JP5262946B2 - Electronic devices - Google Patents

Electronic devices Download PDF

Info

Publication number
JP5262946B2
JP5262946B2 JP2009099389A JP2009099389A JP5262946B2 JP 5262946 B2 JP5262946 B2 JP 5262946B2 JP 2009099389 A JP2009099389 A JP 2009099389A JP 2009099389 A JP2009099389 A JP 2009099389A JP 5262946 B2 JP5262946 B2 JP 5262946B2
Authority
JP
Japan
Prior art keywords
electrode
substrate
layer
connection
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009099389A
Other languages
Japanese (ja)
Other versions
JP2010252051A (en
JP2010252051A5 (en
Inventor
敦司 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2009099389A priority Critical patent/JP5262946B2/en
Publication of JP2010252051A publication Critical patent/JP2010252051A/en
Publication of JP2010252051A5 publication Critical patent/JP2010252051A5/en
Application granted granted Critical
Publication of JP5262946B2 publication Critical patent/JP5262946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric device improved in connection reliability in electrical connection between a connection electrode of an electronic element layer and an external electrode of a holding member through a through electrode. <P>SOLUTION: This piezoelectric device is composed by joining an electronic element layer having an excitation electrode 26B to a joining object member having external electrodes 44A, 44B by applying a metal brazing material to joining surfaces thereof. In the piezoelectric device, the electronic element layer is formed with recessed parts 28A, 28B on connection electrodes 25A, 25B electrically connected to the excitation electrode 26B; and the joining object member is formed with through electrodes electrically connected to the external electrodes 44A, 44B, and fitting to the recessed parts 28A, 28B by being projected to the joining surface to be electrically connected to the connection electrodes. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、特に半田リフローによる外部応力やヒートサイクル等の熱衝撃に対して高い信頼性を有すると共に、中間層の端子電極保持部材の外部端子との貫通電極を介しての電気的接続において接続信頼性を向上させる電子デバイス及びその製造方法に関する。 In particular, the present invention has high reliability against thermal shock such as external stress and heat cycle caused by solder reflow, and in electrical connection via a through electrode between the terminal electrode of the intermediate layer and the external terminal of the holding member. The present invention relates to an electronic device that improves connection reliability and a method for manufacturing the same.

電子機器、通信機器等の小型化に伴い、小型化に対応するため複数の基板を積層させた特許文献1〜4に開示のような圧電デバイスがある。
特許文献1に開示された圧電発振子は、図13に示すように一対の振動電極81a,81bを備えた圧電振動子80と、圧電振動子80の両主面に接合する絶縁性支持板82と、保護板83を備え、絶縁性接着剤85を介した三層接合時に、絶縁性支持板82の底面にそれぞれ設けられた2つのリード端子84a,84bと、絶縁性支持板82の厚み方向に形成された接続用孔86a,86b内の導電部材87a,87bにより、リード端子84a,84bの突出部88a,88bと引出電極89a,89bとが接続する。これによりリード端子84a,84bと振動電極81a,81bが電気的に接続される。
As electronic devices, communication devices, and the like are miniaturized, there are piezoelectric devices disclosed in Patent Documents 1 to 4 in which a plurality of substrates are stacked in order to cope with the miniaturization.
As shown in FIG. 13, the piezoelectric oscillator disclosed in Patent Document 1 includes a piezoelectric vibrator 80 having a pair of vibrating electrodes 81 a and 81 b and an insulating support plate 82 joined to both main surfaces of the piezoelectric vibrator 80. And two lead terminals 84a and 84b provided on the bottom surface of the insulating support plate 82 and the thickness direction of the insulating support plate 82 at the time of three-layer bonding via the insulating adhesive 85. The projecting portions 88a and 88b of the lead terminals 84a and 84b and the extraction electrodes 89a and 89b are connected by the conductive members 87a and 87b in the connection holes 86a and 86b formed in the above. Thereby, the lead terminals 84a and 84b and the vibration electrodes 81a and 81b are electrically connected.

特許文献2に開示された薄型水晶振動子は、図14に示すようにシロキサン結合による直接接合により積層された3層All Quartz Packageにおいて、貫通孔90a,90bに半田等の導電性接着材91a,91bを埋設し、水晶片92の引出電極93a,93bに接続すると同時に貫通孔90a,90bを封止し、例えば蒸着等により、導電性接着材91a,91bに接続する実装電極94a,94bを両端側の側面及び両主面に形成することが開示されている。   As shown in FIG. 14, the thin crystal resonator disclosed in Patent Document 2 includes a three-layer All Quartz Package laminated by direct bonding using a siloxane bond, and conductive adhesives 91a, such as solder, in the through holes 90a, 90b. 91b is embedded, and the through-holes 90a and 90b are sealed at the same time as connecting to the extraction electrodes 93a and 93b of the crystal piece 92. It is disclosed to form on the side surface and both main surfaces.

特許文献3に開示の水晶振動子は、図15(a)に示すように直接接合により積層された3層All Quartz Packageである。(b)に示すようにウェハ状に形成された水晶振動子100のベース用シート状ウェハ101に予め形成された貫通孔102に金属粉103を吹き付けて、その内部に金属粉103を貫通孔102の内部に堆積させながら、水晶振動素子104の表面と貫通孔102との隙間を埋めると共に、金属粉103を貫通孔102の内部に堆積させて、水晶振動子100の内部の水晶振動素子104から貫通孔102内部を経てベース用シート状ウェハ101の表面に至るまで詰め込み密着させて電気的導通路105を形成することが開示されている。金属粉103は貫通孔102に吹き付けられる際に、貫通孔102の内壁との摩擦で発生する摩擦熱により金属粉103が溶け、水晶振動素子104の表面と、貫通孔102との隙間を埋めて、金属粉103を貫通孔102の内部に密着、堆積させて水晶振動子100の内部の水晶振動素子104から貫通孔102内部を経てベース用シート状ウェハ102の表面に至るまで詰め込まれ密着される。   The crystal resonator disclosed in Patent Document 3 is a three-layer All Quartz Package laminated by direct bonding as shown in FIG. As shown in (b), the metal powder 103 is sprayed on the through-hole 102 formed in advance in the sheet-like wafer 101 for the base of the crystal unit 100 formed in a wafer shape, and the metal powder 103 is inserted into the through-hole 102. In addition to filling the gap between the surface of the crystal resonator element 104 and the through-hole 102 while being deposited inside, the metal powder 103 is deposited inside the through-hole 102 so that the crystal resonator element 104 inside the crystal resonator 100 It is disclosed that the electric conduction path 105 is formed by packing and closely contacting the surface of the base sheet-like wafer 101 through the inside of the through hole 102. When the metal powder 103 is sprayed on the through hole 102, the metal powder 103 is melted by frictional heat generated by friction with the inner wall of the through hole 102, filling the gap between the surface of the crystal vibrating element 104 and the through hole 102. Then, the metal powder 103 is closely attached to the inside of the through hole 102 and deposited, and the metal powder 103 is packed from the quartz vibrating element 104 inside the quartz crystal resonator 100 to the surface of the base sheet-like wafer 102 through the inside of the through hole 102. .

金属粉103は粒径が10マイクロメートル程度の粉状のアルミニウム(Al)、銅(Cu)、銀(Ag)、金(Au)などを使用することができ、貫通孔102の大きさは、直径が約20〜200マイクロメートル程度の微細なものであり、外部端子形状も略矩形でなく、(a)に示されるような貫通孔102をベース用シート状ウェハ103からみた円形状でも全く構わないことが開示されている。   As the metal powder 103, powdery aluminum (Al), copper (Cu), silver (Ag), gold (Au), etc. having a particle diameter of about 10 micrometers can be used, and the size of the through hole 102 is as follows. The diameter is as small as about 20 to 200 micrometers, the external terminal shape is not substantially rectangular, and the through hole 102 as shown in FIG. There is no disclosure.

同様に特許文献4にも、直接接合により積層された3層All Quartz Packageにおいて、図15(c)に示すように金属箔微粒子をウェハ状に形成された水晶振動子100のベース用シート状ウェハ101に予め形成された貫通孔102にレーザー照射装置108とベース用シート状ウェハ101の貫通孔102の間に配置された金属箔109にレーザー照射装置108から射出されたレーザー光110を照射して溶解し、先の貫通孔102に飛散させて、貫通孔102内部に金属箔微粒子111を堆積させ水晶振動素子104の表面と、貫通孔102との隙間を金属箔微粒子111で埋めて、更に金属箔微粒子を貫通孔102の内部に堆積させて、水晶振動子100の内部の水晶振動素子104から貫通孔102内部を経てベース用シート状ウェハ101の表面に至るまで金属箔微粒子111を堆積させて電気的導通路107を形成する電気的導通路の形成方法が開示されている。   Similarly, in Patent Document 4, in a three-layer All Quartz Package laminated by direct bonding, as shown in FIG. 15C, a sheet-like wafer for a base of a crystal unit 100 in which metal foil fine particles are formed in a wafer shape 101 is irradiated with a laser beam 110 emitted from the laser irradiation device 108 onto a metal foil 109 disposed between the laser irradiation device 108 and the through hole 102 of the base sheet-like wafer 101. The metal foil fine particles 111 are deposited in the through-hole 102, and the gap between the surface of the crystal resonator element 104 and the through-hole 102 is filled with the metal foil fine particles 111, and then the metal foil fine particles 111 are filled. Foil fine particles are deposited inside the through-hole 102, and pass through the inside of the through-hole 102 from the crystal resonator element 104 inside the crystal unit 100. A method for forming an electrical conduction path is disclosed in which metal foil fine particles 111 are deposited up to the surface of the base sheet-like wafer 101 to form an electrical conduction path 107.

特開2001−102900号公報JP 2001-102900 A 特開2000−269775号公報JP 2000-269775 A 特開2008−113378号公報JP 2008-113378 A 特開2008−167302号公報JP 2008-167302 A

しかしながら特許文献1は、圧電振動子80の両主面に絶縁性接着剤85を介して絶縁性支持板82と保護板83を接着させた積層構造であり、導電部材87が引出電極89a,89bと当接することにより振動電極81とリード端子84を電気的に接続させているため、外部応力や熱衝撃の影響に対し接続信頼性が悪いという問題があった。   However, Patent Document 1 has a laminated structure in which an insulating support plate 82 and a protective plate 83 are bonded to both main surfaces of a piezoelectric vibrator 80 via an insulating adhesive 85, and the conductive member 87 has lead electrodes 89 a and 89 b. Since the vibration electrode 81 and the lead terminal 84 are electrically connected by contacting with each other, there is a problem that connection reliability is poor against the influence of external stress and thermal shock.

また特許文献2〜4には、もともと貫通孔や引回し電極との間に隙間(空隙)が存在しており、表面張力によってロウ材(金属微粒子)が接触面積の大きい貫通孔の内壁面の方へ引っ張られるので、ロウ材が引回し電極まで至らず、結果的に貫通孔内のロウ材と引回し電極との電気的接続が確保できなくなる虞があるという問題があった。   Further, in Patent Documents 2 to 4, there are originally gaps (voids) between the through holes and the routing electrodes, and the brazing material (metal fine particles) has a large contact area due to the surface tension. As a result, the brazing material does not reach the lead electrode, and as a result, there is a problem that electrical connection between the brazing material in the through hole and the lead electrode may not be secured.

そこで本発明は、上記従来技術の問題点に鑑み成されたものであり、半田リフローによる外部応力やヒートサイクル等の熱衝撃に対して高い信頼性を有すると共に、中間層の端子電極と保持部材の外部端子とを貫通電極を介しての電気的接続において接続信頼性を向上させた電子デバイス及びその製造方法を提供することを目的としている。 Accordingly, the present invention has been made in view of the above-described problems of the prior art, and has high reliability against external stress caused by solder reflow, thermal shock such as heat cycle, and the like, and terminal electrodes and holding members of the intermediate layer It is an object of the present invention to provide an electronic device having improved connection reliability in electrical connection between the external terminal and a through electrode, and a method for manufacturing the same.

本発明は、上記の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
本発明のある実施形態に係る電子デバイスは、接続電極を備えている電子素子層と、外部電極を備えており、かつ前記接続電極に重なった状態で前記電子素子層の接合面と金属ロウ材を介して固定している被接合部材と、を備え、前記電子素子層は、前記接続電極に前記被接合部材側の面に凹部を有し、前記被接合部材は、前記接続電極と重なっている位置に前記凹部に嵌合し、かつ前記外部電極と前記接続電極とを電気的に接続している電極を備え、前記被接合部材は、前記接続電極と重なっている位置に前記外部電極と電気的に接続している配線パターンを有し、前記凹部に嵌合している前記電極は、前記配線パターン上に配置されているバンプであることを特徴とする。
本発明のある別の実施形態に係る電子デバイスは、前記凹部に嵌合している前記電極は、前記電子素子層との前記接合面側から前記被接合部材の裏面に向けてテーパ状であることを特徴とする。
本発明のある別の実施形態に係る電子デバイスは、前記凹部は、開口から底面に向けて径小であるテーパ状であることを特徴とする。
[適用例1]接続電極を備えている電子素子層と、外部電極を備えており、かつ前記接続電極に重なった状態で前記電子素子層の接合面と金属ロウ材を介して固定している被接合部材と、を備え、前記電子素子層は、前記接続電極に前記被接合部材側の面に凹部を有し、前記被接合部材は、前記接続電極と重なっている位置に前記凹部に嵌合し、かつ前記外部電極と前記接続電極とを電気的に接続している電極を備えていることを特徴とする電子デバイス。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.
An electronic device according to an embodiment of the present invention includes an electronic element layer including a connection electrode, an external electrode, and a joining surface of the electronic element layer and a metal brazing material in a state of overlapping with the connection electrode The electronic element layer has a recess on the surface of the bonded member on the connection electrode, and the bonded member overlaps the connection electrode. An electrode that fits into the recess at a position that is electrically connected to the external electrode and the connection electrode, and the member to be joined is connected to the external electrode at a position that overlaps the connection electrode The electrode having an electrically connected wiring pattern and fitted in the recess is a bump disposed on the wiring pattern.
In an electronic device according to another embodiment of the present invention, the electrode fitted in the recess is tapered from the joining surface side with the electronic element layer toward the back surface of the member to be joined. It is characterized by that.
An electronic device according to another embodiment of the present invention is characterized in that the concave portion has a tapered shape whose diameter decreases from the opening toward the bottom surface.
[Application Example 1] An electronic element layer having a connection electrode and an external electrode, and being fixed to the joint surface of the electronic element layer and a metal brazing material in a state of being overlapped with the connection electrode A member to be joined, and the electronic element layer has a recess in the connection electrode on the surface of the member to be joined, and the member to be joined is fitted in the recess at a position overlapping the connection electrode. An electronic device comprising: an electrode that electrically connects the external electrode and the connection electrode.

これによれば、電子素子層と被接合部材の接合の際、凹部と電極の先端が嵌め合うことにより、接続電極と外部電極を電気的に接続させることができるため、半田リフローによる外部応力やヒートサイクル等の熱衝撃に対して高い信頼性を有し、電気的接続の信頼性を向上させることができる。 According to this, when the bonding of the electronic element layer and the workpieces, by mating the tip of the recess and the electrodes, since the connection electrodes and the external electrodes can be electrically connected, Ya external stress by solder reflow It has high reliability against thermal shock such as heat cycle, and can improve the reliability of electrical connection.

〔適用例2〕前記凹部に嵌合している前記電極は、金属ボールを溶融して形成したことを特徴とする適用例1に記載の電子デバイス。
これによれば、金属ボールを封止孔に落とし込んだときに封止孔の底面に位置する凹部で金属ボールを固定することができる。従って、封止孔の内部で金属ボールが転がることがなく、レーザー照射による金属ボールの照射位置決めを容易に行なうことができる。
Application Example 2 The electronic device according to Application Example 1, wherein the electrode fitted in the recess is formed by melting a metal ball.
According to this, when the metal ball is dropped into the sealing hole, the metal ball can be fixed by the recess located on the bottom surface of the sealing hole. Therefore, the metal ball does not roll inside the sealing hole, and the irradiation positioning of the metal ball by laser irradiation can be easily performed.

〔適用例3〕前記凹部に嵌合している前記電極は、前記凹部と対向する前記被接合部材を貫通し、前記凹部側に突出した凸状の電極であることを特徴とする適用例1に記載の電子デバイス。
電子素子層と被接合部材の接合の際、凹部に電極の先端が嵌め合うことにより、接続電極と外部電極を電気的に接続させることができる。これにより電気的接続の信頼性を向上させることができる。
Application Example 3] The electrode that is fitted in the recess, through the bonded members facing the recess, Application Example 1, which is a convex electrode that protrudes into the concave side The electronic device according to.
When the electronic element layer and the member to be bonded are bonded, the connection electrode and the external electrode can be electrically connected by fitting the tip of the electrode into the recess. Thereby, the reliability of electrical connection can be improved.

〔適用例4〕前記被接合部材は、前記接続電極と重なっている位置に前記外部電極と電気的に接続している配線パターンを有し、前記凹部に嵌合している前記電極は、前記配線パターン上に配置されているバンプであることを特徴とする適用例1に記載の電子デバイス。
電子素子層と被接合部材の接合の際、凹部にバンプの先端が嵌め合うことにより、接続電極と外部電極を電気的に接続させることができる。またバンプと凹部の嵌め合いの際に、電極が被接合部材から脱落することを防止できる。
Application Example 4 The member to be joined has a wiring pattern electrically connected to the external electrode at a position overlapping the connection electrode, and the electrode fitted in the recess is electronic device according to application example 1, which is a bump disposed on Sharing, ABS line pattern.
When the electronic element layer and the member to be bonded are bonded, the connection electrode and the external electrode can be electrically connected by fitting the tip of the bump into the recess. Further, it is possible to prevent the electrode from falling off from the bonded member when the bump and the recess are fitted.

〔適用例5〕前記凹部に嵌合している前記電極は、前記電子素子層との前記接合面から前記被接合部材の裏面に向けてテーパ状であることを特徴とする適用例1乃至4の何れか1項に記載の電子デバイス。
これによれば、電極と凹部の嵌め合いの際に、電極が被接合部材から脱落することを防止できる。
Application Example 5] The electrode that is fitted in the recess, applications wherein the a Te over path shape toward the rear surface of the members to be bonded from the bonding surface of the electronic element layer The electronic device according to any one of 1 to 4.
According to this, it is possible to prevent the electrode from dropping from the member to be joined when the electrode and the recess are fitted.

〔適用例6〕前記凹部は、開口から底面に向けて径小であるテーパ状であることを特徴とする適用例3乃至5の何れか1項に記載の電子デバイス。
これによれば、凹部と電極の接触面積を広くすることができるため、電気抵抗率が低下する。従ってCI値の向上を図ることができる。
Application Example 6 The electronic device according to any one of Application Examples 3 to 5, wherein the concave portion has a tapered shape with a diameter decreasing from the opening toward the bottom surface.
According to this, since the contact area between the recess and the electrode can be increased, the electrical resistivity is lowered. Therefore, the CI value can be improved.

〔適用例7〕凹部を有している接続電極を備えている電子素子層と、外部電極を備えており、前記電子素子層の接合面と接合している被接合部材と、備えている電子デバイスの製造方法であって、前記被接合材の接合面側に突出した電極を形成し、前記電子素子層の前記凹部と、前記突出した電極を嵌め合わせて、前記電子素子層と前記被接合部材が積層体を形成する工程を有することを特徴とする電子デバイスの製造方法。 Application Example 7 An electronic element layer including a connection electrode having a recess, and an external electrode and a member to be bonded that is bonded to a bonding surface of the electronic element layer . a method of manufacturing an electronic device, wherein the forming the electrode protruding to the bonding surface side of the material to be joined, the said recess of the electronic element layer, by fitting the electrodes the projecting, the said electronic device layer to be A method for manufacturing an electronic device, wherein the bonding member includes a step of forming a laminate.

これによれば、電子素子層と被接合部材の接合の際、凹部に電極の先端が嵌め合うことにより、接続電極と外部電極を電気的に接続させることができるため、電気的接続の信頼性を向上させた電子デバイスを製造することができる。 According to this, when the electronic element layer and the member to be joined are joined, the connection electrode and the external electrode can be electrically connected by fitting the tip of the electrode into the recess, so that the reliability of electrical connection It is possible to manufacture an electronic device with improved resistance.

本発明に係る電子デバイスの一実施例である実施例1の圧電振動子を第1基板の斜め上方から見た分解斜視図である。It is the disassembled perspective view which looked at the piezoelectric vibrator of Example 1 which is one example of the electronic device concerning the present invention from the slanting upper part of the 1st substrate. 本発明に係る電子デバイスの一実施例である実施例1の圧電振動子の第2基板の斜め下方から見た分解斜視図である。It is the disassembled perspective view seen from the slanting lower part of the 2nd board | substrate of the piezoelectric vibrator of Example 1 which is one Example of the electronic device which concerns on this invention. 実施例1の圧電振動子の断面図である。2 is a cross-sectional view of the piezoelectric vibrator of Example 1. FIG. 第1基板の製造工程図である。It is a manufacturing-process figure of a 1st board | substrate. 第2基板の製造工程図である。It is a manufacturing-process figure of a 2nd board | substrate. 振動体基板の製造工程図である。It is a manufacturing process figure of a vibrating body board. 実施例1の圧電振動子の貫通電極の製造工程図である。6 is a manufacturing process diagram of a through electrode of the piezoelectric vibrator of Example 1. FIG. 実施例2の圧電振動子の断面図である。6 is a cross-sectional view of a piezoelectric vibrator of Example 2. FIG. 実施例2の第2基板の製造工程図である。6 is a manufacturing process diagram of a second substrate of Example 2. FIG. 貫通電極と凹部の接合工程の部分拡大図である。It is the elements on larger scale of the joining process of a penetration electrode and a recessed part. 実施例3の圧電振動子の断面図である。6 is a cross-sectional view of a piezoelectric vibrator of Example 3. FIG. 実施例3の第2基板の製造工程図である。FIG. 12 is a manufacturing process diagram for the second substrate of Example 3. 従来の圧電発振子の説明図である。It is explanatory drawing of the conventional piezoelectric oscillator. 従来の薄型水晶振動子の説明図である。It is explanatory drawing of the conventional thin crystal oscillator. 従来の水晶振動子の説明図である。It is explanatory drawing of the conventional crystal oscillator.

本発明の電子デバイス及びその製造方法の実施形態を添付の図面を参照しながら、以下詳細に説明する。
図1は本発明に係る電子デバイスの一実施例である実施例1の圧電振動子を第1基板の斜め上方から見た分解斜視図である。図2は前記圧電振動子の第2基板の斜め下方から見た分解斜視図である。図3は実施例1の圧電振動子の断面図である。なお図1〜3はいずれも貫通電極を除いた圧電振動子を示している。
Embodiments of an electronic device and a manufacturing method thereof according to the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is an exploded perspective view of a piezoelectric vibrator according to a first embodiment, which is an embodiment of an electronic device according to the present invention, viewed obliquely from above a first substrate. FIG. 2 is an exploded perspective view of the piezoelectric vibrator as viewed from obliquely below the second substrate. FIG. 3 is a cross-sectional view of the piezoelectric vibrator of the first embodiment. 1 to 3 all show a piezoelectric vibrator excluding a through electrode.

本発明に係る圧電振動子10は、振動体基板20と、第1基板30と、第2基板40とから構成されている。
電子素子層となる振動体基板20は、振動体21と、この振動体21の外周と所定の間隔を隔てて振動体21を囲む枠体22とから構成されている。振動体21と枠体22とは連結部23A,23Bを介して一体形成されている。なお本実施形態の振動体21は、枠体22よりも薄肉に形成されており、連結部23A,23Bはテーパ状に形成している。連結部23Aと対角線上に位置する枠体には突出部24を形成している。連結部23Aと突出部24の裏面(第2基板40側)には、一対の接続電極25A,25Bが形成されている。
The piezoelectric vibrator 10 according to the present invention includes a vibrating body substrate 20, a first substrate 30, and a second substrate 40.
The vibrating body substrate 20 serving as an electronic element layer includes a vibrating body 21 and a frame body 22 that surrounds the vibrating body 21 with a predetermined distance from the outer periphery of the vibrating body 21. The vibrating body 21 and the frame body 22 are integrally formed via connecting portions 23A and 23B. Note that the vibrating body 21 of the present embodiment is formed thinner than the frame body 22, and the connecting portions 23A and 23B are formed in a tapered shape. A projecting portion 24 is formed on the frame located diagonally to the connecting portion 23A. A pair of connection electrodes 25 </ b> A and 25 </ b> B are formed on the back surface (second substrate 40 side) of the connecting portion 23 </ b> A and the protruding portion 24.

接続電極25A,25Bは、中心に凹部28A,28Bを形成している。凹部28A,28Bは、接続電極25A,25Bの表面から凹状に窪んでおり、開口から底面に向かって径小となるテーパ状(円形)に形成されている。凹部28は、後述する接続電極25の形成時に内壁面に下地としてCr層を用い、その上にAu層を積層させた多層構造の金属層が形成される。これにより凹部28の内壁面は、接続電極25A,25Bと電気的に接続している。   The connection electrodes 25A and 25B have recesses 28A and 28B formed in the center. The recesses 28A and 28B are recessed from the surface of the connection electrodes 25A and 25B, and are formed in a tapered shape (circular shape) that decreases in diameter from the opening toward the bottom surface. The recess 28 is formed with a metal layer having a multilayer structure in which a Cr layer is used as a base on the inner wall surface when a connection electrode 25 described later is formed, and an Au layer is laminated thereon. Thus, the inner wall surface of the recess 28 is electrically connected to the connection electrodes 25A and 25B.

また振動体21の表裏面には、一対の励振電極26A,26Bが対向するように形成されている。励振電極26A,26Bは夫々引き回し電極27A,27Bを介して振動体基板20の裏面に対角線上に形成した接続電極25A,25Bと電気的に接続している。   A pair of excitation electrodes 26 </ b> A and 26 </ b> B are formed on the front and back surfaces of the vibrating body 21 so as to face each other. The excitation electrodes 26A and 26B are electrically connected to connection electrodes 25A and 25B formed diagonally on the back surface of the vibrator substrate 20 through the routing electrodes 27A and 27B, respectively.

なお実施形態に係る振動体基板20は、一例として平板状のATカット水晶基板を用いて説明するが、振動体基板20は水晶以外にもタンタル酸リチウム、ニオブ酸リチウム、チタン酸ジルコン酸鉛等の圧電材料、シリコン半導体などの半導体材料、またはその他絶縁体材料などを適用することが可能である。   The vibrator substrate 20 according to the embodiment will be described by using a flat AT-cut quartz substrate as an example, but the vibrator substrate 20 may be made of lithium tantalate, lithium niobate, lead zirconate titanate, etc. in addition to quartz. It is possible to apply a piezoelectric material, a semiconductor material such as a silicon semiconductor, or other insulator materials.

被接合部材となる第1及び第2基板30,40は、材質に水晶、ガラス或いはセラミック基板を用いることができる。第1及び第2基板30,40は、熱膨張係数差による熱歪みや内部応力を回避するために振動体基板20と同質の材料を用いることが好ましい。   For the first and second substrates 30 and 40 to be bonded members, quartz, glass, or a ceramic substrate can be used as a material. The first and second substrates 30 and 40 are preferably made of the same material as that of the vibrator substrate 20 in order to avoid thermal distortion and internal stress due to a difference in thermal expansion coefficient.

第1基板30は、前記振動体基板20の上面を覆う平板基板である。第2基板40は、前記振動体基板20の下面を支持する平板基板である。第2基板40は、振動体基板20の下面に形成した接続電極25A,25と対向する位置に封止孔42A,42Bが形成されている。封止孔42A,42Bは内壁面には下地としてCr層を用い、その上にAu層を積層させた多層構造の金属層が形成されている。第2基板40の下面には、外部電極44A,44Bが形成されている。外部電極44A,44Bは、圧電振動子10を外部の機器と電気的に接続するために用いられる電極である。封止孔42A,42Bは、振動体基板20との接合面から外部電極44側に向けて、径大となるテーパ状(円形)に形成されている。封止孔42A,42Bは、共晶金属ボール70を落とし込み、溶融させて接続電極25A,25Bと電気的に接続させている。   The first substrate 30 is a flat substrate that covers the upper surface of the vibrating body substrate 20. The second substrate 40 is a flat substrate that supports the lower surface of the vibrator substrate 20. In the second substrate 40, sealing holes 42 </ b> A and 42 </ b> B are formed at positions facing the connection electrodes 25 </ b> A and 25 formed on the lower surface of the vibrator substrate 20. In the sealing holes 42A and 42B, a metal layer having a multilayer structure in which a Cr layer is used as a base on the inner wall surface and an Au layer is laminated thereon is formed. External electrodes 44 </ b> A and 44 </ b> B are formed on the lower surface of the second substrate 40. The external electrodes 44A and 44B are electrodes used to electrically connect the piezoelectric vibrator 10 to an external device. The sealing holes 42 </ b> A and 42 </ b> B are formed in a tapered shape (circular shape) having a large diameter from the joint surface with the vibrator substrate 20 toward the external electrode 44 side. In the sealing holes 42A and 42B, the eutectic metal balls 70 are dropped and melted to be electrically connected to the connection electrodes 25A and 25B.

第1接合部50は、振動体基板20と第1基板30の間に形成される共晶合金の層である。第2接合部60は、振動体基板20と第2基板40の間に形成される第1接合部50と同質の共晶合金の層である。   The first bonding portion 50 is a eutectic alloy layer formed between the vibrating body substrate 20 and the first substrate 30. The second joint 60 is a layer of a eutectic alloy that is the same quality as the first joint 50 formed between the vibrating body substrate 20 and the second substrate 40.

第1接合部50及び第2接合部60は、液相拡散接合法(以下、TLP(Transient Liquid Phase)接合と称す)を用いてAu−In共晶合金を形成するために、接合用金属層として金属メタライズを構成するAu層とし、少なくとも何れか一方の接合部にはAu層の表面にロウ材となるIn層を積層した積層構造となっている。Au−In共晶合金は、Inの融点である約156度以上でInを加熱することによりInを溶融させて、当該InをAu中へ拡散させることにより共晶反応を引き起こさせて形成することができる。このとき形成されたAu−In共晶合金の共晶点は約280度となる。
尚、前記TLP接合により接合された前記第1接合部50及び第2接合部60において、Au−In接合のみならず水晶α−β転移温度573度以下で行われる接合であれば良く、インサート金属にSnやSnIn、接合金属層をCuとしても良い。また、接合用金属層を共晶金属であるAu−20Sn(融点:280度)、Au−12Ge(融点:375度)、Au−6Si(融点:370度)などを直接形成されても良い。
The first bonding portion 50 and the second bonding portion 60 are formed of a bonding metal layer in order to form an Au—In eutectic alloy using a liquid phase diffusion bonding method (hereinafter referred to as TLP (Transient Liquid Phase) bonding). As an Au layer constituting metal metallization, at least one of the joint portions has a laminated structure in which an In layer serving as a brazing material is laminated on the surface of the Au layer. An Au-In eutectic alloy is formed by heating In at approximately 156 degrees or more, which is the melting point of In, causing In to melt and diffusing the In into Au to cause a eutectic reaction. Can do. The eutectic point of the Au—In eutectic alloy formed at this time is about 280 degrees.
In addition, in the said 1st junction part 50 and the 2nd junction part 60 joined by the said TLP joining, what is necessary is just a joining performed by not only Au-In joining but crystal alpha-beta transition temperature 573 degrees C or less, and insert metal In addition, Sn or SnIn and the bonding metal layer may be Cu. Further, the bonding metal layer may be directly formed of eutectic metal such as Au-20Sn (melting point: 280 degrees), Au-12Ge (melting point: 375 degrees), Au-6Si (melting point: 370 degrees).

次に上記構成による圧電振動子の製造方法について以下説明する。図4は第1基板の製造工程図である。図5は第2基板の製造工程図である。図6は振動体基板の製造工程図である。図7は実施例1の圧電振動子の貫通電極の製造工程図である。   Next, a method for manufacturing a piezoelectric vibrator having the above configuration will be described. FIG. 4 is a manufacturing process diagram of the first substrate. FIG. 5 is a manufacturing process diagram of the second substrate. FIG. 6 is a manufacturing process diagram of the vibrator substrate. FIG. 7 is a manufacturing process diagram of the through electrode of the piezoelectric vibrator of the first embodiment.

図4(a)に示す第1基板30は、水晶基板上の振動体基板20との接合面にAu−In共晶合金による枠状の第1接合部50を形成させる。まずAu層32の密着性を向上させるため、図4(b)に示すように水晶基板との密着性が高いCrやTi膜からなる密着層31を基板30上に形成し、その後接合用金属層のAu層32を蒸着法またはスパッタ法、めっき法等により形成している。ここで、密着層31と接合用金属層との拡散を防止するため、拡散防止層としてPtやPd膜を密着層31と接合用金属層との中間に形成することにより接合信頼性を改善することができる。最後に、第2基板30上に形成したAu層32の表面上に低融点金属のIn層33を形成している。   In the first substrate 30 shown in FIG. 4A, a frame-shaped first bonding portion 50 made of an Au—In eutectic alloy is formed on the bonding surface with the vibrating body substrate 20 on the quartz substrate. First, in order to improve the adhesion of the Au layer 32, as shown in FIG. 4B, an adhesion layer 31 made of a Cr or Ti film having high adhesion to the quartz substrate is formed on the substrate 30, and then the bonding metal. The Au layer 32 is formed by vapor deposition, sputtering, plating, or the like. Here, in order to prevent diffusion between the adhesion layer 31 and the bonding metal layer, a Pt or Pd film is formed between the adhesion layer 31 and the bonding metal layer as a diffusion prevention layer to improve bonding reliability. be able to. Finally, an In layer 33 of low melting point metal is formed on the surface of the Au layer 32 formed on the second substrate 30.

図5(a)に示す第2基板40は、封止孔42A,42Bをフォトリソグラフィ技術とエッチング技法或いはサンドブラスト法とを用いて形成している(図5(b))。また形成した封止孔42A,42Bの内壁面に下地のCr層及びその上層にAu層43を蒸着法又はスパッタ法等により形成している(図5(c))。さらに図5(d)に示すように振動体基板20との接合面にAu−In共晶合金による第2接合部60を形成させる。まずAu層42の密着性を向上させるため、水晶基板と密着性の高いCrやTi膜からなる密着層46を第2基板40上に形成し、その後、Auとの密着性が高いCrやTi膜からなる密着層46の上にAu層47を蒸着法又はスパッタ法等により形成している。ここで、密着層46と接合用金属層との拡散を防止するため、拡散防止層としてPtやPd膜を密着層46と接合用金属層との中間に形成することにより接合信頼性を改善することができる。最後に低融点金属のIn層48を基板上に形成したAu層47の表面上に形成している。   In the second substrate 40 shown in FIG. 5A, the sealing holes 42A and 42B are formed by using a photolithography technique and an etching technique or a sand blasting technique (FIG. 5B). In addition, a base Cr layer is formed on the inner wall surfaces of the formed sealing holes 42A and 42B, and an Au layer 43 is formed on the upper layer by vapor deposition or sputtering (FIG. 5C). Further, as shown in FIG. 5D, a second bonding portion 60 made of an Au—In eutectic alloy is formed on the bonding surface with the vibrating body substrate 20. First, in order to improve the adhesion of the Au layer 42, an adhesion layer 46 made of a Cr or Ti film having high adhesion to the quartz substrate is formed on the second substrate 40, and thereafter, Cr or Ti having high adhesion to Au is formed. An Au layer 47 is formed on the adhesion layer 46 made of a film by vapor deposition or sputtering. Here, in order to prevent diffusion between the adhesion layer 46 and the bonding metal layer, a Pt or Pd film is formed as an anti-diffusion layer between the adhesion layer 46 and the bonding metal layer to improve bonding reliability. be able to. Finally, an In layer 48 of low melting point metal is formed on the surface of the Au layer 47 formed on the substrate.

図6(a)に示す振動体基板20は、逆メサ構造の振動体と凹部28A、28Bをフォトリソグラフィ技術とエッチング技法或いはサンドブラスト法とを用いて形成している(図6(b))。また振動体21の外形はフォトリソグラフィ技術とエッチング技法或いはサンドブラスト法とを用いて形成している(図6(c))。なお振動体21の外形形成と同時に凹部28を形成するようにしてもよい。次に振動体基板20の励振電極26、引き回し電極27、接続電極25、Au−In共晶合金のAu層29を蒸着法又はスパッタ法等により一体形成している(図6(d))。そして形成された励振電極26Aに対し、イオンエッチングによる金属層の低減又は蒸着による質量付加によってモニタリングしながら周波数調整を行なっている(図6(e))。   In the vibrating body substrate 20 shown in FIG. 6A, a vibrating body having a reverse mesa structure and recesses 28A and 28B are formed by using a photolithography technique and an etching technique or a sandblasting technique (FIG. 6B). Further, the outer shape of the vibrating body 21 is formed by using a photolithography technique and an etching technique or a sand blasting method (FIG. 6C). The recess 28 may be formed at the same time as the outer shape of the vibrating body 21 is formed. Next, the excitation electrode 26, the routing electrode 27, the connection electrode 25, and the Au layer 29 of the Au—In eutectic alloy are integrally formed by vapor deposition or sputtering (FIG. 6D). Then, frequency adjustment is performed on the formed excitation electrode 26A while monitoring by reducing the metal layer by ion etching or adding mass by vapor deposition (FIG. 6E).

次に振動体基板20と第1及び第2基板30,40の接合は、TLP接合により接合する。具体的には基板の接合面を重ね合わせて積層体を形成する。そしてIn層の融点(約156度)以上、例えば約200度の温度で加熱加圧することにより、Au層間のIn層を溶融して、InをAu層中へ拡散させることにより共晶反応を引き起こし、共晶合金であるAu−Inを形成させる。   Next, the vibration substrate 20 and the first and second substrates 30 and 40 are bonded by TLP bonding. Specifically, a laminated body is formed by overlapping the bonding surfaces of the substrates. Then, by heating and pressing at a temperature equal to or higher than the melting point of the In layer (about 156 degrees), for example, about 200 degrees, the In layer between the Au layers is melted and the eutectic reaction is caused by diffusing In into the Au layer. Then, Au—In which is a eutectic alloy is formed.

そして圧電振動子10の貫通孔を封止する。具体的には図7(a)に示すように例えば真空封止又は不活性ガス雰囲気で、第2基板40の封止孔42A,42BにAu−Ge等からなる共晶金属ボール70を落とし込む。このとき共晶金属ボール70は凹部28上に固定されて、封止孔42A,42B内で転がることがない。次に封止孔42A,42B内の共晶金属ボール70へレーザーを照射して局所加熱を行い溶融する。図7(b)に示すように溶融した共晶機金属ボール70は凹部28及び封止孔42内で貫通電極を形成し、接続電極25と電気的に接続させている。なお共晶金属ボール70は瞬時に溶融するため、Au−In共晶合金が引き回し電極27及び励振電極26へ濡れ広がることがなく、発振周波数に影響を及ぼすことはない。
さらに第2基板40の外面には、封止孔42A、42Bを夫々含むように(封止孔42と電気的に接続するように)外部電極44A、44Bを蒸着法又はスパッタ法等により形成している。
Then, the through hole of the piezoelectric vibrator 10 is sealed. Specifically, as shown in FIG. 7A, eutectic metal balls 70 made of Au—Ge or the like are dropped into the sealing holes 42 </ b> A and 42 </ b> B of the second substrate 40 in a vacuum sealing or an inert gas atmosphere, for example. At this time, the eutectic metal ball 70 is fixed on the recess 28 and does not roll in the sealing holes 42A and 42B. Next, the eutectic metal balls 70 in the sealing holes 42A and 42B are irradiated with a laser to be locally heated and melted. As shown in FIG. 7B, the melted eutectic machine metal ball 70 forms a through electrode in the recess 28 and the sealing hole 42 and is electrically connected to the connection electrode 25. Since the eutectic metal ball 70 melts instantaneously, the Au—In eutectic alloy does not spread around the electrode 27 and the excitation electrode 26 and does not affect the oscillation frequency.
Further, external electrodes 44A and 44B are formed on the outer surface of the second substrate 40 by vapor deposition or sputtering so as to include sealing holes 42A and 42B (so as to be electrically connected to the sealing holes 42). ing.

このような実施例1の圧電振動子によれば、共晶金属ボールが溶融して貫通電極となり、凹部と貫通電極の先端が嵌め合うことにより、接続電極と外部電極を電気的に接続させることができるため、半田リフローによる外部応力やヒートサイクル等の熱衝撃に対して高い信頼性を有し、電気的接続の信頼性を向上させることができる。   According to the piezoelectric vibrator of Example 1 as described above, the eutectic metal ball is melted to be a through electrode, and the connection electrode and the external electrode are electrically connected by fitting the recess and the tip of the through electrode. Therefore, it has high reliability against external stress due to solder reflow and thermal shock such as heat cycle, and the reliability of electrical connection can be improved.

次に実施例2の圧電振動子の実施形態について以下説明する。図8は実施例2の圧電振動子10aの説明図である。図8(a)に示すように、実施例2の圧電振動子10aと実施例1の圧電振動子10との構成上の相違は、第2基板400の貫通電極49である。第1基板10及び電子素子層20は実施例1の構成と同一であり、その詳細な説明を省略する。図8(b)に示すように、第2基板400は導電性材料を貫通させた貫通電極49が形成されている。   Next, an embodiment of the piezoelectric vibrator of Example 2 will be described below. FIG. 8 is an explanatory diagram of the piezoelectric vibrator 10a according to the second embodiment. As shown in FIG. 8A, the difference in configuration between the piezoelectric vibrator 10a of the second embodiment and the piezoelectric vibrator 10 of the first embodiment is a through electrode 49 of the second substrate 400. The first substrate 10 and the electronic element layer 20 are the same as those in the first embodiment, and detailed description thereof is omitted. As shown in FIG. 8B, the second substrate 400 is formed with a through electrode 49 that penetrates a conductive material.

実施例2の第2基板400の製造方法について以下説明する。図9は実施例2の第2基板の製造工程の説明図である。図9(a)に示す第2基板400は、図9(b)に示すように貫通孔45A,45Bをフォトリソグラフィ技術とエッチング技法或いはサンドブラスト法とを用いて形成している。貫通孔45は、接合面から裏面に向かって径小とするテーパ状(円形)に形成している。   A method for manufacturing the second substrate 400 of Example 2 will be described below. FIG. 9 is an explanatory diagram of the manufacturing process of the second substrate of the second embodiment. As shown in FIG. 9B, the second substrate 400 shown in FIG. 9A has through holes 45A and 45B formed using a photolithography technique and an etching technique or a sand blasting technique. The through hole 45 is formed in a tapered shape (circular shape) having a diameter that decreases from the joint surface toward the back surface.

そして形成した貫通孔45A,45Bの内壁面に下地のCr層及びその上層にAu層を蒸着法又はスパッタ法等により形成している(図9(c))。貫通孔45A,45Bに貫通電極49となる導電性材料41を圧入して埋め込む。導電性材料41を埋め込んで形成した貫通電極49の接合面は僅かながら凸状に形成されるため、接合面を平坦状に研磨する。その後、外部電極44A,44Bを蒸着法又はスパッタ法等により形成している(図9(e))。次に第2基板400の接合面側の片面のみエッチング技法により基板全体を薄肉に形成し、貫通電極49の接合面を第2基板400の表面から突出させる(図9(f))。次に図9(g)に示すように貫通電極49の上面及び第2基板400の接合面に下地の密着層46及びその上層にAu層47を蒸着法又はスパッタ法等により形成している。さらに接合面には低融点金属のIn層48を基板上に形成したAu層47の表面上に形成している(図9(h))。   Then, an underlying Cr layer is formed on the inner wall surfaces of the formed through holes 45A and 45B, and an Au layer is formed thereon by vapor deposition or sputtering (FIG. 9C). The conductive material 41 to be the through electrode 49 is press-fitted and embedded in the through holes 45A and 45B. Since the bonding surface of the through electrode 49 formed by embedding the conductive material 41 is slightly convex, the bonding surface is polished flat. Thereafter, the external electrodes 44A and 44B are formed by vapor deposition or sputtering (FIG. 9E). Next, only the one surface on the bonding surface side of the second substrate 400 is thinly formed by an etching technique, and the bonding surface of the through electrode 49 protrudes from the surface of the second substrate 400 (FIG. 9F). Next, as shown in FIG. 9G, a base adhesion layer 46 is formed on the upper surface of the through electrode 49 and the bonding surface of the second substrate 400, and an Au layer 47 is formed thereon by vapor deposition or sputtering. Further, a low melting point metal In layer 48 is formed on the surface of the Au layer 47 formed on the substrate (FIG. 9 (h)).

振動体基板20と第1及び第2基板30,400の接合は、まず振動体基板20と第1及び第2基板30,400の接合面を重ね合わせて積層体を形成する。図10は貫通電極49と凹部28の接合工程の部分拡大図である。図10(a)に示すように凹部28の底面面積は貫通電極49の先端面積よりも小さく(若しくは略同一)形成しているため、位置決め(アライメント作業)が容易となる。第2基板400と振動体基板20を積層させると、貫通電極49の先端が凹部28の底面に当接し、さらに押し続けると貫通電極49の先端が凹部28の底面に押し潰されて貫通電極49の先端がツバ状となり嵌め合わされる。   For joining the vibrating body substrate 20 and the first and second substrates 30 and 400, first, the joining surfaces of the vibrating body substrate 20 and the first and second substrates 30 and 400 are overlapped to form a laminated body. FIG. 10 is a partially enlarged view of the joining process of the through electrode 49 and the recess 28. As shown in FIG. 10A, since the bottom surface area of the recess 28 is smaller (or substantially the same) than the tip area of the through electrode 49, positioning (alignment work) is facilitated. When the second substrate 400 and the vibrating body substrate 20 are laminated, the tip of the through electrode 49 comes into contact with the bottom surface of the recess 28, and when further pressed, the tip of the through electrode 49 is crushed by the bottom surface of the recess 28. The tip of the flange is fitted into a flange shape.

積層した後、In層の融点(約156度)以上の温度、例えば約200度で加熱加圧する。これにより、第1又は第2基板30,400及び振動体基板20のAu層間のIn層が溶融して、InをAu層中へ拡散させることにより共晶反応を引き起こし、共晶合金であるAu−Inが形成される。   After the lamination, heating and pressing are performed at a temperature equal to or higher than the melting point (about 156 degrees) of the In layer, for example, about 200 degrees. As a result, the In layer between the Au layers of the first or second substrate 30 and 400 and the vibrator substrate 20 is melted to cause In to diffuse into the Au layer, thereby causing a eutectic reaction. -In is formed.

このような実施例2の圧電振動子によれば、電子素子層と被接合部材の接合の際、凹部に貫通電極の先端が嵌め合うことにより、接続電極と外部電極を電気的に接続させることができる。これにより電気的接続の信頼性を向上させることができる。また凹部と貫通電極の接触面積を広くすることができるため、電気抵抗率が低下する。従ってCI値の向上を図ることができる。   According to the piezoelectric vibrator of the second embodiment, when the electronic element layer and the member to be joined are joined, the connection electrode and the external electrode are electrically connected by fitting the tip of the through electrode into the recess. Can do. Thereby, the reliability of electrical connection can be improved. Moreover, since the contact area of a recessed part and a penetration electrode can be enlarged, an electrical resistivity falls. Therefore, the CI value can be improved.

次に実施例3の圧電振動子の実施形態について以下説明する。図11は実施例3の圧電振動子10bの断面図である。図11(a)に示すように、実施例3の圧電振動子10bと実施例1の圧電振動子10との構成上の相違は、第2基板410の貫通電極である。第1基板30及び電子素子層20は実施例1の構成と同一であり、その詳細な説明を省略する。図11(b)に示すように、第2基板410は、接合面の配線パターン上に形成したバンプ54A,54bを貫通電極としている。   Next, an embodiment of the piezoelectric vibrator of Example 3 will be described below. FIG. 11 is a cross-sectional view of the piezoelectric vibrator 10b according to the third embodiment. As shown in FIG. 11A, the difference in configuration between the piezoelectric vibrator 10b of the third embodiment and the piezoelectric vibrator 10 of the first embodiment is a through electrode of the second substrate 410. The first substrate 30 and the electronic element layer 20 are the same as those in the first embodiment, and detailed description thereof is omitted. As shown in FIG. 11B, the second substrate 410 has bumps 54A and 54b formed on the wiring pattern on the bonding surface as through electrodes.

実施例3の第2基板410の製造方法について以下説明する。図12は実施例3の第2基板の製造工程の説明図である。図12(a)に示す第2基板410は、図12(b)に示すように貫通孔45A,45Bをフォトリソグラフィ技術とエッチング技法或いはサンドブラスト法とを用いて形成している。貫通孔45A,45Bは、接合面から外部電極側に向かって径小とするテーパ状(円形)に形成している。   A method for manufacturing the second substrate 410 of Example 3 will be described below. FIG. 12 is an explanatory diagram of the manufacturing process of the second substrate of the third embodiment. In the second substrate 410 shown in FIG. 12A, through holes 45A and 45B are formed by using a photolithography technique and an etching technique or a sand blasting technique as shown in FIG. 12B. The through holes 45 </ b> A and 45 </ b> B are formed in a tapered shape (circular shape) having a diameter that decreases from the joint surface toward the external electrode side.

そして形成した貫通孔45A,45Bの内壁面に下地のCr層及びその上層にAu層を蒸着法又はスパッタ法等により形成している(図12(c))。貫通孔45A,45Bに導電性材料41を圧入して埋め込む。その後、裏面に外部電極44A,44Bを蒸着法又はスパッタ法等により形成している(図12(e))。接合面に配線パターン52を形成する。配線パターン52は一端を導電材料41の上面を覆うように形成し、他端は凹部と対向するように蒸着法又はスパッタ法等により形成している。そして配線パターン52A,52B上であって、凹部と対向する位置にAu等からなるバンプ54A,54Bを形成している(図12(f))。次に図12(g)に示すようにバンプ54A,54Bの先端(接合面)及び第2基板の接合面に下地のCrやTi膜からなる密着層46及びその上層にAu層47を蒸着法又はスパッタ法等により形成している。そして接合面には低融点金属のIn層48を基板上に形成したAu層47の表面上に形成している(図12(h))。   Then, an underlying Cr layer is formed on the inner wall surfaces of the formed through-holes 45A and 45B, and an Au layer is formed thereon by vapor deposition or sputtering (FIG. 12C). The conductive material 41 is press-fitted and embedded in the through holes 45A and 45B. Thereafter, external electrodes 44A and 44B are formed on the back surface by vapor deposition or sputtering (FIG. 12E). A wiring pattern 52 is formed on the bonding surface. One end of the wiring pattern 52 is formed so as to cover the upper surface of the conductive material 41, and the other end is formed by vapor deposition or sputtering so as to face the recess. Bumps 54A and 54B made of Au or the like are formed on the wiring patterns 52A and 52B at positions facing the recesses (FIG. 12 (f)). Next, as shown in FIG. 12G, an adhesion layer 46 made of a base Cr or Ti film is deposited on the tips (bonding surfaces) of the bumps 54A and 54B and the bonding surface of the second substrate, and an Au layer 47 is deposited thereon. Or it forms by the sputtering method etc. A low melting point metal In layer 48 is formed on the surface of the Au layer 47 formed on the substrate (FIG. 12 (h)).

振動体基板20と第1及び第2基板30,410の接合は、まず振動体基板20と第1及び第2基板30,410の接合面を重ね合わせて積層体を形成する。凹部28の底面面積は貫通電極となるバンプ54の先端面積よりも小さく(若しくは略同一)に形成しているため、位置決めが容易となる。第2基板410と振動体基板20を積層させると、バンプ54の先端が凹部28の底面に当接し、さらに押し続けると図10に示す貫通電極49と同様に、バンプ54の先端が凹部28の底面に押し潰されてバンプ54の先端がツバ状となり嵌め合わされる。   In joining the vibrating body substrate 20 and the first and second substrates 30 and 410, first, the joining surfaces of the vibrating body substrate 20 and the first and second substrates 30 and 410 are overlapped to form a laminated body. Since the bottom surface area of the recess 28 is formed smaller (or substantially the same) as the tip end area of the bump 54 serving as a through electrode, positioning is easy. When the second substrate 410 and the vibrating body substrate 20 are laminated, the tip of the bump 54 comes into contact with the bottom surface of the recess 28, and further pressing continues the tip of the bump 54 of the recess 28 like the through electrode 49 shown in FIG. The bumps 54 are crushed by the bottom surface, and the ends of the bumps 54 are fitted into a flange shape.

積層した後、In層の融点(約156度)以上の温度、例えば約200度で加熱加圧する。これにより、第1又は第2基板及び振動板のAu層間のIn層が溶融して、InをAu層中へ拡散させることにより共晶反応を引き起こし、共晶合金であるAu−Inが形成される。   After the lamination, heating and pressing are performed at a temperature equal to or higher than the melting point (about 156 degrees) of the In layer, for example, about 200 degrees. As a result, the In layer between the Au layer of the first or second substrate and the diaphragm is melted, causing In to diffuse into the Au layer, thereby causing a eutectic reaction and forming Au-In as a eutectic alloy. The

このような実施例3の圧電振動子によれば、電子素子層と被接合部材の接合の際、凹部に貫通電極の先端が嵌め合うことにより、接続電極と外部電極を電気的に接続させることができる。これにより電気的接続の信頼性を向上させることができる。またバンプと凹部の嵌め合いの際に、貫通電極が被接合部材から脱落することを防止できる。   According to the piezoelectric vibrator of the third embodiment, when the electronic element layer and the member to be joined are joined, the connection electrode and the external electrode are electrically connected by fitting the tip of the through electrode into the recess. Can do. Thereby, the reliability of electrical connection can be improved. Further, it is possible to prevent the through electrode from falling off the member to be joined when the bump and the recess are fitted.

以上、本願発明に係る電子デバイスは、振動体基板20の上下面を第1基板30と第2基板40とで夫々サンドイッチしてなる三層構造の圧電振動子を用いて説明したが、この他にもSAW振動子、圧力センサー等に適用することもできる。   As described above, the electronic device according to the present invention has been described using a piezoelectric vibrator having a three-layer structure in which the upper and lower surfaces of the vibrator substrate 20 are sandwiched between the first substrate 30 and the second substrate 40, respectively. In addition, the present invention can be applied to SAW vibrators, pressure sensors, and the like.

10、10a、10b………圧電振動子、20、200………振動体基板、21………振動体、22………枠体、23………連結部、24………突出部、25………接続電極、26………励振電極、27………引き回し電極、28………凹部、29………Au層、30………第1基板、31………密着層、32………Au層、33………In層、40、400、410………第2基板、41………導電性材料、42………封止孔、44………外部電極、45………貫通孔、46………密着層、47………Au層、48………In層、49………貫通電極、50………第1接合部、52………配線パターン、54………バンプ、60………第2接合部、70………共晶金属ボール、80………圧電振動子、81………振動電極、82………絶縁性支持板、83………保護板、84………リード端子、85………絶縁性接着剤、86………接続用孔、87………導電部材、88………突出部、89………引出電極、90………貫通孔、91………導電性接着剤、92………水晶片、93………引出電極、94………実装電極、100………水晶振動子、101………ベース用シート状ウェハ、102………貫通孔、103………金属粉、104………水晶振動素子、105………電気的導通路、107………電気的導通路、108………レーザ照射装置、109………金属箔、111………金属箔粒子。 10, 10a, 10b ......... Piezoelectric vibrator, 20, 200 ......... Vibrating body substrate, 21 ......... Vibrating body, 22 ......... Frame body, 23 ......... Connecting portion, 24 ......... Protruding portion, 25... Connection electrode, 26... Excitation electrode, 27... Leading electrode, 28... Recess, 29... Au layer, 30. ......... Au layer, 33 ......... In layer, 40, 400, 410 ......... second substrate, 41 ......... conductive material, 42 ......... sealing hole, 44 ......... external electrode, 45 ... ...... Through hole 46... Adhesion layer 47... Au layer 48... In layer 49... Through electrode 50... First junction 52. ......... Bump, 60 ......... Second joint, 70 ......... Eutectic metal ball, 80 ......... Piezoelectric vibrator, 81 ......... Vibrating electrode, 82 ......... Insulation Support plate 83... Protection plate 84... Lead terminal 85... Insulating adhesive 86... Connection hole 87 87 Conductive member 88 Projecting portion 89. ... Extraction electrode, 90 ......... Through hole, 91 ... Conductive adhesive, 92 ......... Crystal piece, 93 ...... Extraction electrode, 94 ...... Mounting electrode, 100 ... Crystal oscillator, 101 ......... Sheet-like wafer for base, 102 ......... Through hole, 103 ......... Metal powder, 104 ...... Quartz vibrating element, 105 ...... Electrical conduction path, 107 ...... Electrical conduction path, 108 ... Laser irradiation device, 109 ... Metal foil, 111 Metal foil particles.

Claims (3)

接続電極を備えている電子素子層と、
外部電極を備えており、かつ前記接続電極に重なった状態で前記電子素子層の接合面と金属ロウ材を介して固定している被接合部材と、を備え、
前記電子素子層は、前記接続電極に前記被接合部材側の面に凹部を有し、
前記被接合部材は、前記接続電極と重なっている位置に前記凹部に嵌合し、かつ前記外部電極と前記接続電極とを電気的に接続している電極を備え
前記被接合部材は、前記接続電極と重なっている位置に前記外部電極と電気的に接続している配線パターンを有し、
前記凹部に嵌合している前記電極は、前記配線パターン上に配置されているバンプであることを特徴とする電子デバイス。
An electronic element layer comprising a connection electrode;
An external electrode, and a member to be bonded that is fixed via a metal brazing material and a bonding surface of the electronic element layer in a state of overlapping with the connection electrode,
The electronic element layer has a concave portion on the surface to be bonded to the connection electrode,
The member to be joined includes an electrode that fits into the concave portion at a position overlapping the connection electrode, and electrically connects the external electrode and the connection electrode ;
The member to be joined has a wiring pattern electrically connected to the external electrode at a position overlapping the connection electrode,
The electronic device , wherein the electrode fitted in the recess is a bump disposed on the wiring pattern .
前記凹部に嵌合している前記電極は、前記電子素子層との前記接合面側から前記被接合部材の裏面に向けてテーパ状であることを特徴とする請求項1に記載の電子デバイス。 2. The electronic device according to claim 1 , wherein the electrode fitted in the concave portion is tapered from the side of the joint surface with the electronic element layer toward the back surface of the member to be joined . 前記凹部は、開口から底面に向けて径小であるテーパ状であることを特徴とする請求項1又は2に記載の電子デバイス。 The electronic device according to claim 1, wherein the concave portion has a tapered shape having a small diameter from the opening toward the bottom surface .
JP2009099389A 2009-04-15 2009-04-15 Electronic devices Expired - Fee Related JP5262946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009099389A JP5262946B2 (en) 2009-04-15 2009-04-15 Electronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009099389A JP5262946B2 (en) 2009-04-15 2009-04-15 Electronic devices

Publications (3)

Publication Number Publication Date
JP2010252051A JP2010252051A (en) 2010-11-04
JP2010252051A5 JP2010252051A5 (en) 2012-05-31
JP5262946B2 true JP5262946B2 (en) 2013-08-14

Family

ID=43313886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009099389A Expired - Fee Related JP5262946B2 (en) 2009-04-15 2009-04-15 Electronic devices

Country Status (1)

Country Link
JP (1) JP5262946B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5001393B2 (en) 2009-09-16 2012-08-15 日本電波工業株式会社 Piezoelectric vibration device and method for manufacturing piezoelectric vibration device
JP5839024B2 (en) * 2013-12-20 2016-01-06 株式会社大真空 Piezoelectric vibration device
EP3086471B1 (en) * 2013-12-20 2019-01-30 Daishinku Corporation Piezoelectric resonator device
JP6481813B2 (en) * 2015-02-17 2019-03-13 セイコーエプソン株式会社 Vibrator, vibrating device, oscillator, electronic device, and moving object
WO2016132765A1 (en) * 2015-02-18 2016-08-25 株式会社村田製作所 Piezoelectric vibration device and production method therefor
CN107408935B (en) 2015-03-03 2018-11-09 株式会社村田制作所 Quartz crystal unit
JP6547825B2 (en) 2015-03-27 2019-07-24 株式会社大真空 Piezoelectric vibration device
US11165390B2 (en) 2015-06-12 2021-11-02 Daishinku Corporation Piezoelectric resonator device
US10600953B2 (en) 2015-11-06 2020-03-24 Daishinku Corporation Piezoelectric resonator device
US11342897B2 (en) 2016-06-29 2022-05-24 Daishinku Corporation Piezoelectric resonator device and method for manufacturing piezoelectric resonator device
JP6358293B2 (en) * 2016-07-27 2018-07-18 株式会社大真空 Method for manufacturing piezoelectric vibration device
US11152911B2 (en) 2016-09-16 2021-10-19 Daishinku Corporation Piezoelectric resonator device
CN109937533B (en) 2016-11-16 2023-06-23 株式会社大真空 Crystal vibration device
US11152910B2 (en) 2016-11-17 2021-10-19 Daishinku Corporation Piezoelectric resonator device
JPWO2018097132A1 (en) 2016-11-24 2019-10-17 株式会社大真空 Piezoelectric vibration device and SiP module including the same
JP6979670B2 (en) * 2017-02-17 2021-12-15 リバーエレテック株式会社 Wafer level package manufacturing method
JP6931912B2 (en) * 2017-02-17 2021-09-08 リバーエレテック株式会社 Wafer level package manufacturing method
WO2019176616A1 (en) 2018-03-13 2019-09-19 株式会社大真空 Piezoelectric vibration device
JP6848953B2 (en) * 2018-11-26 2021-03-24 株式会社大真空 Piezoelectric vibration device
WO2020122179A1 (en) 2018-12-14 2020-06-18 株式会社大真空 Piezoelectric vibrating device
JP7305971B2 (en) * 2019-01-31 2023-07-11 株式会社大真空 piezoelectric vibration device
JP2020141358A (en) * 2019-03-01 2020-09-03 株式会社大真空 Piezoelectric diaphragm and piezoelectric vibration device
WO2022131213A1 (en) 2020-12-16 2022-06-23 株式会社大真空 Piezoelectric vibration device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS606338U (en) * 1983-06-24 1985-01-17 キンセキ株式会社 Crystal oscillator
JP2004096721A (en) * 2002-07-10 2004-03-25 Seiko Epson Corp Package for piezoelectric vibrator, piezoelectric vibrator and piezoelectric device
JP2004208236A (en) * 2002-12-26 2004-07-22 Seiko Epson Corp Piezoelectric device, manufacturing method therefor, portable telephone unit utilizing piezoelectric device and electronic equipment utilizing piezoelectric device
JP4978030B2 (en) * 2006-03-07 2012-07-18 セイコーエプソン株式会社 Piezoelectric device
JP2008166884A (en) * 2006-12-27 2008-07-17 Daishinku Corp Manufacturing method of piezoelectric vibration device and piezoelectric vibration device by the manufacturing method
JP4412506B2 (en) * 2007-09-07 2010-02-10 エプソントヨコム株式会社 Piezoelectric device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2010252051A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5262946B2 (en) Electronic devices
US7486160B2 (en) Electronic component and manufacturing method thereof
JP5076166B2 (en) Piezoelectric device and sealing method thereof
JP2010528881A (en) Manufacturing method of MEMS package
JP2011010143A (en) Electronic device and method of manufacturing the same
WO2006025139A1 (en) Circuit board, manufacturing method thereof, and electronic parts using the same
JP5853702B2 (en) Piezoelectric vibration device
JP2011155506A (en) Electronic device, electronic apparatus, and method of manufacturing electronic device
JP5152012B2 (en) Piezoelectric vibration device and method for manufacturing piezoelectric vibration device
JP5365851B2 (en) Electronic components
JP2011082870A (en) Piezoelectric device
WO2015162958A1 (en) Crystal-oscillating device and method for manufacturing same
JP2013031133A (en) Piezoelectric vibration device
JP5440148B2 (en) Method for manufacturing piezoelectric device
JP2008259004A (en) Piezoelectric device and manufacturing method thereof
JP2003318692A (en) Piezoelectric device
JP2017130827A (en) Piezoelectric device and method of manufacturing the same
JP2009239475A (en) Surface mounting piezoelectric oscillator
JP2011055033A (en) Piezoelectric oscillator
JP2013045880A (en) Manufacturing method of electronic device
WO2023008138A1 (en) Crystal oscillator and manufacturing method therefor
JPH11274892A (en) Piezoelectric vibrator and production thereof
JP2004281545A (en) Sealing method for piezoelectric device package, package lid, and piezoelectric device
JP4599145B2 (en) Piezoelectric diaphragm
JP2001156193A (en) Electronic component device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees