JP3956458B2 - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine Download PDF

Info

Publication number
JP3956458B2
JP3956458B2 JP00621298A JP621298A JP3956458B2 JP 3956458 B2 JP3956458 B2 JP 3956458B2 JP 00621298 A JP00621298 A JP 00621298A JP 621298 A JP621298 A JP 621298A JP 3956458 B2 JP3956458 B2 JP 3956458B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
cylinder
fuel injection
exhaust
injection amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00621298A
Other languages
Japanese (ja)
Other versions
JPH11200926A (en
Inventor
啓 梅原
達也 藤田
兼仁 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP00621298A priority Critical patent/JP3956458B2/en
Publication of JPH11200926A publication Critical patent/JPH11200926A/en
Application granted granted Critical
Publication of JP3956458B2 publication Critical patent/JP3956458B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の気筒別の排気酸素濃度を検出して気筒別の燃料噴射量を補正する機能を備えた内燃機関の燃料噴射制御装置に関するものである。
【0002】
【従来の技術】
この種の燃料噴射制御装置においては、各気筒毎に酸素濃度センサを1つずつ設置すると、コスト高になるため、特開昭59−101562号公報に示すように、内燃機関の集合排気管に1つの酸素濃度センサを設け、内燃機関の基準タイミングから各気筒の排気ガスが酸素濃度センサに到達するまでの遅れ時間を運転状態に応じて予め求めておき、それに基づいて1つの酸素濃度センサの出力から気筒別の排気酸素濃度を検出して、それを目標値にフィードバック制御することが提案されている。
【0003】
しかし、内燃機関の集合排気管を通過する排気ガスは、排気管形状や気筒毎の排気バルブ開放タイミングのオーバラップ等による混ざりが生じるため、上記公報のように、気筒別の排気酸素濃度を1つの酸素濃度センサで検出しようとすると、酸素濃度センサの出力は、常に全気筒の排気酸素濃度を混合した出力となり、1つの気筒の排気酸素濃度を単独で検出することは不可能である。そのため、気筒別の排気酸素濃度を精度良く検出することができず、各気筒の排気酸素濃度を目標値に精度良く制御することが困難である。
【0004】
この問題を解決するために、特開平5−180040号公報では、酸素濃度センサの出力を各気筒の燃焼履歴に所定の重み係数を乗じた加重平均値からなるものと見なして排気系の挙動を模擬するモデルを構築し、各気筒の排気酸素濃度をオブザーバによって観察し、このオブザーバの出力に基づいて気筒別の排気酸素濃度を推定することで、気筒別の排気酸素濃度を目標値にフィードバック制御する技術が提案されている。
【0005】
【発明が解決しようとする課題】
上記特開平5−180040号公報では、各気筒の排気ガスが酸素濃度センサで検出されるタイミングは、エンジン回転数と負荷に応じて決定されている。しかし、酸素濃度センサの個体差や経時劣化、過給装置の排気タービンの抵抗等の影響により、酸素濃度センサで検出されるタイミングが変化するため、エンジン回転数と負荷に応じて検出タイミングを決定すると、気筒別の排気酸素濃度を精度良く分離、抽出することが困難である。
【0006】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、集合排気管に設置した1つの酸素濃度センサの出力から気筒別の排気酸素濃度を精度良く推定することができ、気筒別の燃料噴射制御を精度良く行うことができる内燃機関の燃料噴射制御装置を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の内燃機関の燃料噴射制御装置では、集合排気管に設置した酸素濃度センサの出力を、各気筒の排気酸素濃度に所定の重み係数(各気筒の流量比率に相当)を乗じて加重平均した排気酸素濃度と見なし、この酸素濃度センサの出力から前記重み係数を考慮して気筒別の排気酸素濃度を気筒別排気酸素濃度推定手段により推定する。この際、重み係数を排気酸素濃度検出時のクランク角に応じて重み係数決定手段により決定するが、酸素濃度センサの出力から重み係数が適当でないと判断した場合(つまり気筒別の燃料噴射量のばらつきが大きいと判断した場合)には、重み係数とクランク角との対応関係を補正制御手段により補正する。これにより、各気筒の排気酸素濃度が酸素濃度センサで検出されるタイミングが変化しても、それに応じて重み係数(各気筒の流量比率)とクランク角との対応関係が補正されるため、集合排気管に設置した1つの酸素濃度センサの出力から気筒別の排気酸素濃度を精度良く推定することができ、気筒別の燃料噴射制御を精度良く行うことができる。
【0008】
ここで、重み係数とクランク角との対応関係を補正する場合には、請求項のように、特定気筒の燃料噴射量を増量又は減量し、その増量又は減量によって生じる排気酸素濃度の変化が酸素濃度センサで検出されるタイミングをクランク角で検出し、その検出結果に基づいて重み係数とクランク角との対応関係を補正するようにすれば良い。この場合、特定気筒の燃料噴射量を増量又は減量することで、特定気筒の排気酸素濃度を検出するまでの遅れ時間を精度良く検出することができ、この検出結果から各気筒の流量比率を精度良く反映させた重み係数を求めることができる。
【0009】
この場合、請求項のように、特定気筒の燃料噴射量を増量又は減量する際に1サイクル当たりの合計燃料噴射量が変化しないように、特定気筒以外の気筒の燃料噴射量を補正するようにしても良い。このようにすれば、特定気筒の燃料噴射量を増減させた時の内燃機関の出力変動を抑制することができ、ドライバビリティを良好に維持できる。
【0010】
或は、請求項のように、特定気筒の燃料噴射量を増量する場合に、当該特定気筒の燃料噴射時期を遅角するようにしても良い。このようにすれば、特定気筒の燃料噴射量の増量による出力増加を燃料噴射時期の遅角により抑えることができ、気筒間にトルク差が生じることを防止できて、気筒間のトルク変動による回転変動を抑制できる。これにより、各気筒の排気バルブ開放時間に差が生じることを防止できて、各気筒の流量比率の変化を抑制でき、気筒別の排気酸素濃度の推定精度を向上できる。
【0011】
また、請求項のように、特定気筒の燃料噴射量を増量する場合に、その増量分の燃料を当該特定気筒の膨張行程で後噴射することで、当該特定気筒の燃料噴射量を増量するようにしても良い。このように、増量分の燃料を特定気筒の膨張行程で後噴射して燃焼させれば、特定気筒のメイン噴射量を増加させる場合と比較して、特定気筒のトルク上昇を少なくすることができ、気筒間のトルク差を低減することができる。
【0012】
また、排気ガス還流装置を備えた内燃機関では、各気筒毎の排気ガス還流率のばらつきによって各気筒の流量比率が変動するため、請求項のように、特定気筒の燃料噴射量を増量又は減量する際に、排気ガス還流装置による排気ガス還流を停止することが好ましい。このようにすれば、排気ガス還流の影響を受けずに気筒別の排気酸素濃度を精度良く推定することができる。
【0013】
また、ウェイストゲートバルブ付きの過給装置を備えた内燃機関に本発明を適用する場合には、請求項のように、特定気筒の燃料噴射量を増量又は減量する際に、ウェイストゲートバルブを開放することが好ましい。このように、ウェイストゲートバルブを開放すると、それまで排気タービンで撹拌されていた排気の多くがウェイストゲートに流れるため、排気タービンによる気筒間の排気ガスの撹拌を少なくすることができ、気筒別の排気酸素濃度を精度良く推定することができる。
【0014】
また、可変ジオメトリターボを備えた内燃機関に本発明を適用する場合には、請求項のように、特定気筒の燃料噴射量を増量又は減量する際に、排気抵抗を低減するように可変ジオメトリターボのガイド板を開放することが好ましい。このようにすれば、可変ジオメトリターボ内での気筒間の排気ガスの撹拌を少なくすることができる。
【0015】
【発明の実施の形態】
[実施形態(1)]
以下、本発明をディーゼルエンジンに適用した実施形態(1)を図1乃至図3に基づいて説明する。まず、図1に基づいてエンジン制御システム全体の概略構成を説明する。内燃機関であるディーゼルエンジン11の吸気管12には、ターボ過給機13(過給装置)の吸気タービン14が設置されている。このターボ過給機13の吸気タービン14と連結された排気タービン15がディーゼルエンジン11の集合排気管16内に設置され、この排気タービン15を排気ガスの運動エネルギによって回転駆動することで、吸気タービン14を回転させて過給圧を発生させる。集合排気管16には、排気タービン15の上流側と下流側をバイパスさせるウェイストゲート17が設けられ、このウェイストゲート17を通過する排気の流量が電磁式のウェイストゲートバルブ18によって制御される。集合排気管16のうちのウェイストゲート17よりも下流側には、排気酸素濃度を検出する限界電流式の酸素濃度センサ19が設置されている。
【0016】
排気タービン15の上流側の集合排気管16と吸気タービン14の下流側の吸気管12との間にはEGR配管20が接続され、このEGR配管20の途中に電子制御式のEGR弁21が設置され、このEGR弁21の弁開度を調整することで、EGR配管20を通過するEGR流量が制御される。これらEGR配管20とEGR弁21とから排気ガス還流装置(EGR装置)22が構成されている。ディーゼルエンジン11の各気筒のシリンダヘッドにはそれぞれ燃料噴射弁23が取り付けられている。
【0017】
ターボ過給機13によって過給される空気は吸気マニホールド24を介してディーゼルエンジン11の各気筒に吸入される。各気筒内で圧縮された高温空気中に燃料噴射弁23から燃料を噴射して自己着火させ、各気筒の排気ガスが排気マニホールド25を通して1本の集合排気管16に合流し、大気中に排出される。
【0018】
ディーゼルエンジン11の運転状態は、クランク角センサ26、アクセルセンサ27、車速センサ28、酸素濃度センサ19等によって検出され、これらの出力信号がエンジン制御用の制御回路29に読み込まれる。この制御回路29は、マイクロコンピュータを主体として構成され、内蔵されたROM(記憶媒体)には、図2の気筒別噴射量補正プログラム等の各種のエンジン制御プログラムが記憶され、これらのプログラムを実行することで、燃料噴射制御、EGR制御及びウェイストゲートバルブ18の制御を実行する。図2の気筒別噴射量補正プログラム以外のプログラムは、従来と同じであるので、以下、図2の気筒別噴射量補正プログラムのみについて説明する。
【0019】
図2の気筒別噴射量補正プログラムは、制御回路29にて所定クランク角毎又は所定時間毎に次のように実行される。まず、ステップ101で、アクセルセンサ27とクランク角センサ26と車速センサ28の出力信号を読み込み、次のステップ102で、これらの信号から検出されるアクセル開度とエンジン回転数と車速とに基づいて現在の運転状態が定常運転であるか否かを判定する。定常運転でなければ、気筒別の排気酸素濃度の検出が困難であるので、以降の処理を行うことなく、本プログラムを終了する。
【0020】
一方、定常運転時には、ステップ102からステップ103に進み、気筒別燃料噴射量制御が必要か否かを判定する。例えば、今までに一度も気筒別燃料噴射量制御が実行されていない時や、前回の気筒別燃料噴射量制御が実行されてから所定の積算走行距離に達している時、或は、定常運転時の酸素濃度センサ19の出力変化(振幅)が大きい時などは気筒別燃料噴射量制御が必要と判定される。気筒別燃料噴射量制御が必要でないと判定された場合には、以降の処理を行うことなく、本プログラムを終了する。
【0021】
上記ステップ103で、気筒別燃料噴射量制御が必要と判定された場合には、ステップ104に進み、特定気筒、例えば気筒#1の燃料噴射量を所定量△Qだけ増量補正し、他の気筒#2〜#4の燃料噴射量を△Qの3分の1ずつ減量補正して、1サイクル当たりの合計燃料噴射量が変化しないようにする。これにより、気筒#1のみ排気酸素濃度を低下させると共に、エンジン出力を補正前後で一定に保持する。
【0022】
この後、ステップ105で、EGR弁21を全閉して、排気ガス還流を停止(EGRカット)すると共に、ウェイストゲートバルブ18を全開して、排気タービン15へ向かう排気ガスをウェイストゲート17へバイパスさせる。この後、ステップ106で、酸素濃度センサ19の出力信号を読み込み、増量補正した気筒#1の排気酸素濃度が最も良く検出されるタイミングTa (クランク角)を検出する。つまり、図3に示すように、気筒#1の燃料噴射量を増量補正すると、気筒#1の燃焼の際に消費される酸素量が増加して気筒#1の排気酸素濃度が低下するため、増量補正後に、酸素濃度センサ19の出力(排気酸素濃度の検出値)が最も低下したタイミングTa を検出することで、気筒#1の排気ガスが酸素濃度センサ19に到達したタイミングTa を検出する。
【0023】
この後、ステップ107で、燃料噴射量補正を終了した後、ステップ108で再び酸素濃度センサ19の出力信号を読み込む。集合排気管16を流れる排気ガスは、気筒間の排気バルブのオーバーラップ等の影響により、完全には層状にならず、各気筒の排気ガスが混ざり合った状態で流れるため、酸素濃度センサ19の出力(排気酸素濃度の検出値)も各気筒の排気酸素濃度が混ざり合った値となる。
【0024】
そこで、次のステップ109で、以下のようにして酸素濃度センサ19の出力から気筒別の排気酸素濃度を算出する。酸素濃度センサ19の出力は、各気筒の排気酸素濃度に各気筒の重み係数を乗じて積算した排気酸素濃度と見なすことができる。各気筒の重み係数は、排気酸素濃度検出時に酸素濃度センサ19部分を通過する各気筒の排気ガスの流量比率である。
【0025】
(酸素濃度センサ19の出力)=Σ(気筒別排気酸素濃度)×(重み係数)
例えば、4気筒エンジンの場合、具体的には、以下の行列式で表すことができる。
【0026】
【数1】

Figure 0003956458
【0027】
この行列式において、重み係数An 〜Dn は、ステップ106で検出したタイミングTa に応じて次のように補正される。今回検出したタイミングTa(i)を前回検出したタイミングTa(i-1)と比較し、Ta(i)がTa(i-1)より遅れている場合には、その遅れ角度ΔTa を次式により算出する。
ΔTa =Ta(i)−Ta(i-1)
【0028】
この後、重み係数An 〜Dn とクランク角nとの対応関係を次式により補正する。
n(今回値)=n(前回値)+ΔTa
これにより、上記行列式の重み係数An 〜Dn を更新し、且つ上記行列式に各クランク角での酸素濃度センサ19の出力を代入して気筒別の排気酸素濃度を算出する。以上のような処理を行うステップ109が、特許請求の範囲でいう気筒別排気酸素濃度推定手段、重み係数決定手段及び補正制御手段としての役割を果たす。
【0029】
気筒別排気酸素濃度の算出後、ステップ110に進み、気筒別排気酸素濃度の算出値を基に、全気筒の排気酸素濃度が同一となるように、気筒別の燃料噴射量の補正量を算出し、この補正量で気筒別の燃料噴射量を補正して、各気筒の燃料噴射を実施する。この後、ステップ111で、酸素濃度センサ19の出力の振幅が所定幅以内であるか否かを判定する。つまり、上記ステップ110で行った気筒別の燃料噴射量の補正により気筒別の排気酸素濃度のばらつきが小さくなれば酸素濃度センサ19の出力の振幅が小さくなるが、気筒別の排気酸素濃度のばらつきが大きければ、酸素濃度センサ19の出力の振幅が大きくなる。この関係から、酸素濃度センサ19の出力の振幅が所定幅を越える場合には、気筒別の排気酸素濃度のばらつきが許容値を越えると判断して、ステップ101に戻り、上述した処理を繰り返す。つまり、気筒別の排気酸素濃度を算出して、全気筒の排気酸素濃度が同一となるように気筒別の燃料噴射量を補正する処理を繰り返す。
【0030】
このような気筒別の燃料噴射量の補正により、酸素濃度センサ19の出力の振幅が所定幅以内になれば、気筒別の排気酸素濃度のばらつきが許容値以内と判断して、ステップ112に進み、検出タイミングTa を前記ステップ106で検出したタイミングTa に更新して本プログラムを終了する。
【0031】
以上説明した本実施形態(1)によれば、特定気筒の燃料噴射量を増量補正し、その増量補正によって生じる排気酸素濃度の変化が酸素濃度センサ19で検出されるタイミングTa をクランク角で検出し、その結果に基づいて重み係数(各気筒の流量比率)とクランク角との対応関係を補正するようにしたので、各気筒の排気酸素濃度が酸素濃度センサ19で検出されるタイミングが変化しても、それに応じて重み係数とクランク角との対応関係を精度良く補正することができ、集合排気管16に設置した1つの酸素濃度センサ19の出力から気筒別の排気酸素濃度を精度良く推定することができ、気筒別の燃料噴射制御を精度良く行うことができる。
【0032】
更に、本実施形態(1)では、特定気筒の燃料噴射量を増量補正する際に、1サイクル当たりの合計燃料噴射量が変化しないように、特定気筒以外の気筒の燃料噴射量を減量補正するようにしたので、特定気筒の燃料噴射量を増量補正した時のエンジン出力の変動を抑制することができ、ドライバビリティを良好に維持できる。
【0033】
しかも、特定気筒の燃料噴射量を増量補正する際に、EGRカットして、各気筒毎のEGR率のばらつきによる各気筒の流量比率の変動を防止すると共に、ウェイストゲートバルブ18を全開して過給を停止し、排気タービン15による気筒間の排気ガスの攪拌を少なくするようにしたので、EGRやターボ過給機13の影響を受けずに、気筒別の排気酸素濃度を精度良く推定することができる。
【0034】
ところで、エンジン11の運転状態によっては、EGRカットや過給停止(ウェイストゲートバルブ18の全開)によってエンジン出力が変化する可能性がある。例えば、エンジン11が低回転で過給が行われていない状態の時は、EGRカットによるエンジン出力の上昇が考えられる。また、高負荷時には、もともとEGR率が低いため、過給停止によるエンジン出力低下が考えられる。このような場合、予めエンジン出力の変化を予測して、それを補正する燃料噴射量のマップを記憶しておき、EGRカットや過給停止を行う時に、このマップを用いて全気筒の燃料噴射量を同一量補正し、エンジン出力の変動を抑制するようにしても良い。
【0035】
尚、本実施形態(1)では、特定気筒の燃料噴射量を増量補正したが、減量補正するようにしても良い。特定気筒の燃料噴射量を減量補正する場合には、1サイクル当たりの合計燃料噴射量が変化しないように、他の気筒の燃料噴射量を増量補正すると共に、ステップ106において、酸素濃度センサ19の出力が最も上昇するタイミングTa を検出するようにすれば良い。
【0036】
[実施形態(2)]
上記実施形態(1)では、特定気筒#1の燃料噴射量を増量補正する際に、1サイクル当たりの合計燃料噴射量が変化しないように、特定気筒#1以外の気筒#2〜#4の燃料噴射量を減量補正することで、エンジン出力の変動を抑制するようにしたが、図4及び図5に示す本発明の実施形態(2)では、ステップ104aで、特定気筒#1の燃料噴射量を増量補正する際に、当該特定気筒#1の燃料噴射時期を遅角することで、エンジン出力の変動を抑制するようにしている。その他の処理は、前記実施形態(1)で説明した図2の処理と同じであるので、説明を省略する。
【0037】
このように、特定気筒#1の燃料噴射量を増量補正する際に、特定気筒#1の燃料噴射時期を遅角すれば、エンジン出力の変動を抑制できると共に、気筒間のトルク変動による回転変動も抑制でき、各気筒の排気バルブ開放時間に差が生じることを防止できて、各気筒の流量比率の変化を抑制でき、気筒別の排気酸素濃度の推定精度を向上できる。また、回転変動による振動も低減できる。
【0038】
[実施形態(3)]
図6及び図7に示す本発明の実施形態(3)では、特定気筒#1の燃料噴射量を増量補正する際に、その増量分の燃料を当該特定気筒#1の膨張行程で後噴射することで、当該特定気筒#1の燃料噴射量を増量する(ステップ104b)。この場合、特定気筒#1のメイン噴射量は、他の気筒#2〜#4のメイン噴射量と同一である。その他の処理は、前記実施形態(1)で説明した図2の処理と同じであるので、説明を省略する。
【0039】
このように、増量分の燃料を特定気筒#1の膨張行程で後噴射して燃焼させれば、特定気筒#1のメイン噴射量を増加させる場合と比較して、特定気筒#1のトルク上昇を少なくすることができ、気筒間のトルク差を低減することができて前記実施形態(2)と同じ効果を得ることができる。
【0040】
[その他の実施形態]
上記各実施形態(1)〜(3)では、いずれもウェイストゲートバルブ18付きのターボ過給機13を設けたが、これに代えて、図8に示す可変ジオメトリターボ30を用いるようにしても良い。この場合には、特定気筒の燃料噴射量を増量(又は減量)する際に、排気抵抗を低減するように可変ジオメトリターボ30のガイド板31を開放すれば良い。その他の制御は、上記各実施形態(1)〜(3)のいずれかを採用すれば良い。
【0041】
可変ジオメトリターボ30のガイド板31を開放すれば、可変ジオメトリターボ30内での排気タービン32による気筒間の排気ガスの攪拌を少なくすることができ、ウェイストゲートバルブ18を全開した時とほぼ同様の効果を得ることができる。
【0042】
また、上記各実施形態(1)〜(3)では、特定気筒#1の燃料噴射量を増量(又は減量)によって生じる排気酸素濃度の変化が酸素濃度センサ19で検出されるタイミングTa を検出し、その検出結果に基づいて重み係数とクランク角との対応関係を補正するようにしたが、エンジン運転中に常に酸素濃度センサ19の出力をモニタして、重み係数が適当でないと判断した場合(つまり気筒別の燃料噴射量のばらつきが大きいと判断した場合)に、重み係数とクランク角との対応関係を補正するようにしても良い。以下、この補正方法を具体的に説明する。
【0043】
酸素濃度センサ19の出力は、排気酸素濃度の他に排気圧力等の影響も受けるため、定常運転で各気筒の排気酸素濃度が一定の場合でも、常に酸素濃度センサ19の出力が変化する。そこで、予め、定常運転で各気筒の排気酸素濃度が一定の場合の酸素濃度センサ19の出力の最大変化幅(最大振幅)を想定して、それを許容値として記憶しておき、定常運転時に、所定時間毎に酸素濃度センサ19の出力の振幅が許容値以下であるか否かを判定し、許容値を越える場合には、気筒別の排気酸素濃度のばらつきが大きい、つまり、重み係数が適当でないと判断する。
【0044】
この場合には、前記数1の行列式において、重み係数An 〜Dn とクランク角nとの対応関係を次のようにして補正する。予め、nをパラメータとする重み係数An 〜Dn のマップを制御回路29のROMに記憶しておき、最初に、n=mとして各気筒の排気酸素濃度(実際は燃料噴射量)を補正する。その結果、酸素濃度センサ19の出力の振幅があまり減少しなければ、n=m+Δmとして、各気筒の排気酸素濃度を再度補正する。これにより、酸素濃度センサ19の出力の振幅が許容値以下に減少すれば、n=m+Δmとして更新する。反対に、酸素濃度センサ19の出力の振幅が増加するようであれば、n=m−Δmとして、同様の補正を行う。このような補正処理を、酸素濃度センサ19の出力の振幅が許容値以下に減少するまで繰り返す。
【0045】
尚、図1のシステム構成例では、ターボ過給機13とEGR装置22の両方を設けているが、いずれか一方のみを持つシステムや、両方とも持たないシステムにも本発明を適用可能である。
【0046】
その他、本発明は、ディーゼルエンジンに限定されず、ガソリンエンジンにも適用可能である。
【図面の簡単な説明】
【図1】実施形態(1)を示すエンジン制御システム全体の構成図
【図2】実施形態(1)の気筒別噴射量補正プログラムの処理の流れを示すフローチャート
【図3】実施形態(1)において特定気筒の燃料噴射量を増量補正した時のエンジン回転数と排気酸素濃度の変化具合を示すタイムチャート
【図4】実施形態(2)の気筒別噴射量補正プログラムの処理の流れを示すフローチャート
【図5】実施形態(2)において特定気筒の燃料噴射量を増量補正した時のエンジン回転数と排気酸素濃度の変化具合を示すタイムチャート
【図6】実施形態(3)の気筒別噴射量補正プログラムの処理の流れを示すフローチャート
【図7】実施形態(3)において特定気筒の燃料噴射量を増量補正した時のエンジン回転数と排気酸素濃度の変化具合を示すタイムチャート
【図8】他の実施形態で用いる可変ジオメトリターボの構成を概略的に示す図
【符号の説明】
11…ディーゼルエンジン(内燃機関)、12…吸気管、13…ターボ過給機、15…排気タービン、16…集合排気管、17…ウェイストゲート、18…ウェイストゲートバルブ、19…酸素濃度センサ、20…EGR配管、21…EGR弁、22…EGR装置、23…燃料噴射弁、29…制御回路(気筒別排気酸素濃度推定手段,重み係数決定手段,補正制御手段)、30…可変ジオメトリターボ、31…ガイド板、32…排気タービン。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel injection control device for an internal combustion engine having a function of detecting an exhaust oxygen concentration for each cylinder of the internal combustion engine and correcting a fuel injection amount for each cylinder.
[0002]
[Prior art]
In this type of fuel injection control device, if one oxygen concentration sensor is installed for each cylinder, the cost increases. Therefore, as shown in Japanese Patent Application Laid-Open No. 59-101562, a collective exhaust pipe of an internal combustion engine is provided. One oxygen concentration sensor is provided, and a delay time from the reference timing of the internal combustion engine until the exhaust gas of each cylinder reaches the oxygen concentration sensor is obtained in advance according to the operating state, and based on this, a delay time of one oxygen concentration sensor is obtained. It has been proposed to detect the exhaust oxygen concentration for each cylinder from the output and feedback control it to a target value.
[0003]
However, since the exhaust gas passing through the collective exhaust pipe of the internal combustion engine is mixed due to the exhaust pipe shape and the overlap of the exhaust valve opening timing of each cylinder, the exhaust oxygen concentration for each cylinder is set to 1 as described in the above publication. If an attempt is made to detect with one oxygen concentration sensor, the output of the oxygen concentration sensor is always an output obtained by mixing the exhaust oxygen concentrations of all the cylinders, and it is impossible to detect the exhaust oxygen concentration of one cylinder alone. Therefore, the exhaust oxygen concentration for each cylinder cannot be detected with high accuracy, and it is difficult to accurately control the exhaust oxygen concentration of each cylinder to the target value.
[0004]
In order to solve this problem, Japanese Patent Application Laid-Open No. 5-180040 considers the behavior of the exhaust system by regarding the output of the oxygen concentration sensor as a weighted average value obtained by multiplying the combustion history of each cylinder by a predetermined weighting factor. Build a model to simulate, observe the exhaust oxygen concentration of each cylinder with an observer, and estimate the exhaust oxygen concentration for each cylinder based on the output of this observer, feedback control the exhaust oxygen concentration for each cylinder to the target value Techniques to do this have been proposed.
[0005]
[Problems to be solved by the invention]
In JP-A-5-180040, the timing at which the exhaust gas of each cylinder is detected by the oxygen concentration sensor is determined according to the engine speed and the load. However, because the timing detected by the oxygen concentration sensor changes due to individual differences in oxygen concentration sensors, deterioration over time, resistance of the exhaust turbine of the turbocharger, etc., the detection timing is determined according to the engine speed and load. Then, it is difficult to accurately separate and extract the exhaust oxygen concentration for each cylinder.
[0006]
The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to accurately estimate the exhaust oxygen concentration for each cylinder from the output of one oxygen concentration sensor installed in the collecting exhaust pipe. Another object of the present invention is to provide a fuel injection control device for an internal combustion engine capable of accurately performing fuel injection control for each cylinder.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, in the fuel injection control device for an internal combustion engine according to claim 1 of the present invention, the output of the oxygen concentration sensor installed in the collective exhaust pipe is set to a predetermined weight coefficient (each The exhaust oxygen concentration is weighted and averaged by multiplying the flow rate ratio of the cylinder), and the exhaust oxygen concentration for each cylinder is estimated from the output of the oxygen concentration sensor by the cylinder-specific exhaust oxygen concentration estimating means in consideration of the weighting factor. . At this time, the weighting factor is determined by the weighting factor determining means according to the crank angle at the time of detecting the exhaust oxygen concentration, but if the weighting factor is determined to be inappropriate from the output of the oxygen concentration sensor (that is, the fuel injection amount of each cylinder) When it is determined that the variation is large), the correspondence between the weighting coefficient and the crank angle is corrected by the correction control means. As a result, even if the timing at which the exhaust oxygen concentration of each cylinder is detected by the oxygen concentration sensor changes, the correspondence between the weighting factor (flow rate ratio of each cylinder) and the crank angle is corrected accordingly. The exhaust oxygen concentration for each cylinder can be accurately estimated from the output of one oxygen concentration sensor installed in the exhaust pipe, and the fuel injection control for each cylinder can be accurately performed.
[0008]
Here, when correcting the correspondence between the weighting coefficient and the crank angle, as in claim 1 , the fuel injection amount of the specific cylinder is increased or decreased, and the change in the exhaust oxygen concentration caused by the increase or decrease is changed. The timing detected by the oxygen concentration sensor may be detected by the crank angle, and the correspondence between the weight coefficient and the crank angle may be corrected based on the detection result. In this case, by increasing or decreasing the fuel injection amount of the specific cylinder, the delay time until the exhaust oxygen concentration of the specific cylinder is detected can be accurately detected, and the flow rate ratio of each cylinder is accurately determined from the detection result. A weighting factor that is well reflected can be obtained.
[0009]
In this case, as in claim 2 , the fuel injection amounts of the cylinders other than the specific cylinder are corrected so that the total fuel injection amount per cycle does not change when the fuel injection amount of the specific cylinder is increased or decreased. Anyway. In this way, output fluctuation of the internal combustion engine when the fuel injection amount of the specific cylinder is increased or decreased can be suppressed, and drivability can be maintained well.
[0010]
Or when increasing the fuel injection amount of a specific cylinder like Claim 3 , you may make it retard the fuel injection timing of the said specific cylinder. In this way, the output increase due to the increase in the fuel injection amount of the specific cylinder can be suppressed by retarding the fuel injection timing, and a torque difference can be prevented from occurring between the cylinders. Variation can be suppressed. Thereby, it is possible to prevent a difference in the exhaust valve opening time of each cylinder, to suppress a change in the flow rate ratio of each cylinder, and to improve the estimation accuracy of the exhaust oxygen concentration for each cylinder.
[0011]
Further, when the fuel injection amount of the specific cylinder is increased as in claim 4 , the fuel injection amount of the specific cylinder is increased by post-injecting the increased amount of fuel in the expansion stroke of the specific cylinder. You may do it. In this way, if the increased amount of fuel is post-injected and combusted in the expansion stroke of the specific cylinder, the increase in torque of the specific cylinder can be reduced compared with the case where the main injection amount of the specific cylinder is increased. The torque difference between the cylinders can be reduced.
[0012]
Further, in an internal combustion engine provided with an exhaust gas recirculation system, the flow rate ratio of each cylinder by the variation of the exhaust gas recirculation ratio of each cylinder is changed, as claimed in claim 5, increasing the fuel injection amount of the specific cylinder or When the amount is reduced, it is preferable to stop the exhaust gas recirculation by the exhaust gas recirculation device. In this way, it is possible to accurately estimate the exhaust oxygen concentration for each cylinder without being affected by the exhaust gas recirculation.
[0013]
Further, when the present invention is applied to an internal combustion engine having a supercharging device with a waste gate valve, the waste gate valve is provided when the fuel injection amount of a specific cylinder is increased or decreased as in claim 6. Opening is preferred. In this way, when the waste gate valve is opened, most of the exhaust gas that has been agitated in the exhaust turbine until then flows to the waste gate, so that the exhaust gas agitation between the cylinders by the exhaust turbine can be reduced. The exhaust oxygen concentration can be accurately estimated.
[0014]
Further, when the present invention is applied to an internal combustion engine having a variable geometry turbo, as in claim 7, when the increase or decrease the fuel injection amount of the specific cylinder, variable geometry so as to reduce the exhaust resistance It is preferable to open the turbo guide plate. In this way, it is possible to reduce the agitation of the exhaust gas between the cylinders in the variable geometry turbo.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment (1)]
Hereinafter, an embodiment (1) in which the present invention is applied to a diesel engine will be described with reference to FIGS. 1 to 3. First, a schematic configuration of the entire engine control system will be described with reference to FIG. An intake turbine 12 of a turbocharger 13 (supercharger) is installed in an intake pipe 12 of a diesel engine 11 that is an internal combustion engine. An exhaust turbine 15 connected to the intake turbine 14 of the turbocharger 13 is installed in a collective exhaust pipe 16 of the diesel engine 11, and the exhaust turbine 15 is rotationally driven by the kinetic energy of the exhaust gas, whereby the intake turbine 14 is rotated to generate a supercharging pressure. The collective exhaust pipe 16 is provided with a waste gate 17 that bypasses the upstream side and the downstream side of the exhaust turbine 15, and the flow rate of the exhaust gas that passes through the waste gate 17 is controlled by an electromagnetic waste gate valve 18. A limiting current type oxygen concentration sensor 19 for detecting the exhaust oxygen concentration is installed downstream of the waste gate 17 in the collective exhaust pipe 16.
[0016]
An EGR pipe 20 is connected between the collective exhaust pipe 16 upstream of the exhaust turbine 15 and the intake pipe 12 downstream of the intake turbine 14, and an electronically controlled EGR valve 21 is installed in the middle of the EGR pipe 20. The EGR flow rate passing through the EGR pipe 20 is controlled by adjusting the valve opening degree of the EGR valve 21. The EGR pipe 20 and the EGR valve 21 constitute an exhaust gas recirculation device (EGR device) 22. A fuel injection valve 23 is attached to each cylinder head of each cylinder of the diesel engine 11.
[0017]
Air supercharged by the turbocharger 13 is drawn into each cylinder of the diesel engine 11 via the intake manifold 24. The fuel is injected from the fuel injection valve 23 into the high-temperature air compressed in each cylinder and self-ignited, and the exhaust gas of each cylinder merges into one collective exhaust pipe 16 through the exhaust manifold 25 and is discharged into the atmosphere. Is done.
[0018]
The operating state of the diesel engine 11 is detected by a crank angle sensor 26, an accelerator sensor 27, a vehicle speed sensor 28, an oxygen concentration sensor 19, and the like, and these output signals are read into a control circuit 29 for engine control. The control circuit 29 is mainly composed of a microcomputer, and a built-in ROM (storage medium) stores various engine control programs such as the cylinder-by-cylinder injection amount correction program of FIG. 2 and executes these programs. Thus, the fuel injection control, the EGR control, and the control of the waste gate valve 18 are executed. Since the programs other than the cylinder-by-cylinder injection amount correction program of FIG. 2 are the same as the conventional ones, only the cylinder-by-cylinder injection amount correction program of FIG. 2 will be described below.
[0019]
The cylinder-by-cylinder injection amount correction program of FIG. 2 is executed by the control circuit 29 as follows every predetermined crank angle or every predetermined time. First, in step 101, output signals of the accelerator sensor 27, the crank angle sensor 26, and the vehicle speed sensor 28 are read, and in the next step 102, based on the accelerator opening, the engine speed, and the vehicle speed detected from these signals. It is determined whether or not the current operation state is a steady operation. If it is not a steady operation, it is difficult to detect the exhaust gas oxygen concentration for each cylinder. Therefore, this program is terminated without performing the subsequent processing.
[0020]
On the other hand, at the time of steady operation, the routine proceeds from step 102 to step 103, where it is determined whether or not the fuel injection amount control for each cylinder is necessary. For example, when cylinder-by-cylinder fuel injection amount control has never been executed, when a predetermined cumulative travel distance has been reached since the previous cylinder-by-cylinder fuel injection amount control was executed, or during steady operation For example, when the output change (amplitude) of the oxygen concentration sensor 19 is large, it is determined that the cylinder fuel injection amount control is necessary. If it is determined that the cylinder-by-cylinder fuel injection amount control is not required, the program is terminated without performing the subsequent processing.
[0021]
If it is determined in step 103 that the cylinder-by-cylinder fuel injection amount control is necessary, the process proceeds to step 104, where the fuel injection amount of a specific cylinder, for example, cylinder # 1, is increased and corrected by a predetermined amount ΔQ. The fuel injection amounts of # 2 to # 4 are corrected to decrease by 1/3 of ΔQ so that the total fuel injection amount per cycle does not change. As a result, the exhaust oxygen concentration is reduced only in cylinder # 1, and the engine output is held constant before and after correction.
[0022]
Thereafter, in step 105, the EGR valve 21 is fully closed to stop the exhaust gas recirculation (EGR cut), and the waste gate valve 18 is fully opened to bypass the exhaust gas toward the exhaust turbine 15 to the waste gate 17. Let Thereafter, in step 106, the output signal of the oxygen concentration sensor 19 is read, and the timing Ta (crank angle) at which the exhaust oxygen concentration of the cylinder # 1 corrected for increase is best detected is detected. That is, as shown in FIG. 3, when the fuel injection amount of the cylinder # 1 is increased and corrected, the amount of oxygen consumed during the combustion of the cylinder # 1 increases and the exhaust oxygen concentration of the cylinder # 1 decreases. After the increase correction, the timing Ta at which the output of the oxygen concentration sensor 19 (the detected value of the exhaust oxygen concentration) has decreased the most is detected, thereby detecting the timing Ta at which the exhaust gas from the cylinder # 1 has reached the oxygen concentration sensor 19.
[0023]
Then, after completing the fuel injection amount correction in step 107, the output signal of the oxygen concentration sensor 19 is read again in step 108. The exhaust gas flowing through the collective exhaust pipe 16 is not completely stratified due to the overlap of exhaust valves between the cylinders and the like, and flows in a mixed state of the exhaust gas of each cylinder. The output (exhaust oxygen concentration detection value) is also a value in which the exhaust oxygen concentration of each cylinder is mixed.
[0024]
Therefore, in the next step 109, the exhaust oxygen concentration for each cylinder is calculated from the output of the oxygen concentration sensor 19 as follows. The output of the oxygen concentration sensor 19 can be regarded as the exhaust oxygen concentration obtained by multiplying the exhaust oxygen concentration of each cylinder by the weighting coefficient of each cylinder and integrating it. The weighting factor of each cylinder is the flow rate ratio of the exhaust gas of each cylinder that passes through the oxygen concentration sensor 19 when the exhaust oxygen concentration is detected.
[0025]
(Output of oxygen concentration sensor 19) = Σ (exhaust oxygen concentration by cylinder) × (weighting factor)
For example, in the case of a four-cylinder engine, specifically, it can be expressed by the following determinant.
[0026]
[Expression 1]
Figure 0003956458
[0027]
In this determinant, the weighting factors An to Dn are corrected as follows according to the timing Ta detected in step 106. The timing Ta (i) detected this time is compared with the timing Ta (i-1) detected last time. If Ta (i) is delayed from Ta (i-1), the delay angle ΔTa is calculated by the following equation. calculate.
ΔTa = Ta (i) −Ta (i−1)
[0028]
Thereafter, the correspondence between the weighting factors An to Dn and the crank angle n is corrected by the following equation.
n (current value) = n (previous value) + ΔTa
Thus, the weighting factors An to Dn of the determinant are updated, and the output of the oxygen concentration sensor 19 at each crank angle is substituted into the determinant to calculate the exhaust oxygen concentration for each cylinder. Step 109 for performing the processing as described above serves as the cylinder-specific exhaust oxygen concentration estimation means, weight coefficient determination means, and correction control means in the claims.
[0029]
After calculating the exhaust oxygen concentration for each cylinder, the process proceeds to step 110, and the correction amount for the fuel injection amount for each cylinder is calculated based on the calculated value for the exhaust oxygen concentration for each cylinder so that the exhaust oxygen concentration for all the cylinders is the same. Then, the fuel injection amount for each cylinder is corrected with this correction amount, and the fuel injection for each cylinder is performed. Thereafter, in step 111, it is determined whether or not the output amplitude of the oxygen concentration sensor 19 is within a predetermined range. That is, if the variation in the exhaust oxygen concentration for each cylinder is reduced by the correction of the fuel injection amount for each cylinder performed in step 110, the amplitude of the output of the oxygen concentration sensor 19 is reduced, but the variation in the exhaust oxygen concentration for each cylinder is reduced. Is larger, the amplitude of the output of the oxygen concentration sensor 19 becomes larger. From this relationship, if the amplitude of the output of the oxygen concentration sensor 19 exceeds the predetermined range, it is determined that the variation in the exhaust oxygen concentration for each cylinder exceeds the allowable value, the process returns to step 101, and the above-described processing is repeated. That is, the process of calculating the exhaust oxygen concentration for each cylinder and correcting the fuel injection amount for each cylinder so that the exhaust oxygen concentration for all the cylinders is the same is repeated.
[0030]
If the amplitude of the output of the oxygen concentration sensor 19 is within a predetermined range due to the correction of the fuel injection amount for each cylinder, it is determined that the variation in the exhaust oxygen concentration for each cylinder is within the allowable value, and the process proceeds to step 112. The detection timing Ta is updated to the timing Ta detected in step 106, and the program is terminated.
[0031]
According to the embodiment (1) described above, the fuel injection amount of the specific cylinder is corrected to increase, and the timing Ta at which the change in the exhaust oxygen concentration caused by the increase correction is detected by the oxygen concentration sensor 19 is detected by the crank angle. Since the correspondence between the weighting coefficient (flow rate ratio of each cylinder) and the crank angle is corrected based on the result, the timing at which the exhaust oxygen concentration of each cylinder is detected by the oxygen concentration sensor 19 changes. However, the correspondence relationship between the weighting coefficient and the crank angle can be corrected with high accuracy accordingly, and the exhaust gas oxygen concentration for each cylinder can be accurately estimated from the output of one oxygen concentration sensor 19 installed in the collective exhaust pipe 16. Therefore, the fuel injection control for each cylinder can be performed with high accuracy.
[0032]
Further, in the present embodiment (1), when the fuel injection amount of the specific cylinder is increased and corrected, the fuel injection amounts of the cylinders other than the specific cylinder are decreased and corrected so that the total fuel injection amount per cycle does not change. Since it did in this way, the fluctuation | variation of the engine output at the time of carrying out the increase correction | amendment of the fuel injection amount of a specific cylinder can be suppressed, and drivability can be maintained favorable.
[0033]
In addition, when the fuel injection amount of the specific cylinder is corrected to be increased, EGR cut is performed to prevent fluctuations in the flow rate ratio of each cylinder due to variations in the EGR rate for each cylinder, and the waste gate valve 18 is fully opened to avoid excessive flow. Since the supply is stopped and the exhaust gas agitation between the cylinders by the exhaust turbine 15 is reduced, the exhaust oxygen concentration for each cylinder can be accurately estimated without being affected by the EGR and the turbocharger 13. Can do.
[0034]
By the way, depending on the operating state of the engine 11, the engine output may change due to EGR cut or supercharging stop (full opening of the waste gate valve 18). For example, when the engine 11 is at a low speed and is not supercharged, an increase in engine output due to EGR cut can be considered. Moreover, since the EGR rate is originally low at the time of high load, it is conceivable that the engine output decreases due to the supercharging stop. In such a case, a change in the engine output is predicted in advance, and a map of the fuel injection amount for correcting the change is stored. When performing EGR cut or supercharging stop, this map is used to inject fuel in all cylinders. The amount may be corrected by the same amount to suppress fluctuations in engine output.
[0035]
In the present embodiment (1), the fuel injection amount of the specific cylinder is corrected to increase, but it may be corrected to decrease. When the fuel injection amount of the specific cylinder is corrected to decrease, the fuel injection amount of other cylinders is increased and corrected so that the total fuel injection amount per cycle does not change. It is only necessary to detect the timing Ta at which the output rises most.
[0036]
[Embodiment (2)]
In the above embodiment (1), when the fuel injection amount of the specific cylinder # 1 is corrected to be increased, the total fuel injection amount per cycle is not changed so that the cylinders # 2 to # 4 other than the specific cylinder # 1 do not change. In the embodiment (2) of the present invention shown in FIGS. 4 and 5, the fuel injection of the specific cylinder # 1 is performed in step 104a in the embodiment (2) of the present invention shown in FIGS. When the amount is corrected to be increased, the fuel injection timing of the specific cylinder # 1 is retarded to suppress fluctuations in the engine output. The other processing is the same as the processing of FIG. 2 described in the above embodiment (1), and thus description thereof is omitted.
[0037]
As described above, when the fuel injection amount of the specific cylinder # 1 is increased and corrected, if the fuel injection timing of the specific cylinder # 1 is retarded, fluctuations in engine output can be suppressed, and rotational fluctuations due to torque fluctuations between the cylinders. Therefore, it is possible to prevent a difference in the exhaust valve opening time of each cylinder, to suppress a change in the flow rate ratio of each cylinder, and to improve the estimation accuracy of the exhaust oxygen concentration for each cylinder. Further, vibration due to rotational fluctuation can be reduced.
[0038]
[Embodiment (3)]
In the embodiment (3) of the present invention shown in FIGS. 6 and 7, when the fuel injection amount of the specific cylinder # 1 is corrected to be increased, the increased amount of fuel is post-injected in the expansion stroke of the specific cylinder # 1. Thus, the fuel injection amount of the specific cylinder # 1 is increased (step 104b). In this case, the main injection amount of the specific cylinder # 1 is the same as the main injection amounts of the other cylinders # 2 to # 4. The other processing is the same as the processing of FIG. 2 described in the above embodiment (1), and thus description thereof is omitted.
[0039]
Thus, if the increased amount of fuel is post-injected and burned in the expansion stroke of the specific cylinder # 1, the torque of the specific cylinder # 1 is increased compared to the case where the main injection amount of the specific cylinder # 1 is increased. The torque difference between the cylinders can be reduced, and the same effect as that of the embodiment (2) can be obtained.
[0040]
[Other Embodiments]
In each of the above embodiments (1) to (3), the turbocharger 13 with the waste gate valve 18 is provided, but instead of this, the variable geometry turbo 30 shown in FIG. 8 may be used. good. In this case, when the fuel injection amount of the specific cylinder is increased (or decreased), the guide plate 31 of the variable geometry turbo 30 may be opened so as to reduce the exhaust resistance. Any other control may employ any one of the above embodiments (1) to (3).
[0041]
If the guide plate 31 of the variable geometry turbo 30 is opened, the agitation of the exhaust gas between the cylinders by the exhaust turbine 32 in the variable geometry turbo 30 can be reduced, which is almost the same as when the waste gate valve 18 is fully opened. An effect can be obtained.
[0042]
In each of the above embodiments (1) to (3), the timing Ta at which the change in the exhaust oxygen concentration caused by increasing (or decreasing) the fuel injection amount of the specific cylinder # 1 is detected by the oxygen concentration sensor 19 is detected. The correspondence relationship between the weighting coefficient and the crank angle is corrected based on the detection result, but the output of the oxygen concentration sensor 19 is constantly monitored during engine operation and it is determined that the weighting coefficient is not appropriate ( That is, when it is determined that the variation in the fuel injection amount for each cylinder is large), the correspondence between the weight coefficient and the crank angle may be corrected. Hereinafter, this correction method will be described in detail.
[0043]
Since the output of the oxygen concentration sensor 19 is influenced by the exhaust pressure and the like in addition to the exhaust oxygen concentration, the output of the oxygen concentration sensor 19 always changes even when the exhaust oxygen concentration of each cylinder is constant in steady operation. Therefore, assuming the maximum change width (maximum amplitude) of the output of the oxygen concentration sensor 19 when the exhaust oxygen concentration of each cylinder is constant in steady operation, it is stored as an allowable value in advance, and at the time of steady operation Then, it is determined whether or not the amplitude of the output of the oxygen concentration sensor 19 is equal to or less than an allowable value every predetermined time. If the amplitude exceeds the allowable value, the variation in exhaust oxygen concentration for each cylinder is large, that is, the weighting factor is Judge that it is not appropriate.
[0044]
In this case, in the determinant of Equation 1, the correspondence relationship between the weighting factors An to Dn and the crank angle n is corrected as follows. A map of weight coefficients An to Dn with n as a parameter is stored in the ROM of the control circuit 29 in advance, and first, the exhaust oxygen concentration (actually the fuel injection amount) of each cylinder is corrected with n = m. As a result, if the amplitude of the output of the oxygen concentration sensor 19 does not decrease so much, n = m + Δm is set and the exhaust oxygen concentration of each cylinder is corrected again. As a result, if the amplitude of the output of the oxygen concentration sensor 19 decreases below the allowable value, it is updated as n = m + Δm. On the other hand, if the amplitude of the output of the oxygen concentration sensor 19 increases, the same correction is performed with n = m−Δm. Such a correction process is repeated until the amplitude of the output of the oxygen concentration sensor 19 decreases below the allowable value.
[0045]
In the system configuration example of FIG. 1, both the turbocharger 13 and the EGR device 22 are provided. However, the present invention can be applied to a system having only one or both of them. .
[0046]
In addition, the present invention is not limited to a diesel engine, but can be applied to a gasoline engine.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an entire engine control system showing an embodiment (1). FIG. 2 is a flowchart showing a processing flow of a cylinder-by-cylinder injection amount correction program of the embodiment (1). FIG. 4 is a time chart showing how the engine speed and the exhaust oxygen concentration change when the fuel injection amount of a specific cylinder is corrected to increase in FIG. 4. FIG. 4 is a flowchart showing the processing flow of a cylinder-by-cylinder injection amount correction program according to the embodiment (2). FIG. 5 is a time chart showing how engine speed and exhaust oxygen concentration change when the fuel injection amount of a specific cylinder is corrected to increase in the embodiment (2). FIG. 6 is an injection amount for each cylinder in the embodiment (3). FIG. 7 is a flowchart showing the processing flow of the correction program. FIG. 7 shows how the engine speed and the exhaust oxygen concentration change when the fuel injection amount of a specific cylinder is increased and corrected in the embodiment (3). It illustrates a variable geometry turbo configuration used in to the time chart 8 with another exemplary embodiment [Description of symbols]
DESCRIPTION OF SYMBOLS 11 ... Diesel engine (internal combustion engine), 12 ... Intake pipe, 13 ... Turbocharger, 15 ... Exhaust turbine, 16 ... Collective exhaust pipe, 17 ... Waste gate, 18 ... Waste gate valve, 19 ... Oxygen concentration sensor, 20 DESCRIPTION OF SYMBOLS ... EGR piping, 21 ... EGR valve, 22 ... EGR apparatus, 23 ... Fuel injection valve, 29 ... Control circuit (exhaust oxygen concentration estimation means according to cylinder, weight coefficient determination means, correction control means), 30 ... Variable geometry turbo, 31 ... guide plate, 32 ... exhaust turbine.

Claims (7)

内燃機関の集合排気管に設置され、排気酸素濃度を検出する酸素濃度センサと、
前記酸素濃度センサの出力を各気筒の排気酸素濃度に所定の重み係数を乗じて加重平均した排気酸素濃度と見なし、前記酸素濃度センサの出力から前記重み係数を考慮して気筒別の排気酸素濃度を推定する気筒別排気酸素濃度推定手段と、
前記気筒別排気酸素濃度推定手段で推定した気筒別の排気酸素濃度に基づいて気筒別の燃料噴射量を補正する噴射量補正手段と
を備えた内燃機関の燃料噴射制御装置において、
前記重み係数を排気酸素濃度検出時のクランク角に対応して決定する重み係数決定手段と、
前記酸素濃度センサの出力に基づいて前記重み係数が適当でないと判断した場合に前記重み係数とクランク角との対応関係を補正する補正制御手段と
を備え
前記補正制御手段は、特定気筒の燃料噴射量を増量又は減量し、その増量又は減量によって生じる排気酸素濃度の変化が前記酸素濃度センサで検出されるタイミングをクランク角で検出し、その検出結果に基づいて前記重み係数とクランク角との対応関係を補正することを特徴とする内燃機関の燃料噴射制御装置。
An oxygen concentration sensor that is installed in a collective exhaust pipe of an internal combustion engine and detects an exhaust oxygen concentration;
The output of the oxygen concentration sensor is regarded as the exhaust oxygen concentration obtained by multiplying the exhaust oxygen concentration of each cylinder by a predetermined weighting factor and weighted and averaged, and the exhaust oxygen concentration for each cylinder is considered from the output of the oxygen concentration sensor in consideration of the weighting factor. A cylinder-specific exhaust oxygen concentration estimating means for estimating
An internal combustion engine fuel injection control device comprising: an injection amount correction unit that corrects a fuel injection amount for each cylinder based on an exhaust oxygen concentration for each cylinder estimated by the exhaust gas concentration estimation unit for each cylinder.
Weighting factor determining means for determining the weighting factor corresponding to the crank angle at the time of exhaust gas oxygen concentration detection;
Correction control means for correcting the correspondence between the weighting factor and the crank angle when it is determined that the weighting factor is not appropriate based on the output of the oxygen concentration sensor ,
The correction control means increases or decreases the fuel injection amount of the specific cylinder, detects a timing at which a change in the exhaust oxygen concentration caused by the increase or decrease is detected by the oxygen concentration sensor by a crank angle, and the detection result A fuel injection control apparatus for an internal combustion engine, wherein the correspondence relationship between the weighting coefficient and the crank angle is corrected based on the correction coefficient .
内燃機関の集合排気管に設置され、排気酸素濃度を検出する酸素濃度センサと、
前記酸素濃度センサの出力を各気筒の排気酸素濃度に所定の重み係数を乗じて加重平均した排気酸素濃度と見なし、前記酸素濃度センサの出力から前記重み係数を考慮して気筒別の排気酸素濃度を推定する気筒別排気酸素濃度推定手段と、
前記気筒別排気酸素濃度推定手段で推定した気筒別の排気酸素濃度に基づいて気筒別の燃料噴射量を補正する噴射量補正手段と
を備えた内燃機関の燃料噴射制御装置において、
前記重み係数を排気酸素濃度検出時のクランク角に対応して決定する重み係数決定手段と、
前記重み係数とクランク角との対応関係を補正する補正制御手段と
を備え、
前記補正制御手段は、特定気筒の燃料噴射量を増量又は減量し、その増量又は減量によって生じる排気酸素濃度の変化が前記酸素濃度センサで検出されるタイミングをクランク角で検出し、その検出結果に基づいて前記重み係数とクランク角との対応関係を補正する手段と、前記特定気筒の燃料噴射量を増量又は減量する際に、1サイクル当たりの合計燃料噴射量が変化しないように、前記特定気筒以外の気筒の燃料噴射量を補正する手段とを備えていることを特徴とする内燃機関の燃料噴射制御装置。
An oxygen concentration sensor that is installed in a collective exhaust pipe of an internal combustion engine and detects an exhaust oxygen concentration;
The output of the oxygen concentration sensor is regarded as the exhaust oxygen concentration obtained by multiplying the exhaust oxygen concentration of each cylinder by a predetermined weighting factor and weighted and averaged, and the exhaust oxygen concentration for each cylinder is considered from the output of the oxygen concentration sensor in consideration of the weighting factor. A cylinder-specific exhaust oxygen concentration estimating means for estimating
Injection amount correction means for correcting the fuel injection amount for each cylinder based on the exhaust oxygen concentration for each cylinder estimated by the exhaust gas concentration estimation means for each cylinder;
In a fuel injection control device for an internal combustion engine comprising:
Weighting factor determining means for determining the weighting factor corresponding to the crank angle at the time of exhaust gas oxygen concentration detection;
Correction control means for correcting the correspondence between the weight coefficient and the crank angle;
With
The correction control means increases or decreases the fuel injection amount of the specific cylinder, detects a timing at which a change in the exhaust oxygen concentration caused by the increase or decrease is detected by the oxygen concentration sensor by a crank angle, and the detection result And a means for correcting the correspondence between the weighting factor and the crank angle, and the specific cylinder so that the total fuel injection amount per cycle does not change when the fuel injection amount of the specific cylinder is increased or decreased. A fuel injection control device for an internal combustion engine, comprising: means for correcting a fuel injection amount of a cylinder other than the above .
内燃機関の集合排気管に設置され、排気酸素濃度を検出する酸素濃度センサと、
前記酸素濃度センサの出力を各気筒の排気酸素濃度に所定の重み係数を乗じて加重平均した排気酸素濃度と見なし、前記酸素濃度センサの出力から前記重み係数を考慮して気筒別の排気酸素濃度を推定する気筒別排気酸素濃度推定手段と、
前記気筒別排気酸素濃度推定手段で推定した気筒別の排気酸素濃度に基づいて気筒別の燃料噴射量を補正する噴射量補正手段と
を備えた内燃機関の燃料噴射制御装置において、
前記重み係数を排気酸素濃度検出時のクランク角に対応して決定する重み係数決定手段と、
前記重み係数とクランク角との対応関係を補正する補正制御手段と
を備え、
前記補正制御手段は、特定気筒の燃料噴射量を増量又は減量し、その増量又は減量によって生じる排気酸素濃度の変化が前記酸素濃度センサで検出されるタイミングをクランク 角で検出し、その検出結果に基づいて前記重み係数とクランク角との対応関係を補正する手段と、前記特定気筒の燃料噴射量を増量する場合に当該特定気筒の燃料噴射時期を遅角する手段とを備えていることを特徴とする請求項2に記載の内燃機関の燃料噴射制御装置。
An oxygen concentration sensor that is installed in a collective exhaust pipe of an internal combustion engine and detects an exhaust oxygen concentration;
The output of the oxygen concentration sensor is regarded as the exhaust oxygen concentration obtained by multiplying the exhaust oxygen concentration of each cylinder by a predetermined weighting factor and weighted and averaged, and the exhaust oxygen concentration for each cylinder is considered from the output of the oxygen concentration sensor in consideration of the weighting factor. A cylinder-specific exhaust oxygen concentration estimating means for estimating
Injection amount correction means for correcting the fuel injection amount for each cylinder based on the exhaust oxygen concentration for each cylinder estimated by the exhaust gas concentration estimation means for each cylinder;
In a fuel injection control device for an internal combustion engine comprising:
Weighting factor determining means for determining the weighting factor corresponding to the crank angle at the time of exhaust gas oxygen concentration detection;
Correction control means for correcting the correspondence between the weight coefficient and the crank angle;
With
The correction control means increases or decreases the fuel injection amount of the specific cylinder, detects a timing at which a change in the exhaust oxygen concentration caused by the increase or decrease is detected by the oxygen concentration sensor by a crank angle, and the detection result And a means for correcting the correspondence between the weighting factor and the crank angle, and a means for retarding the fuel injection timing of the specific cylinder when the fuel injection amount of the specific cylinder is increased. The fuel injection control device for an internal combustion engine according to claim 2.
内燃機関の集合排気管に設置され、排気酸素濃度を検出する酸素濃度センサと、
前記酸素濃度センサの出力を各気筒の排気酸素濃度に所定の重み係数を乗じて加重平均した排気酸素濃度と見なし、前記酸素濃度センサの出力から前記重み係数を考慮して気筒別の排気酸素濃度を推定する気筒別排気酸素濃度推定手段と、
前記気筒別排気酸素濃度推定手段で推定した気筒別の排気酸素濃度に基づいて気筒別の燃料噴射量を補正する噴射量補正手段と
を備えた内燃機関の燃料噴射制御装置において、
前記重み係数を排気酸素濃度検出時のクランク角に対応して決定する重み係数決定手段と、
前記重み係数とクランク角との対応関係を補正する補正制御手段と
を備え、
前記補正制御手段は、特定気筒の燃料噴射量を増量又は減量し、その増量又は減量によって生じる排気酸素濃度の変化が前記酸素濃度センサで検出されるタイミングをクランク角で検出し、その検出結果に基づいて前記重み係数とクランク角との対応関係を補正する手段と、前記特定気筒の燃料噴射量を増量する場合に、その増量分の燃料を当該特定気筒の膨張行程で後噴射することで、当該特定気筒の燃料噴射量を増量する手段とを備えていることを特徴とする内燃機関の燃料噴射制御装置。
An oxygen concentration sensor that is installed in a collective exhaust pipe of an internal combustion engine and detects an exhaust oxygen concentration;
The output of the oxygen concentration sensor is regarded as the exhaust oxygen concentration obtained by multiplying the exhaust oxygen concentration of each cylinder by a predetermined weighting factor and weighted and averaged, and the exhaust oxygen concentration for each cylinder is considered from the output of the oxygen concentration sensor in consideration of the weighting factor. A cylinder-specific exhaust oxygen concentration estimating means for estimating
Injection amount correction means for correcting the fuel injection amount for each cylinder based on the exhaust oxygen concentration for each cylinder estimated by the exhaust gas concentration estimation means for each cylinder;
In a fuel injection control device for an internal combustion engine comprising:
Weighting factor determining means for determining the weighting factor corresponding to the crank angle at the time of exhaust gas oxygen concentration detection;
Correction control means for correcting the correspondence between the weight coefficient and the crank angle;
With
The correction control means increases or decreases the fuel injection amount of the specific cylinder, detects a timing at which a change in the exhaust oxygen concentration caused by the increase or decrease is detected by the oxygen concentration sensor by a crank angle, and the detection result Based on the means for correcting the correspondence relationship between the weighting factor and the crank angle, and when increasing the fuel injection amount of the specific cylinder, by post-injecting the increased amount of fuel in the expansion stroke of the specific cylinder, A fuel injection control device for an internal combustion engine, comprising: means for increasing the fuel injection amount of the specific cylinder .
排気ガス還流装置を備え、
前記補正制御手段は、前記特定気筒の燃料噴射量を増量又は減量する際に、前記排気ガス還流装置による排気ガス還流を停止することを特徴とする請求項乃至のいずれかに記載の内燃機関の燃料噴射制御装置。
Equipped with an exhaust gas recirculation device,
The internal combustion engine according to any one of claims 1 to 4 , wherein the correction control means stops exhaust gas recirculation by the exhaust gas recirculation device when increasing or decreasing the fuel injection amount of the specific cylinder. Engine fuel injection control device.
ウェイストゲートバルブ付きの過給装置を備え、
前記補正制御手段は、前記特定気筒の燃料噴射量を増量又は減量する際に、前記ウェイストゲートバルブを開放することを特徴とする請求項乃至のいずれかに記載の内燃機関の燃料噴射制御装置。
It has a supercharger with a waste gate valve,
Said correction control means, the fuel injection amount of the specific cylinder when the increase or decrease, the fuel injection control of an internal combustion engine according to any of claims 1 to 5, characterized in that opening the waste gate valve apparatus.
可変ジオメトリターボを備え、
前記補正制御手段は、前記特定気筒の燃料噴射量を増量又は減量する際に、排気抵抗を低減するように前記可変ジオメトリターボのガイド板を開放することを特徴とする請求項乃至のいずれかに記載の内燃機関の燃料噴射制御装置。
With variable geometry turbo,
Said correction control means, when the increase or decrease the fuel injection amount of the specific cylinder, one of the claims 1 to 5, characterized in that opening the variable geometry turbo of the guide plate to reduce exhaust resistance A fuel injection control device for an internal combustion engine according to claim 1.
JP00621298A 1998-01-16 1998-01-16 Fuel injection control device for internal combustion engine Expired - Fee Related JP3956458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00621298A JP3956458B2 (en) 1998-01-16 1998-01-16 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00621298A JP3956458B2 (en) 1998-01-16 1998-01-16 Fuel injection control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11200926A JPH11200926A (en) 1999-07-27
JP3956458B2 true JP3956458B2 (en) 2007-08-08

Family

ID=11632232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00621298A Expired - Fee Related JP3956458B2 (en) 1998-01-16 1998-01-16 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3956458B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4276401B2 (en) * 2002-02-08 2009-06-10 株式会社日本自動車部品総合研究所 Fuel injection control device for internal combustion engine
US7356985B2 (en) 2005-07-19 2008-04-15 Denso Corporation Air-fuel ratio controller for internal combustion engine
JP4836000B2 (en) * 2007-04-03 2011-12-14 トヨタ自動車株式会社 Exhaust system sensor steady state determination device
JP2011185159A (en) * 2010-03-09 2011-09-22 Denso Corp Abnormality diagnosing device of internal combustion engine with supercharger
JP5516349B2 (en) * 2010-11-15 2014-06-11 トヨタ自動車株式会社 Control device for internal combustion engine
WO2012124076A1 (en) * 2011-03-16 2012-09-20 トヨタ自動車株式会社 Internal combustion engine control apparatus

Also Published As

Publication number Publication date
JPH11200926A (en) 1999-07-27

Similar Documents

Publication Publication Date Title
JP4583038B2 (en) Supercharging pressure estimation device for an internal combustion engine with a supercharger
US7509210B2 (en) Abnormality determination apparatus and method for blow-by gas feedback device, and engine control unit
EP0965740B1 (en) Turbocharger control system for turbocharged internal combustion engines equipped with exhaust gas recirculation control system
US7143753B2 (en) Air amount calculator for internal combustion engine
US9399962B2 (en) Method for determining and compensating engine blow-through air
EP2458183B1 (en) Apparatus for controlling internal combustion engine
US9068523B2 (en) Control apparatus for internal combustion engine
US7905135B2 (en) Throttle upstream pressure estimating apparatus and cylinder charged air quantity calculating apparatus for internal combustion engine
JP3818118B2 (en) Fault diagnosis device for variable capacity turbocharger
JP4495204B2 (en) EGR device abnormality determination device
JP4192759B2 (en) Injection quantity control device for diesel engine
JP4154972B2 (en) Internal EGR amount estimation device for internal combustion engine
WO2014080523A1 (en) Control device of internal combustion engine
JP3956458B2 (en) Fuel injection control device for internal combustion engine
JP6127906B2 (en) Control device for internal combustion engine
JP2013189964A (en) Control device of engine
EP2290210B1 (en) Fuel supply control system for internal combustion engine
JP2570463B2 (en) Abnormality detection device for exhaust switching valve of two-stage supercharged internal combustion engine
JP2012132423A (en) Control device for internal combustion engine
JP5317022B2 (en) Fuel injection control device for internal combustion engine
JP3651012B2 (en) Fuel supply control device for an internal combustion engine with a supercharger
JP2023070923A (en) Engine state estimation device
JPH0618663U (en) Ignition timing control device for internal combustion engine with supercharger
WO2011141998A1 (en) Control device for internal combustion engine
JPH0666167A (en) Intake air flow detecting device for internal combustion engine equipped with supercharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070430

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees