JP5198127B2 - Control device for vehicle power transmission device - Google Patents

Control device for vehicle power transmission device Download PDF

Info

Publication number
JP5198127B2
JP5198127B2 JP2008105490A JP2008105490A JP5198127B2 JP 5198127 B2 JP5198127 B2 JP 5198127B2 JP 2008105490 A JP2008105490 A JP 2008105490A JP 2008105490 A JP2008105490 A JP 2008105490A JP 5198127 B2 JP5198127 B2 JP 5198127B2
Authority
JP
Japan
Prior art keywords
differential
engine
speed
electric motor
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008105490A
Other languages
Japanese (ja)
Other versions
JP2009255667A (en
Inventor
清城 上岡
大介 寿山
雅一 貝吹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Toyota Motor Corp
Original Assignee
Aisin AW Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, Toyota Motor Corp filed Critical Aisin AW Co Ltd
Priority to JP2008105490A priority Critical patent/JP5198127B2/en
Publication of JP2009255667A publication Critical patent/JP2009255667A/en
Application granted granted Critical
Publication of JP5198127B2 publication Critical patent/JP5198127B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Transmission Device (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a controller reducing possibility that comfort in time of traveling is impaired, in a power transmission device suitably used in a hybrid vehicle. <P>SOLUTION: In feedback control of a first electric motor M1, though responsiveness of first electric motor feedback torque TF<SB>M1</SB>becomes lower, and an its fluctuation becomes gentler as a feedback gain KP of the feedback control of the first electric motor M1 becomes smaller, a feedback gain change means 74 reduces the feedback gain KP in the feedback control as a gear change ratio &gamma;<SB>AT</SB>of an automatic transmission part 20 becomes larger, during no gear change of the automatic transmission part 20. Accordingly, the fluctuation of the first electric motor feedback torque TF<SB>M1</SB>becomes gentle in the feedback control as the gear change ratio &gamma;<SB>AT</SB>of the automatic transmission part 20 becomes large, and the fluctuation of the first electric motor feedback TF<SB>M1</SB>is more largely amplified and becomes easy to be transmitted to driving wheels 38. As a result, the possibility that the comfort at time of the vehicle traveling is impaired can be reduced. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、車両用動力伝達装置の制御装置に係り、車両走行時における快適性を向上させる技術に関するものである。   The present invention relates to a control device for a vehicle power transmission device, and relates to a technique for improving comfort during vehicle travel.

ハイブリッド車両に好適の用いられる車両用動力伝達装置であって、差動用電動機である第1電動機と、その第1電動機および伝達部材へエンジンの出力を分配する差動機構と、その差動機構から駆動輪までの動力伝達経路に連結された第2電動機と、その動力伝達経路の一部を構成する有段変速部とを備えた車両用動力伝達装置が従来から知られている。例えば、特許文献1に示された車両用動力伝達装置がそれである。その特許文献1に示された車両用動力伝達装置の制御装置によれば、エンジン走行中に上記差動機構が無段変速状態である場合には、上記第1電動機が上記エンジンの出力トルクに対抗する反力トルクを発生することにより、そのエンジンの出力トルクが駆動トルクとして上記駆動輪にまで伝達される。その場合において、上記制御装置は、上記第1電動機の運転状態を制御することにより上記差動機構の変速比を変化させて上記エンジンを車速に拘束されること無く所定の目標エンジン回転速度で運転する。
特開2005−348532号公報
A power transmission device for a vehicle that is preferably used for a hybrid vehicle, a first motor that is a differential motor, a differential mechanism that distributes engine output to the first motor and a transmission member, and the differential mechanism 2. Description of the Related Art Conventionally, a vehicular power transmission device is known that includes a second electric motor coupled to a power transmission path from a driving wheel to a drive wheel and a stepped transmission that forms part of the power transmission path. For example, the power transmission device for vehicles shown in patent document 1 is it. According to the control device for a vehicle power transmission device disclosed in Patent Document 1, when the differential mechanism is in a continuously variable transmission state while the engine is running, the first motor is set to output torque of the engine. By generating an opposing reaction torque, the output torque of the engine is transmitted as drive torque to the drive wheels. In that case, the control device operates the engine at a predetermined target engine speed without being restricted by the vehicle speed by changing the speed ratio of the differential mechanism by controlling the operation state of the first electric motor. To do.
JP 2005-348532 A

上記特許文献1の車両用動力伝達装置の制御装置において、エンジン走行中に上記差動機構が無段変速状態である場合には、前記第1電動機の出力トルク(反力トルク)が変動すればそれは駆動輪に伝達される。その場合において、前記差動機構と駆動輪との間に設けられた前記有段変速部の変速比(=入力回転速度/出力回転速度)が大きいほど、すなわち、その有段変速部の変速段が低車速側であるほど、上記第1電動機の出力トルク変動は増幅されて駆動輪に伝達されることになる。従って、上記特許文献1の車両用動力伝達装置の制御装置では、上記有段変速部で低車速側の変速段が選択されている場合には、上記第1電動機の出力トルク変動が増幅されて駆動輪そして運転者へと伝わり、走行時の快適性が損なわれる可能性があった。なお、このような課題は未公知である。   In the control device for a vehicle power transmission device disclosed in Patent Document 1, when the differential mechanism is in a continuously variable transmission state while the engine is running, the output torque (reaction torque) of the first motor varies. It is transmitted to the drive wheel. In that case, the larger the gear ratio (= input rotation speed / output rotation speed) of the stepped transmission unit provided between the differential mechanism and the drive wheel, that is, the gear stage of the stepped transmission unit. The lower the vehicle speed is, the more the output torque fluctuation of the first motor is amplified and transmitted to the drive wheels. Therefore, in the control device for a vehicle power transmission device disclosed in Patent Document 1, when the low speed side gear stage is selected in the stepped transmission unit, the output torque fluctuation of the first electric motor is amplified. It was transmitted to the driving wheels and the driver, and the comfort during driving could be impaired. Such a problem is not yet known.

本発明は、以上の事情を背景としてなされたものであり、その目的とするところは、車両用動力伝達装置において、走行時の快適性が損なわれる可能性を低減する制御装置を提供することにある。   The present invention has been made against the background of the above circumstances, and an object of the present invention is to provide a control device that reduces the possibility that comfort during travel is impaired in a vehicle power transmission device. is there.

かかる目的を達成するために、請求項1に係る発明は、(a)エンジンと駆動輪との間に連結された差動機構とその差動機構に動力伝達可能に連結された差動用電動機とを有しその差動用電動機の運転状態が制御されることによりその差動機構の差動状態が制御される電気式差動部と、動力伝達経路の一部を構成する変速部とを、備えた車両用動力伝達装置の制御装置であって、(b)前記エンジンの回転速度がその目標値である目標エンジン回転速度になるように前記差動用電動機の出力トルクを制御するフィードバック制御を実行し、(c)前記変速部の変速比が大きいほど、前記差動用電動機のフィードバック制御におけるフィードバックゲインを小さくすることを特徴とする。   In order to achieve such an object, the invention according to claim 1 is: (a) a differential mechanism connected between the engine and the drive wheel, and a differential motor connected to the differential mechanism so as to be able to transmit power. And an electric differential unit in which the differential state of the differential mechanism is controlled by controlling the operating state of the differential motor, and a transmission unit that forms part of the power transmission path. (B) feedback control for controlling the output torque of the differential motor so that the rotational speed of the engine becomes a target engine rotational speed that is a target value thereof. (C) The feedback gain in the feedback control of the differential motor is reduced as the gear ratio of the transmission unit increases.

請求項2に係る発明では、(a)前記変速部は有段変速機であり、(b)その有段変速機の変速段が低車速側であるほど、前記差動用電動機のフィードバック制御におけるフィードバックゲインを小さくすることを特徴とする。   In the invention according to claim 2, (a) the transmission unit is a stepped transmission, and (b) the feedback control of the differential motor is performed as the shift stage of the stepped transmission is on the lower vehicle speed side. The feedback gain is reduced.

請求項1に係る発明の車両用動力伝達装置の制御装置は、(a)前記エンジンの回転速度がその目標値である目標エンジン回転速度になるように前記差動用電動機の出力トルクを制御するフィードバック制御を実行し、(b)前記変速部の変速比が大きいほど、前記差動用電動機のフィードバック制御におけるフィードバックゲインを小さくするので、上記変速部の変速比が大きくなり上記差動用電動機の出力トルク変動がより大きく増幅されて前記駆動輪に伝達され易くなるほど、上記フィードバック制御においてその差動用電動機の出力トルク変動が緩やかになる。その結果、車両走行時における快適性が損なわれる可能性を低減することが可能である。   According to a first aspect of the present invention, there is provided a control device for a vehicle power transmission device that controls (a) an output torque of the differential motor so that a rotational speed of the engine becomes a target engine rotational speed as a target value. (B) The larger the gear ratio of the transmission unit, the smaller the feedback gain in the feedback control of the differential motor, so the gear ratio of the transmission unit increases and the differential motor As the output torque fluctuation is more greatly amplified and transmitted to the drive wheel, the output torque fluctuation of the differential motor becomes gentler in the feedback control. As a result, it is possible to reduce the possibility that comfort during vehicle traveling is impaired.

請求項2に係る発明の車両用動力伝達装置の制御装置によれば、(a)前記変速部は有段変速機であり、(b)その有段変速機(変速部)の変速段が低車速側であるほど、上記差動用電動機のフィードバック制御におけるフィードバックゲインが小さくされるので、上記有段変速機において上記差動用電動機の出力トルク変動がより大きく増幅されて前記駆動輪に伝達され易くなるほど、上記フィードバック制御においてその差動用電動機の出力トルク変動が緩やかになる。その結果、車両走行時における快適性が損なわれる可能性を低減することが可能である。   According to the control device for a vehicle power transmission device of the invention according to claim 2, (a) the transmission unit is a stepped transmission, and (b) the stepped transmission (transmission unit) has a low shift stage. As the vehicle speed is higher, the feedback gain in the feedback control of the differential motor is reduced, so that the output torque fluctuation of the differential motor is further amplified and transmitted to the drive wheels in the stepped transmission. As it becomes easier, the output torque fluctuation of the differential motor becomes gentler in the feedback control. As a result, it is possible to reduce the possibility that comfort during vehicle traveling is impaired.

ここで好適には、前記有段変速機の変速前の前記フィードバックゲインに対してその有段変速機の変速中のフィードバックゲインが変更される。更に言えば、上記有段変速機の変速前の上記フィードバックゲインに対してその有段変速機の変速中のフィードバックゲインが大きくされる。このようにすれば、上記有段変速機(変速部)の変速中は非変速中と比較して前記差動用電動機の回転速度が大きく変化すべきところ、応答性よく上記差動用電動機の回転速度を変化させることが可能である。   Preferably, the feedback gain during the shifting of the stepped transmission is changed with respect to the feedback gain before the shifting of the stepped transmission. More specifically, the feedback gain during shifting of the stepped transmission is increased with respect to the feedback gain before shifting of the stepped transmission. In this way, the rotational speed of the differential motor should change greatly during shifting of the stepped transmission (transmission unit) compared to non-shifting. It is possible to change the rotation speed.

また好適には、前記エンジンの回転速度とその変化限度を定める制限値との差が小さいほど、上記フィードバックゲインが小さくされる。このようにすれば、前記フィードバック制御における上記差動用電動機の出力トルクの応答性が高過ぎるために上記エンジンの回転速度が上記制限値を超えてしまうということを回避できる。   Preferably, the feedback gain is reduced as the difference between the rotational speed of the engine and the limit value defining the change limit thereof is smaller. By doing so, it is possible to avoid that the rotational speed of the engine exceeds the limit value because the responsiveness of the output torque of the differential motor in the feedback control is too high.

また好適には、前記エンジンの所定の動作状態を実現するため予め設定されたエンジンの動作曲線の一種である最適燃費率曲線に上記エンジンの動作点が沿ってそのエンジンが作動するように前記電気式差動部の変速比つまり差動状態が制御される。このようにすれば、前記差動用電動機の運転状態の制御によりエンジンの最適燃費が実現するようにエンジンが作動し燃費向上を図ることが可能である。ここで、上記エンジンの動作点とはそのエンジンの回転速度及び出力トルクなどで示されるそのエンジンの動作状態を示す動作点である。   Preferably, the electric engine is operated so that the engine operating point follows an optimum fuel consumption rate curve which is a kind of engine operating curve set in advance to realize a predetermined operating state of the engine. The transmission ratio of the differential unit, that is, the differential state is controlled. In this way, it is possible to improve the fuel consumption by operating the engine so that the optimum fuel consumption of the engine is realized by controlling the operation state of the differential motor. Here, the operating point of the engine is an operating point indicating the operating state of the engine indicated by the rotational speed and output torque of the engine.

また好適には、前記エンジンと駆動輪との間の動力伝達経路において、エンジン、前記電気式差動部、前記変速部、駆動輪の順に連結されている。   Preferably, in the power transmission path between the engine and the drive wheel, the engine, the electric differential unit, the transmission unit, and the drive wheel are connected in this order.

また好適には、前記差動機構は、前記エンジンに動力伝達可能に連結された第1回転要素と前記差動用電動機に動力伝達可能に連結された第2回転要素と前記駆動輪に動力伝達可能に連結された第3回転要素とを有するシングルピニオン型の遊星歯車装置であり、上記第1回転要素はその遊星歯車装置のキャリヤであり、上記第2回転要素はその遊星歯車装置のサンギヤであり、上記第3回転要素はその遊星歯車装置のリングギヤである。このようにすれば、前記差動機構の軸心方向寸法が小さくなる。また、差動機構が1つの遊星歯車装置によって簡単に構成される。   Preferably, the differential mechanism includes a first rotating element connected to the engine so as to be able to transmit power, a second rotating element connected so as to be able to transmit power to the differential motor, and power transmission to the drive wheels. A single-pinion type planetary gear device having a third rotating element operatively coupled thereto, wherein the first rotating element is a carrier of the planetary gear device, and the second rotating element is a sun gear of the planetary gear device. The third rotating element is a ring gear of the planetary gear device. In this way, the axial direction dimension of the differential mechanism is reduced. Further, the differential mechanism is simply constituted by one planetary gear device.

また好適には、前記変速部の変速比と前記電気式差動部の変速比とに基づいて前記車両用動力伝達装置の総合変速比が形成されるものである。このようにすれば、上記変速部の変速比を利用することで駆動力が幅広く得られるようになる。   Preferably, the overall transmission ratio of the vehicle power transmission device is formed on the basis of the transmission ratio of the transmission unit and the transmission ratio of the electric differential unit. In this way, a wide driving force can be obtained by utilizing the gear ratio of the transmission unit.

以下、本発明の実施例を図面を参照しつつ詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の制御装置は好適にはハイブリッド車両に用いられる。図1は、本発明の制御装置が適用される車両用動力伝達装置10(以下、「動力伝達装置10」と表す)を説明する骨子図である。図1において、動力伝達装置10は車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、「ケース12」という)内において共通の軸心上に配設された入力回転部材としての入力軸14と、この入力軸14に直接に或いは図示しない脈動吸収ダンパー(振動減衰装置)を介して直接に連結された差動部11と、その差動部11と駆動輪38(図6参照)との間の動力伝達経路で伝達部材(伝動軸)18を介して直列に連結されている自動変速部20と、この自動変速部20に連結されている出力回転部材としての出力軸22とを直列に備えている。この動力伝達装置10は、車両において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものであり、入力軸14に直接に或いは図示しない脈動吸収ダンパーを介して直接的に連結された走行用の駆動力源として例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン8と一対の駆動輪38(図6参照)との間に設けられて、エンジン8からの動力を動力伝達経路の一部を構成する差動歯車装置(終減速機)36および一対の車軸等を順次介して左右の駆動輪38へ伝達する。   The control device of the present invention is preferably used for a hybrid vehicle. FIG. 1 is a skeleton diagram illustrating a vehicle power transmission device 10 (hereinafter, referred to as “power transmission device 10”) to which a control device of the present invention is applied. In FIG. 1, a power transmission device 10 includes an input shaft 14 as an input rotating member disposed on a common axis in a transmission case 12 (hereinafter referred to as “case 12”) as a non-rotating member attached to a vehicle body. And a differential portion 11 directly connected to the input shaft 14 or via a pulsation absorbing damper (vibration damping device) (not shown), and the differential portion 11 and the drive wheel 38 (see FIG. 6). An automatic transmission unit 20 connected in series via a transmission member (transmission shaft) 18 in the power transmission path between and an output shaft 22 as an output rotation member connected to the automatic transmission unit 20 in series. I have. The power transmission device 10 is preferably used for an FR (front engine / rear drive) type vehicle vertically installed in a vehicle, and directly to the input shaft 14 or directly via a pulsation absorbing damper (not shown). As a driving power source for traveling, for example, an engine 8 which is an internal combustion engine such as a gasoline engine or a diesel engine, and a pair of driving wheels 38 (see FIG. 6) are provided to drive the power from the engine 8. The transmission is transmitted to the left and right drive wheels 38 sequentially through a differential gear device (final reduction gear) 36 and a pair of axles that constitute a part of the transmission path.

このように、本実施例の動力伝達装置10においてはエンジン8と差動部11とは直結されている。この直結にはトルクコンバータやフルードカップリング等の流体式伝動装置を介することなく連結されているということであり、例えば上記脈動吸収ダンパーなどを介する連結はこの直結に含まれる。なお、動力伝達装置10はその軸心に対して対称的に構成されているため、図1の骨子図においてはその下側が省略されている。   Thus, in the power transmission device 10 of the present embodiment, the engine 8 and the differential unit 11 are directly connected. This direct connection means that the connection is made without using a hydraulic power transmission device such as a torque converter or a fluid coupling. For example, the connection through the pulsation absorbing damper is included in this direct connection. Since the power transmission device 10 is configured symmetrically with respect to its axis, the lower side is omitted in the skeleton diagram of FIG.

本発明の電気式差動部に対応する差動部11は、第1電動機M1と、入力軸14に入力されたエンジン8の出力を機械的に分配する機械的機構であってエンジン8の出力を第1電動機M1および伝達部材18に分配する差動機構としての動力分配機構16と、伝達部材18と一体的に回転するように設けられている第2電動機M2とを備えている。なお、第1電動機M1および第2電動機M2は発電機能をも有する所謂モータジェネレータであるが、動力分配機構16の差動状態を制御するための差動用電動機として機能する第1電動機M1は反力を発生させるためのジェネレータ(発電)機能を少なくとも備え、第2電動機M2は走行用の駆動力源として駆動力を出力する走行用電動機として機能するためモータ(電動機)機能を少なくとも備える。   The differential unit 11 corresponding to the electrical differential unit of the present invention is a mechanical mechanism that mechanically distributes the output of the engine 8 input to the first electric motor M1 and the input shaft 14, and is an output of the engine 8. The power distribution mechanism 16 serving as a differential mechanism that distributes the power to the first electric motor M1 and the transmission member 18, and the second electric motor M2 provided to rotate integrally with the transmission member 18. The first electric motor M1 and the second electric motor M2 are so-called motor generators that also have a power generation function, but the first electric motor M1 that functions as a differential electric motor for controlling the differential state of the power distribution mechanism 16 is an anti-motor. At least a generator (power generation) function for generating force is provided, and the second electric motor M2 has at least a motor (electric motor) function in order to function as a traveling motor that outputs a driving force as a driving force source for traveling.

本発明の差動機構に対応する動力分配機構16は、例えば「0.418」程度の所定のギヤ比ρ0を有するシングルピニオン型の差動部遊星歯車装置24と、切換クラッチC0および切換ブレーキB0とを主体的に備えている。この差動部遊星歯車装置24は、差動部サンギヤS0、差動部遊星歯車P0、その差動部遊星歯車P0を自転および公転可能に支持する差動部キャリヤCA0、差動部遊星歯車P0を介して差動部サンギヤS0と噛み合う差動部リングギヤR0を回転要素(要素)として備えている。差動部サンギヤS0の歯数をZS0、差動部リングギヤR0の歯数をZR0とすると、上記ギヤ比ρ0はZS0/ZR0である。   The power distribution mechanism 16 corresponding to the differential mechanism of the present invention includes, for example, a single pinion type differential planetary gear unit 24 having a predetermined gear ratio ρ0 of about “0.418”, a switching clutch C0 and a switching brake B0. And is proactively provided. The differential unit planetary gear unit 24 includes a differential unit sun gear S0, a differential unit planetary gear P0, a differential unit carrier CA0 that supports the differential unit planetary gear P0 so as to rotate and revolve, and a differential unit planetary gear P0. The differential part ring gear R0 meshing with the differential part sun gear S0 is provided as a rotating element (element). If the number of teeth of the differential sun gear S0 is ZS0 and the number of teeth of the differential ring gear R0 is ZR0, the gear ratio ρ0 is ZS0 / ZR0.

この動力分配機構16においては、差動部キャリヤCA0は入力軸14すなわちエンジン8に連結され、差動部サンギヤS0は第1電動機M1に連結され、差動部リングギヤR0は伝達部材18に連結されている。また、切換ブレーキB0は差動部サンギヤS0とケース12との間に設けられ、切換クラッチC0は差動部サンギヤS0と差動部キャリヤCA0との間に設けられている。それら切換クラッチC0および切換ブレーキB0が解放されると、動力分配機構16は差動部遊星歯車装置24の3要素である差動部サンギヤS0、差動部キャリヤCA0、差動部リングギヤR0がそれぞれ相互に相対回転可能とされて差動作用が作動可能なすなわち差動作用が働く差動状態とされることから、エンジン8の出力が第1電動機M1と伝達部材18とに分配されるとともに、分配されたエンジン8の出力の一部で第1電動機M1から発生させられた電気エネルギで蓄電されたり第2電動機M2が回転駆動されるので、差動部11(動力分配機構16)は電気的な差動装置として機能させられて例えば差動部11は所謂無段変速状態(電気的CVT状態)とされて、エンジン8の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、動力分配機構16が差動状態とされると差動部11も差動状態とされ、差動部11はその変速比γ0(入力軸14の回転速度/伝達部材18の回転速度)が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能する無段変速状態とされる。このように動力分配機構16が差動状態とされると、動力分配機構16(差動部11)に動力伝達可能に連結された第1電動機M1、第2電動機M2、および/またはエンジン8の運転状態が制御されることにより、動力分配機構16の差動状態、すなわち入力軸14の回転速度と伝達部材18の回転速度の差動状態が制御される。   In the power distribution mechanism 16, the differential carrier CA0 is connected to the input shaft 14, that is, the engine 8, the differential sun gear S0 is connected to the first electric motor M1, and the differential ring gear R0 is connected to the transmission member 18. ing. The switching brake B0 is provided between the differential sun gear S0 and the case 12, and the switching clutch C0 is provided between the differential sun gear S0 and the differential carrier CA0. When the switching clutch C0 and the switching brake B0 are released, the power distribution mechanism 16 includes a differential unit sun gear S0, a differential unit carrier CA0, and a differential unit ring gear R0, which are the three elements of the differential unit planetary gear unit 24, respectively. Since the differential action is enabled, that is, the differential action is activated, the output of the engine 8 is distributed to the first electric motor M1 and the transmission member 18, Since a part of the output of the distributed engine 8 is stored with electric energy generated from the first electric motor M1, or the second electric motor M2 is rotationally driven, the differential unit 11 (power distribution mechanism 16) is electrically For example, the differential unit 11 is set in a so-called continuously variable transmission state (electric CVT state) so that the transmission member 18 continuously rotates regardless of the predetermined rotation of the engine 8. It is varied. That is, when the power distribution mechanism 16 is in the differential state, the differential unit 11 is also in the differential state, and the differential unit 11 has a gear ratio γ0 (rotational speed of the input shaft 14 / rotational speed of the transmission member 18). A continuously variable transmission state that functions as an electrical continuously variable transmission that is continuously changed from the minimum value γ0min to the maximum value γ0max is obtained. When the power distribution mechanism 16 is in the differential state in this way, the first electric motor M1, the second electric motor M2, and / or the engine 8 connected to the power distribution mechanism 16 (differential portion 11) so as to be able to transmit power. By controlling the operation state, the differential state of the power distribution mechanism 16, that is, the differential state between the rotational speed of the input shaft 14 and the rotational speed of the transmission member 18 is controlled.

この状態で、上記切換クラッチC0或いは切換ブレーキB0が係合させられると動力分配機構16は前記差動作用をしないすなわち差動作用が不能な非差動状態とされる。具体的には、上記切換クラッチC0が係合させられて差動部サンギヤS0と差動部キャリヤCA0とが一体的に係合させられると、動力分配機構16は差動部遊星歯車装置24の3要素である差動部サンギヤS0、差動部キャリヤCA0、差動部リングギヤR0が共に回転すなわち一体回転させられるロック状態とされて前記差動作用が不能な非差動状態とされることから、差動部11も非差動状態とされる。また、エンジン8の回転と伝達部材18の回転速度とが一致する状態となるので、差動部11(動力分配機構16)は変速比γ0が「1」に固定された変速機として機能する定変速状態すなわち有段変速状態とされる。次いで、上記切換クラッチC0に替えて切換ブレーキB0が係合させられて差動部サンギヤS0がケース12に連結させられると、動力分配機構16は差動部サンギヤS0が非回転状態とさせられるロック状態とされて前記差動作用が不能な非差動状態とされることから、差動部11も非差動状態とされる。また、差動部リングギヤR0は差動部キャリヤCA0よりも増速回転されるので、動力分配機構16は増速機構として機能するものであり、差動部11(動力分配機構16)は変速比γ0が「1」より小さい値例えば0.7程度に固定された増速変速機として機能する定変速状態すなわち有段変速状態とされる。   In this state, when the switching clutch C0 or the switching brake B0 is engaged, the power distribution mechanism 16 does not perform the differential action, that is, enters a non-differential state where the differential action is impossible. Specifically, when the switching clutch C0 is engaged and the differential sun gear S0 and the differential carrier CA0 are integrally engaged, the power distribution mechanism 16 is connected to the differential planetary gear unit 24. Since the differential part sun gear S0, the differential part carrier CA0, and the differential part ring gear R0, which are the three elements, are all in a locked state where they are rotated, that is, integrally rotated, the differential action is disabled. The differential unit 11 is also in a non-differential state. Further, since the rotation of the engine 8 and the rotation speed of the transmission member 18 coincide with each other, the differential unit 11 (power distribution mechanism 16) is a constant functioning as a transmission in which the speed ratio γ0 is fixed to “1”. A shift state, that is, a stepped shift state is set. Next, when the switching brake B0 is engaged instead of the switching clutch C0 and the differential sun gear S0 is connected to the case 12, the power distribution mechanism 16 locks the differential sun gear S0 in a non-rotating state. Since the differential action is impossible because the differential action is impossible, the differential unit 11 is also in the non-differential state. Further, since the differential portion ring gear R0 is rotated at a higher speed than the differential portion carrier CA0, the power distribution mechanism 16 functions as a speed increase mechanism, and the differential portion 11 (power distribution mechanism 16) has a gear ratio. A constant speed change state, that is, a stepped speed change state in which γ0 functions as a speed increasing transmission with a value smaller than “1”, for example, about 0.7, is set.

このように、本実施例では、上記切換クラッチC0および切換ブレーキB0は、差動部11(動力分配機構16)の変速状態を差動状態すなわち非ロック状態と非差動状態すなわちロック状態とに、すなわち差動部11(動力分配機構16)を電気的な差動装置として作動可能な差動状態例えば変速比が連続的変化可能な無段変速機として作動する電気的な無段変速作動可能な無段変速状態と、電気的な無段変速作動しない変速状態例えば無段変速機として作動させず無段変速作動を非作動として変速比変化を一定にロックするロック状態すなわち1または2種類以上の変速比の単段または複数段の変速機として作動する電気的な無段変速作動をしないすなわち電気的な無段変速作動不能な定変速状態(非差動状態)、換言すれば変速比が一定の1段または複数段の変速機として作動する定変速状態とに選択的に切換える差動状態切換装置として機能している。   Thus, in the present embodiment, the switching clutch C0 and the switching brake B0 change the shift state of the differential unit 11 (power distribution mechanism 16) between the differential state, that is, the non-locked state, and the non-differential state, that is, the locked state. That is, a differential state in which the differential unit 11 (power distribution mechanism 16) can be operated as an electric differential device, for example, an electric continuously variable transmission operation that operates as a continuously variable transmission whose speed ratio can be continuously changed is possible. A continuously variable transmission state and a gearless state in which an electric continuously variable transmission does not operate, for example, a lock state in which a continuously variable transmission operation is not operated without being operated as a continuously variable transmission, that is, one or more types are locked. A constant speed state (non-differential state) in which an electric continuously variable speed operation is not performed, that is, an electric continuously variable speed operation is not possible. one Functions as selectively switches the differential state switching device in the fixed-speed-ratio shifting state to operate as a transmission of one-stage or multi-stage.

本発明の変速部に対応する自動変速部20は、その変速比γAT(=伝達部材18の回転速度N18/出力軸22の回転速度NOUT)を段階的に変化させることができる有段式の自動変速機として機能する変速部であり、シングルピニオン型の第1遊星歯車装置26、シングルピニオン型の第2遊星歯車装置28、およびシングルピニオン型の第3遊星歯車装置30を備えている。第1遊星歯車装置26は、第1サンギヤS1、第1遊星歯車P1、その第1遊星歯車P1を自転および公転可能に支持する第1キャリヤCA1、第1遊星歯車P1を介して第1サンギヤS1と噛み合う第1リングギヤR1を備えており、例えば「0.562」程度の所定のギヤ比ρ1を有している。第2遊星歯車装置28は、第2サンギヤS2、第2遊星歯車P2、その第2遊星歯車P2を自転および公転可能に支持する第2キャリヤCA2、第2遊星歯車P2を介して第2サンギヤS2と噛み合う第2リングギヤR2を備えており、例えば「0.425」程度の所定のギヤ比ρ2を有している。第3遊星歯車装置30は、第3サンギヤS3、第3遊星歯車P3、その第3遊星歯車P3を自転および公転可能に支持する第3キャリヤCA3、第3遊星歯車P3を介して第3サンギヤS3と噛み合う第3リングギヤR3を備えており、例えば「0.421」程度の所定のギヤ比ρ3を有している。第1サンギヤS1の歯数をZS1、第1リングギヤR1の歯数をZR1、第2サンギヤS2の歯数をZS2、第2リングギヤR2の歯数をZR2、第3サンギヤS3の歯数をZS3、第3リングギヤR3の歯数をZR3とすると、上記ギヤ比ρ1はZS1/ZR1、上記ギヤ比ρ2はZS2/ZR2、上記ギヤ比ρ3はZS3/ZR3である。 The automatic transmission unit 20 corresponding to the transmission unit of the present invention can change its transmission gear ratio γ AT (= rotational speed N 18 of the transmission member 18 / rotational speed N OUT of the output shaft 22) stepwise. And a single pinion type first planetary gear unit 26, a single pinion type second planetary gear unit 28, and a single pinion type third planetary gear unit 30. . The first planetary gear unit 26 includes a first sun gear S1, a first planetary gear P1, a first carrier CA1 that supports the first planetary gear P1 so as to rotate and revolve, and a first sun gear S1 via the first planetary gear P1. The first ring gear R1 meshing with the first gear R1 has a predetermined gear ratio ρ1 of about “0.562”, for example. The second planetary gear device 28 includes a second sun gear S2 via a second sun gear S2, a second planetary gear P2, a second carrier CA2 that supports the second planetary gear P2 so as to rotate and revolve, and a second planetary gear P2. The second ring gear R2 that meshes with the second gear R2 has a predetermined gear ratio ρ2 of about “0.425”, for example. The third planetary gear device 30 includes a third sun gear S3, a third planetary gear P3, a third carrier CA3 that supports the third planetary gear P3 so as to rotate and revolve, and a third sun gear S3 via the third planetary gear P3. A third ring gear R3 that meshes with the gear, and has a predetermined gear ratio ρ3 of about “0.421”, for example. The number of teeth of the first sun gear S1 is ZS1, the number of teeth of the first ring gear R1 is ZR1, the number of teeth of the second sun gear S2 is ZS2, the number of teeth of the second ring gear R2 is ZR2, the number of teeth of the third sun gear S3 is ZS3, If the number of teeth of the third ring gear R3 is ZR3, the gear ratio ρ1 is ZS1 / ZR1, the gear ratio ρ2 is ZS2 / ZR2, and the gear ratio ρ3 is ZS3 / ZR3.

自動変速部20では、第1サンギヤS1と第2サンギヤS2とが一体的に連結されて第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第1キャリヤCA1は第2ブレーキB2を介してケース12に選択的に連結され、第3リングギヤR3は第3ブレーキB3を介してケース12に選択的に連結され、第1リングギヤR1と第2キャリヤCA2と第3キャリヤCA3とが一体的に連結されて出力軸22に連結され、第2リングギヤR2と第3サンギヤS3とが一体的に連結されて第1クラッチC1を介して伝達部材18に選択的に連結されている。このように、自動変速部20と伝達部材18とは自動変速部20の変速段を成立させるために用いられる第1クラッチC1または第2クラッチC2を介して選択的に連結されている。言い換えれば、第1クラッチC1および第2クラッチC2は、伝達部材18と自動変速部20との間すなわち差動部11(伝達部材18)と駆動輪38との間の動力伝達経路を、その動力伝達経路の動力伝達を可能とする動力伝達可能状態と、その動力伝達経路の動力伝達を遮断する動力伝達遮断状態とに選択的に切り換える係合装置として機能している。つまり、第1クラッチC1および第2クラッチC2の少なくとも一方が係合されることで上記動力伝達経路が動力伝達可能状態とされ、或いは第1クラッチC1および第2クラッチC2が解放されることで上記動力伝達経路が動力伝達遮断状態とされる。   In the automatic transmission unit 20, the first sun gear S1 and the second sun gear S2 are integrally connected and selectively connected to the transmission member 18 via the second clutch C2 and the case 12 via the first brake B1. The first carrier CA1 is selectively connected to the case 12 via the second brake B2, the third ring gear R3 is selectively connected to the case 12 via the third brake B3, The first ring gear R1, the second carrier CA2, and the third carrier CA3 are integrally connected to the output shaft 22, and the second ring gear R2 and the third sun gear S3 are integrally connected to connect the first clutch C1. And selectively connected to the transmission member 18. As described above, the automatic transmission unit 20 and the transmission member 18 are selectively connected via the first clutch C1 or the second clutch C2 used to establish the gear position of the automatic transmission unit 20. In other words, the first clutch C1 and the second clutch C2 have a power transmission path between the transmission member 18 and the automatic transmission unit 20, that is, between the differential unit 11 (transmission member 18) and the drive wheel 38, with its power. It functions as an engagement device that selectively switches between a power transmission enabling state that enables power transmission on the transmission path and a power transmission cutoff state that interrupts power transmission on the power transmission path. That is, at least one of the first clutch C1 and the second clutch C2 is engaged so that the power transmission path can be transmitted, or the first clutch C1 and the second clutch C2 are disengaged. The power transmission path is in a power transmission cutoff state.

前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3は従来の車両用有段式自動変速機においてよく用いられている油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本または2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介装されている両側の部材を選択的に連結するためのものである。   The switching clutch C0, first clutch C1, second clutch C2, switching brake B0, first brake B1, second brake B2, and third brake B3 are often used in conventional stepped automatic transmissions for vehicles. 1 or 2 bands wound around the outer peripheral surface of a rotating drum, or a wet multi-plate type in which a plurality of friction plates stacked on each other are pressed by a hydraulic actuator One end of each is constituted by a band brake or the like that is tightened by a hydraulic actuator, and is for selectively connecting the members on both sides of the band brake.

以上のように構成された動力伝達装置10では、例えば、図2の係合作動表に示されるように、前記切換クラッチC0、第1クラッチC1、第2クラッチC2、切換ブレーキB0、第1ブレーキB1、第2ブレーキB2、および第3ブレーキB3が選択的に係合作動させられることにより、第1速ギヤ段(第1変速段)乃至第5速ギヤ段(第5変速段)のいずれか或いは後進ギヤ段(後進変速段)或いはニュートラルが選択的に成立させられ、略等比的に変化する変速比γ(=入力軸回転速度NIN/出力軸回転速度NOUT)が各ギヤ段毎に得られるようになっている。特に、本実施例では動力分配機構16に切換クラッチC0および切換ブレーキB0が備えられており、切換クラッチC0および切換ブレーキB0の何れかが係合作動させられることによって、差動部11は前述した無段変速機として作動する無段変速状態に加え、変速比が一定の変速機として作動する定変速状態を構成することが可能とされている。したがって、動力伝達装置10では、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで定変速状態とされた差動部11と自動変速部20とで有段変速機として作動する有段変速状態が構成され、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態とされた差動部11と自動変速部20とで電気的な無段変速機として作動する無段変速状態が構成される。言い換えれば、動力伝達装置10は、切換クラッチC0および切換ブレーキB0の何れかを係合作動させることで有段変速状態に切り換えられ、切換クラッチC0および切換ブレーキB0の何れも係合作動させないことで無段変速状態に切り換えられる。また、差動部11も有段変速状態と無段変速状態とに切り換え可能な変速機であると言える。 In the power transmission device 10 configured as described above, for example, as shown in the engagement operation table of FIG. 2, the switching clutch C0, the first clutch C1, the second clutch C2, the switching brake B0, the first brake B1, second brake B2, and third brake B3 are selectively engaged and operated, so that any one of the first speed gear stage (first gear stage) to the fifth speed gear stage (fifth gear stage) is selected. Alternatively, the reverse gear stage (reverse gear stage) or neutral is selectively established, and the gear ratio γ (= input shaft rotational speed N IN / output shaft rotational speed N OUT ) that changes substantially is proportional to each gear stage. It has come to be obtained. In particular, in this embodiment, the power distribution mechanism 16 is provided with a switching clutch C0 and a switching brake B0, and the differential unit 11 is configured as described above when either the switching clutch C0 or the switching brake B0 is engaged. In addition to the continuously variable transmission state that operates as a continuously variable transmission, it is possible to configure a constant transmission state that operates as a transmission having a constant gear ratio. Therefore, in the power transmission device 10, the differential unit 11 and the automatic transmission unit 20 that are brought into the constant transmission state by engaging any of the switching clutch C 0 and the switching brake B 0 operate as a stepped transmission. A stepped speed change state is configured, and the differential part 11 and the automatic speed changer 20 that are brought into a continuously variable speed state by operating neither the switching clutch C0 nor the switching brake B0 are operated as an electric continuously variable transmission. A continuously variable transmission state is configured. In other words, the power transmission device 10 is switched to the stepped speed change state by engaging any one of the switching clutch C0 and the switching brake B0, and neither the switching clutch C0 nor the switching brake B0 is engaged. It is switched to the continuously variable transmission state. Further, it can be said that the differential unit 11 is also a transmission that can be switched between a stepped transmission state and a continuously variable transmission state.

例えば、動力伝達装置10が有段変速機として機能する場合には、図2に示すように、切換クラッチC0、第1クラッチC1および第3ブレーキB3の係合により、変速比γ1が最大値例えば「3.357」程度である第1速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2ブレーキB2の係合により、変速比γ2が第1速ギヤ段よりも小さい値例えば「2.180」程度である第2速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第1ブレーキB1の係合により、変速比γ3が第2速ギヤ段よりも小さい値例えば「1.424」程度である第3速ギヤ段が成立させられ、切換クラッチC0、第1クラッチC1および第2クラッチC2の係合により、変速比γ4が第3速ギヤ段よりも小さい値例えば「1.000」程度である第4速ギヤ段が成立させられ、第1クラッチC1、第2クラッチC2、および切換ブレーキB0の係合により、変速比γ5が第4速ギヤ段よりも小さい値例えば「0.705」程度である第5速ギヤ段が成立させられる。また、第2クラッチC2および第3ブレーキB3の係合により、変速比γRが第1速ギヤ段と第2速ギヤ段との間の値例えば「3.209」程度である後進ギヤ段が成立させられる。なお、ニュートラル「N」状態とする場合には、例えば全てのクラッチ及びブレーキC0,C1,C2,B0,B1,B2,B3が解放される。   For example, when the power transmission device 10 functions as a stepped transmission, as shown in FIG. 2, the gear ratio γ1 is set to a maximum value, for example, due to the engagement of the switching clutch C0, the first clutch C1, and the third brake B3. A first gear that is approximately “3.357” is established, and the gear ratio γ2 is smaller than the first gear, for example, by engagement of the switching clutch C0, the first clutch C1, and the second brake B2. A second gear that is about "2.180" is established, and the gear ratio γ3 is smaller than the second gear, for example, by engagement of the switching clutch C0, the first clutch C1, and the first brake B1. For example, the third speed gear stage of about “1.424” is established, and the gear ratio γ4 is smaller than that of the third speed gear stage due to the engagement of the switching clutch C0, the first clutch C1, and the second clutch C2. The fourth speed gear stage which is about “1.000” is established, and the gear ratio γ5 is smaller than the fourth speed gear stage due to the engagement of the first clutch C1, the second clutch C2 and the switching brake B0. For example, the fifth gear stage which is about “0.705” is established. Further, by the engagement of the second clutch C2 and the third brake B3, the reverse gear stage in which the speed ratio γR is a value between the first speed gear stage and the second speed gear stage, for example, about “3.209” is established. Be made. When the neutral “N” state is set, for example, all clutches and brakes C0, C1, C2, B0, B1, B2, and B3 are released.

しかし、動力伝達装置10が無段変速機として機能する場合には、図2に示される係合表の切換クラッチC0および切換ブレーキB0が共に解放される。これにより、差動部11が無段変速機として機能し、それに直列の自動変速部20が有段変速機として機能することにより、自動変速部20の第1速、第2速、第3速、第4速の各ギヤ段に対しその自動変速部20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって動力伝達装置10全体としてのトータル変速比(総合変速比)γTが無段階に得られるようになる。   However, when the power transmission device 10 functions as a continuously variable transmission, both the switching clutch C0 and the switching brake B0 in the engagement table shown in FIG. 2 are released. Accordingly, the differential unit 11 functions as a continuously variable transmission, and the automatic transmission unit 20 in series with the differential unit 11 functions as a stepped transmission, whereby the first speed, the second speed, and the third speed of the automatic transmission unit 20 are achieved. The rotational speed input to the automatic transmission unit 20, that is, the rotational speed of the transmission member 18 is changed steplessly for each gear stage of the fourth speed, and each gear stage has a stepless speed ratio width. It is done. Therefore, the gear ratio between the gear stages can be continuously changed continuously, and the total gear ratio (total gear ratio) γT of the power transmission device 10 as a whole can be obtained continuously.

図3は、無段変速部或いは第1変速部として機能する差動部11と有段変速部或いは第2変速部として機能する自動変速部20とから構成される動力伝達装置10において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図3の共線図は、各遊星歯車装置24、26、28、30のギヤ比ρの関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、3本の横線のうちの下側の横線X1が回転速度零を示し、上側の横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度Neを示し、横線XGが伝達部材18の回転速度を示している。   FIG. 3 illustrates a gear stage in a power transmission device 10 including a differential unit 11 that functions as a continuously variable transmission unit or a first transmission unit and an automatic transmission unit 20 that functions as a stepped transmission unit or a second transmission unit. The collinear diagram which can represent on a straight line the relative relationship of the rotational speed of each rotation element from which a connection state differs for every is shown. The collinear diagram of FIG. 3 is a two-dimensional coordinate composed of a horizontal axis indicating the relationship of the gear ratio ρ of each planetary gear unit 24, 26, 28, 30 and a vertical axis indicating the relative rotational speed. Of the horizontal lines, the lower horizontal line X1 indicates the rotational speed zero, the upper horizontal line X2 indicates the rotational speed "1.0", that is, the rotational speed Ne of the engine 8 connected to the input shaft 14, and the horizontal line XG indicates The rotational speed of the transmission member 18 is shown.

また、差動部11を構成する動力分配機構16の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素(第2要素)RE2に対応する差動部サンギヤS0、第1回転要素(第1要素)RE1に対応する差動部キャリヤCA0、第3回転要素(第3要素)RE3に対応する差動部リングギヤR0の相対回転速度を示すものであり、それらの間隔は差動部遊星歯車装置24のギヤ比ρ0に応じて定められている。さらに、自動変速部20の5本の縦線Y4、Y5、Y6、Y7、Y8は、左から順に、第4回転要素(第4要素)RE4に対応し且つ相互に連結された第1サンギヤS1および第2サンギヤS2を、第5回転要素(第5要素)RE5に対応する第1キャリヤCA1を、第6回転要素(第6要素)RE6に対応する第3リングギヤR3を、第7回転要素(第7要素)RE7に対応し且つ相互に連結された第1リングギヤR1、第2キャリヤCA2、第3キャリヤCA3を、第8回転要素(第8要素)RE8に対応し且つ相互に連結された第2リングギヤR2、第3サンギヤS3をそれぞれ表し、それらの間隔は第1、第2、第3遊星歯車装置26、28、30のギヤ比ρ1、ρ2、ρ3に応じてそれぞれ定められている。共線図の縦軸間の関係においてサンギヤとキャリヤとの間が「1」に対応する間隔とされるとキャリヤとリングギヤとの間が遊星歯車装置のギヤ比ρに対応する間隔とされる。すなわち、差動部11では縦線Y1とY2との縦線間が「1」に対応する間隔に設定され、縦線Y2とY3との間隔はギヤ比ρ0に対応する間隔に設定される。また、自動変速部20では各第1、第2、第3遊星歯車装置26、28、30毎にそのサンギヤとキャリヤとの間が「1」に対応する間隔に設定され、キャリヤとリングギヤとの間がρに対応する間隔に設定される。   In addition, three vertical lines Y1, Y2, and Y3 corresponding to the three elements of the power distribution mechanism 16 constituting the differential unit 11 indicate the differential corresponding to the second rotation element (second element) RE2 in order from the left side. This shows the relative rotational speed of the differential part ring gear R0 corresponding to the part sun gear S0, the differential part carrier CA0 corresponding to the first rotational element (first element) RE1, and the third rotational element (third element) RE3. These intervals are determined according to the gear ratio ρ 0 of the differential planetary gear unit 24. Further, the five vertical lines Y4, Y5, Y6, Y7, Y8 of the automatic transmission unit 20 correspond to the fourth rotation element (fourth element) RE4 and are connected to each other in order from the left. And the second sun gear S2, the first carrier CA1 corresponding to the fifth rotation element (fifth element) RE5, the third ring gear R3 corresponding to the sixth rotation element (sixth element) RE6, the seventh rotation element ( Seventh element) The first ring gear R1, the second carrier CA2, and the third carrier CA3 corresponding to RE7 and connected to each other are connected to the eighth rotation element (eighth element) RE8 and connected to each other. The two ring gear R2 and the third sun gear S3 are respectively represented, and the distance between them is determined according to the gear ratios ρ1, ρ2, and ρ3 of the first, second, and third planetary gear devices 26, 28, and 30, respectively. In the relationship between the vertical axes of the nomogram, when the distance between the sun gear and the carrier is set to an interval corresponding to “1”, the interval between the carrier and the ring gear is set to an interval corresponding to the gear ratio ρ of the planetary gear device. That is, in the differential section 11, the interval between the vertical lines Y1 and Y2 is set to an interval corresponding to “1”, and the interval between the vertical lines Y2 and Y3 is set to an interval corresponding to the gear ratio ρ0. Further, in the automatic transmission unit 20, the space between the sun gear and the carrier is set at an interval corresponding to "1" for each of the first, second, and third planetary gear devices 26, 28, and 30, so that the carrier and the ring gear The interval is set to an interval corresponding to ρ.

上記図3の共線図を用いて表現すれば、本実施例の動力伝達装置10は、動力分配機構16(差動部11)において、差動部遊星歯車装置24の第1回転要素RE1(差動部キャリヤCA0)が入力軸14すなわちエンジン8に連結されるとともに切換クラッチC0を介して第2回転要素(差動部サンギヤS0)RE2と選択的に連結され、第2回転要素RE2が第1電動機M1に連結されるとともに切換ブレーキB0を介してケース12に選択的に連結され、第3回転要素(差動部リングギヤR0)RE3が伝達部材18および第2電動機M2に連結されて、入力軸14の回転を伝達部材18を介して自動変速部(有段変速部)20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により差動部サンギヤS0の回転速度と差動部リングギヤR0の回転速度との関係が示される。   If expressed using the collinear diagram of FIG. 3 described above, the power transmission device 10 of the present embodiment is configured so that the power distribution mechanism 16 (differential unit 11) has the first rotating element RE1 ( The differential carrier CA0) is connected to the input shaft 14, that is, the engine 8, and is selectively connected to the second rotating element (differential sun gear S0) RE2 via the switching clutch C0, and the second rotating element RE2 is connected to the second rotating element RE2. 1 is connected to the electric motor M1 and selectively connected to the case 12 via the switching brake B0, and the third rotating element (differential ring gear R0) RE3 is connected to the transmission member 18 and the second electric motor M2 to be input. The rotation of the shaft 14 is transmitted (inputted) to the automatic transmission unit (stepped transmission unit) 20 via the transmission member 18. At this time, the relationship between the rotational speed of the differential section sun gear S0 and the rotational speed of the differential section ring gear R0 is shown by an oblique straight line L0 passing through the intersection of Y2 and X2.

例えば、上記切換クラッチC0および切換ブレーキB0の解放により無段変速状態(差動状態)に切換えられたときは、第1電動機M1の回転速度を制御することによって直線L0と縦線Y1との交点で示される差動部サンギヤS0の回転が上昇或いは下降させられると、車速Vに拘束される差動部リングギヤR0の回転速度が略一定である場合には、直線L0と縦線Y2との交点で示される差動部キャリヤCA0の回転速度が上昇或いは下降させられる。また、切換クラッチC0の係合により差動部サンギヤS0と差動部キャリヤCA0とが連結されると、動力分配機構16は上記3回転要素が一体回転する非差動状態とされるので、直線L0は横線X2と一致させられ、エンジン回転速度Neと同じ回転で伝達部材18が回転させられる。或いは、切換ブレーキB0の係合によって差動部サンギヤS0の回転が停止させられると動力分配機構16は増速機構として機能する非差動状態とされるので、直線L0は図3に示す状態となり、その直線L0と縦線Y3との交点で示される差動部リングギヤR0すなわち伝達部材18の回転速度は、エンジン回転速度Neよりも増速された回転で自動変速部20へ入力される。   For example, when the switching clutch C0 and the switching brake B0 are released to switch to a continuously variable transmission state (differential state), the intersection of the straight line L0 and the vertical line Y1 is controlled by controlling the rotational speed of the first electric motor M1. If the rotation speed of the differential portion ring gear R0 restrained by the vehicle speed V is substantially constant when the rotation of the differential portion sun gear S0 indicated by is increased or decreased, the intersection of the straight line L0 and the vertical line Y2 The rotational speed of the differential part carrier CA0 indicated by is increased or decreased. Further, when the differential part sun gear S0 and the differential part carrier CA0 are connected by the engagement of the switching clutch C0, the power distribution mechanism 16 is in a non-differential state in which the three rotation elements rotate integrally. L0 is matched with the horizontal line X2, and the transmission member 18 is rotated at the same rotation as the engine rotation speed Ne. Alternatively, when the rotation of the differential sun gear S0 is stopped by the engagement of the switching brake B0, the power distribution mechanism 16 is in a non-differential state that functions as a speed increasing mechanism, so that the straight line L0 is in the state shown in FIG. The rotational speed of the differential part ring gear R0, that is, the transmission member 18, indicated by the intersection of the straight line L0 and the vertical line Y3, is input to the automatic transmission unit 20 at a speed increased from the engine rotational speed Ne.

また、自動変速部20において第4回転要素RE4は第2クラッチC2を介して伝達部材18に選択的に連結されるとともに第1ブレーキB1を介してケース12に選択的に連結され、第5回転要素RE5は第2ブレーキB2を介してケース12に選択的に連結され、第6回転要素RE6は第3ブレーキB3を介してケース12に選択的に連結され、第7回転要素RE7は出力軸22に連結され、第8回転要素RE8は第1クラッチC1を介して伝達部材18に選択的に連結されている。   Further, in the automatic transmission unit 20, the fourth rotation element RE4 is selectively connected to the transmission member 18 via the second clutch C2, and is also selectively connected to the case 12 via the first brake B1, for the fifth rotation. The element RE5 is selectively connected to the case 12 via the second brake B2, the sixth rotating element RE6 is selectively connected to the case 12 via the third brake B3, and the seventh rotating element RE7 is connected to the output shaft 22. The eighth rotary element RE8 is selectively connected to the transmission member 18 via the first clutch C1.

自動変速部20では、図3に示すように、第1クラッチC1と第3ブレーキB3とが係合させられることにより、第8回転要素RE8の回転速度を示す縦線Y8と横線X2との交点と第6回転要素RE6の回転速度を示す縦線Y6と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第1速の出力軸22の回転速度が示される。同様に、第1クラッチC1と第2ブレーキB2とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第2速の出力軸22の回転速度が示され、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L3と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第3速の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L4と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第4速の出力軸22の回転速度が示される。上記第1速乃至第4速では、切換クラッチC0が係合させられている結果、エンジン回転速度Neと同じ回転速度で第8回転要素RE8に差動部11すなわち動力分配機構16からの動力が入力される。しかし、切換クラッチC0に替えて切換ブレーキB0が係合させられると、差動部11からの動力がエンジン回転速度Neよりも高い回転速度で入力されることから、第1クラッチC1、第2クラッチC2、および切換ブレーキB0が係合させられることにより決まる水平な直線L5と出力軸22と連結された第7回転要素RE7の回転速度を示す縦線Y7との交点で第5速の出力軸22の回転速度が示される。   In the automatic transmission unit 20, as shown in FIG. 3, when the first clutch C1 and the third brake B3 are engaged, the intersection of the vertical line Y8 indicating the rotational speed of the eighth rotation element RE8 and the horizontal line X2 And an oblique straight line L1 passing through the intersection of the vertical line Y6 indicating the rotational speed of the sixth rotational element RE6 and the horizontal line X1, and a vertical line Y7 indicating the rotational speed of the seventh rotational element RE7 connected to the output shaft 22. The rotational speed of the output shaft 22 of the first speed is shown at the intersection point. Similarly, at an intersection of an oblique straight line L2 determined by engaging the first clutch C1 and the second brake B2 and a vertical line Y7 indicating the rotational speed of the seventh rotating element RE7 connected to the output shaft 22. The rotational speed of the output shaft 22 at the second speed is shown, and an oblique straight line L3 determined by engaging the first clutch C1 and the first brake B1 and the seventh rotational element RE7 connected to the output shaft 22 The rotation speed of the output shaft 22 of the third speed is indicated by the intersection with the vertical line Y7 indicating the rotation speed, and the horizontal straight line L4 and the output shaft determined by engaging the first clutch C1 and the second clutch C2. The rotation speed of the output shaft 22 of the fourth speed is indicated by the intersection with the vertical line Y7 indicating the rotation speed of the seventh rotation element RE7 connected to the motor 22. In the first to fourth speeds, the switching clutch C0 is engaged. As a result, the power from the differential unit 11, that is, the power distribution mechanism 16, is transmitted to the eighth rotating element RE8 at the same rotational speed as the engine rotational speed Ne. Entered. However, when the switching brake B0 is engaged instead of the switching clutch C0, the power from the differential portion 11 is input at a rotational speed higher than the engine rotational speed Ne, and therefore the first clutch C1, the second clutch The output shaft 22 of the fifth speed at the intersection of C2 and the horizontal straight line L5 determined by engaging the switching brake B0 and the vertical line Y7 indicating the rotational speed of the seventh rotation element RE7 connected to the output shaft 22 The rotation speed is indicated.

図4は、本発明に係る動力伝達装置10を制御するための制御装置である電子制御装置40に入力される信号及びその電子制御装置40から出力される信号を例示している。この電子制御装置40は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン8、第1電動機M1、第2電動機M2に関するハイブリッド駆動制御、自動変速部20の変速制御等の駆動制御を実行するものである。   FIG. 4 illustrates a signal input to the electronic control device 40 that is a control device for controlling the power transmission device 10 according to the present invention and a signal output from the electronic control device 40. The electronic control unit 40 includes a so-called microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like, and performs signal processing in accordance with a program stored in advance in the ROM while using a temporary storage function of the RAM. By performing the above, drive control such as hybrid drive control relating to the engine 8, the first electric motor M1, and the second electric motor M2 and the shift control of the automatic transmission unit 20 is executed.

電子制御装置40には、図4に示す各センサやスイッチなどから、エンジン水温TEMPを示す信号、シフトポジションPSHを表す信号、第1電動機M1の回転速度NM1(以下、「第1電動機回転速度NM1」という)を表す信号、第2電動機M2の回転速度NM2(以下、「第2電動機回転速度NM2」という)を表す信号、エンジン8の回転速度であるエンジン回転速度Neを表す信号、ギヤ比列設定値を示す信号、Mモード(手動変速走行モード)を指令する信号、エアコンの作動を示すエアコン信号、出力軸22の回転速度NOUTに対応する車速Vを表す信号、自動変速部20の作動油温を示す油温信号、サイドブレーキ操作を示す信号、フットブレーキ操作を示す信号、触媒温度を示す触媒温度信号、運転者の出力要求量に対応するアクセルペダル41の操作量(アクセル開度)Accを示すアクセル開度信号、カム角信号、スノーモード設定を示すスノーモード設定信号、車両の前後加速度を示す加速度信号、オートクルーズ走行を示すオートクルーズ信号、車両の重量を示す車重信号、各車輪の車輪速を示す車輪速信号、エンジン8の空燃比A/Fを示す信号などが、それぞれ供給される。 The electronic control unit 40 includes a signal indicating the engine water temperature TEMP W , a signal indicating the shift position P SH , a rotation speed N M1 of the first electric motor M1 (hereinafter referred to as “first electric motor”) from each sensor and switch shown in FIG. signal representative of) that the rotational speed N M1 ", the rotational speed N M2 of the second electric motor M2 (hereinafter, a signal representative of a) referred to as" second electric motor speed N M2 ", the engine rotational speed Ne is the rotation speed of the engine 8 A signal indicating a gear ratio train set value, a signal for instructing an M mode (manual shift travel mode), an air conditioner signal indicating an operation of an air conditioner, a signal indicating a vehicle speed V corresponding to the rotational speed N OUT of the output shaft 22, Oil temperature signal indicating the hydraulic oil temperature of the automatic transmission unit 20, signal indicating side brake operation, signal indicating foot brake operation, catalyst temperature signal indicating catalyst temperature, driver output An accelerator opening signal indicating the operation amount (accelerator opening) Acc of the accelerator pedal 41 corresponding to the demand, a cam angle signal, a snow mode setting signal indicating a snow mode setting, an acceleration signal indicating a longitudinal acceleration of the vehicle, and an auto cruise traveling An auto cruise signal indicating the vehicle weight, a vehicle weight signal indicating the weight of the vehicle, a wheel speed signal indicating the wheel speed of each wheel, a signal indicating the air-fuel ratio A / F of the engine 8, and the like are supplied.

また、上記電子制御装置40からは、エンジン出力を制御するエンジン出力制御装置43(図6参照)への制御信号例えばエンジン8の吸気管95に備えられた電子スロットル弁96の開度θTHを操作するスロットルアクチュエータ97への駆動信号や燃料噴射装置98によるエンジン8の各気筒内への燃料供給量を制御する燃料供給量信号や点火装置99によるエンジン8の点火時期を指令する点火信号、過給圧を調整するための過給圧調整信号、電動エアコンを作動させるための電動エアコン駆動信号、電動機M1およびM2の作動を指令する指令信号、シフトインジケータを作動させるためのシフトポジション(操作位置)表示信号、ギヤ比を表示させるためのギヤ比表示信号、スノーモードであることを表示させるためのスノーモード表示信号、制動時の車輪のスリップを防止するABSアクチュエータを作動させるためのABS作動信号、Mモードが選択されていることを表示させるMモード表示信号、差動部11や自動変速部20の油圧式摩擦係合装置の油圧アクチュエータを制御するために油圧制御回路42(図6参照)に含まれる電磁弁を作動させるバルブ指令信号、この油圧制御回路42の油圧源である電動油圧ポンプを作動させるための駆動指令信号、電動ヒータを駆動するための信号、クルーズコントロール制御用コンピュータへの信号等が、それぞれ出力される。 Further, the electronic control device 40 sends a control signal to the engine output control device 43 (see FIG. 6) for controlling the engine output, for example, the opening degree θ TH of the electronic throttle valve 96 provided in the intake pipe 95 of the engine 8. A drive signal to the throttle actuator 97 to be operated, a fuel supply amount signal for controlling the fuel supply amount into each cylinder of the engine 8 by the fuel injection device 98, an ignition signal for instructing the ignition timing of the engine 8 by the ignition device 99, A supercharging pressure adjustment signal for adjusting the supply pressure, an electric air conditioner drive signal for operating the electric air conditioner, a command signal for instructing the operation of the electric motors M1 and M2, and a shift position (operation position) for operating the shift indicator Display signal, gear ratio display signal for displaying gear ratio, snow motor for displaying that it is in snow mode Mode display signal, ABS operation signal for operating an ABS actuator for preventing wheel slippage during braking, an M mode display signal for indicating that the M mode is selected, the differential unit 11 and the automatic transmission unit 20 In order to control the hydraulic actuator of the hydraulic friction engagement device, a valve command signal for operating an electromagnetic valve included in the hydraulic control circuit 42 (see FIG. 6), and an electric hydraulic pump that is a hydraulic source of the hydraulic control circuit 42 are operated. A drive command signal for driving the motor, a signal for driving the electric heater, a signal to the cruise control computer, etc. are output.

図5は複数種類のシフトポジションPSHを人為的操作により切り換える切換装置としてのシフト操作装置48の一例を示す図である。このシフト操作装置48は、例えば運転席の横に配設され、複数種類のシフトポジションPSHを選択するために操作されるシフトレバー49を備えている。 FIG. 5 is a diagram showing an example of a shift operation device 48 as a switching device for switching a plurality of types of shift positions PSH by an artificial operation. The shift operation device 48 includes, for example, a shift lever 49 that is disposed beside the driver's seat and is operated to select a plurality of types of shift positions PSH .

そのシフトレバー49は、動力伝達装置10内つまり自動変速部20内の動力伝達経路が遮断されたニュートラル状態すなわち中立状態とし且つ自動変速部20の出力軸22をロックするための駐車ポジション「P(パーキング)」、後進走行のための後進走行ポジション「R(リバース)」、動力伝達装置10内の動力伝達経路が遮断された中立状態とするための中立ポジション「N(ニュートラル)」、動力伝達装置10の変速可能なトータル変速比γTの変化範囲内で自動変速制御を実行させる前進自動変速走行ポジション「D(ドライブ)」、または手動変速走行モード(手動モード)を成立させて上記自動変速制御における高車速側の変速段を制限する所謂変速レンジを設定するための前進手動変速走行ポジション「M(マニュアル)」へ手動操作されるように設けられている。   The shift lever 49 is in a neutral position where the power transmission path in the power transmission device 10, that is, in the automatic transmission unit 20 is interrupted, that is, in a neutral state, and the parking position “P ( Parking) ”, reverse travel position“ R (reverse) ”for reverse travel, neutral position“ N (neutral) ”for achieving a neutral state in which the power transmission path in the power transmission device 10 is interrupted, power transmission device In the automatic shift control, a forward automatic shift travel position “D (drive)” for executing automatic shift control within a change range of 10 shiftable total gear ratios γT or a manual shift travel mode (manual mode) is established. Forward manual shift travel position “M (manual) for setting a so-called shift range for limiting the shift stage on the high vehicle speed side. ) "It is provided so as to be manually operated to.

上記シフトレバー49の各シフトポジションPSHへの手動操作に連動して図2の係合作動表に示す後進ギヤ段「R」、ニュートラル「N」、前進ギヤ段「D」における各変速段等が成立するように、例えば油圧制御回路42が電気的に切り換えられる。 The reverse gear "R" shown in the engagement operation table of FIG 2 in conjunction with the manual operation of the various shift positions P SH of the shift lever 49, the neutral "N", the shift speed in forward gear "D" etc. For example, the hydraulic control circuit 42 is electrically switched so that is established.

上記「P」乃至「M」ポジションに示す各シフトポジションPSHにおいて、「P」ポジションおよび「N」ポジションは、車両を走行させないときに選択される非走行ポジションであって、例えば図2の係合作動表に示されるように第1クラッチC1および第2クラッチC2のいずれもが解放されるような自動変速部20内の動力伝達経路が遮断された車両を駆動不能とする第1クラッチC1および第2クラッチC2による動力伝達経路の動力伝達遮断状態へ切換えを選択するための非駆動ポジションである。また、「R」ポジション、「D」ポジションおよび「M」ポジションは、車両を走行させるときに選択される走行ポジションであって、例えば図2の係合作動表に示されるように第1クラッチC1および第2クラッチC2の少なくとも一方が係合されるような自動変速部20内の動力伝達経路が連結された車両を駆動可能とする第1クラッチC1および/または第2クラッチC2による動力伝達経路の動力伝達可能状態への切換えを選択するための駆動ポジションでもある。 In the shift positions P SH shown in the “P” to “M” positions, the “P” position and the “N” position are non-traveling positions that are selected when the vehicle is not traveling. As shown in the combined operation table, the first clutch C1 that disables driving of the vehicle in which the power transmission path in the automatic transmission unit 20 in which both the first clutch C1 and the second clutch C2 are released is interrupted. This is a non-driving position for selecting switching to the power transmission cutoff state of the power transmission path by the second clutch C2. The “R” position, the “D” position, and the “M” position are travel positions that are selected when the vehicle travels. For example, as shown in the engagement operation table of FIG. And a power transmission path by the first clutch C1 and / or the second clutch C2 capable of driving a vehicle to which a power transmission path in the automatic transmission 20 is engaged so that at least one of the second clutch C2 is engaged. It is also a drive position for selecting switching to a power transmission enabled state.

具体的には、シフトレバー49が「P」ポジション或いは「N」ポジションから「R」ポジションへ手動操作されることで、第2クラッチC2が係合されて自動変速部20内の動力伝達経路が動力伝達遮断状態から動力伝達可能状態とされ、シフトレバー49が「N」ポジションから「D」ポジションへ手動操作されることで、少なくとも第1クラッチC1が係合されて自動変速部20内の動力伝達経路が動力伝達遮断状態から動力伝達可能状態とされる。また、シフトレバー49が「R」ポジションから「P」ポジション或いは「N」ポジションへ手動操作されることで、第2クラッチC2が解放されて自動変速部20内の動力伝達経路が動力伝達可能状態から動力伝達遮断状態とされ、シフトレバー49が「D」ポジションから「N」ポジションへ手動操作されることで、第1クラッチC1および第2クラッチC2が解放されて自動変速部20内の動力伝達経路が動力伝達可能状態から動力伝達遮断状態とされる。   Specifically, when the shift lever 49 is manually operated from the “P” position or the “N” position to the “R” position, the second clutch C2 is engaged and the power transmission path in the automatic transmission unit 20 is changed. When the power transmission is cut off from the power transmission cut-off state and the shift lever 49 is manually operated from the “N” position to the “D” position, at least the first clutch C1 is engaged and the power in the automatic transmission unit 20 is increased. The transmission path is changed from a power transmission cutoff state to a power transmission enabled state. Further, when the shift lever 49 is manually operated from the “R” position to the “P” position or the “N” position, the second clutch C2 is released, and the power transmission path in the automatic transmission unit 20 is in a state where power transmission is possible. From the "D" position to the "N" position, the first clutch C1 and the second clutch C2 are released, and the power transmission in the automatic transmission unit 20 is performed. The path is changed from the power transmission enabled state to the power transmission cut-off state.

図6は、電子制御装置40による制御機能の要部を説明する機能ブロック線図である。図6において、有段変速制御手段54は、自動変速部20の変速を行う変速制御手段として機能するものである。例えば、有段変速制御手段54は、記憶手段56に予め記憶された図7の実線および一点鎖線に示す関係(変速線図、変速マップ)から車速Vおよび自動変速部20の要求出力トルクTOUTで示される車両状態に基づいて、自動変速部20の変速を実行すべきか否かを判断し、すなわち自動変速部20の変速すべき変速段を判断し、その判断した変速段が得られるように自動変速部20の変速を実行する。このとき、有段変速制御手段54は、例えば図2に示す係合表に従って変速段が達成されるように切換クラッチC0および切換ブレーキB0を除いた油圧式摩擦係合装置を係合および/または解放させる指令(変速出力指令)を油圧制御回路42へ出力する。なお、アクセル開度Accと自動変速部20の要求出力トルクTOUT(図7の縦軸)とはアクセル開度Accが大きくなるほどそれに応じて上記要求出力トルクTOUTも大きくなる対応関係にあることから、図7の変速線図の縦軸はアクセル開度Accであっても差し支えない。 FIG. 6 is a functional block diagram illustrating the main part of the control function by the electronic control unit 40. In FIG. 6, the stepped shift control unit 54 functions as a shift control unit that shifts the automatic transmission unit 20. For example, the stepped shift control means 54 determines the vehicle speed V and the required output torque T OUT of the automatic transmission unit 20 from the relationship (shift diagram, shift map) shown in FIG. Based on the vehicle state indicated by the above, it is determined whether or not the shift of the automatic transmission unit 20 should be executed, that is, the shift stage of the automatic transmission unit 20 to be shifted is determined, and the determined shift stage is obtained. Shifting of the automatic transmission unit 20 is executed. At this time, the stepped shift control means 54 engages and / or engages the hydraulic friction engagement device excluding the switching clutch C0 and the switching brake B0 so that the shift stage is achieved according to the engagement table shown in FIG. A release command (shift output command) is output to the hydraulic control circuit 42. The accelerator opening Acc and the required output torque T OUT (vertical axis in FIG. 7) of the automatic transmission unit 20 have a correspondence relationship in which the required output torque T OUT increases in accordance with the increase in the accelerator opening Acc. Therefore, the vertical axis of the shift diagram in FIG. 7 may be the accelerator opening Acc.

ハイブリッド制御手段52は、動力伝達装置10の前記無段変速状態すなわち差動部11の差動状態においてエンジン8を効率のよい作動域で作動させる一方で、エンジン8と第2電動機M2との駆動力の配分や第1電動機M1の発電による反力を最適になるように変化させて差動部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速において、運転者の出力要求量としてのアクセルペダル操作量(アクセル開度)Accや車速Vから車両の目標(要求)出力を算出し、車両の目標出力と充電要求値から必要なトータル目標出力を算出し、そのトータル目標出力が得られるように伝達損失、補機負荷、第2電動機M2のアシストトルク等を考慮して目標エンジン出力を算出し、その目標エンジン出力が得られるエンジン回転速度NeとエンジントルクTeとなるようにエンジン8を制御するとともに第1電動機M1の発電量を制御する。   The hybrid control means 52 operates the engine 8 in an efficient operating range in the continuously variable transmission state of the power transmission device 10, that is, the differential state of the differential unit 11, while driving the engine 8 and the second electric motor M2. The transmission ratio γ0 of the differential unit 11 as an electric continuously variable transmission is controlled by changing the force distribution and the reaction force generated by the first motor M1 so as to be optimized. For example, at the traveling vehicle speed at that time, the vehicle target (request) output is calculated from the accelerator pedal operation amount (accelerator opening) Acc and the vehicle speed V as the driver output request amount, and the vehicle target output and the charge request value are calculated. To calculate the required total target output, calculate the target engine output in consideration of transmission loss, auxiliary load, assist torque of the second electric motor M2, etc. so that the total target output can be obtained. The engine 8 is controlled so that the obtained engine rotational speed Ne and engine torque Te are obtained, and the power generation amount of the first electric motor M1 is controlled.

ハイブリッド制御手段52は、その制御を動力性能や燃費向上などのために自動変速部20の変速段を考慮して実行する。このようなハイブリッド制御では、エンジン8を効率のよい作動域で作動させるために定まるエンジン回転速度Neと車速Vおよび自動変速部20の変速段で定まる伝達部材18の回転速度とを整合させるために、差動部11が電気的な無段変速機として機能させられる。すなわち、ハイブリッド制御手段52は、例えば図8に示すようなエンジン回転速度Neとエンジン8の出力トルク(エンジントルク)Teとをパラメータとする二次元座標内において無段変速走行の時に運転性と燃費性とを両立するように予め実験的に定められたエンジン8の動作曲線の一種である最適燃費率曲線LEF(燃費マップ、関係)を予め記憶しており、その最適燃費率曲線LEFにエンジン8の動作点PEG(以下、「エンジン動作点PEG」と表す)が沿わされつつエンジン8が作動させられるように、例えば目標出力(トータル目標出力、要求駆動力)を充足するために必要なエンジン出力を発生するためのエンジントルクTeとエンジン回転速度Neとなるように動力伝達装置10のトータル変速比γTの目標値を定め、その目標値が得られるように第1電動機M1の出力トルクTM1(以下、「第1電動機トルクTM1」と表す)をフィードバック制御により変化させて差動部11(動力分配機構16)の変速比γ0を制御し、トータル変速比γTをその変速可能な変化範囲内例えば13〜0.5の範囲内で制御する。ここで、上記エンジン動作点PEGとは、エンジン回転速度Ne及びエンジントルクTeなどで例示されるエンジン8の動作状態を示す状態量を座標軸とした二次元座標においてエンジン8の動作状態を示す動作点である。 The hybrid control means 52 executes the control in consideration of the gear position of the automatic transmission unit 20 for improving power performance and fuel consumption. In such hybrid control, in order to match the engine rotational speed Ne determined for operating the engine 8 in an efficient operating range with the rotational speed of the transmission member 18 determined by the vehicle speed V and the gear position of the automatic transmission unit 20. The differential unit 11 is caused to function as an electric continuously variable transmission. In other words, the hybrid control means 52 performs drivability and fuel consumption during continuously variable speed travel in two-dimensional coordinates with the engine rotational speed Ne and the output torque (engine torque) Te of the engine 8 as parameters, for example, as shown in FIG. The optimum fuel consumption rate curve L EF (fuel consumption map, relationship), which is a kind of the operating curve of the engine 8 that has been experimentally determined in advance so as to balance the performance, is stored in advance, and the optimum fuel consumption rate curve L EF To satisfy the target output (total target output, required driving force), for example, so that the engine 8 can be operated while the operating point P EG of the engine 8 (hereinafter referred to as “engine operating point P EG ”) is being met. The target value of the total gear ratio γT of the power transmission device 10 is determined so that the engine torque Te and the engine speed Ne for generating the necessary engine output are obtained, The output torque T M1 (hereinafter, referred to as “first motor torque T M1 ”) of the first electric motor M1 is changed by feedback control so that the target value is obtained, and the shift of the differential unit 11 (power distribution mechanism 16) is changed. The ratio γ0 is controlled, and the total speed ratio γT is controlled within the changeable range, for example, 13 to 0.5. Here, the engine operating point P EG is an operation indicating the operating state of the engine 8 in a two-dimensional coordinate with a state quantity indicating the operating state of the engine 8 exemplified by the engine rotational speed Ne and the engine torque Te as coordinate axes. Is a point.

このとき、ハイブリッド制御手段52は、第1電動機M1により発電された電気エネルギをインバータ58を通して蓄電装置60や第2電動機M2へ供給するので、エンジン8の動力の主要部は機械的に伝達部材18へ伝達されるが、エンジン8の動力の一部は第1電動機M1の発電のために消費されてそこで電気エネルギに変換され、インバータ58を通してその電気エネルギが第2電動機M2へ供給され、その第2電動機M2が駆動されて第2電動機M2から伝達部材18へ伝達される。この電気エネルギの発生から第2電動機M2で消費されるまでに関連する機器により、エンジン8の動力の一部を電気エネルギに変換し、その電気エネルギを機械的エネルギに変換するまでの電気パスが構成される。   At this time, the hybrid control means 52 supplies the electric energy generated by the first electric motor M1 to the power storage device 60 and the second electric motor M2 through the inverter 58, so that the main part of the power of the engine 8 is mechanically transmitted. However, a part of the motive power of the engine 8 is consumed for power generation of the first electric motor M1 and converted into electric energy there, and the electric energy is supplied to the second electric motor M2 through the inverter 58. The second electric motor M2 is driven and transmitted from the second electric motor M2 to the transmission member 18. An electric path from conversion of a part of the power of the engine 8 into electric energy and conversion of the electric energy into mechanical energy by a device related from the generation of the electric energy to consumption by the second electric motor M2 Composed.

ハイブリッド制御手段52は、スロットル制御のためにスロットルアクチュエータ97により電子スロットル弁96を開閉制御させる他、燃料噴射制御のために燃料噴射装置98による燃料噴射量や噴射時期を制御させ、点火時期制御のためにイグナイタ等の点火装置99による点火時期を制御させる指令を単独で或いは組み合わせてエンジン出力制御装置43に出力して必要なエンジン出力を発生するようにエンジン8の出力制御を実行するエンジン出力制御手段を機能的に備えている。例えば、ハイブリッド制御手段52は、基本的には図示しない予め記憶された関係からアクセル開度信号Accに基づいてスロットルアクチュエータ97を駆動し、アクセル開度Accが増加するほどスロットル弁開度θTHを増加させるようにスロットル制御を実行する。 The hybrid control means 52 controls opening and closing of the electronic throttle valve 96 by the throttle actuator 97 for throttle control, and also controls the fuel injection amount and injection timing by the fuel injection device 98 for fuel injection control, and controls the ignition timing control. Therefore, an engine output control for executing the output control of the engine 8 so as to generate a necessary engine output by outputting to the engine output control device 43 a command for controlling the ignition timing by the ignition device 99 such as an igniter alone or in combination. Means are provided functionally. For example, the hybrid controller 52 basically drives the throttle actuator 97 based on the accelerator opening signal Acc from a previously stored relationship (not shown), and increases the throttle valve opening θ TH as the accelerator opening Acc increases. Execute throttle control to increase.

前記図7の実線Aは、車両の発進/走行用(以下、走行用という)の駆動力源をエンジン8と電動機例えば第2電動機M2とで切り換えるための、言い換えればエンジン8を走行用の駆動力源として車両を発進/走行(以下、走行という)させる所謂エンジン走行と第2電動機M2を走行用の駆動力源として車両を走行させる所謂モータ走行とを切り換えるための、エンジン走行領域とモータ走行領域との境界線である。この図7に示すエンジン走行とモータ走行とを切り換えるための境界線(実線A)を有する予め記憶された関係は、車速Vと駆動力関連値である出力トルクTOUTとをパラメータとする二次元座標で構成された駆動力源切換線図(駆動力源マップ)の一例である。この駆動力源切換線図は、例えば同じ図7中の実線および一点鎖線に示す変速線図(変速マップ)と共に記憶手段56に予め記憶されている。 The solid line A in FIG. 7 indicates that the driving force source for starting / running the vehicle (hereinafter referred to as running) is switched between the engine 8 and the electric motor, for example, the second electric motor M2, in other words, driving the engine 8 for running. Engine running region and motor running for switching between so-called engine running for starting / running (hereinafter referred to as running) the vehicle as a power source and so-called motor running for running the vehicle using the second electric motor M2 as a driving power source for running. This is the boundary line with the region. The pre-stored relationship having a boundary line (solid line A) for switching between engine running and motor running shown in FIG. 7 is a two-dimensional parameter using vehicle speed V and output torque T OUT as a driving force related value as parameters. It is an example of the driving force source switching diagram (driving force source map) comprised by the coordinate. This driving force source switching diagram is stored in advance in the storage means 56 together with a shift diagram (shift map) indicated by, for example, the solid line and the alternate long and short dash line in FIG.

そして、ハイブリッド制御手段52は、例えば図7の駆動力源切換線図から車速Vと要求出力トルクTOUTとで示される車両状態に基づいてモータ走行領域とエンジン走行領域との何れであるかを判断してモータ走行或いはエンジン走行を実行する。このように、ハイブリッド制御手段52によるモータ走行は、図7から明らかなように一般的にエンジン効率が高トルク域に比較して悪いとされる比較的低出力トルクTOUT時すなわち低エンジントルクTe時、或いは車速Vの比較的低車速時すなわち低負荷域で実行される。 Then, the hybrid control means 52 determines whether the motor travel region or the engine travel region is based on the vehicle state indicated by the vehicle speed V and the required output torque T OUT from the driving force source switching diagram of FIG. Judgment is made and motor running or engine running is executed. As described above, the motor running by the hybrid control means 52 is, as is apparent from FIG. 7, generally performed at a relatively low output torque T OUT where the engine efficiency is poor compared to the high torque range, that is, the low engine torque Te. Or when the vehicle speed V is relatively low, that is, in a low load range.

ハイブリッド制御手段52は、このモータ走行時には、停止しているエンジン8の引き摺りを抑制して燃費を向上させるために、差動部11の電気的CVT機能(差動作用)によって、第1電動機回転速度NM1を負の回転速度で制御例えば空転させて、差動部11の差動作用によりエンジン回転速度Neを零乃至略零に維持する。 The hybrid control means 52 rotates the first electric motor by the electric CVT function (differential action) of the differential section 11 in order to suppress dragging of the stopped engine 8 and improve fuel consumption during the motor running. The speed NM1 is controlled at a negative rotational speed, for example, idling, and the engine rotational speed Ne is maintained at zero or substantially zero by the differential action of the differential section 11.

ハイブリッド制御手段52は、エンジン走行とモータ走行とを切り換えるために、エンジン8の作動状態を運転状態と停止状態との間で切り換える、すなわちエンジン8の始動および停止を行うエンジン始動停止制御手段66を備えている。このエンジン始動停止制御手段66は、ハイブリッド制御手段52により例えば図7の駆動力源切換線図から車両状態に基づいてモータ走行とエンジン走行と切換えが判断された場合に、エンジン8の始動または停止を実行する。   The hybrid control means 52 switches an engine start / stop control means 66 for switching the operation state of the engine 8 between the operation state and the stop state, that is, for starting and stopping the engine 8 in order to switch between engine travel and motor travel. I have. The engine start / stop control means 66 starts or stops the engine 8 when the hybrid control means 52 determines, for example, switching between motor travel and engine travel based on the vehicle state from the driving force source switching diagram of FIG. Execute.

例えば、エンジン始動停止制御手段66は、図7の実線Bの点a→点bに示すように、アクセルペダル41が踏込操作されて要求出力トルクTOUTが大きくなり車両状態がモータ走行領域からエンジン走行領域へ変化した場合には、第1電動機M1に通電して第1電動機回転速度NM1を引き上げることで、すなわち第1電動機M1をスタータとして機能させることで、エンジン回転速度Neを引き上げ、所定のエンジン回転速度Ne’例えば自律回転可能なエンジン回転速度Neで点火装置99により点火させるようにエンジン8の始動を行って、ハイブリッド制御手段52によるモータ走行からエンジン走行へ切り換える。このとき、エンジン始動停止制御手段66は、第1電動機回転速度NM1を速やかに引き上げることでエンジン回転速度Neを速やかに所定のエンジン回転速度Ne’まで引き上げてもよい。これにより、良く知られたアイドル回転速度Ne_idl以下のエンジン回転速度領域における共振領域を速やかに回避できて始動時の振動が抑制される。 For example, the engine start / stop control means 66, as indicated by the point a → the point b of the solid line B in FIG. 7, the accelerator pedal 41 is depressed to increase the required output torque T OUT and the vehicle state changes from the motor travel region to the engine. when the changes to the running region, by raising the first electric motor speed N M1 is energized to the first electric motor M1, i.e. it to function first electric motor M1 as a starter, raising the engine rotational speed Ne, a predetermined The engine 8 is started so as to be ignited by the ignition device 99 at an engine rotation speed Ne ′, for example, an engine rotation speed Ne capable of autonomous rotation, and the hybrid vehicle driving means 52 switches from motor driving to engine driving. At this time, engine start stop control means 66 may pull the engine rotational speed Ne up quickly predetermined engine rotational speed Ne 'by raising the first electric motor speed N M1 quickly. Thereby, the resonance region in the engine rotation speed region below the well-known idle rotation speed Ne_idl can be quickly avoided, and the vibration at the start is suppressed.

また、エンジン始動停止制御手段66は、図7の実線Bの点b→点aに示すように、アクセルペダル41が戻されて要求出力トルクTOUTが小さくなり車両状態がエンジン走行領域からモータ走行領域へ変化した場合には、燃料噴射装置98により燃料供給を停止させるように、すなわちフューエルカットによりエンジン8の停止を行って、ハイブリッド制御手段52によるエンジン走行からモータ走行へ切り換える。このとき、エンジン始動停止制御手段66は、第1電動機回転速度NM1を速やかに引き下げることでエンジン回転速度Neを速やかに零乃至略零まで引き下げてもよい。これにより、上記共振領域を速やかに回避できて停止時の振動が抑制される。或いは、エンジン始動停止制御手段66は、フューエルカットより先に、第1電動機回転速度NM1を引き下げてエンジン回転速度Neを引き下げ、所定のエンジン回転速度Ne’でフューエルカットするようにエンジン8の停止を行ってもよい。 Further, the engine start / stop control means 66, as indicated by the point b → point a of the solid line B in FIG. 7, the accelerator pedal 41 is returned to reduce the required output torque T OUT and the vehicle state changes from the engine travel region to the motor travel. In the case of changing to the region, the fuel supply is stopped by the fuel injection device 98, that is, the engine 8 is stopped by fuel cut, and the engine traveling by the hybrid control means 52 is switched to the motor traveling. At this time, engine start stop control means 66 may lower the engine rotational speed Ne up quickly zeroed or nearly zeroed by lowering the first electric motor speed N M1 quickly. As a result, the resonance region can be quickly avoided, and vibration during stoppage is suppressed. Alternatively, engine start stop control means 66, before the fuel cut lower the engine rotational speed Ne by pulling down the first electric motor speed N M1, stopping of the engine 8 so as to fuel cut at a predetermined engine rotational speed Ne ' May be performed.

また、ハイブリッド制御手段52は、エンジン走行領域であっても、上述した電気パスによる第1電動機M1からの電気エネルギおよび/または蓄電装置60からの電気エネルギを第2電動機M2へ供給し、その第2電動機M2を駆動してエンジン8の動力を補助するトルクアシストが可能である。よって、本実施例ではエンジン8と第2電動機M2との両方を走行用の駆動力源とする車両の走行はモータ走行ではなくエンジン走行に含まれるものとする。   Further, even in the engine travel region, the hybrid control means 52 supplies the second motor M2 with the electric energy from the first electric motor M1 and / or the electric energy from the power storage device 60 by the electric path described above. 2 Torque assist that assists the power of the engine 8 by driving the electric motor M2 is possible. Therefore, in the present embodiment, the traveling of the vehicle using both the engine 8 and the second electric motor M2 as a driving force source for traveling is included in the engine traveling instead of the motor traveling.

また、ハイブリッド制御手段52は、車両の停止状態又は低車速状態に拘わらず、差動部11の電気的CVT機能によってエンジン8の運転状態を維持させることができる。例えば、車両停止時に蓄電装置60の充電残量SOCが低下して第1電動機M1による発電が必要となった場合には、エンジン8の動力により第1電動機M1が発電させられてその第1電動機M1の回転速度が引き上げられ、車速Vで一意的に決められる第2電動機回転速度NM2が車両停止状態により零(略零)となっても動力分配機構16の差動作用によってエンジン回転速度Neが自律回転可能な回転速度以上に維持される。 Further, the hybrid control means 52 can maintain the operating state of the engine 8 by the electric CVT function of the differential section 11 regardless of whether the vehicle is stopped or at a low vehicle speed. For example, when the remaining charge SOC of the power storage device 60 decreases when the vehicle is stopped and the first motor M1 needs to generate power, the first motor M1 is generated by the power of the engine 8 and the first motor is generated. Even if the rotation speed of M1 is increased and the second motor rotation speed N M2 uniquely determined by the vehicle speed V becomes zero (substantially zero) when the vehicle is stopped, the engine rotation speed Ne is caused by the differential action of the power distribution mechanism 16. Is maintained at a speed higher than the autonomous rotation speed.

また、ハイブリッド制御手段52は、車両の停止中又は走行中に拘わらず、差動部11の電気的CVT機能によって第1電動機回転速度NM1および/または第2電動機回転速度NM2を制御してエンジン回転速度Neを任意の回転速度に維持させられる。例えば、図3の共線図からもわかるようにハイブリッド制御手段52はエンジン回転速度Neを引き上げる場合には、車速Vに拘束される第2電動機回転速度NM2を略一定に維持しつつ第1電動機回転速度NM1の引き上げを実行する。 Further, the hybrid control means 52 controls the first motor rotation speed N M1 and / or the second motor rotation speed N M2 by the electric CVT function of the differential section 11 regardless of whether the vehicle is stopped or traveling. The engine rotation speed Ne can be maintained at an arbitrary rotation speed. For example, as can be seen from the alignment chart of FIG. 3, when the engine speed Ne is increased, the hybrid control means 52 maintains the second motor speed NM2 restricted by the vehicle speed V while maintaining the first motor speed N M2 substantially constant. The motor rotation speed NM1 is increased.

増速側ギヤ段判定手段62は、動力伝達装置10を有段変速状態とする際に切換クラッチC0および切換ブレーキB0のいずれを係合させるかを判定するために、例えば車両状態に基づいて記憶手段56に予め記憶された前記図7に示す変速線図に従って動力伝達装置10の変速されるべき変速段が増速側ギヤ段例えば第5速ギヤ段であるか否かを判定する。   The speed-increasing gear stage determining means 62 stores, for example, based on the vehicle state in order to determine which of the switching clutch C0 and the switching brake B0 is to be engaged when the power transmission device 10 is in the stepped shift state. In accordance with the shift diagram shown in FIG. 7 stored in advance in the means 56, it is determined whether or not the gear position to be shifted of the power transmission device 10 is the speed increasing side gear stage, for example, the fifth speed gear stage.

切換制御手段50は、車両状態に基づいて前記差動状態切換装置(切換クラッチC0、切換ブレーキB0)の係合/解放を切り換えることにより、前記無段変速状態と前記有段変速状態とを、すなわち前記差動状態と前記ロック状態とを選択的に切り換える。例えば、切換制御手段50は、記憶手段56に予め記憶された前記図7の破線および二点鎖線に示す関係(切換線図、切換マップ)から車速Vおよび要求出力トルクTOUTで示される車両状態に基づいて、動力伝達装置10(差動部11)の変速状態を切り換えるべきか否かを判断して、すなわち動力伝達装置10を無段変速状態とする無段制御領域内であるか或いは動力伝達装置10を有段変速状態とする有段制御領域内であるかを判定することにより動力伝達装置10の切り換えるべき変速状態を判断して、動力伝達装置10を前記無段変速状態と前記有段変速状態とのいずれかに選択的に切り換える変速状態の切換えを実行する。 The switching control means 50 switches between the continuously variable transmission state and the stepped transmission state by switching engagement / release of the differential state switching device (switching clutch C0, switching brake B0) based on the vehicle state. That is, the differential state and the lock state are selectively switched. For example, the switching control means 50 is a vehicle state indicated by the vehicle speed V and the required output torque T OUT based on the relationship (switching diagram, switching map) shown in FIG. Based on the above, it is determined whether or not the speed change state of the power transmission device 10 (differential unit 11) should be switched, that is, the power transmission device 10 is in a continuously variable control region where the power transmission device 10 is in a continuously variable speed change state or power. By determining whether the transmission device 10 is in the stepped control region where the stepped gear shift state is set, the shift state of the power transmission device 10 to be switched is determined, and the power transmission device 10 is switched between the stepless shift state and the stepped shift state. The shift state is selectively switched to either the step shift state.

具体的には、切換制御手段50は有段変速制御領域内であると判定した場合は、ハイブリッド制御手段52に対してハイブリッド制御或いは無段変速制御を不許可すなわち禁止とする信号を出力するとともに、有段変速制御手段54に対しては、予め設定された有段変速時の変速を許可する。このときの有段変速制御手段54は、記憶手段56に予め記憶された例えば図7に示す変速線図に従って自動変速部20の自動変速を実行する。例えば記憶手段56に予め記憶された図2は、このときの変速において選択される油圧式摩擦係合装置すなわちC0、C1、C2、B0、B1、B2、B3の作動の組み合わせを示している。すなわち、動力伝達装置10全体すなわち差動部11および自動変速部20が所謂有段式自動変速機として機能し、図2に示す係合表に従って変速段が達成される。   Specifically, when it is determined that the switching control means 50 is within the stepped shift control region, the hybrid control means 52 outputs a signal that disables or prohibits the hybrid control or continuously variable shift control. The step-variable shift control means 54 is allowed to shift at a preset step-change. At this time, the stepped shift control means 54 executes the automatic shift of the automatic transmission unit 20 in accordance with, for example, the shift diagram shown in FIG. For example, FIG. 2 preliminarily stored in the storage means 56 shows a combination of operations of the hydraulic friction engagement devices, that is, C0, C1, C2, B0, B1, B2, and B3 that are selected in the shifting at this time. That is, the entire power transmission device 10, that is, the differential unit 11 and the automatic transmission unit 20 function as a so-called stepped automatic transmission, and the gear stage is achieved according to the engagement table shown in FIG.

例えば、増速側ギヤ段判定手段62により第5速ギヤ段が判定される場合には、動力伝達装置10全体として変速比が1.0より小さな増速側ギヤ段所謂オーバードライブギヤ段が得られるために切換制御手段50は差動部11が固定の変速比γ0例えば変速比γ0が0.7の副変速機として機能させられるように切換クラッチC0を解放させ且つ切換ブレーキB0を係合させる指令を油圧制御回路42へ出力する。また、増速側ギヤ段判定手段62により第5速ギヤ段でないと判定される場合には、動力伝達装置10全体として変速比が1.0以上の減速側ギヤ段が得られるために切換制御手段50は差動部11が固定の変速比γ0例えば変速比γ0が1の副変速機として機能させられるように切換クラッチC0を係合させ且つ切換ブレーキB0を解放させる指令を油圧制御回路42へ出力する。このように、切換制御手段50によって動力伝達装置10が有段変速状態に切り換えられるとともに、その有段変速状態における2種類の変速段のいずれかとなるように選択的に切り換えられて、差動部11が副変速機として機能させられ、それに直列の自動変速部20が有段変速機として機能することにより、動力伝達装置10全体が所謂有段式自動変速機として機能させられる。   For example, when the fifth speed gear stage is determined by the acceleration side gear stage determination means 62, the so-called overdrive gear stage in which the speed ratio is smaller than 1.0 is obtained for the entire power transmission device 10. Therefore, the switching control means 50 releases the switching clutch C0 and engages the switching brake B0 so that the differential unit 11 can function as a sub-transmission having a fixed gear ratio γ0, for example, a gear ratio γ0 of 0.7. The command is output to the hydraulic control circuit 42. Further, when it is determined by the acceleration side gear stage determination means 62 that it is not the fifth speed gear stage, the switching control is performed in order to obtain a reduction side gear stage having a gear ratio of 1.0 or more as the entire power transmission device 10. The means 50 instructs the hydraulic control circuit 42 to engage the switching clutch C0 and release the switching brake B0 so that the differential unit 11 can function as a sub-transmission with a fixed gear ratio γ0, for example, a gear ratio γ0 of 1. Output. As described above, the power transmission device 10 is switched to the stepped shift state by the switching control means 50, and is selectively switched to be one of the two types of shift steps in the stepped shift state. 11 is made to function as a sub-transmission, and the automatic transmission unit 20 in series with it functions as a stepped transmission, whereby the entire power transmission device 10 is made to function as a so-called stepped automatic transmission.

しかし、切換制御手段50は、動力伝達装置10を無段変速状態に切り換える無段変速制御領域内であると判定した場合は、動力伝達装置10全体として無段変速状態が得られるために差動部11を無段変速状態として無段変速可能とするように切換クラッチC0および切換ブレーキB0を解放させる指令を油圧制御回路42へ出力する。同時に、ハイブリッド制御手段52に対してハイブリッド制御を許可する信号を出力するとともに、有段変速制御手段54には、予め設定された無段変速時の変速段に固定する信号を出力するか、或いは記憶手段56に予め記憶された例えば図7に示す変速線図に従って自動変速部20を自動変速することを許可する信号を出力する。この場合、有段変速制御手段54により、図2の係合表内において切換クラッチC0および切換ブレーキB0の係合を除いた作動により自動変速が行われる。このように、切換制御手段50により無段変速状態に切り換えられた差動部11が無段変速機として機能し、それに直列の自動変速部20が有段変速機として機能することにより、適切な大きさの駆動力が得られると同時に、自動変速部20の第1速、第2速、第3速、第4速の各ギヤ段に対しその自動変速部20に入力される回転速度すなわち伝達部材18の回転速度が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって動力伝達装置10全体として無段変速状態となりトータル変速比γTが無段階に得られるようになる。   However, if the switching control means 50 determines that it is within the continuously variable transmission control region for switching the power transmission device 10 to the continuously variable transmission state, the power transmission device 10 as a whole can obtain the continuously variable transmission state. A command for releasing the switching clutch C0 and the switching brake B0 is output to the hydraulic control circuit 42 so that the section 11 is in a continuously variable transmission state and can be continuously variable. At the same time, a signal for permitting hybrid control is output to the hybrid control means 52, and a signal for fixing to a preset gear position at the time of continuously variable transmission is output to the stepped shift control means 54, or For example, a signal for permitting automatic shifting of the automatic transmission unit 20 is output in accordance with the shift diagram shown in FIG. In this case, the stepped shift control means 54 performs an automatic shift by an operation excluding the engagement of the switching clutch C0 and the switching brake B0 in the engagement table of FIG. Thus, the differential unit 11 switched to the continuously variable transmission state by the switching control means 50 functions as a continuously variable transmission, and the automatic transmission unit 20 in series with the differential unit 11 functions as a stepped transmission. At the same time that a large driving force is obtained, the rotational speed input to the automatic transmission unit 20 for each of the first speed, the second speed, the third speed, and the fourth speed of the automatic transmission unit 20, that is, transmission The rotational speed of the member 18 is changed steplessly, and each gear stage can obtain a stepless speed ratio width. Therefore, the gear ratio between the gears is continuously variable and the power transmission device 10 as a whole is in a continuously variable transmission state, and the total gear ratio γT can be obtained continuously.

ここで前記図7について詳述すると、図7は自動変速部20の変速判断の基となる記憶手段56に予め記憶された関係(変速線図、変速マップ)であり、車速Vと駆動力関連値である要求出力トルクTOUTとをパラメータとする二次元座標で構成された変速線図の一例である。図7の実線はアップシフト線であり一点鎖線はダウンシフト線である。 Here, FIG. 7 will be described in detail. FIG. 7 is a relationship (shift diagram, shift map) stored in advance in the storage means 56 that is the basis of the shift determination of the automatic transmission unit 20, and relates to vehicle speed V and driving force. FIG. 5 is an example of a shift diagram composed of two-dimensional coordinates using a required output torque T OUT as a parameter. The solid line in FIG. 7 is an upshift line, and the alternate long and short dash line is a downshift line.

また、図7の破線は切換制御手段50による有段制御領域と無段制御領域との判定のための判定車速V1および判定出力トルクT1を示している。つまり、図7の破線はハイブリッド車両の高速走行を判定するための予め設定された高速走行判定値である判定車速V1の連なりである高車速判定線と、ハイブリッド車両の駆動力に関連する駆動力関連値例えば自動変速部20の出力トルクTOUTが高出力となる高出力走行を判定するための予め設定された高出力走行判定値である判定出力トルクT1の連なりである高出力走行判定線とを示している。さらに、図7の破線に対して二点鎖線に示すように有段制御領域と無段制御領域との判定にヒステリシスが設けられている。つまり、この図7は判定車速V1および判定出力トルクT1を含む、車速Vと出力トルクTOUTとをパラメータとして切換制御手段50により有段制御領域と無段制御領域とのいずれであるかを領域判定するための予め記憶された切換線図(切換マップ、関係)である。なお、この切換線図を含めて変速マップとして記憶手段56に予め記憶されてもよい。また、この切換線図は判定車速V1および判定出力トルクT1の少なくとも1つを含むものであってもよいし、車速Vおよび出力トルクTOUTの何れかをパラメータとする予め記憶された切換線であってもよい。 7 indicates the determination vehicle speed V1 and the determination output torque T1 for determining the stepped control region and the stepless control region by the switching control means 50. That is, the broken line in FIG. 7 indicates a high vehicle speed determination line that is a series of determination vehicle speeds V1 that are preset high-speed traveling determination values for determining high-speed traveling of the hybrid vehicle, and a driving force related to the driving force of the hybrid vehicle. For example, a high output travel determination line that is a series of determination output torque T1 that is a preset high output travel determination value for determining high output travel in which the output torque T OUT of the automatic transmission unit 20 is high output. Is shown. Further, as indicated by a two-dot chain line with respect to the broken line in FIG. 7, hysteresis is provided for the determination of the stepped control region and the stepless control region. In other words, the area or FIG. 7 includes a vehicle-speed limit V1 and the upper output torque T1, which one of the step-variable control region and the continuously variable control region by switching control means 50 and an output torque T OUT with the vehicle speed V as a parameter It is the switching diagram (switching map, relationship) memorize | stored beforehand for determination. In addition, you may memorize | store in the memory | storage means 56 previously as a shift map including this switching diagram. Further, this switching diagram may include at least one of the determination vehicle speed V1 and the determination output torque T1, or is a switching line stored in advance using either the vehicle speed V or the output torque T OUT as a parameter. There may be.

上記変速線図、切換線図、或いは駆動力源切換線図等は、マップとしてではなく実際の車速Vと判定車速V1とを比較する判定式、出力トルクTOUTと判定出力トルクT1とを比較する判定式等として記憶されてもよい。この場合には、切換制御手段50は、車両状態例えば実際の車速が判定車速V1を越えたときに動力伝達装置10を有段変速状態とする。また、切換制御手段50は、車両状態例えば自動変速部20の出力トルクTOUTが判定出力トルクT1を越えたときに動力伝達装置10を有段変速状態とする。 The shift diagram, the switching diagram, or the driving force source switching diagram is not a map but a judgment formula for comparing the actual vehicle speed V with the judgment vehicle speed V1, and comparing the output torque T OUT with the judgment output torque T1. May be stored as a determination formula or the like. In this case, the switching control means 50 sets the power transmission device 10 to the stepped speed change state when the vehicle state, for example, the actual vehicle speed exceeds the determination vehicle speed V1. Further, the switching control means 50 places the power transmission device 10 in the stepped gear shift state when the vehicle state, for example, the output torque T OUT of the automatic transmission unit 20 exceeds the determination output torque T1.

また、差動部11を電気的な無段変速機として作動させるための電動機等の電気系の制御機器の故障や機能低下時、例えば第1電動機M1における電気エネルギの発生からその電気エネルギが機械的エネルギに変換されるまでの電気パスに関連する機器の機能低下すなわち第1電動機M1、第2電動機M2、インバータ58、蓄電装置60、それらを接続する伝送路などの故障(フェイル)や、故障とか低温による機能低下が発生したような車両状態となる場合には、無段制御領域であっても車両走行を確保するために切換制御手段50は動力伝達装置10を優先的に有段変速状態としてもよい。   In addition, when the control unit of an electric system such as an electric motor for operating the differential unit 11 as an electric continuously variable transmission is malfunctioning or deteriorated, for example, the electric energy is generated from the generation of electric energy in the first electric motor M1. Degradation of equipment related to the electrical path until it is converted into dynamic energy, that is, failure (failure) of the first electric motor M1, the second electric motor M2, the inverter 58, the power storage device 60, the transmission line connecting them, etc. When the vehicle state is such that a function deterioration due to low temperature occurs, the switching control means 50 preferentially places the power transmission device 10 in the stepped shift state in order to ensure vehicle travel even in the continuously variable control region. It is good.

前記駆動力関連値とは、車両の駆動力に1対1に対応するパラメータであって、駆動輪38での駆動トルク或いは駆動力のみならず、例えば自動変速部20の出力トルクTOUT、エンジントルクTe、車両加速度や、例えばアクセル開度或いはスロットル弁開度θTH(或いは吸入空気量、空燃比、燃料噴射量)とエンジン回転速度Neとに基づいて算出されるエンジントルクTeなどの実際値や、運転者のアクセルペダル操作量或いはスロットル開度等に基づいて算出される要求(目標)エンジントルクTe、自動変速部20の要求(目標)出力トルクTOUT、要求駆動力等の推定値であってもよい。また、上記駆動トルクは出力トルクTOUT等からデフ比、駆動輪38の半径等を考慮して算出されてもよいし、例えばトルクセンサ等によって直接検出されてもよい。上記他の各トルク等も同様である。 The driving force-related value is a parameter corresponding to the driving force of the vehicle on a one-to-one basis, and is not only the driving torque or driving force at the driving wheels 38, but also, for example, the output torque T OUT of the automatic transmission unit 20, engine Actual values such as torque Te, vehicle acceleration, and engine torque Te calculated based on, for example, accelerator opening or throttle valve opening θ TH (or intake air amount, air-fuel ratio, fuel injection amount) and engine speed Ne Or a request (target) engine torque Te calculated based on a driver's accelerator pedal operation amount or throttle opening, a request (target) output torque T OUT of the automatic transmission unit 20, an estimated value such as a required driving force. There may be. The driving torque may be calculated from the output torque T OUT or the like in consideration of the differential ratio, the radius of the driving wheel 38, or may be directly detected by, for example, a torque sensor or the like. The same applies to the other torques described above.

また、例えば判定車速V1は、高速走行において動力伝達装置10が無段変速状態とされるとかえって燃費が悪化するのを抑制するように、その高速走行において動力伝達装置10が有段変速状態とされるように設定されている。また、判定トルクT1は、車両の高出力走行において第1電動機M1の反力トルクをエンジンの高出力域まで対応させないで第1電動機M1を小型化するために、例えば第1電動機M1からの電気エネルギの最大出力を小さくして配設可能とされた第1電動機M1の特性に応じて設定されている。   Further, for example, the determination vehicle speed V1 is set so that the power transmission device 10 is in the stepped speed change state at the high speed so that the fuel consumption is prevented from deteriorating when the power transmission device 10 is in the stepless speed change state at the high speed travel. Is set to be. The determination torque T1 is, for example, an electric power from the first electric motor M1 in order to reduce the size of the first electric motor M1 without causing the reaction torque of the first electric motor M1 to correspond to the high output range of the engine in the high output traveling of the vehicle. It is set in accordance with the characteristics of the first electric motor M1 that can be disposed with a reduced maximum energy output.

図7の関係に示されるように、出力トルクTOUTが予め設定された判定出力トルクT1以上の高トルク領域、或いは車速Vが予め設定された判定車速V1以上の高車速領域が有段制御領域として設定されているので、有段変速走行がエンジン8の比較的高トルクとなる高駆動トルク時、或いは車速の比較的高車速時において実行され、無段変速走行がエンジン8の比較的低トルクとなる低駆動トルク時、或いは車速の比較的低車速時すなわちエンジン8の常用出力域において実行されるようになっている。 As shown in the relationship of FIG. 7, the stepped control region is a high torque region where the output torque T OUT is equal to or higher than the predetermined determination output torque T1, or a high vehicle velocity region where the vehicle speed V is equal to or higher than the predetermined determination vehicle speed V1. Therefore, the step-variable traveling is executed at the time of a high driving torque at which the engine 8 has a relatively high torque or at a relatively high vehicle speed, and the continuously variable speed traveling is performed at a relatively low torque of the engine 8. The engine 8 is executed at a low driving torque or at a relatively low vehicle speed, that is, in a normal output range of the engine 8.

これによって、例えば、車両の低中速走行および低中出力走行では、動力伝達装置10が無段変速状態とされて車両の燃費性能が確保されるが、実際の車速Vが前記判定車速V1を越えるような高速走行では動力伝達装置10が有段の変速機として作動する有段変速状態とされ専ら機械的な動力伝達経路でエンジン8の出力が駆動輪38へ伝達されて電気的な無段変速機として作動させる場合に発生する動力と電気エネルギとの間の変換損失が抑制されて燃費が向上する。また、出力トルクTOUTなどの前記駆動力関連値が判定トルクT1を越えるような高出力走行では動力伝達装置10が有段の変速機として作動する有段変速状態とされ専ら機械的な動力伝達経路でエンジン8の出力が駆動輪38へ伝達されて電気的な無段変速機として作動させる領域が車両の低中速走行および低中出力走行となって、第1電動機M1が発生すべき電気的エネルギ換言すれば第1電動機M1が伝える電気的エネルギの最大値を小さくできて第1電動機M1或いはそれを含む車両の駆動装置が一層小型化される。また、他の考え方として、この高出力走行においては燃費に対する要求より運転者の駆動力に対する要求が重視されるので、無段変速状態より有段変速状態(定変速状態)に切り換えられるのである。これによって、ユーザは、例えば有段自動変速走行におけるアップシフトに伴うエンジン回転速度Neの変化すなわち変速に伴うリズミカルなエンジン回転速度Neの変化が楽しめる。 As a result, for example, when the vehicle is traveling at low to medium speed and at low to medium power, the power transmission device 10 is set to a continuously variable transmission state to ensure the fuel efficiency of the vehicle, but the actual vehicle speed V is equal to the determination vehicle speed V1. In high-speed running exceeding this, the power transmission device 10 is in a stepped speed change state in which it operates as a stepped transmission, and the output of the engine 8 is transmitted to the drive wheels 38 exclusively through a mechanical power transmission path. Conversion loss between power and electric energy generated when operating as a transmission is suppressed, and fuel efficiency is improved. Further, in high output traveling such that the driving force related value such as the output torque T OUT exceeds the determination torque T1, the power transmission device 10 is set to a stepped transmission state in which it operates as a stepped transmission, and mechanical power transmission is exclusively performed. The region in which the output of the engine 8 is transmitted to the drive wheels 38 through the route to operate as an electric continuously variable transmission is the low / medium speed travel and the low / medium power travel of the vehicle, and the first motor M1 should generate electricity. In other words, the maximum value of the electric energy transmitted by the first electric motor M1 can be reduced, and the first electric motor M1 or a vehicle driving device including the first electric motor M1 can be further downsized. As another concept, in this high-power running, the demand for the driver's driving force is more important than the demand for fuel consumption, so that the stepless speed change state is switched to the stepped speed change state (constant speed change state). Accordingly, the user can enjoy, for example, a change in the engine rotational speed Ne accompanying an upshift in stepped automatic transmission, that is, a rhythmic change in the engine rotational speed Ne accompanying a shift.

このように、本実施例の差動部11(動力伝達装置10)は無段変速状態と有段変速状態(定変速状態)とに選択的に切換え可能であって、前記切換制御手段50により車両状態に基づいて差動部11の切り換えるべき変速状態が判断され、差動部11が無段変速状態と有段変速状態とのいずれかに選択的に切り換えられる。また、本実施例では、ハイブリッド制御手段52により車両状態に基づいてモータ走行或いはエンジン走行が実行されるが、このエンジン走行とモータ走行とを切り換えるために、エンジン始動停止制御手段66によりエンジン8の始動または停止が行われる。   Thus, the differential section 11 (power transmission device 10) of this embodiment can be selectively switched between the continuously variable transmission state and the stepped transmission state (constant transmission state), and is controlled by the switching control means 50. A shift state to be switched by the differential unit 11 is determined based on the vehicle state, and the differential unit 11 is selectively switched between a continuously variable transmission state and a stepped transmission state. In this embodiment, the hybrid control means 52 executes motor travel or engine travel based on the vehicle state. In order to switch between engine travel and motor travel, the engine start / stop control means 66 controls the engine 8. Starts or stops.

エンジン走行中において切換ブレーキB0と切換クラッチC0とが解放された動力分配機構16の無段変速状態である場合には、前述したように、ハイブリッド制御手段52はエンジン8の最適燃費率曲線LEF(図8参照)にエンジン動作点PEGが沿ってエンジン8が作動するように動力分配機構16の変速比γ0を制御するが、そのためにハイブリッド制御手段52は目標エンジン回転速度決定手段68を備えており、その目標エンジン回転速度決定手段68は上記最適燃費率曲線LEF、アクセル開度Acc、車速V、および自動変速部20の変速比(変速段)などに基づきエンジン回転速度Neの目標値である目標エンジン回転速度Ne*を決定する。そして、ハイブリッド制御手段52は、エンジン回転速度Neが上記決定された目標エンジン回転速度Ne*になるようにエンジントルクTeに対抗する反力トルクである第1電動機トルクTM1を制御するフィードバック制御を実行し、第1電動機制御手段として機能する。このようにして、ハイブリッド制御手段52によってエンジン回転速度Neが目標エンジン回転速度Ne*になるように上記第1電動機(差動用電動機)M1のフィードバック制御が実行されることにより、最適燃費率曲線LEFにエンジン動作点PEGが沿ってエンジン8が作動する。ここで、第1電動機トルクTM1は上記のようにエンジン回転速度Neを目標エンジン回転速度Ne*に収束させる目的のほかエンジントルクTeを駆動輪38に伝達するためにも必要とされる反力トルクであるので、第1電動機トルクTM1は、エンジントルクTeを駆動輪38に伝達するための駆動用トルクと、エンジン回転速度Neを目標エンジン回転速度Ne*に収束させるために下記式(1)の制御式に基づくフィードバック制御により発生させられ変化させられるフィードバックトルクTFM1(以下、「第1電動機フィードバックトルクTFM1」と表す)とに分けて考えることができる。すなわち、上記第1電動機トルクTM1は上記駆動用トルクと、エンジン回転速度Neが目標エンジン回転速度Ne*と一致しているときには零になる第1電動機フィードバックトルクTFM1との和で表されると考えることができる。従って、ハイブリッド制御手段52は、第1電動機フィードバックトルクTFM1を含む第1電動機トルクTM1を下記式(1)に基づいて決定することにより、エンジン回転速度Neが目標エンジン回転速度Ne*になるように第1電動機トルクTM1を制御する前記フィードバック制御を実行すると言える。なお、下記式(1)の制御式に基づく第1電動機M1のフィードバック制御は自動変速部20の変速中にも非変速中にも実行される。

Figure 0005198127
When the power distribution mechanism 16 in which the switching brake B0 and the switching clutch C0 are disengaged while the engine is running is in the continuously variable transmission state, the hybrid control means 52 performs the optimum fuel consumption rate curve L EF of the engine 8 as described above. The gear ratio γ0 of the power distribution mechanism 16 is controlled so that the engine 8 operates along the engine operating point PEG (see FIG. 8). For this purpose, the hybrid control means 52 includes a target engine speed determination means 68. The target engine speed determining means 68 is a target value of the engine speed Ne based on the optimum fuel efficiency curve L EF , the accelerator opening Acc, the vehicle speed V, and the gear ratio (speed stage) of the automatic transmission 20. The target engine speed Ne * is determined. Then, the hybrid control means 52, a feedback control the engine rotational speed Ne to control the first electric motor torque T M1 is the reaction torque against the engine torque Te such that the determined target engine rotational speed Ne * It executes and functions as the first motor control means. Thus, the optimum fuel consumption rate curve is obtained by executing the feedback control of the first electric motor (differential motor) M1 so that the engine speed Ne becomes the target engine speed Ne * by the hybrid control means 52. the L EF when the engine operating point P EG is along the engine 8 is operated. Here, the first electric motor torque T M1 is a reaction force required not only for the purpose of converging the engine rotational speed Ne to the target engine rotational speed Ne * as described above but also for transmitting the engine torque Te to the drive wheels 38. Since the torque is a torque, the first motor torque T M1 is expressed by the following formula (1) in order to converge the driving torque for transmitting the engine torque Te to the driving wheels 38 and the engine rotational speed Ne to the target engine rotational speed Ne *. ) Can be divided into feedback torque TF M1 (hereinafter referred to as “first motor feedback torque TF M1 ”) that is generated and changed by feedback control based on the control equation (1). That is, the first electric motor torque T M1 is represented by the sum of the driving torque and the first electric motor feedback torque TF M1 that becomes zero when the engine rotational speed Ne matches the target engine rotational speed Ne *. Can be considered. Accordingly, the hybrid control means 52 determines the first motor torque T M1 including the first motor feedback torque TF M1 based on the following equation (1), so that the engine speed Ne becomes the target engine speed Ne *. Thus, it can be said that the feedback control for controlling the first electric motor torque TM1 is executed. Note that the feedback control of the first electric motor M1 based on the control expression of the following expression (1) is executed both during and without a shift of the automatic transmission unit 20.
Figure 0005198127

ここで、上記式(1)の制御式で右辺第1項は比例項であり右辺第2項は積分項である。上記式(1)の「KP」は比例ゲイン、「KI」は積分ゲインをそれぞれ示しており、上記式(1)とその比例ゲインKPと積分ゲインKIとは第1電動機フィードバックトルクTFM1の応答性と安定性とが両立するように予め実験的に設定されたものである。上記比例ゲインKP、積分ゲインKIの何れも前記第1電動機M1のフィードバック制御におけるフィードバックゲインであるが、本実施例では説明を簡潔にし理解を容易にするため比例ゲインKPを「フィードバックゲイン」と表現することとする。上記式(1)で用いられる比例ゲインKP、積分ゲインKIは、例えば、ハイブリッド制御手段52に予め記憶されている。 Here, in the control expression of the above formula (1), the first term on the right side is a proportional term, and the second term on the right side is an integral term. In the above equation (1), “KP” indicates a proportional gain, and “KI” indicates an integral gain. The above equation (1), the proportional gain KP, and the integral gain KI are responses of the first motor feedback torque TF M1 . It has been experimentally set in advance so that both stability and stability are compatible. Both the proportional gain KP and the integral gain KI are feedback gains in the feedback control of the first electric motor M1, but in this embodiment, the proportional gain KP is expressed as “feedback gain” in order to simplify the explanation and facilitate understanding. I decided to. The proportional gain KP and integral gain KI used in the above equation (1) are stored in advance in the hybrid control means 52, for example.

なお、上記比例ゲイン(フィードバックゲイン)KPは、後述のフィードバックゲイン変更手段74により、エンジン回転速度Neに応じて変化させられてもよい。例えば、エンジン回転速度Neとその変化限度を定める制限値(上限値、下限値)との差が小さいほど上記比例ゲイン(フィードバックゲイン)KPが小さくされてもよい。これは上記変化限度の上限側及び下限側の何れで行われてもよいが、例えば、その下限側で第1電動機M1の高回転化防止のために行われるとすれば、下記式(2)で例示される制御式により比例ゲイン(フィードバックゲイン)KPが算出され、、エンジン回転速度Neとその下限値であるエンジン回転速度下限値Ne_minとの差である下記式(2)の「(Ne−Ne_min)」が小さくなるほど上記比例ゲイン(フィードバックゲイン)KPが小さくなる。

Figure 0005198127
The proportional gain (feedback gain) KP may be changed according to the engine rotational speed Ne by a feedback gain changing means 74 described later. For example, the proportional gain (feedback gain) KP may be made smaller as the difference between the engine speed Ne and the limit values (upper limit value, lower limit value) that determine the change limit thereof is smaller. This may be performed on either the upper limit side or the lower limit side of the change limit. For example, if it is performed on the lower limit side to prevent the first motor M1 from rotating at a high speed, the following formula (2) is satisfied. The proportional gain (feedback gain) KP is calculated by the control expression illustrated in FIG. 5 and the difference between the engine speed Ne and the engine speed lower limit Ne_min that is the lower limit thereof is expressed by “(Ne− As the “Ne_min)” decreases, the proportional gain (feedback gain) KP decreases.
Figure 0005198127

ここで、上記式(2)の「KGD」は第1電動機M1の高回転化を防止するために定められた高回転化保護フィードバックゲインを示し、「MRG」は例えば安全率のようなマージンを示しており、Ne_min、KGD、およびMRGは第1電動機フィードバックトルクTFM1の応答性と第1電動機の耐久性維持のための高回転化防止とが両立するように予め実験的に設定されたものであり、定数であってもよいし自動変速部20の変速段や車速Vなどに応じて変化する変数であってもよい。 Here, “K GD ” in the above formula (2) indicates a high-rotation protection feedback gain determined to prevent high rotation of the first electric motor M1, and “MRG” is a margin such as a safety factor, for example. Ne_min, K GD , and MRG are experimentally set in advance so that the responsiveness of the first motor feedback torque TF M1 and the prevention of high rotation for maintaining the durability of the first motor are compatible. However, it may be a constant or a variable that changes in accordance with the gear position of the automatic transmission unit 20, the vehicle speed V, or the like.

ところで、上記式(1)に基づいて第1電動機フィードバックトルクTFM1が変動すればその変動は差動部11、自動変速部20を介して駆動輪38に伝達され、その駆動輪38が受けた上記変動がある程度大きい場合には走行時の快適性が損なわれる可能性あると考えられる。更に、本実施例では、差動部11と駆動輪38との間の動力伝達経路に自動変速部20が設けられていることからその自動変速部20の変速段(ギヤ段)が低車速側であるほど自動変速部20の変速比γAT(=伝達部材18の回転速度N18/出力軸22の回転速度NOUT)が大きくなり、上記第1電動機フィードバックトルクTFM1を含む第1電動機トルクTM1の変動は増幅されて駆動輪38に伝達される。すなわち、上記第1電動機フィードバックトルクTFM1の変動自体に大差が無くても自動変速部20のギヤ段が低車速側であれば、走行時の快適性が損なわれる場合があり得ると言える。そこで、本実施例では、上記走行時の快適性が損なわれることを回避する第1電動機M1に関する制御が実行される。以下に、その制御機能の要部について説明する。 By the way, if the first motor feedback torque TF M1 fluctuates based on the above equation (1), the fluctuation is transmitted to the drive wheel 38 via the differential unit 11 and the automatic transmission unit 20, and the drive wheel 38 receives the fluctuation. When the above fluctuation is large to some extent, it is considered that comfort during running may be impaired. Further, in the present embodiment, since the automatic transmission unit 20 is provided in the power transmission path between the differential unit 11 and the drive wheel 38, the shift stage (gear stage) of the automatic transmission unit 20 is on the low vehicle speed side. the gear ratio gamma aT of the automatic shifting portion 20 (= the rotational speed N OUT of the rotational speed N 18 / output shaft 22 of the transmission member 18) becomes larger as it is, the first electric motor torque including the first electric motor feedback torque TF M1 variation of T M1 is transmitted to the drive wheels 38 are amplified. That are, you can be said that the gear position of the automatic transmission portion 20 even if there is no great difference in the variation itself of the first electric motor feedback torque TF M1 is if low vehicle speed side, there may be cases where comfort during travel may be impaired. Therefore, in the present embodiment, the control related to the first electric motor M1 that avoids impairing the comfort during traveling is executed. The main part of the control function will be described below.

図6の変速判断手段70は、自動変速部20が変速中であるか否かを判断する。例えば、有段変速制御手段54によって出力され油圧制御回路42に含まれる電磁弁を作動させるバルブ指令信号などを検出することにより判断できる。   The shift determination means 70 in FIG. 6 determines whether or not the automatic transmission unit 20 is shifting. For example, the determination can be made by detecting a valve command signal that is output by the stepped shift control means 54 and that activates an electromagnetic valve included in the hydraulic control circuit 42.

自動変速部20の変速中はその非変速中とは異なり差動部11の変速比γ0を大きく変化させる必要があり、フィードバックゲイン変更手段74は、第1電動機トルクTM1の応答性を最適化するため、変速判断手段70により自動変速部20が変速中であると判断された場合には、その自動変速部20の変速前のフィードバックゲインKPに対して自動変速部20の変速中のフィードバックゲインKPを変更する。具体的には、第1電動機トルクTM1の応答性を高めるため、その自動変速部20の変速前のフィードバックゲインKPに対して自動変速部20の変速中のフィードバックゲインKPを大きくする。上記自動変速部20の変速中のフィードバックゲインKPは、自動変速部20の変速ショック低減や変速応答性向上を考慮して実験的に求められ、例えば、自動変速部20の変速パターンに応じたゲインとしてフィードバックゲイン変更手段74に予め記憶されている。 Unlike the non-shifting operation, it is necessary to change the gear ratio γ0 of the differential unit 11 greatly during the shifting of the automatic transmission unit 20, and the feedback gain changing means 74 optimizes the response of the first motor torque T M1 . Therefore, when the shift determining means 70 determines that the automatic transmission unit 20 is shifting, the feedback gain during the shift of the automatic transmission unit 20 with respect to the feedback gain KP before the shift of the automatic transmission unit 20 Change KP. Specifically, to enhance the responsiveness of the first electric motor torque T M1, increasing the feedback gain KP during shifting of the automatic shifting portion 20 with respect to the feedback gains KP before shifting of the automatic shifting portion 20. The feedback gain KP during the shift of the automatic transmission unit 20 is experimentally obtained in consideration of reduction of shift shock and improvement of shift response of the automatic transmission unit 20, for example, a gain corresponding to the shift pattern of the automatic transmission unit 20 Is stored in advance in the feedback gain changing means 74.

一方、フィードバックゲイン変更手段74は、変速判断手段70により自動変速部20が変速中ではないと判断された場合には、自動変速部20の変速比γATが大きいほど、前記第1電動機M1のフィードバック制御におけるフィードバックゲインKPを小さくする。具体的には、自動変速部20は有段変速機であるので、自動変速部20の変速段(ギヤ段)が低車速側であるほど、上記第1電動機M1のフィードバック制御におけるフィードバックゲインKPを小さくする。そのフィードバックゲインKPは、例えば、走行時の快適性と第1電動機トルクTM1の応答性とが両立するように、上記変速段(ギヤ段)が低車速側であるほどフィードバックゲインKPが小さくなる相互関係を有して自動変速部20の各ギヤ段毎に予め実験等により求められており、フィードバックゲイン変更手段74に予め記憶されている。また、前記式(2)を考慮したとすれば、フィードバックゲインKPは、例えば、上記変速段とフィードバックゲインKPとの相互関係を有し且つ上記式(2)に示されるパラメータや自動変速部20の変速段などをパラメータとしたフィードバックゲインマップとして、フィードバックゲイン変更手段74に予め記憶されている。 On the other hand, when the shift determination unit 70 determines that the automatic transmission unit 20 is not shifting, the feedback gain changing unit 74 increases the speed ratio γ AT of the automatic transmission unit 20 as the gear ratio of the first electric motor M1 increases. The feedback gain KP in the feedback control is reduced. Specifically, since the automatic transmission unit 20 is a stepped transmission, the feedback gain KP in the feedback control of the first electric motor M1 is increased as the shift stage (gear stage) of the automatic transmission unit 20 is lower. Make it smaller. As for the feedback gain KP, for example, the feedback gain KP becomes smaller as the shift stage (gear stage) is on the lower vehicle speed side so that both the comfort during running and the responsiveness of the first motor torque TM1 are compatible. It is obtained by experiments or the like in advance for each gear stage of the automatic transmission unit 20 having a mutual relationship, and stored in the feedback gain changing means 74 in advance. Further, when considering the equation (2), the feedback gain KP has, for example, a mutual relationship between the shift speed and the feedback gain KP, and the parameters shown in the equation (2) or the automatic transmission unit 20 Is stored in advance in the feedback gain changing means 74 as a feedback gain map using the shift speeds of these as parameters.

図9は、電子制御装置40の制御作動の要部すなわちフィードバックゲインKPを自動変速部20の変速に応じて変更する制御作動を説明するフローチャートであり、例えば数msec乃至数十msec程度の極めて短いサイクルタイムで繰り返し実行される。   FIG. 9 is a flowchart for explaining the main part of the control operation of the electronic control unit 40, that is, the control operation for changing the feedback gain KP according to the shift of the automatic transmission unit 20, and is extremely short, for example, about several milliseconds to several tens of milliseconds. It is executed repeatedly at cycle time.

先ず、変速判断手段70に対応するステップ(以下、「ステップ」を省略する)SA1においては、自動変速部20が変速中であるか否かが判断される。このSA1の判断が肯定的である場合、すなわち、自動変速部20が変速中である場合にはSA2に移る。一方、このSA1の判断が否定的である場合にはSA3に移る。   First, in a step (hereinafter, “step” is omitted) SA1 corresponding to the shift determination means 70, it is determined whether or not the automatic transmission unit 20 is shifting. If the determination of SA1 is affirmative, that is, if the automatic transmission unit 20 is shifting, the process proceeds to SA2. On the other hand, if the determination of SA1 is negative, the process proceeds to SA3.

SA2においては、フィードバックゲインKPが自動変速部20の変速中のゲインに切り替えられる。つまり、自動変速部20の変速中のフィードバックゲインKPが自動変速部20の変速前のフィードバックゲインKPに対して変更される。具体的には、第1電動機トルクTM1の応答性を高めるため、その自動変速部20の変速中のフィードバックゲインKPが自動変速部20の変速前のフィードバックゲインKPに対して大きくされる。 In SA2, the feedback gain KP is switched to the gain during the shift of the automatic transmission unit 20. That is, the feedback gain KP during the shift of the automatic transmission unit 20 is changed with respect to the feedback gain KP of the automatic transmission unit 20 before the shift. Specifically, to enhance the responsiveness of the first electric motor torque T M1, the feedback gain KP during shifting of the automatic shifting portion 20 is large relative to the feedback gain KP of the previous shifting action of the automatic transmission portion 20.

SA3においては、自動変速部20の変速段(ギヤ段)に応じて、フィードバックゲインKPが自動変速部20の変速段毎に予め定められた非変速時すなわち定常時のフィードバックゲインKPに切り替えられる。このとき、自動変速部20の変速比γATが大きいほど、前記第1電動機M1のフィードバック制御におけるフィードバックゲインKPが小さくされる。具体的には、自動変速部20は有段変速機であるので、自動変速部20の変速段(ギヤ段)が低車速側であるほど、上記第1電動機M1のフィードバック制御におけるフィードバックゲインKPが小さくされる。なお、上記SA2及びSA3は、フィードバックゲイン変更手段74に対応する。 In SA3, the feedback gain KP is switched to the feedback gain KP at the time of non-shifting, that is, steady, predetermined for each shift stage of the automatic transmission unit 20 according to the shift stage (gear stage) of the automatic transmission unit 20. In this case, the larger the gear ratio gamma AT of the automatic shifting portion 20, the feedback gain KP in the feedback control of the first electric motor M1 is reduced. Specifically, since the automatic transmission unit 20 is a stepped transmission, the feedback gain KP in the feedback control of the first electric motor M1 increases as the shift stage (gear stage) of the automatic transmission unit 20 becomes lower. It is made smaller. Note that SA2 and SA3 correspond to the feedback gain changing means 74.

本実施例の電子制御装置40には次のような効果(A1)乃至(A5)がある。(A1)前記式(1)の制御式においてフィードバックゲインKPが小さいほど第1電動機フィードバックトルクTFM1の応答性が低くなりその変動も緩やかになる。また、自動変速部20の変速段が低車速側であるほど、すなわち、自動変速部20の変速比γATが大きいほど、第1電動機トルクTM1の変動がより大きく増幅されて駆動輪38に伝達され易くなる。この点、本実施例によれば、ハイブリッド制御手段52は、エンジン回転速度Neが目標エンジン回転速度Ne*になるように第1電動機フィードバックトルクTFM1を含む第1電動機トルクTM1を制御するフィードバック制御を実行し、更に、自動変速部20の定常状態すなわち非変速中においてフィードバックゲイン変更手段74は、自動変速部20の変速比γATが大きいほど、前記第1電動機M1のフィードバック制御におけるフィードバックゲインKPを小さくする。従って、自動変速部20において第1電動機トルクTM1の変動がより大きく増幅されて駆動輪38に伝達され易くなるほど、上記第1電動機M1のフィードバック制御において第1電動機トルクTM1の変動が緩やかになる。その結果、車両走行時における快適性が損なわれる可能性を低減することが可能である。 The electronic control device 40 of this embodiment has the following effects (A1) to (A5). (A1) In the control equation of the above equation (1), the smaller the feedback gain KP, the lower the responsiveness of the first motor feedback torque TF M1 and the more the fluctuation thereof. Further, as the gear position of the automatic transmission unit 20 is lower, that is, as the transmission gear ratio γ AT of the automatic transmission unit 20 is larger, the fluctuation of the first electric motor torque T M1 is further amplified and applied to the drive wheels 38. It becomes easy to be transmitted. In this regard, according to the present embodiment, the hybrid controller 52 controls the first motor torque T M1 including the first motor feedback torque TF M1 so that the engine speed Ne becomes the target engine speed Ne *. Further, the feedback gain changing means 74 in the steady state of the automatic transmission unit 20, that is, during non-shifting, increases the feedback gain in the feedback control of the first electric motor M1 as the transmission gear ratio γ AT of the automatic transmission unit 20 increases. Reduce KP. Accordingly, as the fluctuation of the first motor torque T M1 is further amplified and transmitted to the drive wheel 38 more easily in the automatic transmission unit 20, the fluctuation of the first motor torque T M1 becomes gentler in the feedback control of the first motor M1. Become. As a result, it is possible to reduce the possibility that comfort during vehicle traveling is impaired.

(A2)自動変速部20は有段の自動変速機であり、自動変速部20の非変速中においてフィードバックゲイン変更手段74は、自動変速部20の変速段(ギヤ段)が低車速側であるほど、上記第1電動機M1のフィードバック制御におけるフィードバックゲインKPを小さくする。従って、自動変速部20において第1電動機トルクTM1の変動がより大きく増幅されて駆動輪38に伝達され易くなるほど、上記第1電動機M1のフィードバック制御において第1電動機トルクTM1の変動が緩やかになる。その結果、車両走行時における快適性が損なわれる可能性を低減することが可能である。 (A2) The automatic transmission unit 20 is a stepped automatic transmission, and the feedback gain changing means 74 is such that the shift stage (gear stage) of the automatic transmission unit 20 is on the low vehicle speed side while the automatic transmission unit 20 is not shifting. Accordingly, the feedback gain KP in the feedback control of the first electric motor M1 is reduced. Accordingly, as the fluctuation of the first motor torque T M1 is further amplified and transmitted to the drive wheel 38 more easily in the automatic transmission unit 20, the fluctuation of the first motor torque T M1 becomes gentler in the feedback control of the first motor M1. Become. As a result, it is possible to reduce the possibility that comfort during vehicle traveling is impaired.

(A3)フィードバックゲイン変更手段74は、自動変速部20が変速中である場合には、その自動変速部20の変速前のフィードバックゲインKPに対して自動変速部20の変速中のフィードバックゲインKPを変更する。具体的には、その自動変速部20の変速前のフィードバックゲインKPに対して自動変速部20の変速中のフィードバックゲインKPを大きくする。従って、自動変速部20の変速中は非変速中と比較して第1電動機回転速度NM1が大きく変化すべきところ、応答性よく第1電動機回転速度NM1を変化させることが可能である。 (A3) When the automatic transmission unit 20 is shifting, the feedback gain changing unit 74 sets the feedback gain KP during the shift of the automatic transmission unit 20 to the feedback gain KP before the shift of the automatic transmission unit 20. change. Specifically, the feedback gain KP during the shift of the automatic transmission unit 20 is made larger than the feedback gain KP of the automatic transmission unit 20 before the shift. Thus, during the shifting of the automatic shifting portion 20 when it should be changed greatly the first electric motor speed N M1 as compared to during non-shift, it is possible to vary the first-motor rotation speed N M1 good response.

(A4)本実施例では、エンジン回転速度Neとその変化限度を定める制限値(上限値、下限値)との差が小さいほど上記フィードバックゲイン(比例ゲイン)KPが小さくなるようにしてもよい。そのようにした場合には、前記第1電動機M1のフィードバック制御における第1電動機トルクTM1(第1電動機フィードバックトルクTFM1)の応答性が高過ぎるためにエンジン回転速度Neが上記制限値を超えてしまうということを回避できる。 (A4) In this embodiment, the feedback gain (proportional gain) KP may be made smaller as the difference between the engine speed Ne and the limit values (upper limit value, lower limit value) that define the change limit is smaller. In such a case, since the responsiveness of the first motor torque T M1 (first motor feedback torque TF M1 ) in the feedback control of the first motor M1 is too high, the engine speed Ne exceeds the limit value. Can be avoided.

(A5)ハイブリッド制御手段52は、エンジン回転速度NeとエンジントルクTeとで構成される二次元座標内において無段変速走行の時に運転性と燃費性とを両立するように設定された最適燃費率曲線LEF(図8参照)にエンジン動作点PEGが沿ってエンジン8が作動するように差動部11の変速比γ0を制御するので、第1電動機M1の運転状態の制御によりエンジン8の最適燃費が実現するようにエンジン8が作動し燃費向上を図ることが可能である。 (A5) The hybrid control means 52 is an optimal fuel consumption rate set so as to achieve both drivability and fuel efficiency during continuously variable speed travel within a two-dimensional coordinate system composed of the engine rotational speed Ne and the engine torque Te. Since the gear ratio γ0 of the differential section 11 is controlled so that the engine 8 operates along the curve L EF (see FIG. 8) along the engine operating point PEG , the engine 8 is controlled by controlling the operating state of the first electric motor M1. It is possible to improve the fuel consumption by operating the engine 8 so that the optimum fuel consumption is realized.

以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。   As mentioned above, although the Example of this invention was described in detail based on drawing, this is an embodiment to the last, and this invention is implemented in the aspect which added various change and improvement based on the knowledge of those skilled in the art. Can do.

例えば、前述の実施例では、理解を容易にするため前記式(1)における比例ゲインKPがフィードバックゲインと称され、フィードバックゲイン変更手段74はその比例ゲインKPを変更するが、積分ゲインKIを変更してもよいし、比例ゲインKPと積分ゲインKIとの両方を変更してもよい。   For example, in the above-described embodiment, the proportional gain KP in the equation (1) is referred to as a feedback gain for easy understanding, and the feedback gain changing unit 74 changes the proportional gain KP, but changes the integral gain KI. Alternatively, both the proportional gain KP and the integral gain KI may be changed.

また、前述の実施例において、上記式(1)の右辺は比例項と積分項とから構成されているが、この式(1)はあくまでも第1電動機フィードバックトルクTFM1の制御式の例示であり、例えば微分項などのその他の項が上記右辺に含まれていてもよいし、上記積分項が無い制御式であってもよい。 In the above-described embodiment, the right side of the above formula (1) is composed of a proportional term and an integral term. This formula (1) is merely an example of a control formula for the first motor feedback torque TF M1 . For example, another term such as a differential term may be included in the right side, or a control expression without the integral term may be used.

また、前述の実施例において、上記式(1)のフィードバックゲインKPは自動変速部20が変速中であるか非変速中であるかによって異なる値に切り替えられるが、このように自動変速部20が変速中か否かによってフィードバックゲインKPが切り替えられることは必須ではない。すなわち、図9のフローチャートにおいてSA1およびSA2の無い構成も考え得る。   In the above-described embodiment, the feedback gain KP of the above equation (1) is switched to a different value depending on whether the automatic transmission unit 20 is shifting or not shifting. It is not essential that the feedback gain KP is switched depending on whether or not the gear is being changed. That is, a configuration without SA1 and SA2 in the flowchart of FIG.

また前述の実施例においては、第1電動機M1の運転状態が制御されることにより、差動部11(動力分配機構16)はその変速比γ0が最小値γ0min から最大値γ0max まで連続的に変化させられる電気的な無段変速機として機能するものであったが、例えば差動部11の変速比γ0を連続的ではなく差動作用を利用して敢えて段階的に変化させるものであってもよい。   In the above-described embodiment, by controlling the operating state of the first motor M1, the differential unit 11 (power distribution mechanism 16) continuously changes its speed ratio γ0 from the minimum value γ0min to the maximum value γ0max. However, for example, the gear ratio γ0 of the differential unit 11 may be changed stepwise by using a differential action instead of continuously. Good.

また、前述の実施例の動力伝達装置10においてエンジン8と差動部11とは直結されているが、エンジン8が差動部11にクラッチ等の係合要素を介して連結されていてもよい。   In the power transmission device 10 of the above-described embodiment, the engine 8 and the differential unit 11 are directly connected. However, the engine 8 may be connected to the differential unit 11 via an engagement element such as a clutch. .

また、前述の実施例の動力伝達装置10において第1電動機M1と第2回転要素RE2とは直結されており、第2電動機M2と第3回転要素RE3とは直結されているが、第1電動機M1が第2回転要素RE2にクラッチ等の係合要素を介して連結され、第2電動機M2が第3回転要素RE3にクラッチ等の係合要素を介して連結されていてもよい。   In the power transmission device 10 of the above-described embodiment, the first electric motor M1 and the second rotating element RE2 are directly connected, and the second electric motor M2 and the third rotating element RE3 are directly connected. M1 may be connected to the second rotation element RE2 via an engagement element such as a clutch, and the second electric motor M2 may be connected to the third rotation element RE3 via an engagement element such as a clutch.

また前述の実施例では、エンジン8から駆動輪38への動力伝達経路において、差動部11の次に自動変速部20が連結されているが、自動変速部20の次に差動部11が連結されている順番でもよい。要するに、自動変速部20は、エンジン8から駆動輪38への動力伝達経路の一部を構成するように設けられておればよい。   In the above-described embodiment, the automatic transmission unit 20 is connected next to the differential unit 11 in the power transmission path from the engine 8 to the drive wheel 38, but the differential unit 11 is connected next to the automatic transmission unit 20. The order of connection may be used. In short, the automatic transmission unit 20 may be provided so as to constitute a part of a power transmission path from the engine 8 to the drive wheels 38.

また、前述の実施例の図1によれば、差動部11と自動変速部20は直列に連結されているが、動力伝達装置10全体として電気的に差動状態を変更し得る電気式差動機能とその電気式差動機能による変速とは異なる原理で変速する機能とが備わっていれば、差動部11と自動変速部20とが機械的に独立していなくても本発明は適用される。   Further, according to FIG. 1 of the above-described embodiment, the differential unit 11 and the automatic transmission unit 20 are connected in series, but the electrical difference that can electrically change the differential state as the entire power transmission device 10. The present invention can be applied even if the differential unit 11 and the automatic transmission unit 20 are not mechanically independent as long as the function and the function of shifting by a principle different from the shift by the electric differential function are provided. Is done.

また、前述の実施例において動力分配機構16はシングルプラネタリであるが、ダブルプラネタリであってもよい。   In the above-described embodiment, the power distribution mechanism 16 is a single planetary, but may be a double planetary.

また前述の実施例においては、差動部遊星歯車装置24を構成する第1回転要素RE1にはエンジン8が動力伝達可能に連結され、第2回転要素RE2には第1電動機M1が動力伝達可能に連結され、第3回転要素RE3には駆動輪38への動力伝達経路が連結されているが、例えば、2つの遊星歯車装置がそれを構成する一部の回転要素で相互に連結された構成において、その遊星歯車装置の回転要素にそれぞれエンジン、電動機、駆動輪が動力伝達可能に連結されており、その遊星歯車装置の回転要素に連結されたクラッチ又はブレーキの制御により有段変速と無段変速とに切換可能な構成にも本発明は適用される。   In the above-described embodiment, the engine 8 is connected to the first rotating element RE1 constituting the differential planetary gear unit 24 so that power can be transmitted, and the first motor M1 can transmit power to the second rotating element RE2. The third rotation element RE3 is connected to the power transmission path to the drive wheel 38. For example, two planetary gear devices are connected to each other by a part of the rotation elements constituting the planetary gear device. , The engine, the electric motor, and the driving wheel are connected to the rotating element of the planetary gear device so that power can be transmitted, and the stepped speed change and the continuously variable are controlled by the clutch or brake connected to the rotating element of the planetary gear device. The present invention is also applied to a configuration that can be switched to a shift.

また前述の実施例においては、自動変速部20は有段の自動変速機として機能する変速部であるが、無段のCVTであってもよいし、手動変速機として機能する変速部であってもよい。   In the above-described embodiment, the automatic transmission unit 20 is a transmission unit that functions as a stepped automatic transmission, but may be a continuously variable CVT or a transmission unit that functions as a manual transmission. Also good.

また前述の実施例においては、第2電動機M2は伝達部材18に直接連結されているが、第2電動機M2の連結位置はそれに限定されず、エンジン8又は伝達部材18から駆動輪38までの間の動力伝達経路に直接的或いは変速機、遊星歯車装置、係合装置等を介して間接的に連結されていてもよい。   In the above-described embodiment, the second electric motor M2 is directly connected to the transmission member 18. However, the connection position of the second electric motor M2 is not limited to this, and the interval between the engine 8 or the transmission member 18 and the drive wheels 38 is not limited thereto. May be directly or indirectly connected to the power transmission path via a transmission, a planetary gear device, an engagement device, or the like.

また、前述の実施例の動力分配機構16では、差動部キャリヤCA0がエンジン8に連結され、差動部サンギヤS0が第1電動機M1に連結され、差動部リングギヤR0が伝達部材18に連結されていたが、それらの連結関係は、必ずしもそれに限定されるものではなく、エンジン8、第1電動機M1、伝達部材18は、差動部遊星歯車装置24の3要素CA0、S0、R0のうちのいずれと連結されていても差し支えない。   In the power distribution mechanism 16 of the above-described embodiment, the differential carrier CA0 is connected to the engine 8, the differential sun gear S0 is connected to the first electric motor M1, and the differential ring gear R0 is connected to the transmission member 18. However, the connection relationship is not necessarily limited thereto, and the engine 8, the first electric motor M1, and the transmission member 18 are the three elements CA0, S0, and R0 of the differential planetary gear unit 24. It can be connected to either of these.

また、前述の実施例においてエンジン8は入力軸14と直結されていたが、例えばギヤ、ベルト等を介して作動的に連結されておればよく、共通の軸心上に配置される必要もない。   In the above-described embodiment, the engine 8 is directly connected to the input shaft 14. However, the engine 8 only needs to be operatively connected, for example, via a gear, a belt, or the like, and does not need to be disposed on a common axis. .

また、前述の実施例の第1電動機M1および第2電動機M2は、入力軸14に同心に配置されて第1電動機M1は差動部サンギヤS0に連結され第2電動機M2は伝達部材18に連結されていたが、必ずしもそのように配置される必要はなく、例えばギヤ、ベルト、減速機等を介して作動的に第1電動機M1は差動部サンギヤS0に連結され、第2電動機M2は伝達部材18に連結されていてもよい。   Further, the first motor M1 and the second motor M2 of the above-described embodiment are disposed concentrically with the input shaft 14, the first motor M1 is connected to the differential sun gear S0, and the second motor M2 is connected to the transmission member 18. However, the first motor M1 is operatively connected to the differential sun gear S0 and the second motor M2 is transmitted through, for example, a gear, a belt, and a speed reducer. It may be connected to the member 18.

また、前述の実施例において自動変速部20は伝達部材18を介して差動部11と直列に連結されていたが、入力軸14と平行にカウンタ軸が設けられてそのカウンタ軸上に同心に自動変速部20が配列されていてもよい。この場合には、差動部11と自動変速部20とは、たとえば伝達部材18としてカウンタギヤ対、スプロケットおよびチェーンで構成される1組の伝達部材などを介して動力伝達可能に連結される。   In the above-described embodiment, the automatic transmission unit 20 is connected in series with the differential unit 11 via the transmission member 18, but a counter shaft is provided in parallel with the input shaft 14 and is concentrically on the counter shaft. The automatic transmission unit 20 may be arranged. In this case, the differential unit 11 and the automatic transmission unit 20 are coupled so as to be able to transmit power, for example, as a transmission member 18 via a pair of transmission members including a counter gear pair, a sprocket and a chain.

また、前述の実施例の動力分配機構16は1組の差動部遊星歯車装置24から構成されていたが、2以上の遊星歯車装置から構成されて、非差動状態(定変速状態)では3段以上の変速機として機能するものであってもよい。   Further, the power distribution mechanism 16 of the above-described embodiment is composed of a pair of differential planetary gear devices 24, but is composed of two or more planetary gear devices in a non-differential state (constant shift state). It may function as a transmission having three or more stages.

また、前述の実施例の第2電動機M2はエンジン8から駆動輪38までの動力伝達経路の一部を構成する伝達部材18に連結されているが、第2電動機M2がその動力伝達経路に連結されていることに加え、クラッチ等の係合要素を介して動力分配機構16にも連結可能とされており、第1電動機M1の代わりに第2電動機M2によって動力分配機構16の差動状態を制御可能とする動力伝達装置10の構成であってもよい。   Further, the second electric motor M2 of the above-described embodiment is connected to the transmission member 18 that constitutes a part of the power transmission path from the engine 8 to the drive wheel 38, but the second electric motor M2 is connected to the power transmission path. In addition, the power distribution mechanism 16 can be connected via an engagement element such as a clutch, and the differential state of the power distribution mechanism 16 is changed by the second electric motor M2 instead of the first electric motor M1. The power transmission device 10 may be configured to be controllable.

また前述の実施例において、動力分配機構16が切換クラッチC0および切換ブレーキB0を備えているが、切換クラッチC0および切換ブレーキB0は動力分配機構16とは別個に動力伝達装置10に備えられていてもよい。また、切換クラッチC0と切換ブレーキB0との何れか一方または両方がない構成も考え得る。   In the above-described embodiment, the power distribution mechanism 16 includes the switching clutch C0 and the switching brake B0. However, the switching clutch C0 and the switching brake B0 are included in the power transmission device 10 separately from the power distribution mechanism 16. Also good. A configuration in which either one or both of the switching clutch C0 and the switching brake B0 is not conceivable is also conceivable.

また前述の実施例において、差動部11が、第1電動機M1及び第2電動機M2を備えているが、第1電動機M1及び第2電動機M2は差動部11とは別個に動力伝達装置10に備えられていてもよい。   In the above-described embodiment, the differential unit 11 includes the first electric motor M1 and the second electric motor M2. However, the first electric motor M1 and the second electric motor M2 are different from the differential unit 11 in the power transmission device 10. May be provided.

その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。   In addition, although not illustrated one by one, the present invention is implemented with various modifications within a range not departing from the gist thereof.

本発明の制御装置が適用される車両用動力伝達装置の構成を説明する骨子図である。1 is a skeleton diagram illustrating a configuration of a vehicle power transmission device to which a control device of the present invention is applied. 図1の車両用動力伝達装置が無段或いは有段変速作動させられる場合における変速作動とそれに用いられる油圧式摩擦係合装置の作動の組み合わせとの関係を説明する作動図表である。2 is an operation chart for explaining a relationship between a speed change operation and an operation of a hydraulic friction engagement device used therefor when the vehicle power transmission device of FIG. 図1の車両用動力伝達装置が有段変速作動させられる場合における各ギヤ段の相対回転速度を説明する共線図である。FIG. 3 is a collinear diagram illustrating the relative rotational speeds of the respective gear stages when the vehicle power transmission device of FIG. 図1の車両用動力伝達装置に設けられた電子制御装置の入出力信号を説明する図である。It is a figure explaining the input-output signal of the electronic controller provided in the power transmission device for vehicles of FIG. 図1の車両用動力伝達装置において変速操作をするためのシフトレバーを備えた複数種類のシフトポジションを選択するために操作されるシフト操作装置の一例である。2 is an example of a shift operation device that is operated to select a plurality of types of shift positions including a shift lever for performing a shift operation in the vehicle power transmission device of FIG. 1. 図4の電子制御装置による制御機能の要部を説明する機能ブロック線図である。It is a functional block diagram explaining the principal part of the control function by the electronic controller of FIG. 図1の車両用動力伝達装置において、車速と出力トルクとをパラメータとする同じ二次元座標に構成された、自動変速部の変速判断の基となる予め記憶された変速線図の一例と、動力伝達装置の変速状態の切換判断の基となる予め記憶された切換線図の一例と、エンジン走行とモータ走行とを切り換えるためのエンジン走行領域とモータ走行領域との境界線を有する予め記憶された駆動力源切換線図の一例とを示す図であって、それぞれの関係を示す図でもある。In the vehicle power transmission device of FIG. 1, an example of a pre-stored shift diagram that is based on the same two-dimensional coordinates having the vehicle speed and the output torque as parameters and is a basis for shift determination of the automatic transmission unit, An example of a pre-stored switching diagram as a basis for determining whether to change the transmission state of the transmission device, and a pre-stored boundary line between the engine travel region and the motor travel region for switching between engine travel and motor travel It is a figure which shows an example of a driving force source switching diagram, Comprising: It is also a figure which shows each relationship. 図1のエンジンの最適燃費率曲線を表す図である。It is a figure showing the optimal fuel consumption rate curve of the engine of FIG. 図4の電子制御装置の制御作動の要部すなわちフィードバックゲインを自動変速部の変速に応じて変更する制御作動を説明するフローチャートである。FIG. 6 is a flowchart for explaining a main part of the control operation of the electronic control device of FIG.

符号の説明Explanation of symbols

8:エンジン
10:動力伝達装置
11:差動部(電気式差動部)
16:動力分配機構(差動機構)
20:自動変速部(変速部)
38:駆動輪
40:電子制御装置(制御装置)
M1:第1電動機(差動用電動機)
KP:フィードバックゲイン
Ne:エンジン回転速度(エンジンの回転速度)
Ne*:目標エンジン回転速度
8: Engine 10: Power transmission device 11: Differential part (electrical differential part)
16: Power distribution mechanism (differential mechanism)
20: Automatic transmission unit (transmission unit)
38: Drive wheel 40: Electronic control device (control device)
M1: First motor (differential motor)
KP: feedback gain Ne: engine speed (engine speed)
Ne *: Target engine speed

Claims (2)

エンジンと駆動輪との間に連結された差動機構と該差動機構に動力伝達可能に連結された差動用電動機とを有し該差動用電動機の運転状態が制御されることにより該差動機構の差動状態が制御される電気式差動部と、動力伝達経路の一部を構成する変速部とを、備えた車両用動力伝達装置の制御装置であって、
前記エンジンの回転速度がその目標値である目標エンジン回転速度になるように前記差動用電動機の出力トルクを制御するフィードバック制御を実行し、
前記変速部の変速比が大きいほど、前記差動用電動機のフィードバック制御におけるフィードバックゲインを小さくする
ことを特徴とする車両用動力伝達装置の制御装置。
A differential mechanism connected between the engine and the drive wheel, and a differential motor connected to the differential mechanism so as to be capable of transmitting power; A control device for a vehicle power transmission device, comprising: an electric differential unit that controls a differential state of the differential mechanism; and a transmission unit that constitutes a part of a power transmission path,
Performing feedback control to control the output torque of the differential motor so that the engine rotation speed becomes a target engine rotation speed that is the target value;
The control device for a vehicle power transmission device, wherein a feedback gain in feedback control of the differential motor is reduced as a speed ratio of the transmission unit is larger.
前記変速部は有段変速機であり、
該有段変速機の変速段が低車速側であるほど、前記差動用電動機のフィードバック制御におけるフィードバックゲインを小さくする
ことを特徴とする請求項1に記載の車両用動力伝達装置の制御装置。
The transmission is a stepped transmission,
2. The control device for a vehicle power transmission device according to claim 1, wherein a feedback gain in feedback control of the differential motor is reduced as the shift speed of the stepped transmission is lower.
JP2008105490A 2008-04-15 2008-04-15 Control device for vehicle power transmission device Expired - Fee Related JP5198127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008105490A JP5198127B2 (en) 2008-04-15 2008-04-15 Control device for vehicle power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008105490A JP5198127B2 (en) 2008-04-15 2008-04-15 Control device for vehicle power transmission device

Publications (2)

Publication Number Publication Date
JP2009255667A JP2009255667A (en) 2009-11-05
JP5198127B2 true JP5198127B2 (en) 2013-05-15

Family

ID=41383668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008105490A Expired - Fee Related JP5198127B2 (en) 2008-04-15 2008-04-15 Control device for vehicle power transmission device

Country Status (1)

Country Link
JP (1) JP5198127B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5293657B2 (en) * 2010-03-17 2013-09-18 トヨタ自動車株式会社 Control device for hybrid vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3775562B2 (en) * 2000-03-07 2006-05-17 ジヤトコ株式会社 Parallel hybrid vehicle
JP2004015982A (en) * 2002-06-11 2004-01-15 Nissan Motor Co Ltd Speed change controller of hybrid transmission
JP4151614B2 (en) * 2004-06-03 2008-09-17 トヨタ自動車株式会社 Control device for vehicle drive device
JP4220961B2 (en) * 2004-12-28 2009-02-04 トヨタ自動車株式会社 Power output apparatus, automobile equipped with the same, control apparatus for power output apparatus, and control method for power output apparatus

Also Published As

Publication number Publication date
JP2009255667A (en) 2009-11-05

Similar Documents

Publication Publication Date Title
JP4998164B2 (en) Control device for vehicle power transmission device
JP4957475B2 (en) Control device for vehicle power transmission device
JP4600549B2 (en) Control device for vehicle power transmission device
JP5104169B2 (en) Control device for vehicle power transmission device
JP4207920B2 (en) Vehicle drive device
JP4600421B2 (en) Control device for vehicle power transmission device
JP2009023446A (en) Controller for vehicle drive unit
JP2007001390A (en) Controller for drive unit for vehicle
JP2008260491A (en) Control device for driving device for hybrid vehicle
JP2008260490A (en) Control device for driving device for hybrid vehicle
JP5120202B2 (en) Control device for vehicle power transmission device
JP4941194B2 (en) Hydraulic control device for vehicle
JP2009280176A (en) Controller for vehicular power transmission device
JP2009166643A (en) Controller of power transmission device for vehicle
JP2010083361A (en) Controller of power transmission for vehicle
JP5195376B2 (en) Control device for vehicle drive device
JP5330669B2 (en) Control device for vehicle power transmission device
JP2009006829A (en) Control device for power transmission device for vehicle
JP2009143417A (en) Controller for power transmission apparatus for vehicle
JP4853410B2 (en) Control device for power transmission device for hybrid vehicle
JP4225247B2 (en) Control device for vehicle drive device
JP2009067258A (en) Controller of vehicle power transmission
JP2009227096A (en) Control device for power transmission device for vehicle
JP5018272B2 (en) Control device for vehicle power transmission device
JP4483892B2 (en) Control device for drive device for hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5198127

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees