JP5245526B2 - Insulating resin composition and insulating film with support - Google Patents

Insulating resin composition and insulating film with support Download PDF

Info

Publication number
JP5245526B2
JP5245526B2 JP2008123414A JP2008123414A JP5245526B2 JP 5245526 B2 JP5245526 B2 JP 5245526B2 JP 2008123414 A JP2008123414 A JP 2008123414A JP 2008123414 A JP2008123414 A JP 2008123414A JP 5245526 B2 JP5245526 B2 JP 5245526B2
Authority
JP
Japan
Prior art keywords
resin composition
insulating resin
mass
insulating
hydroxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008123414A
Other languages
Japanese (ja)
Other versions
JP2009270054A (en
Inventor
小夏 山田
信之 小川
雅晴 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008123414A priority Critical patent/JP5245526B2/en
Publication of JP2009270054A publication Critical patent/JP2009270054A/en
Application granted granted Critical
Publication of JP5245526B2 publication Critical patent/JP5245526B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)

Description

本発明は、絶縁樹脂組成物、及び支持体付き絶縁フィルムに関する。さらに詳しくは、低熱膨張係数を有し、かつ銅との接着力に優れた絶縁樹脂組成物、及び支持体付き絶縁フィルムに関する。   The present invention relates to an insulating resin composition and an insulating film with a support. More specifically, the present invention relates to an insulating resin composition having a low thermal expansion coefficient and excellent adhesive strength with copper, and an insulating film with a support.

一般的な多層配線板の製造手法としては、片面又は両面に内層回路を形成した絶縁基板上に、ガラス布にエポキシ樹脂を含浸し、半硬化状態にした材料(プリプレグ)を銅箔と重ねて、熱プレスにより積層一体化し、その後、ドリルで層間接続用のスルーホールと呼ばれる穴をあけ、スルーホール内壁と銅箔表面上に無電解めっきを行って、必要ならば、更に電解めっきを行って回路導体として必要な厚さとした後、不要な銅を除去して多層配線板を製造する方法が挙げられる。
しかしながら、近年、電子機器の小型化、軽量化、多機能化が一段と進み、これに伴って、LSIやチップ部品などの高集積化が進み、その形態も多ピン化、及び小型化へと急速に変化している(非特許文献1参照)。このため、電子部品の実装密度を向上するために、多層配線板の微細配線化の開発が進められている。これらの要求に合致する多層配線板の製造手法として、ガラスクロスを含まない絶縁樹脂を、プリプレグの代わりに絶縁層として用い、必要な部分のみをビアホールで接続しながら、配線層を形成するビルドアップ構造の多層配線板が、軽量化や小型化、微細化に適した手法として主流になりつつある。
As a general method for manufacturing a multilayer wiring board, a material (prepreg) made by impregnating a glass cloth with an epoxy resin and semi-cured on an insulating substrate having an inner layer circuit formed on one side or both sides is laminated with a copper foil. Integrate the layers by hot pressing, then drill holes called through holes for interlayer connection, perform electroless plating on the inner walls of the through holes and the copper foil surface, and if necessary, perform further electrolytic plating A method of manufacturing a multilayer wiring board by removing unnecessary copper after making the thickness necessary as a circuit conductor is mentioned.
However, in recent years, electronic devices have been further reduced in size, weight, and functionality, and accordingly, the integration of LSIs and chip parts has been increased, and the form has rapidly increased in number and size. (See Non-Patent Document 1). For this reason, in order to improve the mounting density of electronic components, development of a fine wiring of a multilayer wiring board is advanced. As a manufacturing method of multilayer wiring boards that meet these requirements, build-up that uses insulating resin that does not contain glass cloth as an insulating layer instead of prepreg, and forms a wiring layer while connecting only necessary parts with via holes Multilayer wiring boards having a structure are becoming mainstream as methods suitable for weight reduction, miniaturization, and miniaturization.

さらに、前記ビルドアップ構造の多層基板において、高密度化をするために層数の増加とともに、ビア部分のフィルド化、スタック化が進んでいる(非特許文献2参照)。
しかしながら、多層配線板の薄型化のためにガラスクロスを含まない絶縁樹脂層は、熱膨張係数が大きい傾向を示すため、フィルド化、スタック化したビアの銅との熱膨張係数の差が接続信頼性に大きく影響し、信頼性の懸念材料になっている。
以上のようなことから、絶縁樹脂には熱膨張係数の小さい材料が要求されるようになってきた。又、微細配線化に伴って、樹脂と金属の接触面積が減少するため、樹脂―金属界面の高接着化が必要となってきた。
Further, in the multilayer substrate having the build-up structure, as the number of layers increases, the via portion is filled and stacked (see Non-Patent Document 2).
However, insulation resin layers that do not contain glass cloth tend to have a large coefficient of thermal expansion for thinner multilayer wiring boards, so the difference in thermal expansion coefficient between copper in filled and stacked vias is a reliable connection. It has a great influence on reliability and has become a concern for reliability.
As described above, a material having a low thermal expansion coefficient has been required for the insulating resin. In addition, since the contact area between the resin and the metal decreases with the fine wiring, it is necessary to increase the adhesion of the resin-metal interface.

電子機器に用いられているプリント配線板のはんだ付けには、従来、鉛−錫を用いた共晶はんだが使用されていた。しかし、環境問題の高まりと共に、鉛の人体、環境への影響を考慮し、脱鉛化が急速に進行している。
一般的に、鉛フリーはんだの溶融温度は、従来の鉛−錫系よりも高くなっている(210〜230℃)。そのため、従来、一般的に使用されていたプリント配線板用材料(FR−4)では、リフロー工程での基板の膨れの発生、又は絶縁信頼性が低下するという問題があった。
このため、基板に使用する樹脂のガラス転移温度(Tg)を高くするか、又は充填材の凝集を防ぎながら充填材を多量に添加するといった手法がとられている(特許文献1参照)。
しかし、従来の高Tgの基板では、260℃前後のリフロー試験において膨れが発生してしまうという問題点、或いはシリカに代表される高硬度の充填材を高充填すると、打抜き加工性が悪化するという問題があった。
Conventionally, eutectic solder using lead-tin has been used for soldering printed wiring boards used in electronic devices. However, with increasing environmental problems, lead removal is rapidly progressing in consideration of the effects of lead on the human body and the environment.
Generally, the melting temperature of lead-free solder is higher than that of the conventional lead-tin system (210 to 230 ° C.). For this reason, the printed wiring board material (FR-4) that has been generally used conventionally has a problem that the substrate is swollen during the reflow process or the insulation reliability is lowered.
For this reason, a technique has been adopted in which the glass transition temperature (Tg) of the resin used for the substrate is increased, or a large amount of filler is added while preventing aggregation of the filler (see Patent Document 1).
However, with conventional high Tg substrates, there is a problem that blistering occurs in a reflow test at around 260 ° C., or when a high-hardness filler typified by silica is highly filled, the punching processability deteriorates. There was a problem.

2005年度版日本実装技術ロードマップ、電子情報技術産業協会、pp168-1692005 Japan Packaging Technology Roadmap, Japan Electronics and Information Technology Industries Association, pp168-169 エレクトロニクス実装学会誌、vol.10、No.5、pp342-343、(2007)Journal of Japan Institute of Electronics Packaging, vol.10, No.5, pp342-343, (2007) 特開2002−80624号公報JP 2002-80624 A

本発明は、低熱膨張係数を有し、且つ銅との接着力に優れる絶縁樹脂組成物、及びその半硬化物を支持体表面に形成してなる支持体付き絶縁フィルムを提供することを目的とする。   An object of the present invention is to provide an insulating resin composition having a low coefficient of thermal expansion and excellent adhesion to copper, and an insulating film with a support formed by forming a semi-cured product thereof on the surface of the support. To do.

本発明者らはこのような問題を解決するために研究を進めた結果、絶縁樹脂組成物として、エポキシ樹脂と、低い熱膨張係数を持つフェノール性水酸基含有ポリアミドイミドと、接着性の高いフェノキシ樹脂と、無機フィラーを必須として含むことにより、高接着性と低熱膨張係数を確保できることを見出した。   As a result of advancing research to solve such problems, the present inventors have found that as an insulating resin composition, an epoxy resin, a phenolic hydroxyl group-containing polyamideimide having a low thermal expansion coefficient, and a highly adhesive phenoxy resin And it discovered that high adhesiveness and a low thermal expansion coefficient were securable by including an inorganic filler as an essential.

すなわち、本発明は、以下を要旨とするものである。
1.(A)エポキシ樹脂、(B)フェノール性水酸基含有ポリアミドイミド、(C)フェノキシ樹脂、及び(D)無機フィラーを含有することを特徴とする絶縁樹脂組成物。
2.前記絶縁樹脂組成物の全固形分中の含有量として、(A)エポキシ樹脂が10〜30質量%、(B)フェノール性水酸基含有ポリアミドイミドが35〜65質量%、(C)フェノキシ樹脂が3〜20質量%、及び(D)無機フィラーが5〜38質量%である前記1に記載の絶縁樹脂組成物。
3.前記絶縁樹脂組成物が、さらに(E)架橋ゴム粒子を含有する前記1又は2に記載の絶縁樹脂組成物。
4.(A)エポキシ樹脂と(E)架橋ゴム粒子との固形分質量比が80/20〜98/2である上記3に記載の絶縁樹脂組成物。
5.上記1〜4のいずれかに記載の絶縁樹脂組成物の半硬化状態のフィルムが支持体の表面に形成されていることを特徴とする支持体付絶縁フィルム。
That is, the gist of the present invention is as follows.
1. An insulating resin composition comprising (A) an epoxy resin, (B) a phenolic hydroxyl group-containing polyamideimide, (C) a phenoxy resin, and (D) an inorganic filler.
2. As content in the total solid of the said insulating resin composition, (A) epoxy resin is 10-30 mass%, (B) phenolic hydroxyl group containing polyamideimide is 35-65 mass%, (C) phenoxy resin is 3 The insulating resin composition according to 1 above, wherein ˜20 mass% and (D) the inorganic filler is 5-38 mass%.
3. 3. The insulating resin composition according to 1 or 2, wherein the insulating resin composition further contains (E) crosslinked rubber particles.
4). (A) The insulating resin composition as described in 3 above, wherein the solid content mass ratio between the epoxy resin and the (E) crosslinked rubber particles is 80/20 to 98/2.
5. An insulating film with a support, wherein a semi-cured film of the insulating resin composition according to any one of 1 to 4 is formed on the surface of the support.

本発明によれば、低熱膨張係数を有し、且つ銅との接着力に優れる絶縁樹脂組成物、及びその半硬化物を支持体表面に形成してなる支持体付き絶縁フィルムを提供することができる。   According to the present invention, it is possible to provide an insulating resin composition having a low coefficient of thermal expansion and excellent adhesion to copper, and an insulating film with a support formed by forming a semi-cured product thereof on the surface of the support. it can.

まず、本発明における絶縁樹脂組成物について説明する。
本発明は、(A)エポキシ樹脂、(B)フェノール性水酸基含有ポリアミドイミド、(C)フェノキシ樹脂、及び(D)無機フィラーを含有する絶縁樹脂組成物である。
ここで、(A)成分であるエポキシ樹脂とは、分子中に1つ以上のエポキシ基を有するエポキシ樹脂であり、2〜多官能基エポキシ樹脂が挙げられる。
このうち、5官能以上の多官能エポキシ樹脂としては、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールビフェニレンノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、及びアラルキル型エポキシ樹脂などが、4官能エポキシ樹脂としては、テトラグリシジルメタキシレンジアミン型エポキシ樹脂、及びテトラキスヒドロキシフェニルエタン型エポキシ樹脂などが、3官能エポキシ樹脂としては、トリグリシジルイソシアヌレート、又はトリフェニルグリシジルエーテルメタン型エポキシ樹脂などが、又、2官能エポキシ樹脂としては2、2−ビス(4−ヒドロキシフェニル)プロパン[ビスフェノールA]、ビス(4−ヒドロキシフェニル)メタン[ビスフェノールF]、及び両者の中間的性格を有するビスフェノールADなどが挙げられる。
エポキシ樹脂は、上記に限定されるものではなく、又、数種類を同時に用いても良い。
前記エポキシ樹脂の配合量は、溶剤を除いた絶縁樹脂組成物の全固形分中の割合で10〜30質量%であるのが好ましい。10質量%以上とすることにより、必要な金属との接着強度が得られ、30質量%以下とすることにより低熱膨張係数を保つことができる。
First, the insulating resin composition in the present invention will be described.
The present invention is an insulating resin composition containing (A) an epoxy resin, (B) a phenolic hydroxyl group-containing polyamideimide, (C) a phenoxy resin, and (D) an inorganic filler.
Here, the epoxy resin that is the component (A) is an epoxy resin having one or more epoxy groups in the molecule, and examples thereof include 2-functional polyepoxy resins.
Among these, the polyfunctional epoxy resin having 5 or more functional groups includes a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, a phenol biphenylene novolac type epoxy resin, a bisphenol A novolac type epoxy resin, and an aralkyl type epoxy resin. Examples of the epoxy resin include tetraglycidyl metaxylenediamine type epoxy resin and tetrakishydroxyphenylethane type epoxy resin. Examples of the trifunctional epoxy resin include triglycidyl isocyanurate or triphenylglycidyl ether methane type epoxy resin. As the bifunctional epoxy resin, 2,2-bis (4-hydroxyphenyl) propane [bisphenol A], bis (4-hydroxyphenyl) methane [bisphenol F], Bisphenol AD having an intermediate character of fine both like.
The epoxy resin is not limited to the above, and several types may be used simultaneously.
It is preferable that the compounding quantity of the said epoxy resin is 10-30 mass% in the ratio in the total solid of the insulating resin composition except a solvent. By setting it as 10 mass% or more, the adhesive strength with a required metal is obtained, and a low thermal expansion coefficient can be maintained by setting it as 30 mass% or less.

(B)フェノール性水酸基含有ポリアミドイミドとは、分子構造中に、アミド基、イミド基の他に、エポキシ樹脂と反応性のあるフェノール性水酸基を有する高分子である。
ポリアミドイミド樹脂は、イミド環に起因した低熱膨張化・高ガラス転移温度(Tg)化が容易なこと、アミド基に起因した金属類との高接着性を示すこと、及び溶剤に可溶なことなどから、多くの研究が行われている。又、ポリアミドイミド樹脂の製造方法としては、例えば、無水トリメリット酸と、芳香族ジイソシアネートとを反応させる工程を備える、いわゆるイソシアネート法が知られている。このイソシアネート法の応用例としては、特許2897186号公報及び特開平4−182466号公報に記載のように、芳香族トリカルボン酸無水物と芳香族ジアミンとをジアミン過剰条件で反応させ、次いでジイソシアネートを反応させる方法がある。
(B)フェノール性水酸基含有ポリアミドイミドは、上記の方法で製造される一般のポリアミドイミドの特性を損なうことなく、さらにエポキシ樹脂と反応可能なフェノール性水酸基を導入したものである。フェノール性水酸基の導入方法として、例えば上記公報記載の方法において、芳香族トリカルボン酸無水物と芳香族ジアミンとを、前記ジアミンが過剰な条件下で反応させ、次いでジイソシアネートを反応させる際に、同時にフェノール性水酸基を有する芳香族ジカルボン酸、例えば,ヒドロキシイソフタル酸などを共重合させる方法などがある。
(B)フェノール性水酸基含有ポリアミドイミドの含有量は、溶剤を除いた絶縁樹脂組成物の全固形分中で35〜65質量%であることが好ましい。35質量%以上とすることにより、樹脂の熱膨張係数を低く保つことができ、65質量%以下とすることにより、金属めっき時に緻密な粗化形状を保つことができるからである。
(B) The phenolic hydroxyl group-containing polyamideimide is a polymer having a phenolic hydroxyl group reactive with an epoxy resin in addition to an amide group and an imide group in the molecular structure.
Polyamideimide resin has low thermal expansion and high glass transition temperature (Tg) due to imide ring, high adhesion to metals due to amide group, and is soluble in solvent A lot of research has been done. As a method for producing a polyamideimide resin, for example, a so-called isocyanate method is known which includes a step of reacting trimellitic anhydride and aromatic diisocyanate. As an application example of this isocyanate method, as described in Japanese Patent No. 2897186 and JP-A-4-182466, an aromatic tricarboxylic acid anhydride and an aromatic diamine are reacted under diamine excess conditions, and then a diisocyanate is reacted. There is a way to make it.
(B) The phenolic hydroxyl group-containing polyamideimide is a compound in which a phenolic hydroxyl group capable of reacting with an epoxy resin is further introduced without impairing the properties of the general polyamideimide produced by the above method. As a method for introducing a phenolic hydroxyl group, for example, in the method described in the above-mentioned publication, an aromatic tricarboxylic acid anhydride and an aromatic diamine are reacted under an excess condition of the diamine and then reacted with a diisocyanate. And a method of copolymerizing an aromatic dicarboxylic acid having a functional hydroxyl group, such as hydroxyisophthalic acid.
(B) The content of the phenolic hydroxyl group-containing polyamideimide is preferably 35 to 65% by mass in the total solid content of the insulating resin composition excluding the solvent. It is because the thermal expansion coefficient of resin can be kept low by setting it as 35 mass% or more, and a precise roughened shape can be maintained at the time of metal plating by setting it as 65 mass% or less.

(C)フェノキシ樹脂は、ビスフェノールAとエピクロルヒドリン、又はジグリシジルエ−テルより合成される、分子構造中にフェノキシ基を持ち、分子量が10000以上の高分子量樹脂であり、その他のエポキシ樹脂と構造が似ていることから相溶性が良く、又接着性も良好な特徴を有する。
(C)フェノキシ樹脂の含有量は、溶剤を除いた絶縁樹脂組成物の全固形分中で3〜20質量%にするのが好ましい。3質量%以上とすることにより、金属との高接着化に寄与することが可能となり、20質量%以下とすることにより、低熱膨張係数を保持し、また高い引張り強度を保つことができるからである。
(C) The phenoxy resin is a high molecular weight resin having a phenoxy group in the molecular structure and a molecular weight of 10,000 or more, synthesized from bisphenol A and epichlorohydrin, or diglycidyl ether, and similar in structure to other epoxy resins. Therefore, the compatibility is good and the adhesiveness is also good.
(C) It is preferable to make content of a phenoxy resin into 3-20 mass% in the total solid of an insulating resin composition except a solvent. By making it 3% by mass or more, it becomes possible to contribute to high adhesion to metal, and by making it 20% by mass or less, a low thermal expansion coefficient can be maintained and high tensile strength can be kept. is there.

(D)無機フィラーとしては、例えばシリカ、溶融シリカ、タルク、アルミナ、水酸化アルミニウム、硫酸バリウム、水酸化カルシウム、エーロジル、炭酸カルシウムなどが挙げられる。これらは単独でも、あるいは混合して用いても良い。なお、難燃性や低熱膨張の点から水酸化アルミニウム又はシリカを単独、あるいはそれらを併用して用いるのが好ましい。これらの無機フィラーは、分散性を高める目的にカップリング剤で表面処理しても良く、ニーダー、ボールミル、ビーズミル、3本ロールなど既知の混練方法により分散しても良い。
このうち、カップリング剤としては、シランカップリング剤が例示され、シランカップリング剤としては、具体的には、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピル(メチル)ジメトキシシラン、2−(2,3−エポキシシクロヘキシル)エチルトリメトキシシランのようなエポキシ基含有シラン;3−アミノプロピルトリエトキシシラン、N−(2−アミノエチル)−3−アミノプロピルトリメトキシシラン、N−(2−アミノエチル)−3−アミノプロピル(メチル)ジメトキシシランのようなアミノ基含有シラン;3−(トリメトキシリル)プロピルテトラメチルアンモニウムクロリドのようなカチオン性シラン;ビニルトリエトキシシランのようなビニル基含有シラン;3−メタクリロキシプロピルトリメトキシシランのようなアクリル基含有シラン;及び3−メルカプトプロピルトリメトキシシランのようなメルカプト基含有シランなどが挙げられる。
(D)無機フィラーの含有量は、溶剤を除いた絶縁樹脂組成物の全固形分中で5〜38質量%にするのが好ましい。さらに好ましくは、30〜38質量%であり、5質量%以上では低熱膨張化効果が大きくなり、又38質量%以下にすることにより、粗化後の表面粗さが大きくならずに微細粗化形状となることや、樹脂伸び率が低下し、金属との接着強度が弱くなることがなくなる。又、半硬化樹脂の取り扱い性が良くなる。
Examples of the (D) inorganic filler include silica, fused silica, talc, alumina, aluminum hydroxide, barium sulfate, calcium hydroxide, aerosil, and calcium carbonate. These may be used alone or in combination. In view of flame retardancy and low thermal expansion, aluminum hydroxide or silica is preferably used alone or in combination. These inorganic fillers may be surface-treated with a coupling agent for the purpose of enhancing dispersibility, or may be dispersed by a known kneading method such as a kneader, ball mill, bead mill, or three rolls.
Among these, examples of the coupling agent include silane coupling agents, and specific examples of the silane coupling agent include 3-glycidoxypropyltrimethoxysilane and 3-glycidoxypropyl (methyl) dimethoxysilane. , Epoxy group-containing silane such as 2- (2,3-epoxycyclohexyl) ethyltrimethoxysilane; 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- An amino group-containing silane such as (2-aminoethyl) -3-aminopropyl (methyl) dimethoxysilane; a cationic silane such as 3- (trimethoxylyl) propyltetramethylammonium chloride; such as vinyltriethoxysilane Vinyl group-containing silane; 3-methacryloxypropylto Acryl group-containing silanes such as methoxy silane; and mercapto group-containing silane such as and 3-mercaptopropyl trimethoxysilane.
(D) It is preferable to make content of an inorganic filler into 5-38 mass% in the total solid of an insulating resin composition except a solvent. More preferably, it is 30 to 38% by mass, and if it is 5% by mass or more, the effect of low thermal expansion is increased. It does not become a shape, the resin elongation rate decreases, and the adhesive strength with the metal does not weaken. Moreover, the handleability of the semi-cured resin is improved.

次に、本発明において、さらに(E)架橋ゴム粒子を配合することが望ましい。このような架橋ゴムは、硬化後の絶縁樹脂を高強靭化し、めっきによって形成した配線との接強度を向上させる効果を有する。又、このような架橋ゴム粒子は、半硬化フィルムの耐折り曲げ性の向上にも寄与するため、取り扱い性が向上する利点もある。
(E)架橋ゴム粒子としては、例えばアクリロニトリルとブタジエンの共重合物、具体的にはアクリロニトリルとブタジエンとを共重合したアクリロニトリルブタジエンゴム粒子(NBR)や、アクリロニトリルとブタジエンとアクリル酸などのカルボン酸とを共重合したカルボン酸変性アクリロニトリルブタジエンゴム粒子、ポリブタジエンやNBRをコアとし、アクリル酸誘導体をシェルとした、ブタジエンゴム−アクリル樹脂のコア−シェル粒子、及びエチレンと炭素数3〜20のα−オレフィンからなるエチレン・αーオレフィン共重合体を含有する架橋性ゴム状重合体粒子などが使用可能である。
(E)架橋ゴム粒子の含有量は(A)エポキシ樹脂と(E)架橋ゴムの固形分配合比(質量比、以下同じ。)が80/20〜98/2であるのが好ましい。
固形分配合比を80/20以上とすることにより、必要なはんだ耐熱性が得られ、又低い熱膨張係数を維持することができる。又98/2以下とすることにより、絶縁樹脂硬化物の強靭性を維持することができる。
Next, in the present invention, it is desirable to further blend (E) crosslinked rubber particles. Such a crosslinked rubber has the effect of toughening the insulating resin after curing and improving the contact strength with the wiring formed by plating. Moreover, since such a crosslinked rubber particle contributes also to the improvement of the bending resistance of a semi-hardened film, there exists an advantage which a handleability improves.
Examples of (E) crosslinked rubber particles include copolymers of acrylonitrile and butadiene, specifically, acrylonitrile butadiene rubber particles (NBR) obtained by copolymerization of acrylonitrile and butadiene, and carboxylic acids such as acrylonitrile, butadiene, and acrylic acid. Copolymerized carboxylic acid-modified acrylonitrile butadiene rubber particles, polybutadiene or NBR as a core, acrylic acid derivative as a shell, butadiene rubber-acrylic resin core-shell particles, and ethylene and an α-olefin having 3 to 20 carbon atoms Crosslinkable rubber-like polymer particles containing an ethylene / α-olefin copolymer consisting of can be used.
The content of the (E) crosslinked rubber particles is preferably such that (A) the epoxy resin and (E) the solid content blending ratio (mass ratio, hereinafter the same) of the crosslinked rubber is 80/20 to 98/2.
By setting the solid content ratio to 80/20 or more, necessary solder heat resistance can be obtained, and a low thermal expansion coefficient can be maintained. Moreover, the toughness of insulation resin hardened | cured material can be maintained by setting it as 98/2 or less.

本発明で用いられる絶縁樹脂組成物においては、(B)フェノール性水酸基含有ポリアミドイミドが(A)エポキシ樹脂の硬化剤としての作用があるが、必要に応じ、他の硬化剤を添加することができる。他の硬化剤としては、各種フェノール樹脂類、酸無水物類、アミン類、ヒドラジット類などが使用できる。
フェノール樹脂類としては、2官能型フェノール樹脂、ノボラック型フェノール樹脂、クレゾールノボラック型フェノール樹脂などが使用でき、酸無水物類としては、無水フタル酸、ベンゾフェノンテトラカルボン酸二無水物、メチルハイミック酸などが使用でき、アミン類としては、第1級〜3級アミンなどが上げられ、第1級アミンとしては、ジシアンジアミド、ジアミノジフェニルメタン、グアニル尿素などが挙げられる。第2級アミンとしては、モルホリン、ピペリジン、ピロリジン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジイソプロピルアミン、ジブチルアミン、ジベンジルアミン、ジシクロヘキシルアミン、N−アルキルアリールアミン、ピペラジン、ジアリルアミン、チアゾリン、チオモルホリンなどが挙げられる。
又、第3級アミンとしては、ベンジルジメチルアミン、2−(ジメチルアミノメチル)フェノール、2、4、6−トリス(ジアミノメチル)フェノールなどが挙げられる。
これらのうちで、回路導体との接着性から、ジシアンジアミドが好ましく、耐熱性や絶縁性も考慮すると、ジシアンジアミドとノボラックフェノールを併用することがさらに好ましい。
硬化剤の使用量は、(B)フェノール性水酸基含有ポリアミドイミドを含めた合計量として、(A)エポキシ樹脂のエポキシ基に対して、0.5〜1.5当量であるのが好ましい。エポキシ基に対して0.5当量以上とすることにより、低い熱膨張係数を保つことができ、1.5当量以下とすることにより粗化後の凹凸が小さくなるので、微細配線形成に好適である。
In the insulating resin composition used in the present invention, (B) the phenolic hydroxyl group-containing polyamideimide acts as a curing agent for the (A) epoxy resin, but if necessary, other curing agents may be added. it can. As other curing agents, various phenol resins, acid anhydrides, amines, hydragits and the like can be used.
As phenolic resins, bifunctional phenolic resin, novolac type phenolic resin, cresol novolac type phenolic resin, etc. can be used. As acid anhydrides, phthalic anhydride, benzophenone tetracarboxylic dianhydride, methyl hymic acid Examples of amines include primary to tertiary amines, and examples of primary amines include dicyandiamide, diaminodiphenylmethane, and guanylurea. Secondary amines include morpholine, piperidine, pyrrolidine, dimethylamine, diethylamine, dipropylamine, diisopropylamine, dibutylamine, dibenzylamine, dicyclohexylamine, N-alkylarylamine, piperazine, diallylamine, thiazoline, thiomorpholine, etc. Is mentioned.
Examples of the tertiary amine include benzyldimethylamine, 2- (dimethylaminomethyl) phenol, 2,4,6-tris (diaminomethyl) phenol, and the like.
Among these, dicyandiamide is preferable from the viewpoint of adhesion to the circuit conductor, and it is more preferable to use dicyandiamide and novolak phenol in consideration of heat resistance and insulation.
It is preferable that the usage-amount of a hardening | curing agent is 0.5-1.5 equivalent with respect to the epoxy group of (A) epoxy resin as a total amount including (B) phenolic hydroxyl group containing polyamideimide. By setting it to 0.5 equivalent or more with respect to the epoxy group, a low coefficient of thermal expansion can be maintained, and by setting it to 1.5 equivalent or less, the unevenness after roughening is reduced, which is suitable for forming fine wiring. is there.

又、本発明で用いられる絶縁樹脂組成物においては、硬化剤の他に、必要に応じて反応促進剤を添加することができる。反応促進剤としては、潜在性の熱硬化剤である各種イミダゾール類やBF3アミン錯体が使用できる。
イミダゾール系化合物としては、イミダゾール、2−メチルイミダゾール、2−エチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−ウンデシルイミダゾール、1−ベンジル−2−メチルイミダゾール、2−ヘプタデシルイミダゾール、4,5−ジフェニルイミダゾール、2−メチルイミダゾリン、2−フェニルイミダゾリン、2−ウンデシルイミダゾリン、2−ヘプタデシルイミダゾリン、2−イソプロピルイミダゾール、2,4−ジメチルイミダゾール、2−フェニル−4−メチルイミダゾール、2−エチルイミダゾリン、2−イソプロピルイミダゾリン、2,4−ジメチルイミダゾリン、2−フェニル−4−メチルイミダゾリンなどが挙げられる。
これらの中で、好ましくは、絶縁樹脂組成物の保存安定性や、Bステージ状(半硬化状)の絶縁樹脂組成物の取り扱い性、及びはんだ耐熱性の点から、2−フェニルイミダゾールや2−エチル−4−メチルイミダゾールが好ましく、その配合量はエポキシ樹脂の配合量に対して0.2〜0.6質量%程度が最適である。0.2質量%以上とすることにより、硬化度を上げて低い熱膨張係数を維持することができ、かつ粗化量を小さく抑えて微細配線形成に好適であり、0.6質量%以下とすることにより、絶縁樹脂組成物の保存安定性や半硬化状の絶縁樹脂組成物の取り扱い性が良好である。
Moreover, in the insulating resin composition used by this invention, a reaction accelerator can be added as needed other than a hardening | curing agent. As the reaction accelerator, various imidazoles and BF 3 amine complexes which are latent thermosetting agents can be used.
Examples of imidazole compounds include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-undecylimidazole, 1-benzyl-2-methylimidazole, 2-hepta. Decylimidazole, 4,5-diphenylimidazole, 2-methylimidazoline, 2-phenylimidazoline, 2-undecylimidazoline, 2-heptadecylimidazoline, 2-isopropylimidazole, 2,4-dimethylimidazole, 2-phenyl-4- Examples include methylimidazole, 2-ethylimidazoline, 2-isopropylimidazoline, 2,4-dimethylimidazoline, 2-phenyl-4-methylimidazoline.
Among these, preferably, from the viewpoint of storage stability of the insulating resin composition, handling property of the B-stage (semi-cured) insulating resin composition, and solder heat resistance, 2-phenylimidazole and 2- Ethyl-4-methylimidazole is preferable, and the blending amount is optimally about 0.2 to 0.6% by mass with respect to the blending amount of the epoxy resin. By setting it to 0.2% by mass or more, it is possible to increase the degree of curing and maintain a low coefficient of thermal expansion, and it is suitable for forming fine wiring by suppressing the amount of roughening to be 0.6% by mass or less. As a result, the storage stability of the insulating resin composition and the handleability of the semi-cured insulating resin composition are good.

本発明における絶縁樹脂組成物は、前記必須成分及び任意成分の他に、通常の多層プリント配線板用樹脂組成物に使用されるチキソ性付与剤、界面活性剤、及びカップリング剤などの各種添加剤を適宜配合できる。前記添加剤を用いる際には、充分に撹拌した後、気泡がなくなるまで静置することにより、絶縁樹脂組成物を得ることができる。   In addition to the essential and optional components, the insulating resin composition in the present invention includes various additions such as a thixotropic agent, a surfactant, and a coupling agent that are used in ordinary multilayer printed wiring board resin compositions. An agent can be appropriately blended. When using the additive, after sufficiently stirring, the insulating resin composition can be obtained by standing until the bubbles disappear.

本発明における絶縁樹脂組成物の使用に際しては、溶剤中で混合して、希釈又は分散させてワニスの形態とするのが作業性の点で好ましい。この溶剤には、メチルエチルケトン、キシレン、トルエン、アセトン、エチレングリコールモノエチルエーテル、シクロヘキサノン、エチルエトキシプロピオネート、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドンなどを使用できる。これらの溶剤は、単独あるいは混合系でも良い。
溶剤使用量は、前記樹脂組成物の塗膜形成の設備にあわせて、その使用量を調整すれば良い。例えば絶縁樹脂組成物のワニスをコンマコータでキャリアフィルムや金属箔に塗工する場合は、ワニス中の固形分濃度が30〜60質量%となるように溶剤の使用量を調節することが好ましい。
When using the insulating resin composition in the present invention, it is preferable from the viewpoint of workability to mix in a solvent and dilute or disperse to form a varnish. Examples of the solvent include methyl ethyl ketone, xylene, toluene, acetone, ethylene glycol monoethyl ether, cyclohexanone, ethyl ethoxypropionate, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like. Can be used. These solvents may be used alone or in a mixed system.
What is necessary is just to adjust the usage-amount of a solvent according to the installation of the said coating film formation of the said resin composition. For example, when the insulating resin composition varnish is applied to a carrier film or a metal foil with a comma coater, the amount of the solvent used is preferably adjusted so that the solid content concentration in the varnish is 30 to 60% by mass.

次に、本発明の支持体付き絶縁フィルムは、上述の絶縁樹脂組成物の半硬化状態のフィルム(以下、「半硬化フィルム」という。)が支持体の表面に形成されてなるものである。
半硬化フィルムが表面に形成される支持体としては、例えば、ポリエチレン、ポリ塩化ビニルなどのポリオレフィン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレートなどのポリエステル、ポリカーボネート、ポリイミド、さらには離型紙や銅箔、アルミニウム箔などの金属箔を用いることができる。支持体には、コロナ処理や離型処理を施してあっても良い。支持体の厚さは、通常、10〜150μmであり、好ましくは25〜50μmである。
Next, the insulating film with a support of the present invention is obtained by forming a semi-cured film (hereinafter referred to as “semi-cured film”) of the above-mentioned insulating resin composition on the surface of the support.
Examples of the support on which a semi-cured film is formed include, for example, polyolefins such as polyethylene and polyvinyl chloride, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, polycarbonate, polyimide, and release paper and copper foil. A metal foil such as an aluminum foil can be used. The support may be subjected to corona treatment or mold release treatment. The thickness of a support body is 10-150 micrometers normally, Preferably it is 25-50 micrometers.

支持体付き絶縁フィルムを得るには、例えば、絶縁樹脂組成物のワニスを前記のように作製し、このワニスを支持体上に塗布し、乾燥して半硬化にする方法が挙げられる。又、ワニスを支持体上に塗布する場合は、コンマコータ、バーコータ、キスコータ、及びロールコーターなどが、塗布厚によって適宜使用される。塗布厚、塗布後の乾燥条件などは使用目的に合わせて適宜選択されるため、特に制限するものではないが、一般にワニスに使用した溶剤が80質量%以上揮発する条件とすることが好ましい。   In order to obtain an insulating film with a support, for example, a method in which a varnish of an insulating resin composition is prepared as described above, the varnish is applied on a support, and dried to be semi-cured. Moreover, when apply | coating a varnish on a support body, a comma coater, a bar coater, a kiss coater, a roll coater, etc. are used suitably by application | coating thickness. The coating thickness, drying conditions after coating, and the like are appropriately selected according to the purpose of use and are not particularly limited. However, it is generally preferable that the solvent used in the varnish volatilizes 80% by mass or more.

本発明における絶縁樹脂層の熱膨張係数は40ppm/K以下が好ましい。なお、下限は、他の特性に支障が生じない限り、特に制限するものではない。40ppm/Kよりも大きいと、熱サイクル試験などの温度変化で、銅との熱膨張係数の差により、絶縁樹脂内部にクラックや、ビア内のめっき銅にクラックが発生しやすくなる傾向があり、接続信頼性に大きく影響する。   The thermal expansion coefficient of the insulating resin layer in the present invention is preferably 40 ppm / K or less. The lower limit is not particularly limited as long as other characteristics are not hindered. If it is higher than 40 ppm / K, there is a tendency that cracks are likely to occur in the insulating resin and cracks in the plated copper in the via due to the difference in thermal expansion coefficient with copper due to temperature changes such as thermal cycle tests. This greatly affects connection reliability.

次に実施例により本発明をさらに詳しく説明するが、本発明の範囲はこれらの実施例に制限されるものではない。
実施例及び比較例で作製した絶縁樹脂組成物の硬化物、支持体付絶縁フィルムについて、熱膨張係数、接着強度、288℃はんだ耐熱性試験、及び引張り試験を以下の方法で実施した。
EXAMPLES Next, although an Example demonstrates this invention further in detail, the scope of the present invention is not restrict | limited to these Examples.
About the hardened | cured material of the insulating resin composition and the insulating film with a support body which were produced by the Example and the comparative example, the thermal expansion coefficient, the adhesive strength, the 288 degreeC solder heat resistance test, and the tension test were implemented with the following method.

(1) 熱膨張係数
各実施例及び比較例で得た支持体付絶縁フィルムを銅箔にラミネートし、180℃で1時間乾燥後、銅箔を除去して試験片を作製し、熱膨張係数を測定した。測定は、TMA2940サーモメカニカルアナライザー(株式会社TAインスツルメンツ社製、商品名)を用い、試料を幅3mmに切断し、昇温速度10℃/分、測定長8mm、荷重5g、の条件下に、引張り法で測定した。その際、1ラン目は250℃まで加熱して硬化物のひずみを除去し、−30℃まで冷却した後、再度300℃まで加熱して、その熱膨張量と試験片の長さから、30〜120℃の熱膨張係数を算出した。
(2)樹脂―金属接着強度(ピール強度)
各実施例及び比較例で作製した樹脂付積層板のめっき表層の一部に、幅10mm、長さ100mmの部分を形成し、この一端をめっき銅層/樹脂界面で剥がしてつかみ具でつかみ、室温中で垂直方向に、引張り速度約50mm/分で引き剥がした時の荷重を測定した。
(3)288℃はんだ耐熱性
各実施例及び比較例で作製した樹脂付BF板を25mm角に切断し、288±2℃に調整したはんだ浴に浮かべ、ふくれが発生するまでの時間を調べた。
(4)引張り試験
各実施例及び比較例で作製した樹脂硬化フィルムを、幅10mm、長さ80mmに切断し、両端10mmを治具ではさみ、強靭性試験機(島津製作所製、商品名:オートグラフAG−100C)を用い、樹脂の伸び率を調べた。
(1) Thermal expansion coefficient The insulating film with a support obtained in each Example and Comparative Example was laminated on copper foil, dried at 180 ° C. for 1 hour, and then the copper foil was removed to prepare a test piece. Was measured. The measurement is performed using a TMA2940 thermomechanical analyzer (trade name, manufactured by TA Instruments Co., Ltd.), cutting the sample into a width of 3 mm, and pulling the sample under the conditions of a heating rate of 10 ° C./min, a measurement length of 8 mm, and a load of 5 g. Measured by the method. At that time, the first run was heated to 250 ° C. to remove the distortion of the cured product, cooled to −30 ° C., and then heated again to 300 ° C. From the amount of thermal expansion and the length of the test piece, A thermal expansion coefficient of ˜120 ° C. was calculated.
(2) Resin-metal bond strength (peel strength)
Form a portion of width 10 mm and length 100 mm on a part of the plating surface layer of the resin-coated laminate produced in each Example and Comparative Example, peel off one end at the plated copper layer / resin interface and grab it with a gripping tool. The load when peeled off at a pulling speed of about 50 mm / min in the vertical direction at room temperature was measured.
(3) 288 ° C. solder heat resistance The BF plate with resin produced in each example and comparative example was cut into 25 mm squares, floated in a solder bath adjusted to 288 ± 2 ° C., and the time until blistering was examined. .
(4) Tensile test The cured resin films produced in each of the examples and comparative examples were cut into a width of 10 mm and a length of 80 mm, and both ends were clamped with a jig, and a toughness tester (manufactured by Shimadzu Corporation, trade name: Auto) Graph AG-100C) was used to examine the elongation of the resin.

製造例1(フェノール性水酸基含有ポリアミドイミドAの製造)
窒素雰囲気下、ディーンスターク還流冷却器、温度計及び撹拌器を備えた2Lのセパラブルフラスコに、芳香族ジアミン化合物である2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン (商品名、BAPP、和歌山精化工業(株)社製)30.8g、無水トリメリット酸(TMA)28.9g、及び非プロトン性極性溶媒であるN−メチル−2−ピロリドン(NMP) 230g を投入して反応溶液とし、これを80℃で30分間撹拌して溶媒に溶解させた。
続いて、反応溶液に、水と共沸可能な芳香族炭化水素であるトルエン200mLを加え、160℃で2時間還流した。水分定量受器に理論量の水がたまり、水の流出が見られなくなっていることを確認後、水分定量受器中の水とトルエンを除去し、反応溶液の温度をさらに180℃まで上昇させて、反応溶液中のトルエンを除去した。
その後、反応溶液を室温まで冷却してから、5−ヒドロキシイソフタル酸9.1g、2,4−ジヒドロキシ安息香酸7.1g、及びジイソシアネートである4,4’−ジフェニルメタンジイソシアネート(MDI)37.6gを加え、反応溶液を170℃に上昇させて2時間反応させ、フェノール性水酸基含有ポリアミドイミド樹脂AのNMP溶液を得た。得られたフェノール性水酸基含有ポリアミドイミド樹脂Aを表1記載の条件で、ゲルパーミエーションクロマトグラフィ(GPC)でMwを測定したところ、Mwは22,000であり、理論上のフェノール当量は654であった。
Production Example 1 (Production of phenolic hydroxyl group-containing polyamideimide A)
In a 2 L separable flask equipped with a Dean-Stark reflux condenser, thermometer, and stirrer in a nitrogen atmosphere, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, which is an aromatic diamine compound (product) Name, BAPP, manufactured by Wakayama Seika Kogyo Co., Ltd.) 30.8 g, trimellitic anhydride (TMA) 28.9 g, and aprotic polar solvent N-methyl-2-pyrrolidone (NMP) 230 g The reaction solution was stirred at 80 ° C. for 30 minutes and dissolved in the solvent.
Subsequently, 200 mL of toluene which is an aromatic hydrocarbon azeotropic with water was added to the reaction solution, and the mixture was refluxed at 160 ° C. for 2 hours. After confirming that the theoretical amount of water has accumulated in the moisture determination receiver and that no water has flowed out, remove the water and toluene in the moisture determination receiver and raise the temperature of the reaction solution to 180 ° C. Then, toluene in the reaction solution was removed.
Then, after cooling the reaction solution to room temperature, 9.1 g of 5-hydroxyisophthalic acid, 7.1 g of 2,4-dihydroxybenzoic acid, and 37.6 g of 4,4′-diphenylmethane diisocyanate (MDI) which is a diisocyanate were added. In addition, the reaction solution was raised to 170 ° C. and reacted for 2 hours to obtain an NMP solution of a phenolic hydroxyl group-containing polyamideimide resin A. When the Mw of the obtained phenolic hydroxyl group-containing polyamideimide resin A was measured by gel permeation chromatography (GPC) under the conditions described in Table 1, Mw was 22,000 and the theoretical phenol equivalent was 654. It was.

製造例2(フェノール性水酸基非含有ポリアミドイミドBの製造)
ディーンスターク還流冷却器、温度計及び撹拌器を備えた2Lのセパラブルフラスコに、芳香族ジアミン化合物である2,2−ビス〔4−(4−アミノフェノキシ)フェニル)プロパン〕〔和歌山精化工業(株)社製、商品名:BAPP〕30.8g、無水トリメリット酸(TMA)28.9g及び非プロトン性極性溶媒であるN−メチル−2−ピロリドン(NMP) 230g を投入して反応溶液とし、これを80℃で30分間撹拌した。
続いて、反応溶液に水と共沸可能な芳香族炭化水素であるトルエン200mLを加え、160℃ で2時間還流した。水分定量受器に理論量の水が得られ、水の流出が見られなくなっていることを確認後、水分定量受器中の水とトルエンを除去し、反応溶液の温度をさらに190℃ まで上昇させて、反応溶液中のトルエンを除去した。
その後、反応溶液を室温まで冷却してから、ジイソシアネートである、4,4’−ジフェニルメタンジイソシアネート(MDI)22.5gを加え、反応溶液を170℃ に加熱して2時間反応させ、フェノール性水酸基含有ポリアミドイミド樹脂AのNMP溶液を得た。得られたフェノール性水酸基含有ポリアミドイミド樹脂Aのゲルパーミエーションクロマトグラフィ(GPC)での分子量(Mw)は25,000であった。
Production Example 2 (Production of phenolic hydroxyl group-free polyamideimide B)
In a 2 L separable flask equipped with a Dean-Stark reflux condenser, thermometer, and stirrer, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, an aromatic diamine compound] [Wakayama Seika Kogyo Co., Ltd.] Co., Ltd., trade name: BAPP] 30.8 g, trimellitic anhydride (TMA) 28.9 g and aprotic polar solvent N-methyl-2-pyrrolidone (NMP) 230 g And stirred at 80 ° C. for 30 minutes.
Subsequently, 200 mL of toluene which is an aromatic hydrocarbon azeotropic with water was added to the reaction solution, and the mixture was refluxed at 160 ° C. for 2 hours. After confirming that the theoretical amount of water was obtained in the moisture determination receiver and that no water flow was observed, water and toluene in the moisture determination receiver were removed, and the temperature of the reaction solution was further increased to 190 ° C. The toluene in the reaction solution was removed.
Then, after cooling the reaction solution to room temperature, 22.5 g of 4,4′-diphenylmethane diisocyanate (MDI), which is a diisocyanate, is added and the reaction solution is heated to 170 ° C. for 2 hours to contain a phenolic hydroxyl group. An NMP solution of polyamideimide resin A was obtained. The molecular weight (Mw) in the gel permeation chromatography (GPC) of the obtained phenolic hydroxyl group-containing polyamideimide resin A was 25,000.

Figure 0005245526
Figure 0005245526

実施例1
(1)基板厚0.8mm、銅厚18μmの、ガラス布基材エポキシ樹脂両面銅張積層板(日立化成工業株式会社製、商品名MCL-E−67)の片面にエッチングを施して、片面に内層回路を有する基板を作製した。
(2)下記組成の絶縁樹脂組成物のワニスを作製した。この絶縁樹脂組成物のワニスをPETフィルム(支持体)上に塗工し、130℃下で5分間乾燥して膜厚40±3μmの支持体付絶縁フィルムのロールを作製した。さらに、この支持体付絶縁フィルムと前記回路板を、半硬化フィルムを回路板の内層回路と接する面側にして重ね、バッチ式真空加圧ラミネーター(名機株式会社製、商品名:MVLP−500)を用いて積層した。
[組成]
・(A)ビフェニル構造及びノボラック構造を有したエポキシ樹脂(日本化薬
株式会社社製、商品名:NC3000S−H) 25質量部
・(B)フェノール性水酸基含有ポリアミドイミド樹脂AのNMP溶液(固形
分30質量%) 54質量部
・(C)フェノキシ樹脂:(東都化成製、商品名:FX-293) 5質量部
・(D)無機フィラー:球状シリカ(株式会社アドマテックス社製、商品名:
アドマファインSO−25R) 80質量部
・反応促進剤:2−フェニルイミダゾール(四国化成工業株式会社製、商品名
2PZ) 0.2質量部
・硬化剤:アミノトリアジンノボラック型フェノール(大日本インキ化学工業株
式会社製、商品名:LA3018) 2質量部
・溶剤:N−メチルピロリドン 25質量部
Example 1
(1) Etching is performed on one side of a glass cloth base epoxy resin double-sided copper-clad laminate (manufactured by Hitachi Chemical Co., Ltd., trade name MCL-E-67) having a substrate thickness of 0.8 mm and a copper thickness of 18 μm. A substrate having an inner layer circuit was prepared.
(2) A varnish of an insulating resin composition having the following composition was prepared. The insulating resin composition varnish was coated on a PET film (support) and dried at 130 ° C. for 5 minutes to prepare a roll of an insulating film with a support having a thickness of 40 ± 3 μm. Further, this insulating film with support and the circuit board are stacked with the semi-cured film on the surface side in contact with the inner layer circuit of the circuit board, and a batch type vacuum pressure laminator (trade name: MVLP-500, manufactured by Meiki Co., Ltd.). ).
[composition]
-(A) 25 parts by mass of an epoxy resin having a biphenyl structure and a novolac structure (Nippon Kayaku Co., Ltd., trade name: NC3000S-H)-(B) NMP solution of a phenolic hydroxyl group-containing polyamideimide resin A (solid 54 parts by mass) (C) Phenoxy resin: (manufactured by Toto Kasei, trade name: FX-293) 5 parts by mass. (D) Inorganic filler: spherical silica (manufactured by Admatechs Co., Ltd., trade name:
Admafine SO-25R) 80 parts by mass / reaction accelerator: 2-phenylimidazole (trade name 2PZ, manufactured by Shikoku Kasei Kogyo Co., Ltd.) 0.2 parts by mass / curing agent: aminotriazine novolac type phenol (Dainippon Ink & Chemicals, Inc.) Product name: LA3018) 2 parts by mass / solvent: 25 parts by mass of N-methylpyrrolidone

(3)次に、支持体のPETフィルムを剥がした後、180℃下で60分間の硬化条件で前記半硬化フィルムを硬化して絶縁層を得た。
(4)絶縁層を化学粗化するために、膨潤液として、ジエチレングリコールモノブチルエーテル:200ml/L、NaOH:5g/Lの水溶液を作製し、70℃に加温して5分間浸漬処理した。次に、粗化液として、KMnO4:60g/L、NaOH:40g/Lの水溶液を作製し、80℃に加温して10分間浸漬処理した。引き続き、中和液(SnCl2:30g/L、HCl:300ml/L)の水溶液に室温で5分間浸漬処理して中和した。
(5)絶縁層表面にめっき層を形成するために、まず、塩化パラジウム(PdCl2)を含む無電解めっき用触媒(日立化成工業株式会社製、商品名:HS−202B)に、室温で10分間浸漬処理し、水洗し、無電解銅めっき用であるめっき液(日立化成工業株式会社製、商品名:CUST−201)に室温で15分間浸漬し、さらに硫酸銅電解めっきを行った。その後、アニールを180℃下で60分間行い、絶縁層表面に厚さ25μmの導体層を形成した。得られた絶縁樹脂組成物の硬化物についての性能評価結果を表2に示す。
(3) Next, after peeling off the PET film of the support, the semi-cured film was cured under a curing condition of 180 minutes at 180 ° C. to obtain an insulating layer.
(4) In order to chemically roughen the insulating layer, an aqueous solution of diethylene glycol monobutyl ether: 200 ml / L, NaOH: 5 g / L was prepared as a swelling liquid, heated to 70 ° C. and immersed for 5 minutes. Next, an aqueous solution of KMnO 4 : 60 g / L and NaOH: 40 g / L was prepared as a roughening solution, heated to 80 ° C. and immersed for 10 minutes. Subsequently, it was neutralized by immersing in an aqueous solution of a neutralizing solution (SnCl 2 : 30 g / L, HCl: 300 ml / L) at room temperature for 5 minutes.
(5) In order to form a plating layer on the surface of the insulating layer, first, an electroless plating catalyst containing palladium chloride (PdCl 2 ) (trade name: HS-202B, manufactured by Hitachi Chemical Co., Ltd.) is used at room temperature. Immersion treatment was performed for a minute, washed with water, and immersed in a plating solution (trade name: CUST-201, manufactured by Hitachi Chemical Co., Ltd.) for electroless copper plating for 15 minutes at room temperature, and further copper sulfate electrolytic plating was performed. Thereafter, annealing was performed at 180 ° C. for 60 minutes to form a conductor layer having a thickness of 25 μm on the surface of the insulating layer. Table 2 shows the performance evaluation results for the cured product of the obtained insulating resin composition.

実施例2
実施例1において、エポキシ樹脂(NC−3000S−H)を20質量部とビスフェノールF型エポキシ樹脂(ジャパンエポキシレジン株式会社製、商品名:JER−806)5質量部とした以外は、実施例1と同様にして行った。
性能評価結果を表2に示す。
Example 2
In Example 1, Example 1 except that 20 parts by mass of epoxy resin (NC-3000S-H) and 5 parts by mass of bisphenol F type epoxy resin (trade name: JER-806, manufactured by Japan Epoxy Resin Co., Ltd.) were used. And performed in the same manner.
The performance evaluation results are shown in Table 2.

実施例3
実施例1において、配合量は同一のまま、(E)粒子状NBR(JSR株式会社、商品名:XER−91)1質量部を加えた。その他は実施例1と同様にして行った。性能評価結果を表2に示す。
Example 3
In Example 1, 1 part by mass of (E) particulate NBR (JSR Corporation, trade name: XER-91) was added with the same blending amount. Others were performed in the same manner as in Example 1. The performance evaluation results are shown in Table 2.

実施例4
実施例1において、配合量は同一のまま、(C)フェノキシ樹脂をFX-280(東都化成製、商品名)に置き換えた。その他は実施例1と同様にして行った。性能評価結果を第2表に示す。
Example 4
In Example 1, the amount of (C) phenoxy resin was replaced with FX-280 (trade name, manufactured by Tohto Kasei Co., Ltd.) while maintaining the same blending amount. Others were performed in the same manner as in Example 1. The performance evaluation results are shown in Table 2.

実施例5
実施例3において、配合量は同一のまま(E)成分を、ブタジエン−アクリル樹脂のコアシェルゴム(EXL−2655、ローム&ハースジャパン株式会社製、商品名)に置き換えた。その他は実施例3と同様にして行った。性能評価結果を表2に示す。
Example 5
In Example 3, the component (E) was replaced with a butadiene-acrylic resin core-shell rubber (EXL-2655, manufactured by Rohm & Haas Japan Co., Ltd., trade name) while maintaining the same blending amount. Others were performed in the same manner as in Example 3. The performance evaluation results are shown in Table 2.

比較例1
実施例1において、(B)フェノール性水酸基含有ポリアミドイミド樹脂Aに代えて、フェノール性水酸基非含有ポリアミドイミド樹脂B 54質量部とした。その他は実施例1と同様にして行った。性能評価結果を表2に示す。
Comparative Example 1
In Example 1, instead of (B) the phenolic hydroxyl group-containing polyamideimide resin A, 54 parts by mass of the phenolic hydroxyl group-free polyamideimide resin B was used. Others were performed in the same manner as in Example 1. The performance evaluation results are shown in Table 2.

比較例2
実施例1において、(D)無機フィラーを添加しないで、その他は、実施例1と同様にして行った。性能評価結果を表2に示す。
Comparative Example 2
In Example 1, the same procedure as in Example 1 was performed except that (D) the inorganic filler was not added. The performance evaluation results are shown in Table 2.

比較例3
実施例5において、(C)フェノキシ樹脂を添加しないで、その他は、実施例5と同様にして行った。性能評価結果を表2に示す。
Comparative Example 3
In Example 5, it carried out similarly to Example 5 except not adding (C) phenoxy resin. The performance evaluation results are shown in Table 2.

Figure 0005245526
Figure 0005245526

表2から、本発明の絶縁樹脂組成を用いためっき銅付積層板の特性は、実施例1〜5に示したように、熱膨張係数が低く、接着性に優れ、引張り強度も良好な結果を示す。288℃はんだ耐熱性にも優れており、環境に配慮した多層配線板を製造することが可能である。
一方、本発明の絶縁樹脂組成物の必須成分のいずれかを含んでいない比較例1−3に示す多層配線板は、熱膨張係数や接着強度やはんだ耐熱性、引張り強度が悪化する傾向が認められる。
From Table 2, the characteristics of the laminated sheet with plated copper using the insulating resin composition of the present invention were such that, as shown in Examples 1 to 5, the coefficient of thermal expansion was low, the adhesiveness was excellent, and the tensile strength was also good. Indicates. It also has excellent 288 ° C. solder heat resistance, and it is possible to manufacture a multilayer wiring board that is environmentally friendly.
On the other hand, the multilayer wiring board shown in Comparative Example 1-3 that does not contain any of the essential components of the insulating resin composition of the present invention has a tendency to deteriorate the thermal expansion coefficient, adhesive strength, solder heat resistance, and tensile strength. It is done.

本発明の絶縁樹脂組成物と支持体付絶縁フィルムは、熱膨張係数が低く、銅との接着性に優れ、引張り強度も良好であるので、半導体の小型化や高密度化用の材料として利用することができる。   Since the insulating resin composition and the insulating film with a support of the present invention have a low coefficient of thermal expansion, excellent adhesion to copper, and good tensile strength, they can be used as materials for semiconductor miniaturization and densification. can do.

Claims (4)

(A)ビフェニル構造及びノボラック構造を有するエポキシ樹脂、(B)フェノール性水酸基含有ポリアミドイミド、(C)フェノキシ樹脂、及び(D)無機フィラーを含有し、それぞれの含有量が、絶縁樹脂組成物の全固形分中の含有量として、(A)ビフェニル構造及びノボラック構造を有するエポキシ樹脂が10〜30質量%、(B)フェノール性水酸基含有ポリアミドイミドが35〜65質量%、(C)フェノキシ樹脂が3〜20質量%、及び(D)無機フィラーが5〜38質量%である絶縁樹脂組成物であって、
(B)フェノール性水酸基含有ポリアミドイミドが、芳香族トリカルボン酸と芳香族ジアミンとを反応させ、次いでジイソシアネートと反応させる際に、同時にフェノール性水酸基を有する芳香族ジカルボン酸を共重合させることにより得られるポリアミドイミドであることを特徴とする絶縁樹脂組成物。
(A) an epoxy resin having a biphenyl structure and a novolak structure, (B) a phenolic hydroxyl group-containing polyamideimide, (C) a phenoxy resin, and (D) an inorganic filler , each content of the insulating resin composition As content in the total solid content, (A) 10-30 mass% of epoxy resin having biphenyl structure and novolac structure, (B) 35-65 mass% of phenolic hydroxyl group-containing polyamideimide, (C) phenoxy resin 3 to 20% by mass, and (D) an insulating resin composition having an inorganic filler content of 5 to 38% by mass,
(B) A phenolic hydroxyl group-containing polyamideimide is obtained by reacting an aromatic tricarboxylic acid with an aromatic diamine and then reacting with a diisocyanate, and simultaneously copolymerizing an aromatic dicarboxylic acid having a phenolic hydroxyl group. An insulating resin composition, which is a polyamideimide .
前記絶縁樹脂組成物が、さらに(E)架橋ゴム粒子を含有する請求項1に記載の絶縁樹脂組成物。 The insulating resin composition according to claim 1, wherein the insulating resin composition further contains (E) crosslinked rubber particles. (A)エポキシ樹脂と(E)架橋ゴム粒子との固形分質量比が80/20〜98/2である請求項に記載の絶縁樹脂組成物。 (A) epoxy resin and (E) an insulating resin composition according to claim 2 solid weight ratio of 80/20 to 98/2 of the crosslinked rubber particles. 請求項1〜のいずれかに記載の絶縁樹脂組成物の半硬化状態のフィルムが支持体の表面に形成されていることを特徴とする支持体付絶縁フィルム。 A semi-cured film of the insulating resin composition according to any one of claims 1 to 3 is formed on the surface of the support.
JP2008123414A 2008-05-09 2008-05-09 Insulating resin composition and insulating film with support Expired - Fee Related JP5245526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008123414A JP5245526B2 (en) 2008-05-09 2008-05-09 Insulating resin composition and insulating film with support

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008123414A JP5245526B2 (en) 2008-05-09 2008-05-09 Insulating resin composition and insulating film with support

Publications (2)

Publication Number Publication Date
JP2009270054A JP2009270054A (en) 2009-11-19
JP5245526B2 true JP5245526B2 (en) 2013-07-24

Family

ID=41436906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008123414A Expired - Fee Related JP5245526B2 (en) 2008-05-09 2008-05-09 Insulating resin composition and insulating film with support

Country Status (1)

Country Link
JP (1) JP5245526B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010037489A (en) * 2008-08-07 2010-02-18 Hitachi Chem Co Ltd Adhesive film, and metal foil with resin
JP2012140570A (en) * 2011-01-06 2012-07-26 Sekisui Chem Co Ltd Epoxy resin material and multilayer substrate
WO2014171345A1 (en) * 2013-04-16 2014-10-23 東洋紡株式会社 Metal foil laminate
WO2015080098A1 (en) 2013-11-27 2015-06-04 東レ株式会社 Semiconductor resin composition, semiconductor resin film, and semiconductor device using same
US11331888B2 (en) 2016-07-20 2022-05-17 Showa Denko Materials Co., Ltd. Composite film for electronic devices using high frequency band signals, printed wiring board and manufacturing method therefor
JP2018012777A (en) * 2016-07-20 2018-01-25 日立化成株式会社 Insulation resin material, resin film for interlayer insulation and production method of the same, composite film and production method of the same, and printed wiring board and production method of the same
JP7151092B2 (en) * 2017-02-14 2022-10-12 味の素株式会社 resin composition
CN113808779B (en) * 2021-11-17 2022-03-01 西安宏星电子浆料科技股份有限公司 Low-temperature curing insulating medium slurry for chip resistor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003252961A (en) * 2002-03-05 2003-09-10 Toray Ind Inc Epoxy-based resin composition and semiconductor device using the composition
JP2003277477A (en) * 2002-03-27 2003-10-02 Kyocera Chemical Corp Epoxy resin composition and resin-sealing type semiconductor device
JP4174274B2 (en) * 2002-09-03 2008-10-29 群栄化学工業株式会社 Polyamideimide resin, resin composition containing the same, coating material for electronic parts, and adhesive for electronic parts
JP4576794B2 (en) * 2003-02-18 2010-11-10 日立化成工業株式会社 Insulating resin composition and use thereof
JP5090635B2 (en) * 2005-09-20 2012-12-05 住友ベークライト株式会社 Resin composition, insulating sheet with substrate, and multilayer printed wiring board
JP4983228B2 (en) * 2005-11-29 2012-07-25 味の素株式会社 Resin composition for insulating layer of multilayer printed wiring board
TWI455988B (en) * 2006-10-13 2014-10-11 Ajinomoto Kk Resin composition

Also Published As

Publication number Publication date
JP2009270054A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
JP5245526B2 (en) Insulating resin composition and insulating film with support
JP5589835B2 (en) Resin sheet with copper foil, multilayer printed wiring board, method for producing multilayer printed wiring board, and semiconductor device
US8465837B2 (en) Epoxy resin composition, prepreg, laminate board, multilayer printed wiring board, semiconductor device, insulating resin sheet, and process for manufacturing multilayer printed wiring board
KR20030034106A (en) Epoxy resin composition and cured object obtained therefrom
JP2007305963A (en) Substrate for mounting semiconductor element with stress relaxation layer and its manufacturing method
JP6156020B2 (en) Resin composition
JP2007231125A (en) Thermosetting resin composition and its use
JP2003286390A (en) Epoxy resin composition, varnish, film adhesive made by using epoxy resin composition, and its cured material
JP2003286391A (en) Epoxy resin composition, varnish, film adhesive made by using epoxy resin composition, and its cured material
JP2002069270A (en) Flame-retardant halogen-free epoxy resin composition and use thereof
JP2017117986A (en) Wiring board manufacturing method
JP2022063605A (en) Laminate, multilayer printed wiring board, laminate manufacturing method, and laminate preparation kit
JP2009176889A (en) Insulating resin composition for multilayer printed wiring board, insulating film with support, multilayer printed wiring board, and manufacturing method therefor
JP2004123874A (en) Film-forming resin composition and film-like adhesive
JP2001081282A (en) Epoxy resin composition and flexible printed wiring board material containing the same
JP2009188163A (en) Insulating film with multilayer printed wiring board supporter, multilayer printed wiring board, and method of manufacturing same
JP2009007531A (en) Resin/filler composite material and printed wiring board using the same
JP3485169B2 (en) Cyanate / epoxy resin composition and prepreg, metal foil-clad laminate and printed wiring board using the same
JP2005088309A (en) Substrate film with metal foil layer and substrate film with metal foil on both sides
JP5776134B2 (en) Resin composition
JP2001233945A (en) Electroless-platable highly heat resistant epoxy resin composition, insulation material for buildup using it and buildup base plate
JP7243032B2 (en) resin composition
JP3620453B2 (en) Adhesive composition
JP4042886B2 (en) Epoxy resin composition and flexible printed wiring board material using the same
JP4337204B2 (en) Interlayer insulation adhesive for multilayer printed wiring boards

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees