の燃料噴射弁21でN回分割噴射を実行した後、空燃比センサ24の出力に基づいて各気筒の空燃比ばらつきを気筒別に算出する(ステップ207〜209)。   Thereafter, if it is determined that N times of divided injections can be executed, N times of divided injection is executed by the fuel injection valve 21 of each cylinder (all cylinders), and then each cylinder is determined based on the output of the air-fuel ratio sensor 24. Is calculated for each cylinder (steps 207 to 209).

この後、各気筒の空燃比ばらつきに基づいて、低負荷運転時における各気筒の燃料噴射弁21の噴射量ばらつきを気筒別に算出し、これらの各気筒の燃料噴射弁21の噴射量ばらつきの算出値を、それぞれ今回の噴射量領域における各気筒の燃料噴射弁21の噴射量ばらつきの学習値としてECU42のバックアップRAM等の書き換え可能な不揮発性メモリに記憶する(ステップ210)。   Thereafter, based on the air-fuel ratio variation of each cylinder, the variation in the injection amount of the fuel injection valve 21 in each cylinder during low load operation is calculated for each cylinder, and the variation in the injection amount of the fuel injection valve 21 in each cylinder is calculated. The value is stored in a rewritable nonvolatile memory such as a backup RAM of the ECU 42 as a learning value of the injection amount variation of the fuel injection valve 21 of each cylinder in the current injection amount region (step 210).

一方、上記ステップ201で定常状態ではないと判定された場合、又は、上記ステップ202で高負荷運転中ではない(つまり低負荷運転中である)と判定された場合には、ステップ211に進み、ECU42のバックアップRAM等の書き換え可能な不揮発性メモリに記憶された各気筒の燃料噴射弁21の噴射量ばらつきの学習値データの中から、現在の要求噴射量に対応した噴射量領域における各気筒の燃料噴射弁21の噴射量ばらつきの学習値を読み込み、これらの各気筒の燃料噴射弁21の噴射量ばらつきの学習値を用いて、各気筒の燃料噴射弁21の噴射量を気筒別に補正する。   On the other hand, if it is determined in step 201 that the vehicle is not in a steady state, or if it is determined in step 202 that the vehicle is not in a high load operation (that is, in a low load operation), the process proceeds to step 211. From the learning value data of the injection amount variation of the fuel injection valve 21 of each cylinder stored in a rewritable nonvolatile memory such as a backup RAM of the ECU 42, each cylinder in the injection amount region corresponding to the current required injection amount is stored. The learning value of the injection amount variation of the fuel injection valve 21 is read, and the injection amount of the fuel injection valve 21 of each cylinder is corrected for each cylinder using the learning value of the injection amount variation of the fuel injection valve 21 of each cylinder.

以上説明した本実施例2では、分割噴射の噴射回数Nを順次変更して燃料噴射弁21の噴射量ばらつきを学習することで、燃料噴射弁21の複数の噴射量領域における噴射量ばらつきを学習するようにしたので、分割噴射の1噴射当りの噴射量を順次変更して、学習を実施する噴射量領域を順次変更することができ、燃料噴射弁21の複数の噴射量領域における噴射量ばらつきを速やかに学習することができる。   In the second embodiment described above, the injection amount variation in the plurality of injection amount regions of the fuel injection valve 21 is learned by sequentially changing the injection number N of the divided injections and learning the injection amount variation of the fuel injection valve 21. Since the injection amount per one injection of the divided injection is sequentially changed, the injection amount region for performing the learning can be sequentially changed, and the injection amount variation in the plurality of injection amount regions of the fuel injection valve 21 can be changed. Can learn quickly.

次に、図6を用いて本発明の実施例3を説明する。但し、前記実施例2と実質的に同一部分については説明を省略又は簡略化し、主として前記実施例2と異なる部分について説明する。   Next, Embodiment 3 of the present invention will be described with reference to FIG. However, description of substantially the same parts as those of the second embodiment will be omitted or simplified, and different parts from the second embodiment will be mainly described.

本実施例3では、ECU42により後述する図6の噴射量ばらつき学習補正ルーチンを実行することで、燃料噴射弁21の同一の噴射量領域における噴射量ばらつきを異なる運転条件で所定回数算出したときに、それらの算出値に基づいて該噴射量領域における噴射量ばらつきの学習値を決定するようにしている。図6のルーチンは、前記実施例2で説明した図5のルーチンのステップ210の処理をステップ210a〜210dの処理に変更したものであり、それ以外の各ステップの処理は図5と同じである。   In the third embodiment, when the ECU 42 calculates the injection amount variation in the same injection amount region of the fuel injection valve 21 by a predetermined number of times under different operating conditions by executing an injection amount variation learning correction routine of FIG. The learning value of the injection amount variation in the injection amount region is determined based on the calculated values. The routine of FIG. 6 is obtained by changing the processing of step 210 of the routine of FIG. 5 described in the second embodiment to the processing of steps 210a to 210d, and the processing of other steps is the same as that of FIG. .

図6に示す噴射量ばらつき学習補正ルーチンでは、ステップ209で、空燃比センサ24の出力に基づいて各気筒の空燃比ばらつきを気筒別に算出した後、ステップ210aに進み、各気筒の空燃比ばらつきに基づいて、低負荷運転時における各気筒の燃料噴射弁21の噴射量ばらつきを気筒別に算出する。   In the injection amount variation learning correction routine shown in FIG. 6, after calculating the air-fuel ratio variation of each cylinder on the basis of the output of the air-fuel ratio sensor 24 in step 209, the process proceeds to step 210a, where the air-fuel ratio variation of each cylinder is calculated. Based on this, the variation in the injection amount of the fuel injection valve 21 of each cylinder during low load operation is calculated for each cylinder.

この後、ステップ210bに進み、今回の噴射量領域における噴射量ばらつきの算出回数をカウントアップする。但し、前回までに今回と同じ運転条件(例えば、吸入空気量、吸気圧、スロットル開度、排出ガス量、要求噴射量等)で噴射量ばらつきを算出したことがある場合には、算出回数をカウントアップしない。   Thereafter, the process proceeds to step 210b, and the number of calculation of the injection amount variation in the current injection amount region is counted up. However, if the injection amount variation has been calculated up to the previous time under the same operating conditions as this time (for example, intake air amount, intake pressure, throttle opening, exhaust gas amount, required injection amount, etc.) Do not count up.

この後、ステップ210cに進み、今回の噴射量領域における噴射量ばらつきの算出回数が所定回数に達したか否かによって、今回の噴射領域における噴射量ばらつきを異なる運転条件で所定回数算出したか否かを判定する。   Thereafter, the process proceeds to step 210c, and whether or not the injection amount variation in the current injection region has been calculated a predetermined number of times under different operating conditions depending on whether or not the number of times of calculation of the injection amount variation in the current injection amount region has reached a predetermined number. Determine whether.

このステップ210cで、今回の噴射領域における噴射量ばらつきを異なる運転条件で所定回数算出したと判定されたとき、ステップ210dに進み、今回の噴射量領域における各気筒の燃料噴射弁21の噴射量ばらつきの所定回数の算出値の平均値を気筒別に算出し、これらの各気筒の燃料噴射弁21の噴射量ばらつきの平均値を、それぞれ今回の噴射量領域における各気筒の燃料噴射弁21の噴射量ばらつきの学習値としてECU42のバックアップRAM等の書き換え可能な不揮発性メモリに記憶する。   When it is determined in step 210c that the injection amount variation in the current injection region is calculated a predetermined number of times under different operating conditions, the process proceeds to step 210d, and the injection amount variation of the fuel injection valve 21 of each cylinder in the current injection amount region. The average value of the calculated values of the predetermined number of times is calculated for each cylinder, and the average value of the injection amount variation of the fuel injection valve 21 of each cylinder is calculated as the injection amount of the fuel injection valve 21 of each cylinder in the current injection amount region. The variation learning value is stored in a rewritable nonvolatile memory such as a backup RAM of the ECU 42.

以上説明した本実施例3では、燃料噴射弁21の同一の噴射量領域における噴射量ばらつきを異なる運転条件で所定回数算出したときに、それらの算出値の平均値を該噴射量領域における噴射量ばらつきの学習値として決定するようにしたので、燃料噴射弁21の噴射量ばらつきの学習精度を向上させることができると共に、運転条件の変化に対してロバスト性を持たせることができる。   In the third embodiment described above, when the injection amount variation in the same injection amount region of the fuel injection valve 21 is calculated a predetermined number of times under different operating conditions, the average value of those calculated values is the injection amount in the injection amount region. Since the variation learning value is determined, it is possible to improve the learning accuracy of the injection amount variation of the fuel injection valve 21 and to provide robustness against changes in the operating conditions.

尚、上記実施例3では、同一の噴射量領域における噴射量ばらつきを異なる運転条件で所定回数算出したときに、それらの算出値の平均値を該噴射量領域における噴射量ばらつきの学習値として決定するようにしたが、これに限定されず、例えば、異なる運転条件であるか否かに拘らず燃料噴射弁21の同一の噴射量領域における噴射量ばらつきを所定回数算出したときに、それらの算出値の平均値を該噴射量領域における噴射量ばらつきの学習値として決定するようにしても良い。   In the third embodiment, when the injection amount variation in the same injection amount region is calculated a predetermined number of times under different operating conditions, an average value of the calculated values is determined as a learning value for the injection amount variation in the injection amount region. However, the present invention is not limited to this. For example, when the injection amount variation in the same injection amount region of the fuel injection valve 21 is calculated a predetermined number of times regardless of different operating conditions, those calculations are performed. The average value may be determined as a learning value for the injection amount variation in the injection amount region.

また、上記各実施例1〜3では、各気筒(全気筒)の燃料噴射弁21で分割噴射を実行し、この分割噴射の実行中に、空燃比センサ24の出力に基づいて各気筒の空燃比ばらつきを気筒別に算出して、各気筒の空燃比ばらつきに基づいて、低負荷運転時における各気筒の燃料噴射弁21の噴射量ばらつきを気筒別に学習するようにしたが、これに限定されず、例えば、選択気筒の燃料噴射弁21のみで分割噴射を実行し、この分割噴射の実行中に、空燃比センサ24の出力から求めた空燃比ばらつきに基づいて、低負荷運転時における選択気筒の燃料噴射弁21の噴射量ばらつきを学習するようにしても良い。この場合、選択気筒を順次変更して、その選択気筒の燃料噴射弁の噴射量ばらつきを学習する処理を繰り返すことで、各気筒(全気筒)の燃料噴射弁の噴射量ばらつきを学習することができる。   In the first to third embodiments, the split injection is executed by the fuel injection valve 21 of each cylinder (all cylinders), and the empty of each cylinder is determined based on the output of the air-fuel ratio sensor 24 during the execution of the split injection. The variation in the fuel ratio is calculated for each cylinder, and the variation in the injection amount of the fuel injection valve 21 in each cylinder during low load operation is learned for each cylinder based on the variation in the air-fuel ratio of each cylinder. However, the present invention is not limited to this. For example, the split injection is executed only by the fuel injection valve 21 of the selected cylinder, and during the execution of the split injection, based on the air-fuel ratio variation obtained from the output of the air-fuel ratio sensor 24, the selected cylinder at the time of low load operation is selected. You may make it learn the injection amount dispersion | variation of the fuel injection valve 21. FIG. In this case, the variation in the injection amount of the fuel injection valve in each cylinder (all cylinders) can be learned by sequentially changing the selected cylinder and repeating the process of learning the variation in the injection amount of the fuel injection valve in the selected cylinder. it can.

その他、本発明は、図1に示すような筒内噴射式エンジンに限定されず、吸気ポート噴射式エンジンにも適用して実施できる等、要旨を逸脱しない範囲内で種々変更して実施できる。   In addition, the present invention is not limited to the in-cylinder injection type engine as shown in FIG. 1, but can be implemented with various modifications without departing from the gist, such as being applicable to an intake port injection type engine.

11…エンジン(内燃機関)、12…吸気管、16…スロットルバルブ、21…燃料噴射弁、22…点火プラグ、23…排気管(排気通路)、24…空燃比センサ、25…触媒、42…ECU(噴射量ばらつき学習手段,気筒別空燃比ばらつき算出手段)   DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe, 16 ... Throttle valve, 21 ... Fuel injection valve, 22 ... Spark plug, 23 ... Exhaust pipe (exhaust passage), 24 ... Air-fuel ratio sensor, 25 ... Catalyst, 42 ... ECU (injection amount variation learning means, cylinder-by-cylinder air-fuel ratio variation calculating means)

Claims (4)

内燃機関の排気通路に設置された空燃比センサと、
内燃機関の各気筒の燃料噴射弁の要求噴射量が低負荷運転時よりも多くなる高負荷運転時に要求噴射量分の燃料を複数回に分割して噴射する分割噴射を実行し、該分割噴射の実行中に前記空燃比センサの出力から求めた空燃比ばらつきに基づいて、前記低負荷運転時における燃料噴射弁の噴射量ばらつきを学習する噴射量ばらつき学習手段とを備え、
前記噴射量ばらつき学習手段は、前記燃料噴射弁の所定の噴射量領域における噴射量ばらつきを学習する場合に該噴射量領域内の噴射量に基づいて前記分割噴射の噴射回数を決定し、前記燃料噴射弁の複数の噴射量領域における噴射量ばらつきを学習する場合に前記要求噴射量を前記燃料噴射弁が噴射可能な最小噴射量で除算した値(但し小数点以下を切り捨て)を前記分割噴射の噴射回数の初期値として設定し、前記分割噴射の噴射回数を前記初期値から順次減らして前記燃料噴射弁の噴射量ばらつきを学習することで、前記燃料噴射弁の複数の噴射量領域における噴射量ばらつきを学習することを特徴とする内燃機関の燃料噴射制御装置。
An air-fuel ratio sensor installed in the exhaust passage of the internal combustion engine;
A split injection is performed in which the required injection amount of the fuel injection valve of each cylinder of the internal combustion engine is larger than that during the low load operation, and the divided injection is performed in which the fuel corresponding to the required injection amount is divided into a plurality of times and injected. Injection amount variation learning means for learning the injection amount variation of the fuel injection valve during the low load operation based on the air-fuel ratio variation obtained from the output of the air-fuel ratio sensor during the execution of
The injection quantity variation learning means determines the injection time number of the split injection based on the injection amount of the injection amount region when learning the injection quantity variation at a predetermined injection amount region of the fuel injection valve, the fuel When learning the injection amount variation in a plurality of injection amount regions of the injection valve, the value obtained by dividing the required injection amount by the minimum injection amount that can be injected by the fuel injection valve (however, the fractional part is rounded down) is injected in the divided injection. By setting the initial value of the number of times and learning the injection amount variation of the fuel injection valve by sequentially reducing the number of injections of the divided injection from the initial value, the injection amount variation in a plurality of injection amount regions of the fuel injection valve A fuel injection control device for an internal combustion engine characterized by learning the following .
前記空燃比センサの出力に基づいて各気筒の空燃比ばらつきを気筒別に算出する気筒別空燃比ばらつき算出手段を備え、
前記噴射量ばらつき学習手段は、前記高負荷運転時に各気筒の燃料噴射弁で前記分割噴射を実行し、該分割噴射の実行中に前記気筒別空燃比ばらつき算出手段で算出した各気筒の空燃比ばらつきに基づいて、前記低負荷運転時における各気筒の燃料噴射弁の噴射量ばらつきを気筒別に学習することを特徴とする請求項1に記載の内燃機関の燃料噴射制御装置。
A cylinder-by-cylinder air-fuel ratio variation calculating means for calculating the air-fuel ratio variation of each cylinder based on the output of the air-fuel ratio sensor;
The injection amount variation learning means executes the divided injection by the fuel injection valve of each cylinder during the high load operation, and the air-fuel ratio of each cylinder calculated by the cylinder-by-cylinder air-fuel ratio variation calculating means during the execution of the divided injection. 2. The fuel injection control device for an internal combustion engine according to claim 1, wherein the variation in the injection amount of the fuel injection valve of each cylinder during the low load operation is learned for each cylinder based on the variation.
前記噴射量ばらつき学習手段は、前記燃料噴射弁の同一の噴射量領域における噴射量ばらつきを所定回数算出したときに、それらの算出値に基づいて該噴射量領域における噴射量ばらつきの学習値を決定することを特徴とする請求項1又は2に記載の内燃機関の燃料噴射制御装置。 The injection amount variation learning means, when calculating the injection amount variation in the same injection amount region of the fuel injection valve a predetermined number of times, determines a learning value of the injection amount variation in the injection amount region based on those calculated values. The fuel injection control device for an internal combustion engine according to claim 1 or 2 , wherein 前記噴射量ばらつき学習手段は、前記燃料噴射弁の同一の噴射量領域における噴射量ばらつきを異なる運転条件で所定回数算出したときに、それらの算出値に基づいて該噴射量領域における噴射量ばらつきの学習値を決定することを特徴とする請求項に記載の内燃機関の燃料噴射制御装置。 When the injection amount variation learning means calculates the injection amount variation in the same injection amount region of the fuel injection valve a predetermined number of times under different operating conditions, the injection amount variation learning means calculates the injection amount variation in the injection amount region based on those calculated values. 4. The fuel injection control device for an internal combustion engine according to claim 3 , wherein a learning value is determined.
JP2010080305A 2010-02-26 2010-03-31 Fuel injection control device for internal combustion engine Expired - Fee Related JP5317022B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010080305A JP5317022B2 (en) 2010-03-31 2010-03-31 Fuel injection control device for internal combustion engine
US13/033,785 US20110213544A1 (en) 2010-02-26 2011-02-24 Fuel injection controller for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010080305A JP5317022B2 (en) 2010-03-31 2010-03-31 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2011214411A JP2011214411A (en) 2011-10-27
JP5317022B2 true JP5317022B2 (en) 2013-10-16

Family

ID=44944420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010080305A Expired - Fee Related JP5317022B2 (en) 2010-02-26 2010-03-31 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5317022B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6046370B2 (en) * 2012-04-09 2016-12-14 日立オートモティブシステムズ株式会社 Engine control device
JP7269532B2 (en) * 2019-05-21 2023-05-09 マツダ株式会社 Evaporative fuel processing device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929966B2 (en) * 2006-09-15 2012-05-09 株式会社デンソー Fuel injection control device
JP2010025091A (en) * 2008-07-24 2010-02-04 Hitachi Ltd Control device of cylinder injection type internal combustion engine

Also Published As

Publication number Publication date
JP2011214411A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5115629B2 (en) Control device for internal combustion engine
US8413497B2 (en) Abnormality diagnostic device of internal combustion engine with turbocharger
US8267076B2 (en) Engine control apparatus
JP5397567B1 (en) Control device for internal combustion engine
JP2005307847A (en) Air amount calculation device for internal combustion engine
US20110213544A1 (en) Fuel injection controller for internal combustion engine
JP5660323B2 (en) EGR control device for internal combustion engine
JP5146619B2 (en) Control device for internal combustion engine
US9644549B2 (en) Control apparatus for internal combustion engine
JP2009024531A (en) Abnormality diagnosis device of cylinder-by-cylinder air-fuel ratio control system for internal combustion engine
JP2010203413A (en) Air-fuel ratio control device for each of cylinders of internal combustion engine
JP2010236358A (en) Signal-processing apparatus for gas sensor
CN102828859B (en) EGR controller for internal combustion engine
JP5317022B2 (en) Fuel injection control device for internal combustion engine
JP2009007940A (en) Cylinder-charged air quantity calculating apparatus for internal combustion engine
JP2009002249A (en) Device for estimating throttle upstream pressure of internal combustion engine
JP5187537B2 (en) Fuel injection control device for internal combustion engine
JP6127906B2 (en) Control device for internal combustion engine
JP5490646B2 (en) Variable valve timing control device for internal combustion engine
JP2010265877A (en) Fuel injection control device for direct injection type internal combustion engine
JP2007285136A (en) Air-fuel ratio control device for each cylinder of internal combustion engine
JP3956458B2 (en) Fuel injection control device for internal combustion engine
JP2006009674A (en) Controller of internal combustion engine
JP2011179344A (en) Fuel injection controller for internal combustion engine
JP2013015105A (en) Knock determination apparatus for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130630

LAPS Cancellation because of no payment of annual fees