JP5160304B2 - Product operation device including variable resistance variable resistance element, product-sum operation device, neural network including these devices in each neuron element, and product operation method - Google Patents

Product operation device including variable resistance variable resistance element, product-sum operation device, neural network including these devices in each neuron element, and product operation method Download PDF

Info

Publication number
JP5160304B2
JP5160304B2 JP2008134682A JP2008134682A JP5160304B2 JP 5160304 B2 JP5160304 B2 JP 5160304B2 JP 2008134682 A JP2008134682 A JP 2008134682A JP 2008134682 A JP2008134682 A JP 2008134682A JP 5160304 B2 JP5160304 B2 JP 5160304B2
Authority
JP
Japan
Prior art keywords
product
variable resistance
value
output
sum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008134682A
Other languages
Japanese (ja)
Other versions
JP2009282782A (en
Inventor
茂夫 大西
数也 石原
隆 森江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2008134682A priority Critical patent/JP5160304B2/en
Publication of JP2009282782A publication Critical patent/JP2009282782A/en
Application granted granted Critical
Publication of JP5160304B2 publication Critical patent/JP5160304B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Memories (AREA)

Description

本発明は、電気的ストレスの印加によって電気抵抗を変化させることで情報を記憶することが可能な抵抗変化型可変抵抗素子を備えた積演算装置、及び積和演算装置、これらの装置を各ニューロン素子に備えるニューラルネットワーク、並びに積演算方法などに関するものである。   The present invention relates to a product operation device including a resistance change type variable resistance element capable of storing information by changing an electrical resistance by applying an electrical stress, a product-sum operation device, and the device for each neuron. The present invention relates to a neural network provided in an element, a product operation method, and the like.

現在、いわゆるノイマン型のコンピュータは、大きな進展を見せ、世の中の様々な場面で使用されている。しかしながら、これらノイマン型と呼ばれるコンピュータは、その処理方法自体の特性により、人が容易に行うことができる処理(リアルタイムでの人の顔の認識等)を非常に不得手としている。   Currently, so-called Neumann computers have made great progress and are used in various situations around the world. However, these Neumann computers are very poor at processing that humans can easily perform (real-time human face recognition, etc.) due to the characteristics of the processing method itself.

これに対して、脳の情報処理様式を真似た演算処理モデルである、ニューラルネットワークの研究が行われている。   In contrast, a neural network, which is an arithmetic processing model that imitates the information processing mode of the brain, has been studied.

ニューラルネットワークを構成するニューロン素子(以下、「ニューロン」という)のモデルとしては、ニューロンに相当するユニットに対して、他の複数のユニットの出力値をシナプス荷重値で重み付けした乗算値が入力され、その入力値をさらに非線形変換した値を出力値(内部状態値)とするものが一般的である。   As a model of a neuron element (hereinafter referred to as “neuron”) that constitutes a neural network, a multiplication value obtained by weighting output values of a plurality of other units with a synaptic load value is input to a unit corresponding to a neuron, A value obtained by further nonlinearly transforming the input value is used as an output value (internal state value).

すなわち、一般的なニューラルネットワークにおいては、各ユニット、及びユニット間における積和演算と非線形変換とにより、所望の処理が実現される。   In other words, in a general neural network, desired processing is realized by product-sum operation and nonlinear transformation between units and between units.

このニューロンモデルを用いたニューラルネットワークアーキテクチャ(ニューラルネットワークモデル)としては、これまでに、積和演算を実行するユニットを相互に結合した連想メモリや、同じく積和演算を実行するユニットを階層的に結合したパターン認識モデル等が提案されている。   As a neural network architecture using this neuron model (neural network model), so far, associative memories that combine units that perform product-sum operations and hierarchically connect units that also perform product-sum operations A pattern recognition model has been proposed.

ここでニューラルネットワークの実用化を狙い、集積回路化を図る際には、前記の積和演算をより効率的に実行することが必要となり、特に演算の実行速度や消費電力の面での必要性が顕著になる。   Here, aiming at the practical use of neural networks, it is necessary to execute the product-sum operation more efficiently, especially in terms of execution speed and power consumption. Becomes prominent.

前記のように積和演算を実行するニューロンモデル、及びニューラルネットワークアーキテクチャに関する発明が、各種提案されており、積和演算を行い階層的なニューロコンピュータを構成する方法も提案されている。(例えば、特許文献1、2を参照)。図14(a)に、PWM(Pulse Width Modulation:パルス幅変調)信号を用いた積和演算装置1000の構成を示す。   Various inventions relating to the neuron model and the neural network architecture for executing the product-sum operation as described above have been proposed, and a method for constructing a hierarchical neurocomputer by performing the product-sum operation has also been proposed. (For example, see Patent Documents 1 and 2). FIG. 14A shows a configuration of a product-sum operation apparatus 1000 using a PWM (Pulse Width Modulation) signal.

パルス幅Ti(i=1,2,3,…)を有するそれぞれのPWM入力信号に対応する電流Iiに関する各スイッチト電流源(SCS)の電流源1012〜1032・・・のそれぞれのスイッチ1012〜1032・・・をONすると、データ線1001を介して電流IiがキャパシタC1004に時間Tiだけ流れる。キャパシタC1004に蓄積される電荷量Qoutと端子電圧Voutとは、それぞれ、
Qout=ΣIiTi
Vout=Qout/C=ΣIiTi/C
と表記される。
Each switch 1012 of the current sources 1012 to 1032 of each switched current source (SCS) related to the current Ii corresponding to each PWM input signal having a pulse width Ti (i = 1, 2, 3,...). When 1032... Is turned on, the current Ii flows through the data line 1001 to the capacitor C1004 for the time Ti. The charge amount Qout and the terminal voltage Vout stored in the capacitor C1004 are respectively
Qout = ΣIiTi
Vout = Qout / C = ΣIiTi / C
It is written.

こうして、電流源1012〜1032・・・のそれぞれの電流量で重み付けされたPWM信号(IiTi)の加算結果がキャパシタ1004の電荷量Qout又は端子電圧Voutとして得られる。端子電圧Voutは、図14(b)に示すように線形に変化する参照ランプ電圧Vrefとコンパレータ1005で比較することにより、パルス幅Toutを有するPWM信号に変換されて出力される。   In this way, the addition result of the PWM signals (IiTi) weighted by the respective current amounts of the current sources 1012 to 1032... Is obtained as the charge amount Qout or the terminal voltage Vout of the capacitor 1004. The terminal voltage Vout is converted into a PWM signal having a pulse width Tout by comparing with a reference ramp voltage Vref that changes linearly as shown in FIG.

次に、積和演算回路ユニット3000を用いた演算処理工程について説明する。図15は、特許文献1及び2における積和演算方法を実施するための処理ブロックの構成図を示す。   Next, an arithmetic processing step using the product-sum arithmetic circuit unit 3000 will be described. FIG. 15 shows a block diagram of a processing block for implementing the product-sum operation method in Patent Documents 1 and 2.

特許文献1及び2における積和演算方法は、複数個の演算ブロック1000a、1000b、1000c、・・・を備える演算ユニット3006と、演算値Xiを保持する入力値(演算値)保持ブロック3001と、被演算値Wiを保持する荷重値(被演算値)保持ブロック3004と、演算値Xiのラベルiに対応する演算ブロックへ演算値Xi、及び被演算値Wiを入力するためのスイッチングブロック(1)3003及びスイッチングブロック(2)3005から構成される。   The product-sum calculation method in Patent Documents 1 and 2 includes a calculation unit 3006 including a plurality of calculation blocks 1000a, 1000b, 1000c,..., An input value (calculation value) holding block 3001 that holds a calculation value Xi, A load value (operation value) holding block 3004 for holding the operation value Wi, and a switching block (1) for inputting the operation value Xi and the operation value Wi to the operation block corresponding to the label i of the operation value Xi. 3003 and a switching block (2) 3005.

特許文献1においては、演算値XiがPWM(Pulse Width Modulation)信号として入力される場合を想定している。なお、演算値Xiと被演算値Wiのiは、それぞれ異なるXとWを示す添え字であり、1,2,3・・・の自然数をとる。   In Patent Document 1, it is assumed that the calculated value Xi is input as a PWM (Pulse Width Modulation) signal. Note that i of the calculation value Xi and the operand value Wi are subscripts indicating different X and W, respectively, and take 1, 2, 3,... Natural numbers.

図16は、1つの演算ブロックをアナログ回路で構成したアナログ演算回路2000を示す。図16に示すように、特許文献1におけるアナログ演算回路2000は、アナログ乗算器2001と、キャパシタ2002と、出力バッファ2003とから構成される。   FIG. 16 shows an analog arithmetic circuit 2000 in which one arithmetic block is composed of analog circuits. As illustrated in FIG. 16, the analog arithmetic circuit 2000 in Patent Document 1 includes an analog multiplier 2001, a capacitor 2002, and an output buffer 2003.

アナログ乗算器2000は、図14(a)に示した積和演算装置1000で構成されている。   The analog multiplier 2000 includes the product-sum operation apparatus 1000 shown in FIG.

図17は、入力値保持ブロック3001をアナログメモリ回路で構成したものを示す。ここでは、アナログメモリ回路をキャパシタ2002と出力バッファ2003とで構成することを想定している。   FIG. 17 shows an input value holding block 3001 configured with an analog memory circuit. Here, it is assumed that the analog memory circuit includes a capacitor 2002 and an output buffer 2003.

図15に示すように、複数の演算値Xiが入力保持ブロック3001に保持される。入力保持ブロック3001は、キャパシタ2002と出力バッファ2003により構成されており、演算値Xiの値をキャパシタ2002に蓄積された電圧値として保持している。   As shown in FIG. 15, a plurality of calculation values Xi are held in the input holding block 3001. The input holding block 3001 includes a capacitor 2002 and an output buffer 2003, and holds the calculated value Xi as a voltage value accumulated in the capacitor 2002.

続いて、演算値Xiが有するラベルiがスイッチングブロック(1)3003に入力され、そのラベルiに応じてスイッチングブロック(1)3003がスイッチングを行い、入力保持ブロック3001から出力された演算値Xiをそのラベルiに対応する演算ブロックに入力する。   Subsequently, the label i included in the operation value Xi is input to the switching block (1) 3003, the switching block (1) 3003 performs switching according to the label i, and the operation value Xi output from the input holding block 3001 is used. It inputs into the calculation block corresponding to the label i.

一方、荷重保持ブロック3004からから出力される複数の被演算値Wiは、それぞれ所定の演算ブロックに入力される。ここで特許文献1においては、被演算値Wiについても、演算値Xiと同様に、演算値Xiが有するラベルiに応じてスイッチングブロック(2)3005においてスイッチングが行われ、ラベルiによって決定される所定の演算ブロックに入力される。以上の処理を実行することにより、所定の演算ブロックに演算値Xiと被演算値Wiが入力される。   On the other hand, the plurality of operand values Wi output from the load holding block 3004 are respectively input to predetermined calculation blocks. Here, in Patent Document 1, similarly to the operation value Xi, the operation value Wi is switched in the switching block (2) 3005 according to the label i included in the operation value Xi, and is determined by the label i. Input to a predetermined calculation block. By executing the above processing, the calculated value Xi and the calculated value Wi are input to a predetermined calculation block.

続いて、演算値Xiと被演算値Wiとの両者が入力された前記所定の演算ブロックにおいて行われる演算処理について説明する。なお、演算値Xiが入力されない演算ブロックでは演算処理は実行されない。   Subsequently, a calculation process performed in the predetermined calculation block to which both the calculation value Xi and the calculation value Wi are input will be described. Note that the arithmetic processing is not executed in the arithmetic block to which the arithmetic value Xi is not input.

図16の演算ブロック(アナログ乗算器2001内の演算ブロック)において、演算値Xiと被演算値Wiとは、アナログ乗算器2001によってXi×Wiが演算される。なお、各演算ブロックに入力される演算値及び被演算値の値は、演算毎に同一の場合も異なる場合もある。   In the arithmetic block in FIG. 16 (the arithmetic block in the analog multiplier 2001), the analog multiplier 2001 calculates Xi × Wi for the arithmetic value Xi and the operand value Wi. Note that the calculation value and the value to be calculated input to each calculation block may be the same or different for each calculation.

つづいて、Xi×Wiの乗算結果は、電荷量で表現され、キャパシタ2002に追加蓄積される。ここで、特許文献1ではアナログ乗算器2001による乗算結果は、電荷量として出力されることを想定している。   Subsequently, the multiplication result of Xi × Wi is expressed by the amount of charge and is additionally accumulated in the capacitor 2002. Here, in Patent Document 1, it is assumed that the multiplication result by the analog multiplier 2001 is output as an amount of charge.

以上の処理を繰り返すことにより、複数のXiとWiとの乗算結果の累積値がキャパシタ2002に保持され、所定の累算が完了すると出力バッファ2003を介して累積値が出力される。なお、ここでは、XiはPWM信号であり、Wiは、ある周期を持つパルス列、又は電圧パルスになる。   By repeating the above processing, the accumulated value of the multiplication results of a plurality of Xi and Wi is held in the capacitor 2002, and when the predetermined accumulation is completed, the accumulated value is output via the output buffer 2003. Here, Xi is a PWM signal, and Wi is a pulse train having a certain period or a voltage pulse.

次に、積和演算装置1000をニューラルネットワークに応用したケースについて説明する。一般に説明されているニューラルネットワークモデルを図18に示す。また、ニューラルネットワークに対して図15で説明した積和演算方法を適用する際の演算処理ブロックの構成を図19に示す。   Next, a case where the product-sum operation apparatus 1000 is applied to a neural network will be described. A commonly described neural network model is shown in FIG. FIG. 19 shows the configuration of an arithmetic processing block when the product-sum operation method described in FIG. 15 is applied to the neural network.

まず、図18に示すようにニューラルネットワークにおけるニューロン素子のモデルとしては、ニューロン素子において、前段の複数のニューロン素子の出力値をシナプス荷重で重み付けした値の総和をとり、ニューロン素子の内部状態値を決定するものが一般的である。   First, as shown in FIG. 18, as a model of neuron elements in the neural network, the sum of values obtained by weighting the output values of the plurality of neuron elements in the previous stage with the synapse load is obtained. It is common to decide.

特許文献1で説明されたニューロン素子回路(ユニット)は、ニューロン素子のモデルとして、図16で説明した演算処理ブロックを用いている。すなわち、図16で説明した演算値Xiが前段ニューロン素子の出力値に相当し、また被演算値Wiがシナプス荷重値に相当し、ニューロン素子の内部状態値を決定する。続いて図20に示すように、各演算ブロックで算出された累算値は所定の関数処理を行う関数処理ブロック4001Aに入力される。関数処理ブロック4001Aは、目的に応じて非線形関数処理を行っても良いし、線形関数処理を行っても良い。
特開2005−122465号公報(平成17年5月12日公開) 特開2005−122466号公報(平成17年5月12日公開) Liu, S. Q. 他、“Electric-pulse-induced reversible Resistance change effect in magnetoresistive films” ,Applied Physics Letter, Vol. 76, pp. 2749-2751, 2000年
The neuron element circuit (unit) described in Patent Literature 1 uses the arithmetic processing block described in FIG. 16 as a neuron element model. That is, the operation value Xi described in FIG. 16 corresponds to the output value of the preceding neuron element, and the operation value Wi corresponds to the synapse load value, and determines the internal state value of the neuron element. Subsequently, as shown in FIG. 20, the accumulated value calculated in each operation block is input to a function processing block 4001A that performs predetermined function processing. The function processing block 4001A may perform nonlinear function processing or linear function processing according to the purpose.
Japanese Patent Laying-Open No. 2005-122465 (published on May 12, 2005) Japanese Patent Laying-Open No. 2005-122466 (published on May 12, 2005) Liu, SQ et al. “Electric-pulse-induced reversible resistance change effect in magnetoresistive films”, Applied Physics Letter, Vol. 76, pp. 2749-2751, 2000

しかしながら、前記の積和演算装置1000においては以下の問題点がある。図21に、図14(a)で説明したスイッチト電流源(SCS)の回路構成を示す。   However, the product-sum operation apparatus 1000 has the following problems. FIG. 21 shows a circuit configuration of the switched current source (SCS) described in FIG.

従来のスイッチト電流源(SCS)は、スイッチ部分にCMOS(complementary metal-oxide semiconductor)インバータ回路、及び定電流源にMOS(metal-oxide semiconductor)トランジスタを使用している。   A conventional switched current source (SCS) uses a complementary metal-oxide semiconductor (CMOS) inverter circuit for a switch portion and a metal-oxide semiconductor (MOS) transistor for a constant current source.

このため、構成が複雑になり、積和演算装置1000の部分の占有面積が大きくなってしまうという問題点がある。   For this reason, there is a problem that the configuration becomes complicated and the occupied area of the product-sum operation apparatus 1000 becomes large.

なお、定電流源のトランジスタには、アナログとしての性能を高めるため、デザインルールに依存せず、通常、2μm程度のチャネル長のものが使用される。結果として、スイッチト電流源(SCS)の単位素子のサイズは、数μm〜数十μm程度の大きさとなってしまう。   Note that a transistor having a channel length of about 2 μm is usually used as the constant current source transistor without depending on the design rule in order to improve analog performance. As a result, the size of the unit element of the switched current source (SCS) is about several μm to several tens of μm.

また、図14(a)に示すように、積和演算装置1000に対して同時に複数の演算値・被演算値を入力するためには、前記スイッチト電流源(SCS)を複数設ける必要があるため、前記占有面積は、さらに増大してしまう問題点もある。   Further, as shown in FIG. 14A, in order to simultaneously input a plurality of calculated values / operated values to the product-sum calculation apparatus 1000, it is necessary to provide a plurality of switched current sources (SCS). Therefore, there is a problem that the occupied area further increases.

本発明は、前記従来の問題点に鑑みなされたものであって、その目的は、積演算装置及び積和演算装置における構成を簡素化し、これらの装置を含む回路全体の面積に対する積演算装置及び積和演算装置の占有面積を小さくすることが可能な積演算装置、及び積和演算装置、これらの装置を各ニューロン素子に備えるニューラルネットワーク、並びに積演算方法などを提供することにある。   The present invention has been made in view of the above-described conventional problems, and an object thereof is to simplify the configuration of a product operation device and a product-sum operation device, and to calculate a product operation device for the area of the entire circuit including these devices, and An object of the present invention is to provide a product operation device and product-sum operation device capable of reducing the area occupied by the product-sum operation device, a neural network including these devices in each neuron element, a product operation method, and the like.

本発明の積演算装置は、前記課題を解決するために、被乗数と乗数とを入力することにより、これらの積演算の結果を出力する積演算装置であって、電圧パルスを印加することによって可逆的に電気抵抗が変化し、少なくとも2つの端子を有する抵抗変化型可変抵抗素子を備えており、該抵抗変化型可変抵抗素子の前記2つの端子の一方の端子に被乗数に対応する第1入力信号を入力し、他方の端子に前記被乗数に乗算される乗数に対応する第2入力信号を入力することにより、前記被乗数と前記乗数との積演算の結果に対応する出力値が出力されるように構成されていることを特徴としている。   In order to solve the above-mentioned problem, the product operation device of the present invention is a product operation device that outputs a result of a product operation by inputting a multiplicand and a multiplier, and is reversible by applying a voltage pulse. A variable resistance element having variable resistance and having at least two terminals, and a first input signal corresponding to a multiplicand is applied to one of the two terminals of the variable resistance variable resistance element. , And a second input signal corresponding to the multiplier multiplied by the multiplicand is input to the other terminal, so that an output value corresponding to the result of the product operation of the multiplicand and the multiplier is output. It is characterized by being composed.

本発明の積演算方法は、前記課題を解決するために、電圧パルスを印加することによって可逆的に電気抵抗が変化し、少なくとも2つの端子を有する抵抗変化型可変抵抗素子を備えており、被乗数と乗数とを入力することにより、これらの積演算の結果を出力する積演算装置により実行される積演算方法であって、前記抵抗変化型可変抵抗素子の前記2つの端子の一方の端子に被乗数に対応する第1入力信号を入力する第1信号入力ステップと、前記2つの端子の他方の端子に前記被乗数に乗算される乗数に対応する第2入力信号を入力する第2信号入力ステップと、前記被乗数と前記乗数との積演算の結果に対応する出力値を出力する演算結果出力ステップと実行することを特徴としている。   In order to solve the above-described problem, the product calculation method of the present invention includes a variable resistance variable resistance element having a resistance variable variable resistance element having at least two terminals, the electrical resistance of which is reversibly changed by applying a voltage pulse. And a multiplier, and a product operation method executed by a product operation device that outputs the result of these product operations, wherein a multiplicand is applied to one of the two terminals of the variable resistance variable resistance element. A first signal input step of inputting a first input signal corresponding to the second input signal, a second signal input step of inputting a second input signal corresponding to a multiplier multiplied by the multiplicand to the other terminal of the two terminals, And an operation result output step of outputting an output value corresponding to a result of product operation of the multiplicand and the multiplier.

前記構成によれば、少なくとも2つの端子を有する抵抗変化型可変抵抗素子の一方の端子に被乗数に対応する第1入力信号を入力し、他方の端子に前記被乗数に乗算される乗数に対応する第2入力信号を入力することにより、前記被乗数と前記乗数との積演算の結果に対応する出力値が出力されるようになっている。   According to the above configuration, the first input signal corresponding to the multiplicand is input to one terminal of the variable resistance variable resistance element having at least two terminals, and the multiplier corresponding to the multiplier multiplied by the multiplicand is input to the other terminal. By inputting two input signals, an output value corresponding to the result of product operation of the multiplicand and the multiplier is output.

また、前記方法によれば、少なくとも2つの端子を有する前記抵抗変化型可変抵抗素子の一方の端子に被乗数に対応する第1入力信号を入力する第1信号入力ステップと、前記2つの端子の他方の端子に前記被乗数に乗算される乗数に対応する第2入力信号を入力する第2信号入力ステップと、前記被乗数と前記乗数との積演算の結果に対応する出力値を出力する演算結果出力ステップとが実行される。   According to the method, the first signal input step of inputting the first input signal corresponding to the multiplicand to one terminal of the variable resistance variable resistance element having at least two terminals, and the other of the two terminals. A second signal input step for inputting a second input signal corresponding to the multiplier to be multiplied by the multiplicand to the terminal of the output, and an operation result output step for outputting an output value corresponding to the result of the product operation of the multiplicand and the multiplier Are executed.

以上の構成又は方法における大きなポイントは、抵抗変化型可変抵抗素子における電圧パルスを印加することによって可逆的に電気抵抗が変化するという物理的特性を利用する点にある。   The major point in the above configuration or method is to use the physical characteristic that the electrical resistance is reversibly changed by applying a voltage pulse in the variable resistance variable resistance element.

すなわち、被乗数、乗数、及び積演算の結果と、第1信号、第2信号、及び抵抗変化型可変抵抗素子の出力値(電流値など)との対応関係をあらかじめ決めておけば、積演算を実行することが可能である。   That is, if the correspondence between the result of the multiplicand, multiplier, and product operation and the first signal, the second signal, and the output value (current value, etc.) of the variable resistance variable resistance element is determined in advance, the product operation is performed. It is possible to execute.

これにより、一方の端子から被乗数に対応する信号を入力し、他方の端子から前記被乗数に乗算される乗数に対応する信号を入力することによって、被乗数と乗数との積演算の結果に対応する出力値を出力する積演算装置を、前記従来技術のように、定電流源とスイッチ回路とを有するスイッチト電流源(SCS)で構成する必要がない。   Thereby, a signal corresponding to the multiplicand is input from one terminal, and a signal corresponding to the multiplier to be multiplied by the multiplicand is input from the other terminal, so that an output corresponding to the result of the product operation of the multiplicand and the multiplier There is no need to configure a product operation device that outputs a value as a switched current source (SCS) having a constant current source and a switch circuit as in the prior art.

これにより、例えば、デザインルールを0.1μmとした場合、本発明の積演算装置の基本素子サイズは、0.04μmとなり、上述した従来技術に比べ、2桁〜3桁程度、素子面積が縮小できる。 Thus, for example, when the design rule is 0.1 μm, the basic element size of the product operation device of the present invention is 0.04 μm 2 , and the element area is about two to three digits compared to the above-described conventional technology. Can be reduced.

ここで、「電圧パルス」とは、所定の振幅値(絶対値が最大の電圧値:以下「パルス電圧」又は「パルス電圧値」という)と、所定のパルス幅(以下、「電圧パルス幅」という)とを有するPWM(Pulse Width Modulation)信号の他、NRZ(None-Return-to-Zero)及びRZ(Return-to-Zero)信号も含まれる。また、「電圧パルス」には、1周期単位の単一電圧パルス、及び所定の周波数(以下、「パルス周波数」という)を有する「電圧パルス列」が含まれる。   Here, the “voltage pulse” means a predetermined amplitude value (voltage value with the maximum absolute value: hereinafter referred to as “pulse voltage” or “pulse voltage value”) and a predetermined pulse width (hereinafter referred to as “voltage pulse width”). NRZ (None-Return-to-Zero) and RZ (Return-to-Zero) signals as well as PWM (Pulse Width Modulation) signals. The “voltage pulse” includes a single voltage pulse in one cycle unit and a “voltage pulse train” having a predetermined frequency (hereinafter referred to as “pulse frequency”).

また、「抵抗変化型可変抵抗素子」とは、電圧パルスを印可する事によって可逆的に電気抵抗が変化する素子のことである。なお、「抵抗変化型可変抵抗素子」は、近年、フラッシュメモリに代わる高速動作可能な次世代不揮発性ランダムアクセスメモリ(NVRAM:Nonvolatile Random Access Memory)として応用が期待されているものである。また、「抵抗変化型可変抵抗素子」としては、例えば、非特許文献1に記載されている様なRRAM(Resistance RAM)やPCRAM(Phase Change RAM)などが挙げられる。   The “resistance variable resistance element” is an element whose electric resistance reversibly changes when a voltage pulse is applied. In recent years, the “variable resistance variable resistance element” is expected to be applied as a next-generation non-volatile random access memory (NVRAM) capable of high-speed operation instead of a flash memory. Examples of the “resistance variable variable resistance element” include RRAM (Resistance RAM) and PCRAM (Phase Change RAM) as described in Non-Patent Document 1.

前記第1信号の例としては、PWM(Pulse Width Modulation)信号があり、前記第2信号の例としては、所定の周期(所定の周波数)を持つ電圧パルス列や、電圧パルスが考えられる。   Examples of the first signal include a PWM (Pulse Width Modulation) signal. Examples of the second signal include a voltage pulse train having a predetermined cycle (predetermined frequency) and a voltage pulse.

以上より、積演算装置における構成を簡素化し、これらの装置を含む回路全体の面積に対する積演算装置の占有面積を小さくすることが可能な積演算装置を提供することができる。   As described above, it is possible to provide a product operation device that can simplify the configuration of the product operation device and reduce the area occupied by the product operation device with respect to the area of the entire circuit including these devices.

本発明の積演算装置は、前記構成に加えて、前記第1入力信号及び前記第2入力信号は、電圧パルスであり、前記第1入力信号の電圧パルス幅と、前記第2入力信号のパルス周波数とにより前記出力値を制御するように構成されていても良い。   In the product operation device of the present invention, in addition to the above configuration, the first input signal and the second input signal are voltage pulses, the voltage pulse width of the first input signal, and the pulse of the second input signal. The output value may be controlled according to the frequency.

「抵抗変化型可変抵抗素子」は、所定時間間隔の電圧パルスの印加回数に応じて素子に流れる電流を制御できる。よって、素子の一方の端子に入力される被乗数に対応する第1入力信号の電圧パルス幅の大きさと、素子の他方の端子に入力される乗数に対応する第2入力信号のパルス周波数との積として得られる素子への電圧パルスの印加回数に応じて素子に流れる電流値が決まる。すなわち、被乗数、乗数、及び積演算の結果と、第1信号の電圧パルス幅、第2信号のパルス周波数、及び抵抗変化型可変抵抗素子への電圧パルスの印加回数(電流値)との対応関係をあらかじめ決めておけば、積演算を実行することが可能である。   The “resistance variable variable resistance element” can control the current flowing through the element in accordance with the number of voltage pulses applied at a predetermined time interval. Therefore, the product of the magnitude of the voltage pulse width of the first input signal corresponding to the multiplicand input to one terminal of the element and the pulse frequency of the second input signal corresponding to the multiplier input to the other terminal of the element. The value of the current flowing through the element is determined according to the number of times voltage pulses are applied to the element. That is, the correspondence between the result of the multiplicand, multiplier, and product operation and the voltage pulse width of the first signal, the pulse frequency of the second signal, and the number of times of voltage pulse application (current value) to the variable resistance variable resistance element Is determined in advance, the product operation can be executed.

本発明の積演算装置は、前記構成に加えて、前記第1入力信号及び前記第2入力信号は、電圧パルスであり、前記第1入力信号の電圧パルス幅と、前記第2入力信号のパルス電圧とにより前記出力値を制御するように構成されていても良い。   In the product operation device of the present invention, in addition to the above configuration, the first input signal and the second input signal are voltage pulses, the voltage pulse width of the first input signal, and the pulse of the second input signal. The output value may be controlled by voltage.

「抵抗変化型可変抵抗素子」は、電圧パルス幅(又は所定パルス電圧の印加時間)及びパルス電圧値に応じて素子に流れる電流が制御できる。よって、素子の一方の端子に入力される被乗数に対応する第1入力信号の電圧パルス幅の大きさと、素子の他方の端子に入力される乗数に対応する第2入力信号のパルス電圧との積として得られる素子への電圧パルス幅及びパルス電圧値に応じて素子に流れる電流値が決まる。すなわち、被乗数、乗数、及び積演算の結果と、第1信号の電圧パルス幅、第2信号のパルス電圧、及び抵抗変化型可変抵抗素子への電圧パルス幅及びパルス電圧値(電流値)との対応関係をあらかじめ決めておけば、積演算を実行することが可能である。   The “resistance variable variable resistance element” can control the current flowing through the element according to the voltage pulse width (or the application time of the predetermined pulse voltage) and the pulse voltage value. Therefore, the product of the magnitude of the voltage pulse width of the first input signal corresponding to the multiplicand input to one terminal of the element and the pulse voltage of the second input signal corresponding to the multiplier input to the other terminal of the element. The current value flowing through the element is determined according to the voltage pulse width and pulse voltage value to the element obtained as follows. That is, the result of the multiplicand, the multiplier, and the product operation, the voltage pulse width of the first signal, the pulse voltage of the second signal, and the voltage pulse width and pulse voltage value (current value) to the variable resistance variable resistance element If the correspondence relationship is determined in advance, the product operation can be executed.

本発明の積演算装置は、前記構成に加えて、前記抵抗変化型可変抵抗素子は、前記第1入力信号及び前記第2入力信号の入力による前記積演算の結果を、該抵抗変化型可変抵抗素子の電気抵抗の変化によって記憶するものである。   In the product operation device of the present invention, in addition to the above-described configuration, the variable resistance variable resistance element is configured to output the result of the product calculation by inputting the first input signal and the second input signal to the variable resistance variable resistor. It is memorized by the change of the electric resistance of the element.

ここで、前記特許文献1及び2に記載された従来技術の上述した問題点とは、別の問題点について説明する。前記従来技術では、スイッチト電流源(SCS)のそれぞれが、情報を記録したり消去したりする機能がないため、個々のスイッチト電流源(SCS)の出力値(積演算の結果)のそれぞれを再利用等することができないといった問題点がある。   Here, a problem different from the above-described problems of the prior art described in Patent Documents 1 and 2 will be described. In the prior art, each of the switched current sources (SCS) does not have a function of recording or erasing information, so that each output value (result of product operation) of each switched current source (SCS) There is a problem that cannot be reused.

しかしながら、上述したように、「抵抗変化型可変抵抗素子」は、電圧パルスの印加回数に応じて素子に流れる電流を制御でき、また、電圧パルス幅及びパルス電圧値に応じて素子に流れる電流が制御できる。   However, as described above, the “variable resistance variable resistance element” can control the current flowing through the element according to the number of application of the voltage pulse, and the current flowing through the element according to the voltage pulse width and the pulse voltage value. Can be controlled.

言い換えれば、「抵抗変化型可変抵抗素子」は、電圧パルスの印加回数に応じて、或いは、電圧パルス幅及びパルス電圧値に応じて素子の電気抵抗が変化する。   In other words, in the “resistance variable variable resistance element”, the electric resistance of the element changes according to the number of voltage pulse applications or according to the voltage pulse width and the pulse voltage value.

すなわち、「抵抗変化型可変抵抗素子」は、前記第1入力信号及び前記第2入力信号の入力による前記積演算の結果を、該抵抗変化型可変抵抗素子の電気抵抗の変化によって記憶する。これにより、本発明の積演算装置(抵抗変化型可変抵抗素子)自体による前記積演算の結果の記憶が可能となる。   In other words, the “resistance variable variable resistance element” stores the result of the product operation by the input of the first input signal and the second input signal by the change in electric resistance of the variable resistance variable resistance element. This makes it possible to store the result of the product operation by the product operation device (resistance variable variable resistance element) itself of the present invention.

本発明の積演算装置は、前記構成に加えて、前記電気抵抗の変化によって記憶された前記積演算の結果は、前記抵抗変化型可変抵抗素子に所定の電圧パルスを印加することにより、消去可能となっている。   In addition to the above configuration, the product calculation device of the present invention can erase the product calculation result stored by the change in the electrical resistance by applying a predetermined voltage pulse to the variable resistance variable resistance element. It has become.

例えば、抵抗変化型可変抵抗素子をバイポーラー動作させた場合は、書き込み時のパルスと時間・電圧が同じで、極性の異なる電圧パルスを再度印加することにより、前記電気抵抗の変化によって記憶された前記積演算の結果を消去することができる。また、抵抗変化型可変抵抗素子をモノポーラ動作させた場合は、極性が同じで時間が長いパルスを再度印加することにより、前記電気抵抗の変化によって記憶された前記積演算の結果を消去することができる。   For example, when the variable resistance variable resistance element is operated in a bipolar manner, it is memorized by the change in the electrical resistance by reapplying a voltage pulse having the same time and voltage as the pulse at the time of writing but having a different polarity. The result of the product operation can be deleted. Further, when the variable resistance variable resistance element is monopolarly operated, the product operation result stored by the change in the electrical resistance can be erased by reapplying a pulse having the same polarity and a long time. it can.

また、本発明の積和演算装置は、前記積演算装置を少なくとも1つ備えており、複数セットの前記第1信号及び前記第2信号の入力により、該積演算装置から出力される前記セット毎の前記出力値の累積値に対応する第2出力値が出力されるように構成されていても良い。   In addition, the product-sum operation apparatus of the present invention includes at least one product operation apparatus, and each set output from the product operation apparatus in response to input of a plurality of sets of the first signal and the second signal. The second output value corresponding to the accumulated value of the output values may be output.

ここで、従来の積和演算装置では、処理速度の短縮を考慮しなければ、単一のスイッチト電流源(SCS)に複数セットの入力を与えて、キャパシタに順次蓄えるという構成を採用する例もある。   Here, in the conventional sum-of-products operation device, an example of adopting a configuration in which a plurality of sets of inputs are given to a single switched current source (SCS) and sequentially stored in a capacitor unless reduction in processing speed is considered. There is also.

しかしながら、スイッチト電流源は、スイッチ回路と定電流源とを備えるものであり、本発明の単体の抵抗変化型可変抵抗素子で構成された積演算装置に比べて、素子サイズはかなり大きい。   However, the switched current source includes a switch circuit and a constant current source, and the element size is considerably larger than that of the product operation device configured by the single variable resistance variable resistance element of the present invention.

したがって、本発明の積和演算装置を、単一の積演算装置に複数セットの入力を与えて、キャパシタに順次蓄える構成とした場合でも、従来の単一のスイッチト電流源を用いる積和演算装置に比べて、これらの装置を含む回路全体の面積に対する積演算装置の占有面積を小さくすることができる。   Therefore, even when the product-sum operation device of the present invention is configured to sequentially input the multiple product inputs to a single product operation device and store them in the capacitor, the product-sum operation using the conventional single switched current source is performed. Compared with the devices, the area occupied by the product operation device with respect to the area of the entire circuit including these devices can be reduced.

また、本発明の積和演算装置は、前記構成に加えて、前記抵抗変化型可変抵抗素子は、複数セットの前記第1入力信号及び前記第2入力信号の入力による前記セット毎の前記積演算の累積結果を、該抵抗変化型可変抵抗素子の電気抵抗の変化によって記憶するものである。   According to the product-sum operation apparatus of the present invention, in addition to the above configuration, the variable resistance variable resistance element includes the product operation for each set by inputting the plurality of sets of the first input signal and the second input signal. Is stored by the change in electric resistance of the variable resistance variable resistance element.

上述したように、「抵抗変化型可変抵抗素子」は、電圧パルスの印加回数に応じて素子に流れる電流を制御でき、また、電圧パルス幅及びパルス電圧値に応じて素子に流れる電流を制御できる。   As described above, the “variable resistance variable resistance element” can control the current flowing through the element according to the number of voltage pulse application, and can control the current flowing through the element according to the voltage pulse width and the pulse voltage value. .

言い換えれば、「抵抗変化型可変抵抗素子」は、電圧パルスの印加回数に応じて、或いは、電圧パルス幅及びパルス電圧値に応じて素子の電気抵抗が変化する。   In other words, in the “resistance variable variable resistance element”, the electric resistance of the element changes according to the number of voltage pulse applications or according to the voltage pulse width and the pulse voltage value.

すなわち、「抵抗変化型可変抵抗素子」は、前記抵抗変化型可変抵抗素子は、複数セットの前記第1入力信号及び前記第2入力信号の入力による前記セット毎の前記積演算の累積結果を、該抵抗変化型可変抵抗素子の電気抵抗の変化によって記憶する。これにより、本発明の積和演算装置(抵抗変化型可変抵抗素子)自体による前記積演算の累積結果の記憶が可能となる。   That is, the “variable resistance variable resistance element” means that the variable resistance variable resistance element is a cumulative result of the product operation for each set by inputting the plurality of sets of the first input signal and the second input signal. The data is stored by changing the electric resistance of the variable resistance variable resistance element. As a result, it is possible to store the accumulated result of the product operation by the product-sum operation device (resistance variable variable resistance element) itself of the present invention.

また、本発明の積和演算装置は、前記構成に加えて、前記電気抵抗の変化によって記憶された前記積演算の累積結果は、前記抵抗変化型可変抵抗素子に所定の電圧パルスを印加することにより、消去可能となっている。   In addition to the above configuration, the product-sum operation apparatus of the present invention applies a predetermined voltage pulse to the variable resistance variable resistance element based on the accumulated result of the product operation stored by the change in electrical resistance. Therefore, it can be erased.

例えば、抵抗変化型可変抵抗素子をバイポーラ動作させた場合は、書き込み時のパルスと時間・電圧が同じで、極性の異なる電圧パルスを再度印加することにより、前記電気抵抗の変化によって記憶された前記積演算の結果を消去することができる。また、抵抗変化型可変抵抗素子をモノポーラ動作させた場合は、極性が同じで時間が長いパルスを再度印加することにより、前記電気抵抗の変化によって記憶された前記積演算の結果を消去することができる。   For example, when the variable resistance variable resistance element is operated in a bipolar manner, a voltage pulse having the same time and voltage as the pulse at the time of writing and having a different polarity is applied again to store the change in the electric resistance. The result of the product operation can be deleted. Further, when the variable resistance variable resistance element is monopolarly operated, the product operation result stored by the change in the electrical resistance can be erased by reapplying a pulse having the same polarity and a long time. it can.

また、本発明の積和演算装置は、前記構成に加えて、前記積演算装置を複数備えており、該複数の積演算装置のそれぞれから出力される出力値の累積値に対応する第2出力値が出力されるように構成されていても良い。   In addition to the above configuration, the product-sum operation apparatus of the present invention includes a plurality of the product operation apparatuses, and a second output corresponding to an accumulated value of output values output from each of the plurality of product operation apparatuses. It may be configured to output a value.

以上によれば、複数の積演算装置への書き込み、読み出しが同時に処理できるため、単体の抵抗変化型可変抵抗素子で積和演算装置を構成した場合に比較して、前記積演算の累積結果の書き込み読み出しの処理速度が速くなる。   According to the above, since writing to and reading from a plurality of product operation devices can be performed at the same time, compared to the case where the product-sum operation device is configured with a single variable resistance variable resistance element, The processing speed for writing and reading is increased.

また、本発明の積和演算装置は、前記構成に加えて、前記複数の積演算装置のうちの、所定数の積演算装置のそれぞれから出力される出力値の累積値に対応する第3出力値が出力されるように構成されていても良い。   In addition to the above-described configuration, the product-sum operation apparatus according to the present invention includes a third output corresponding to a cumulative value of output values output from each of a predetermined number of product operation apparatuses among the plurality of product operation apparatuses. It may be configured to output a value.

前記構成によれば、所定数の積演算装置のそれぞれから出力される出力値の累積値に対応する第3出力値(部分和)が出力される、すなわち、部分的な積和演算(部分和の算出)が可能となる。   According to the above configuration, the third output value (partial sum) corresponding to the accumulated value of the output values output from each of the predetermined number of product operation devices is output, that is, partial product-sum operation (partial sum). Can be calculated).

また、本発明の積和演算装置は、前記構成に加えて、前記複数の積演算装置のうち、所定数の積演算装置のそれぞれから出力される出力値の累積値を記憶する記憶部を備えていることが好ましい。   In addition to the above configuration, the product-sum operation apparatus of the present invention further includes a storage unit that stores a cumulative value of output values output from each of a predetermined number of product operation apparatuses among the plurality of product operation apparatuses. It is preferable.

以上によれば、適宜記憶部を設けることにより、複数の積演算装置を、複数のブロック部分に分割して、当該ブロック部分毎に、前記複数の積演算装置のうち、所定数の積演算装置のそれぞれから出力される出力値の累積値を記憶させることができる。また、記憶部に記録されていれば、前記積演算の累積結果を直ぐに引き出すことができるので、当該ブロック部分毎に記憶部に記憶されている部分和の算出処理が速くなる。   According to the above, a plurality of product operation devices are divided into a plurality of block parts by appropriately providing a storage unit, and a predetermined number of product operation devices among the plurality of product operation devices are provided for each block part. The cumulative value of the output value output from each of the above can be stored. Moreover, since the accumulated result of the product operation can be immediately extracted as long as it is recorded in the storage unit, the partial sum calculation process stored in the storage unit for each block portion is accelerated.

また、本発明のニューラルネットワークは、前記構成に加えて、複数段のニューロン素子を有しており、特定段における所定数のニューロン素子の出力値に対してシナプス荷重値で重み付けした値のそれぞれを、一意対応で、該特定段に隣接する次段のニューロン素子に入力することにより、該ニューロン素子の内部状態を示す内部状態値が決定されるニューラルネットワークであって、前記各ニューロン素子は、請求項6から11までのいずれか1項に記載の積和演算装置を備えており、前記特定段におけるニューロン素子の出力値は、前記被乗数として前記次段のニューロン素子に備えられた積和演算装置へ入力されると共に、前記シナプス荷重値は、前記乗数として前記次段のニューロン素子に備えられた積和演算装置に入力され、前記次段のニューロン素子の内部状態を示す内部状態値は、前記積演算の累積結果に対応する出力値として前記次段のニューロン素子に備えられた積和演算装置から出力されるように構成されていることが好ましい。   In addition to the above configuration, the neural network of the present invention has a plurality of neuron elements, and each of the values weighted by the synaptic load values for the output values of a predetermined number of neuron elements in a specific stage is provided. A neural network in which an internal state value indicating an internal state of the neuron element is determined by inputting to a neuron element of the next stage that is uniquely associated and adjacent to the specific stage. 12. The product-sum operation apparatus according to any one of items 6 to 11, wherein an output value of the neuron element in the specific stage is provided as the multiplicand in the neuron element in the next stage. And the synaptic load value is input as a multiplier to a product-sum operation unit provided in the next-stage neuron element. The internal state value indicating the internal state of the next-stage neuron element is configured to be output from the product-sum operation device provided in the next-stage neuron element as an output value corresponding to the accumulated result of the product operation. Preferably it is.

前記構成によれば、前記各ニューロン素子は、前記積和演算装置を備えており、これらのニューロン素子の出力値、シナプス荷重値及び内部状態値のそれぞれを、前記積和演算装置に入・出力される、被乗数、乗数、及び被乗数及び乗数の積演算の累積結果で、ニューラルネットワークが構成されるため、従来のニューラルネットワークにおいて各ニューロン素子毎の内部状態値を算出する演算処理ブロックのそれぞれの縮小が可能になる。   According to the above configuration, each neuron element includes the product-sum operation device, and the output value, the synapse load value, and the internal state value of these neuron elements are input to and output from the product-sum operation device. Since the neural network is composed of the multiplicand, the multiplier, and the accumulated result of the product operation of the multiplicand and the multiplier, each of the arithmetic processing blocks for calculating the internal state value for each neuron element in the conventional neural network is reduced. Is possible.

なお、「一意対応」とは、「1対1対応」及び「他対1対応」を含む概念である。   “Unique correspondence” is a concept including “one-to-one correspondence” and “other-to-one correspondence”.

より具体的には、「1対1対応」とは、特定段における1つのニューロン素子の出力値に対してシナプス荷重値で重み付けした値を、該特定段に隣接する次段の1つのニューロン素子に入力する場合の対応関係のことである。   More specifically, “one-to-one correspondence” means that one neuron element in the next stage adjacent to the specific stage is a value obtained by weighting the output value of one neuron element in the specific stage with a synaptic load value. This corresponds to the correspondence relationship when the input is made to.

また、「他対1対応」とは、特定段における複数のニューロン素子のそれぞれの出力値に対してシナプス荷重値で重み付けした値の総和を、該特定段に隣接する次段の1つのニューロン素子に入力する場合の対応関係のことである。   Further, “corresponding to other 1” means that the sum of values weighted by the synapse load values for the output values of a plurality of neuron elements in a specific stage is one neuron element in the next stage adjacent to the specific stage. This corresponds to the correspondence relationship when the input is made to.

以上説明した様に、本発明によれば、回路が簡素化された素子サイズの小さい積演算装置及び積和演算装置が実現できる。また、抵抗変化型可変抵抗素子に書き込んだ入力信号の積又は積和演算の結果を記憶することができ、必要に応じて、全体和又は部分和を出力することが可能になる。   As described above, according to the present invention, it is possible to realize a product operation device and a product-sum operation device with a small element size and a simplified circuit. Further, the product of the input signal written in the variable resistance variable resistance element or the result of the product-sum operation can be stored, and the total sum or the partial sum can be output as necessary.

よって、積演算装置及び積和演算装置における構成を簡素化し、これらの装置を含む回路全体の面積に対する積演算装置及び積和演算装置の占有面積を小さくすることが可能な積演算装置、及び積和演算装置、これらの装置を各ニューロン素子に備えるニューラルネットワーク、並びに積演算方法などを提供することができる。   Therefore, the configuration of the product operation device and the product-sum operation device is simplified, and the product operation device and the product operation device capable of reducing the occupied area of the product-sum operation device with respect to the area of the entire circuit including these devices, and the product A sum operation device, a neural network including these devices in each neuron element, a product operation method, and the like can be provided.

本発明の積演算装置は、以上のように、被乗数と乗数とを入力することにより、これらの積演算の結果を出力する積演算装置であって、電圧パルスを印加することによって可逆的に電気抵抗が変化し、少なくとも2つの端子を有する抵抗変化型可変抵抗素子を備えており、該抵抗変化型可変抵抗素子の前記2つの端子の一方の端子に被乗数に対応する第1入力信号を入力し、他方の端子に前記被乗数に乗算される乗数に対応する第2入力信号を入力することにより、前記被乗数と前記乗数との積演算の結果に対応する出力値が出力されるように構成されているものである。   As described above, the product operation device of the present invention is a product operation device that outputs the result of the product operation by inputting the multiplicand and the multiplier, and reversibly operates by applying a voltage pulse. A variable resistance variable resistance element having at least two terminals and having a variable resistance is provided, and a first input signal corresponding to a multiplicand is input to one of the two terminals of the variable resistance variable resistance element. The second input signal corresponding to the multiplier multiplied by the multiplicand is input to the other terminal, so that an output value corresponding to the result of the product operation of the multiplicand and the multiplier is output. It is what.

また、本発明の積演算方法は、以上のように、電圧パルスを印加することによって可逆的に電気抵抗が変化し、少なくとも2つの端子を有する抵抗変化型可変抵抗素子を備えており、被乗数と乗数とを入力することにより、これらの積演算の結果を出力する積演算装置により実行される積演算方法であって、前記抵抗変化型可変抵抗素子の前記2つの端子の一方の端子に被乗数に対応する第1入力信号を入力する第1信号入力ステップと、前記2つの端子の他方の端子に前記被乗数に乗算される乗数に対応する第2入力信号を入力する第2信号入力ステップと、前記被乗数と前記乗数との積演算の結果に対応する出力値を出力する演算結果出力ステップと実行する方法である。   In addition, as described above, the product calculation method of the present invention includes a variable resistance variable resistance element having a resistance variable variable resistance element having at least two terminals, the electrical resistance of which is reversibly changed by applying a voltage pulse. A product operation method executed by a product operation device that outputs a result of the product operation by inputting a multiplier, wherein a multiplicand is applied to one of the two terminals of the variable resistance variable resistance element. A first signal input step of inputting a corresponding first input signal; a second signal input step of inputting a second input signal corresponding to a multiplier multiplied by the multiplicand to the other terminal of the two terminals; An operation result output step for outputting an output value corresponding to the result of the product operation of the multiplicand and the multiplier is executed.

それゆえ、積演算装置における構成を簡素化し、これらの装置を含む回路全体の面積に対する積演算装置の占有面積を小さくすることが可能な積演算装置、及び積和演算装置、これらの装置を各ニューロン素子に備えるニューラルネットワーク、並びに積演算方法などを提供するという効果を奏する。   Therefore, it is possible to simplify the configuration of the product operation device and reduce the occupation area of the product operation device relative to the entire circuit area including these devices, the product operation device, and the product-sum operation device. There is an effect that a neural network provided in a neuron element, a product operation method, and the like are provided.

本発明の一実施形態について図1〜図13に基づいて説明すれば、以下の通りである。   An embodiment of the present invention will be described below with reference to FIGS.

〔実施の形態1〕
まず、図1に基づき、本発明の一実施形態である積和演算装置(積演算装置)10の構成について説明する。
[Embodiment 1]
First, based on FIG. 1, the structure of the product-sum operation apparatus (product operation apparatus) 10 which is one Embodiment of this invention is demonstrated.

図1は、本発明の一実施形態である抵抗変化型可変抵抗素子(積演算装置)1をユニットセルとする単一セルにより構成された積和演算装置10の書き込みの際の構成を示す回路図である。   FIG. 1 is a circuit diagram showing a configuration at the time of writing of a product-sum operation apparatus 10 constituted by a single cell having a resistance variable variable resistance element (product operation apparatus) 1 according to an embodiment of the present invention as a unit cell. FIG.

本実施形態の積和演算装置10は、被乗数と乗数とを入力することにより、これらの積演算の結果を出力するものであり、図1に示すように、抵抗変化型可変抵抗素子1,データ線2,ビット線3,スイッチングトランジスタ4,コンデンサ(記憶部)5,及びオペアンプ6を備える構成である。   The product-sum operation apparatus 10 of this embodiment outputs the result of these product operations by inputting a multiplicand and a multiplier. As shown in FIG. The configuration includes a line 2, a bit line 3, a switching transistor 4, a capacitor (storage unit) 5, and an operational amplifier 6.

抵抗変化型可変抵抗素子1は、電圧パルスを印加することによって可逆的に電気抵抗が変化し、少なくとも2つの端子(一方の端子)A・端子(他方の端子)Bを有するものである。   The resistance variable variable resistance element 1 has an electrical resistance that reversibly changes by applying a voltage pulse, and has at least two terminals (one terminal) A and a terminal (the other terminal) B.

また、抵抗変化型可変抵抗素子1の端子Aに被乗数に対応する第1入力信号を入力し、端子Bに前記被乗数に乗算される乗数に対応する第2入力信号を入力することにより、前記被乗数と前記乗数との積演算の結果に対応する出力値(電流値)が出力されるように構成されている。   Further, by inputting a first input signal corresponding to the multiplicand to the terminal A of the variable resistance variable resistance element 1 and inputting a second input signal corresponding to the multiplier multiplied by the multiplicand to the terminal B, the multiplicand is obtained. And an output value (current value) corresponding to the result of the product operation of the multiplier.

データ線2には、パルス周波数Fiで定義される電圧パルス列(第2入力信号)が印可される。   A voltage pulse train (second input signal) defined by the pulse frequency Fi is applied to the data line 2.

ビット線3には、パルス幅(電圧パルス幅)Tiで定義される単一電圧パルス(第1入力信号)が印加される。   A single voltage pulse (first input signal) defined by a pulse width (voltage pulse width) Ti is applied to the bit line 3.

ここで、「電圧パルス」とは、所定の振幅値(絶対値が最大の電圧値:以下「パルス電圧」又は「パルス電圧値」という)と、所定のパルス幅(以下、「電圧パルス幅又は所定パルス電圧の印加時間」という)とを有するPWM(Pulse Width Modulation)信号の他、NRZ(None-Return-to-Zero)及びRZ(Return-to-Zero)信号も含まれる。また、「電圧パルス」には、1周期単位の単一電圧パルス、及び所定の周波数(以下、「パルス周波数」という)を有する「電圧パルス列」が含まれる。   Here, the “voltage pulse” means a predetermined amplitude value (voltage value with the maximum absolute value: hereinafter referred to as “pulse voltage” or “pulse voltage value”) and a predetermined pulse width (hereinafter referred to as “voltage pulse width or NRZ (None-Return-to-Zero) and RZ (Return-to-Zero) signals, as well as PWM (Pulse Width Modulation) signals. The “voltage pulse” includes a single voltage pulse in one cycle unit and a “voltage pulse train” having a predetermined frequency (hereinafter referred to as “pulse frequency”).

スイッチングトランジスタ4は、抵抗変化型可変抵抗素子1と、コンデンサ5及びオペアンプ6との間を導通状態又は非導通状態とするためのスイッチの役割を果たす。なお、図1では、非導通状態であるため「OFF」と記載されている。   The switching transistor 4 serves as a switch for making the resistance variable variable resistance element 1 and the capacitor 5 and the operational amplifier 6 conductive or nonconductive. In FIG. 1, “OFF” is described because it is a non-conduction state.

コンデンサ5は、スイッチングトランジスタ4との間で導通状態にある場合、以下で説明するように、データ線2及びビット線3から抵抗変化型可変抵抗素子1に書き込まれた情報を電荷量として記憶するものである。   When the capacitor 5 is in conduction with the switching transistor 4, the information written from the data line 2 and the bit line 3 to the variable resistance variable resistance element 1 is stored as a charge amount as described below. Is.

オペアンプ6は、負極性入力端子(−)と、出力端子との間にコンデンサ5を設けることで、フィードバックをかけ、積分回路を構成するものである。なお、この場合、Vrefには、一定のバイアス電圧が印加される。   The operational amplifier 6 provides feedback by providing a capacitor 5 between the negative input terminal (−) and the output terminal, and constitutes an integration circuit. In this case, a constant bias voltage is applied to Vref.

これにより、オペアンプ6のフィードバック機能により、負極性入力端子(−)への入力が仮想接地になるので、コンデンサ5に電荷が溜まることによる電位変動が抑制されるという効果が得られる。   As a result, the input to the negative input terminal (−) is virtually grounded by the feedback function of the operational amplifier 6, so that an effect of suppressing potential fluctuation due to the accumulation of charges in the capacitor 5 can be obtained.

ここで、図4の基づき、抵抗変化型可変抵抗素子1の電圧パルスを印加することによって可逆的に電気抵抗が変化する物理的特性について説明する。   Here, based on FIG. 4, the physical characteristic that the electrical resistance reversibly changes by applying the voltage pulse of the variable resistance variable resistance element 1 will be described.

図4は、抵抗変化型可変抵抗素子1の構造及び測定時の等価回路を示す。例えば、RRAM(Resistance RAM:抵抗変化型可変抵抗素子)は、図4に示すように、上部電極(一方の端子,他方の端子)11A,下部電極(一方の端子,他方の端子)11B,及び抵抗体12を備えるものである。   FIG. 4 shows a structure of the variable resistance variable resistance element 1 and an equivalent circuit at the time of measurement. For example, as shown in FIG. 4, an RRAM (Resistance RAM: variable resistance variable resistance element) includes an upper electrode (one terminal, the other terminal) 11A, a lower electrode (one terminal, the other terminal) 11B, and The resistor 12 is provided.

抵抗体12は、金属酸化物が材料となっており、上部電極11A及び下部電極11Bに挟まれた構造をしている。   The resistor 12 is made of a metal oxide and has a structure sandwiched between the upper electrode 11A and the lower electrode 11B.

RRAMに、パルス電圧を印可することにより、電気抵抗が変化し、電源をオフにしてもその抵抗値が保持され、不揮発性メモリとして働く。通常、高抵抗状態から低抵抗状態に遷移する動作を「SET(セット)動作」、低抵抗状態から高抵抗状態に遷移する動作を「RESET(リセット)動作」と定義している。   By applying a pulse voltage to the RRAM, the electric resistance changes, and the resistance value is retained even when the power is turned off, and it works as a nonvolatile memory. Usually, an operation that transitions from a high resistance state to a low resistance state is defined as a “SET (set) operation”, and an operation that transitions from a low resistance state to a high resistance state is defined as a “RESET (reset) operation”.

SET動作及びRESET動作ともに同極性の電圧パルスを印可する方式を「ユニポーラースイッチング方式(モノポーラ動作)」、逆極性のパルスを印可する方式を「バイポーラースイッチング方式(バイポーラ動作)」と呼ぶ。   A system that applies voltage pulses of the same polarity in both the SET operation and the RESET operation is referred to as a “unipolar switching system (monopolar operation)”, and a system that applies a reverse polarity pulse is referred to as a “bipolar switching system (bipolar operation)”.

図5(a)に、抵抗変化型可変抵抗素子1(PRAM)にパルス電圧(振幅値2.6V)を35nsec間隔で印加した回数(SETパルス回数)と、その時の抵抗変化型可変抵抗素子1に流れる電流との関係を示す。   FIG. 5A shows the number of times a pulse voltage (amplitude value 2.6 V) is applied to the resistance variable variable resistance element 1 (PRAM) at 35 nsec intervals (SET pulse frequency), and the resistance variable variable resistance element 1 at that time. Shows the relationship with the current flowing through.

図5(a)に示すように、SETパルス回数に応じて抵抗変化型可変抵抗素子1に流れる電流が制御可能となっていることがわかる。   As shown in FIG. 5A, it can be seen that the current flowing through the resistance variable variable resistance element 1 can be controlled according to the number of SET pulses.

すなわち、積和演算装置10は、第1入力信号及び第2入力信号は、それぞれ、単一電圧パルス及び電圧パルス列であり、単一電圧パルスの電圧パルス幅と、電圧パルス列のパルス周波数とにより、演算結果としてのSETパルス回数(出力値)を制御するように構成することができる。   That is, in the product-sum operation apparatus 10, the first input signal and the second input signal are a single voltage pulse and a voltage pulse train, respectively, and the voltage pulse width of the single voltage pulse and the pulse frequency of the voltage pulse train are It can be configured to control the number of SET pulses (output value) as a calculation result.

抵抗変化型可変抵抗素子1は、SETパルス回数に応じて素子に流れる電流を制御できる。よって、素子の端子Aに入力される被乗数に対応する単一電圧パルスの電圧パルス幅の大きさと、素子の端子Bに入力される乗数に対応する電圧パルス列のパルス周波数との積として得られる素子へのSETパルス回数に応じて素子に流れる電流値が決まる。すなわち、被乗数、乗数、及び積演算の結果と、単一電圧パルスの電圧パルス幅、電圧パルス列のパルス周波数、及び抵抗変化型可変抵抗素子へのSETパルス回数(電流値)との対応関係をあらかじめ決めておけば、積演算を実行することが可能である。   The variable resistance variable resistance element 1 can control the current flowing through the element according to the number of SET pulses. Therefore, the element obtained as the product of the magnitude of the voltage pulse width of the single voltage pulse corresponding to the multiplicand input to the terminal A of the element and the pulse frequency of the voltage pulse train corresponding to the multiplier input to the terminal B of the element The value of the current flowing through the element is determined according to the number of SET pulses to. That is, the correspondence relationship between the result of the multiplicand, the multiplier, and the product operation, the voltage pulse width of the single voltage pulse, the pulse frequency of the voltage pulse train, and the number of SET pulses (current value) to the variable resistance variable resistance element is shown in advance. Once determined, product operations can be performed.

次に、図5(b)に、抵抗変化型可変抵抗素子1(PRAM)へ印加したパルス電圧の電圧パルス幅(振幅値2.6Vのパルス電圧を印加した時間:単位はns)と、その時の抵抗変化型可変抵抗素子1に流れる電流との関係を示す。   Next, FIG. 5B shows the voltage pulse width of the pulse voltage applied to the resistance variable variable resistance element 1 (PRAM) (the time when the pulse voltage having an amplitude value of 2.6 V is applied: the unit is ns), and at that time The relationship with the electric current which flows into the resistance change type variable resistance element 1 is shown.

すなわち、第1入力信号及び第2入力信号は、それぞれ、単一パルスであり、第1入力信号の単一電圧パルスの電圧パルス幅と、第2入力信号の単一電圧パルスのパルス電圧値との積として得られる素子への、パルス電圧値及び電圧パルス幅を制御するように構成することもできる。   That is, each of the first input signal and the second input signal is a single pulse, the voltage pulse width of the single voltage pulse of the first input signal, and the pulse voltage value of the single voltage pulse of the second input signal. It is also possible to control the pulse voltage value and the voltage pulse width for the element obtained as a product of

抵抗変化型可変抵抗素子1は、電圧パルス幅及びパルス電圧値に応じて素子に流れる電流が制御できる。よって、端子Bに入力される被乗数に対応する電圧パルス幅の大きさ(電圧パルスの印加時間に対応)と、端子Aに入力される乗数に対応するパルス電圧値との積として得られる素子への電圧パルス幅及びパルス電圧値に応じて素子に流れる電流値が決まる。すなわち、被乗数、乗数、及び積演算の結果と、電圧パルス幅、パルス電圧、及び抵抗変化型可変抵抗素子1への電圧パルス幅及びパルス電圧値(電流値)との対応関係をあらかじめ決めておけば、積演算を実行することが可能である。   The variable resistance variable resistance element 1 can control the current flowing through the element according to the voltage pulse width and the pulse voltage value. Therefore, to the element obtained as the product of the magnitude of the voltage pulse width corresponding to the multiplicand input to the terminal B (corresponding to the application time of the voltage pulse) and the pulse voltage value corresponding to the multiplier input to the terminal A The current value flowing through the element is determined according to the voltage pulse width and the pulse voltage value. That is, the correspondence between the result of the multiplicand, multiplier, and product operation, the voltage pulse width, the pulse voltage, and the voltage pulse width and pulse voltage value (current value) to the variable resistance variable resistance element 1 can be determined in advance. For example, a product operation can be executed.

さらに、図5(c)に、抵抗変化型可変抵抗素子1に所定のパルス電圧を印加した場合のパルス電圧値と、その時の抵抗変化型可変抵抗素子1に流れる電流との関係を示す。   FIG. 5C shows the relationship between the pulse voltage value when a predetermined pulse voltage is applied to the resistance variable variable resistance element 1 and the current flowing through the resistance variable variable resistance element 1 at that time.

図5(c)に示すように、0.5V程度までは、変化が無いが、それ以上の電圧で、パルス電圧値に応じて抵抗変化型可変抵抗素子1に流れる電流が制御可能となっていることがわかる。   As shown in FIG. 5 (c), there is no change up to about 0.5V, but with a voltage higher than that, the current flowing through the resistance variable resistance element 1 can be controlled according to the pulse voltage value. I understand that.

次に、図1〜図3(b)に基づき、単体の抵抗変化型可変抵抗素子1にて積和演算装置10を構成した場合の動作について説明する。   Next, based on FIG. 1 to FIG. 3B, an operation when the product-sum operation apparatus 10 is configured with a single variable resistance variable resistance element 1 will be described.

図1には、積和演算装置10の書き込み動作を示しているが、書き込み時は、抵抗変化型可変抵抗素子1と演算結果を蓄積するコンデンサ5の間は、導通されていない状態になっている。   FIG. 1 shows a write operation of the product-sum operation apparatus 10. At the time of writing, the resistance change type variable resistance element 1 and the capacitor 5 that stores the operation result are not electrically connected. Yes.

このような状態において、まず、抵抗変化型可変抵抗素子1に接続されたビット線3とデータ線2に電圧パルスを印加する。   In such a state, first, voltage pulses are applied to the bit line 3 and the data line 2 connected to the variable resistance variable resistance element 1.

図2(a)は、抵抗変化型可変抵抗素子1の端子A(ビット線)に入力される電圧パルス(パルス幅Ti)の様子を示す波形図であり、図2(b)は、端子B(データ線)に入力される電圧パルス(パルス周波数Fi)の様子を示す波形図であり、図2(c)は、端子A・B間の電位差と閾値電位Vthとの関係を示す波形図である。   FIG. 2A is a waveform diagram showing a state of a voltage pulse (pulse width Ti) inputted to the terminal A (bit line) of the resistance variable variable resistance element 1, and FIG. FIG. 2C is a waveform diagram illustrating a state of a voltage pulse (pulse frequency Fi) input to (data line), and FIG. 2C is a waveform diagram illustrating a relationship between a potential difference between terminals A and B and a threshold potential Vth. is there.

この時、ビット線3には、図2(a)に示すパルス幅=Tiで定義される単一電圧パルスを印加する。一方、データ線2には、図2(b)に示すパルス周波数=Fiで定義される電圧パルス列を印可する。   At this time, a single voltage pulse defined by the pulse width = Ti shown in FIG. On the other hand, a voltage pulse train defined by pulse frequency = Fi shown in FIG. 2B is applied to the data line 2.

図1には、可変抵抗素子間に印加される単一電圧パルス及び電圧パルス列が記載されているが、図2(c)に示すように、閾値電位Vthで表される閾値以上の電圧値が加わった場合に、抵抗変化型可変抵抗素子1には、コンダクタンスσii∝Fi・Tiで示される情報が書き込まれることになる(コンダクタンスσiiは抵抗変化型可変抵抗素子1の抵抗値Riiの逆数である。)。なお、抵抗変化型可変抵抗素子1には、電源を切っても、書き込まれた情報としてのコンダクタンスσiiを保持(被乗数と乗数との積演算の結果を保持)する機能があるため、書き込まれた情報が消失することは無い。   FIG. 1 shows a single voltage pulse and a voltage pulse train applied between variable resistance elements. As shown in FIG. 2C, a voltage value equal to or higher than the threshold value represented by the threshold potential Vth is shown. In this case, information represented by conductance σii∝Fi · Ti is written in the resistance variable variable resistance element 1 (conductance σii is the reciprocal of the resistance value Rii of the resistance variable variable resistance element 1. .) The variable resistance variable resistance element 1 has a function of holding the conductance σii as written information (holding the result of product operation of multiplicand and multiplier) even when the power is turned off. Information is never lost.

すなわち、抵抗変化型可変抵抗素子1は、単一電圧パルス及び電圧パルス列の入力による積演算の結果を、抵抗変化型可変抵抗素子1の電気抵抗(コンダクタンスσiiに対応)の変化によって記憶するものである。   In other words, the resistance variable variable resistance element 1 stores the result of product calculation by inputting a single voltage pulse and a voltage pulse train by a change in the electric resistance (corresponding to the conductance σii) of the resistance variable variable resistance element 1. is there.

ここで、特許文献1及び2に記載された従来技術の上述した問題点とは、別の問題点について説明する。従来技術では、スイッチト電流源(SCS)のそれぞれが、情報を記録したり消去したりする機能がないため、個々のスイッチト電流源(SCS)の出力値(積演算の結果)のそれぞれを再利用等することができないといった問題点がある。   Here, a problem different from the above-described problems of the prior art described in Patent Documents 1 and 2 will be described. In the prior art, each of the switched current sources (SCS) does not have a function of recording or erasing information, so that each output value (result of product operation) of each switched current source (SCS) is obtained. There is a problem that it cannot be reused.

しかしながら、上述したように、抵抗変化型可変抵抗素子1は、電圧パルスの印加回数(SETパルス回数)に応じて素子に流れる電流を制御でき、また、電圧パルス幅及びパルス電圧値に応じて素子に流れる電流が制御できる。   However, as described above, the variable resistance variable resistance element 1 can control the current flowing through the element in accordance with the number of voltage pulse applications (the number of SET pulses), and the element in accordance with the voltage pulse width and the pulse voltage value. The current flowing through the can be controlled.

言い換えれば、抵抗変化型可変抵抗素子1は、電圧パルスの印加回数に応じて、或いは、電圧パルス幅及びパルス電圧値に応じて素子の電気抵抗が変化する。   In other words, in the variable resistance variable resistance element 1, the electric resistance of the element changes according to the number of voltage pulse applications or according to the voltage pulse width and the pulse voltage value.

すなわち、抵抗変化型可変抵抗素子1は、単一電圧パルス及び電圧パルス列(又は、パルス電圧)の入力による積演算の結果を、抵抗変化型可変抵抗素子1の電気抵抗の変化によって記憶する。これにより、抵抗変化型可変抵抗素子1自体による積演算の結果の記憶が可能となる。   That is, the variable resistance variable resistance element 1 stores the result of product calculation by inputting a single voltage pulse and a voltage pulse train (or pulse voltage) as a change in the electrical resistance of the variable resistance variable resistance element 1. As a result, it is possible to store the result of product calculation by the variable resistance variable resistance element 1 itself.

次に、図3(a)及び図3(b)に示すように、積和演算装置10の読み出し動作について説明する。読み出し時は、抵抗変化型可変抵抗素子1と積演算の結果を電荷量として蓄積するコンデンサ5の間は、導通された状態になっている。   Next, as shown in FIGS. 3A and 3B, a read operation of the product-sum operation apparatus 10 will be described. At the time of reading, the variable resistance variable resistance element 1 and the capacitor 5 that accumulates the product calculation result as a charge amount are electrically connected.

図3(a)は、抵抗変化型可変抵抗素子1をユニットセルとする単一セルにより構成された積和演算装置10の読み出しの際の構成を示す回路図であり、図3(b)は、積和演算装置10の動作を示すシーケンス図である。   FIG. 3A is a circuit diagram showing a configuration at the time of reading of the product-sum operation apparatus 10 constituted by a single cell having the resistance variable variable resistance element 1 as a unit cell, and FIG. FIG. 11 is a sequence diagram showing the operation of the product-sum operation apparatus 10.

データ線2を0Vに固定し、ビット線3にパルス電圧値=Vo,電圧パルス幅=Toで定義される電圧パルスを印加する事により、抵抗変化型可変抵抗素子1には、σii・Vo∝Fi・Ti・Voで示される電流が流れ、コンデンサ5には、電荷量Q=σii・Vo・To∝Fi・Ti・Vo・Toで定義される電荷量が蓄積されることになる。   By fixing the data line 2 to 0 V and applying a voltage pulse defined by the pulse voltage value = Vo and the voltage pulse width = To to the bit line 3, the resistance variable variable resistance element 1 has σii · Vo∝. A current indicated by Fi · Ti · Vo flows, and the capacitor 5 accumulates the charge amount defined by the charge amount Q = σii · Vo · To∝Fi · Ti · Vo · To.

以上で説明した書き込みと読み出しを交互に繰り返す事により、電荷量Q=(Σσii)・Vo・To∝(ΣFi・Ti)・Vo・Toで定義される積和演算結果がキャパシタ内に蓄積されたことになる。   By alternately repeating the writing and reading described above, the product-sum operation result defined by the charge amount Q = (Σσii) · Vo · To∝ (ΣFi · Ti) · Vo · To is accumulated in the capacitor. It will be.

Figure 0005160304
Figure 0005160304

また、図3(a)及び図3(b)に示すように、(書き込み→読み出し)処理後には、リセット動作を行い、初期化する必要がある。   Further, as shown in FIGS. 3A and 3B, after the (write → read) process, it is necessary to perform a reset operation to initialize.

すなわち、積和演算装置10は、電気抵抗の変化によって記憶された積演算の結果は、抵抗変化型可変抵抗素子1に所定の電圧パルスを印加することにより、消去可能となっている。   In other words, the product-sum operation apparatus 10 can erase the result of the product operation stored by the change in electrical resistance by applying a predetermined voltage pulse to the resistance variable variable resistance element 1.

例えば、抵抗変化型可変抵抗素子1をバイポーラー動作させた場合は、書き込み時の電圧パルスと時間(パルス幅)・電圧(パルス電圧値)が同じで、極性の異なる電圧パルスを再度印加することにより、電気抵抗の変化によって記憶された積演算の結果を消去することができる。また、抵抗変化型可変抵抗素子1をモノポーラ動作させた場合は、極性が同じで時間(パルス幅)が長い電圧パルスを再度印加することにより、電気抵抗の変化によって記憶された積演算の結果を消去することができる。   For example, when the variable resistance variable resistance element 1 is operated in a bipolar manner, a voltage pulse having the same time (pulse width) and voltage (pulse voltage value) as that at the time of writing is applied again with a different polarity. Thus, the result of the product operation stored by the change in electrical resistance can be erased. When the variable resistance variable resistance element 1 is monopolarly operated, a voltage pulse having the same polarity and a long time (pulse width) is applied again, so that the product operation result stored by the change in the electrical resistance is obtained. Can be erased.

本実施形態において、抵抗変化型可変抵抗素子1のサイズは、4F2(F:デザインルール)で示されるサイズである。例えば、デザインルールを0.1μmとした場合、積和演算装置10の基本素子サイズは、0.04μmとなり、図14(a)で示した従来技術に比べ、2桁〜3桁程度、素子面積が縮小できる。なお、従来技術においてはスイッチト電流源が複数個あり、それにより積和演算装置を形成したが、本実施形態においては、単体の抵抗変化型可変抵抗素子1で素子構成が可能になり、更に素子サイズを縮小することができる。 In the present embodiment, the size of the variable resistance variable resistance element 1 is a size indicated by 4F2 (F: design rule). For example, when the design rule is 0.1 μm, the basic element size of the product-sum calculation apparatus 10 is 0.04 μm 2 , which is about 2 to 3 digits in comparison with the conventional technique shown in FIG. The area can be reduced. In the prior art, there are a plurality of switched current sources, and thus a product-sum operation device is formed. However, in this embodiment, the element configuration can be configured by a single resistance variable variable resistance element 1. The element size can be reduced.

以上、説明したように、抵抗変化型可変抵抗素子1を備えた積和演算装置10によれば、抵抗変化型可変抵抗素子1の端子Aに被乗数に対応する第1入力信号(ここでは、パルス幅Tiの単一電圧パルス信号)を入力し、端子Bに前記被乗数に乗算される乗数に対応する第2入力信号(ここでは、パルス周波数Fiの電圧パルス列)を入力することにより、前記被乗数と前記乗数との積演算の結果に対応する出力値が出力されるようになっている。   As described above, according to the product-sum operation apparatus 10 including the variable resistance variable resistance element 1, the first input signal corresponding to the multiplicand (here, the pulse) is applied to the terminal A of the variable resistance variable resistance element 1. A single voltage pulse signal having a width Ti), and a second input signal (here, a voltage pulse train having a pulse frequency Fi) corresponding to a multiplier multiplied by the multiplicand is input to the terminal B. An output value corresponding to the result of the product operation with the multiplier is output.

以上の構成における大きなポイントは、抵抗変化型可変抵抗素子1における、電圧パルスを印加することによって可逆的に電気抵抗(又はコンダクタンスσii)が変化するという物理的特性を利用する点にある。   The big point in the above configuration is that the resistance variable variable resistance element 1 uses the physical characteristic that the electrical resistance (or conductance σii) reversibly changes when a voltage pulse is applied.

すなわち、被乗数、乗数、及び積演算の結果と、電圧パルス幅、パルス周波数、及び抵抗変化型可変抵抗素子1の出力値(電流値など)との対応関係をあらかじめ決めておけば、積演算を実行することが可能である。   That is, if the correspondence relationship between the result of the multiplicand, multiplier, and product operation, the voltage pulse width, the pulse frequency, and the output value (current value, etc.) of the variable resistance variable resistance element 1 is determined in advance, the product operation is performed. It is possible to execute.

これにより、一方の端子から被乗数に対応する信号を入力し、他方の端子から前記被乗数に乗算される乗数に対応する信号を入力することによって、被乗数と乗数との積演算の結果に対応する出力値を出力する積演算装置を、前記従来技術のように、定電流源とスイッチ回路とを有するスイッチト電流源(SCS)で構成する必要がない。   Thereby, a signal corresponding to the multiplicand is input from one terminal, and a signal corresponding to the multiplier to be multiplied by the multiplicand is input from the other terminal, so that an output corresponding to the result of the product operation of the multiplicand and the multiplier There is no need to configure a product operation device that outputs a value as a switched current source (SCS) having a constant current source and a switch circuit as in the prior art.

ここで、抵抗変化型可変抵抗素子1は、電圧パルスを印可することによって可逆的に電気抵抗が変化する素子のことである。なお、抵抗変化型可変抵抗素子1は、近年、フラッシュメモリに代わる高速動作可能な次世代不揮発性ランダムアクセスメモリ(NVRAM:Nonvolatile Random Access Memory)として応用が期待されているものである。また、抵抗変化型可変抵抗素子1としては、例えば、非特許文献1に記載されている様なRRAM(Resistance RAM)やPCRAM(Phase Change RAM)などが挙げられる。   Here, the variable resistance variable resistance element 1 is an element whose electric resistance reversibly changes when a voltage pulse is applied. In recent years, the variable resistance variable resistance element 1 is expected to be applied as a next-generation non-volatile random access memory (NVRAM) capable of high-speed operation instead of a flash memory. Examples of the resistance variable variable resistance element 1 include RRAM (Resistance RAM) and PCRAM (Phase Change RAM) as described in Non-Patent Document 1.

また、第1信号の例としては、PWM(Pulse Width Modulation)信号があり、第2信号の例としては、所定の周期を持つパルス列や、電圧パルスが考えられる。   Examples of the first signal include a PWM (Pulse Width Modulation) signal, and examples of the second signal include a pulse train having a predetermined cycle and a voltage pulse.

以上より、積和演算装置10における構成を簡素化し、これらの装置を含む回路全体の面積に対する積和演算装置10の占有面積を小さくすることが可能な積和演算装置10を提供することができる。   As described above, it is possible to provide the product-sum operation apparatus 10 capable of simplifying the configuration of the product-sum operation apparatus 10 and reducing the occupied area of the product-sum operation apparatus 10 with respect to the area of the entire circuit including these apparatuses. .

〔実施の形態2〕
本発明の他の実施の形態について図6(a)及び図6(b)に基づいて説明すれば、以下の通りである。なお、本実施の形態において説明すること以外の構成は、前記実施の形態1と同じである。また、説明の便宜上、前記の実施の形態1の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to FIGS. 6 (a) and 6 (b). Configurations other than those described in the present embodiment are the same as those in the first embodiment. For convenience of explanation, members having the same functions as those shown in the drawings of the first embodiment are given the same reference numerals, and explanation thereof is omitted.

図6(a)は、単一セルにより構成された積和演算装置10の構成と書き込み動作とを示す回路図であり、(b)は、読み出し動作を示す回路図である。なお、本実施の形態2では、積和演算装置の構成は、実施の形態1と構成は共通しているが、図1,図2(a)〜図2(c)及び図3(a)・図3(b)とは、別の動作方法である。   FIG. 6A is a circuit diagram showing a configuration and a write operation of the product-sum operation apparatus 10 constituted by a single cell, and FIG. 6B is a circuit diagram showing a read operation. In the second embodiment, the configuration of the product-sum operation apparatus is the same as that of the first embodiment, but FIG. 1, FIG. 2 (a) to FIG. 2 (c) and FIG. 3 (a). -FIG.3 (b) is another operation | movement method.

すなわち、本実施形態では、積和演算装置10を少なくとも1つ備えており、複数セットの単一電圧パルス及び電圧パルス列の入力により、積和演算装置10から出力される前記セット毎の前記出力値の累積値に対応する出力値(第2出力値)が出力されるように構成されていても良い。   That is, in the present embodiment, at least one product-sum operation device 10 is provided, and the output value for each set output from the product-sum operation device 10 by the input of a plurality of sets of single voltage pulses and voltage pulse trains. An output value (second output value) corresponding to the accumulated value may be output.

ここで、従来の積和演算装置では、処理速度の短縮を考慮しなければ、単一のスイッチト電流源に複数セットの入力を与えて、キャパシタに順次蓄えるという構成を採用する例もある。   Here, in the conventional product-sum operation apparatus, there is an example in which a plurality of sets of inputs are given to a single switched current source and are sequentially stored in a capacitor unless reduction in processing speed is considered.

しかしながら、スイッチト電流源は、スイッチ回路と定電流源とを備えるものであり、本実施形態の単体の抵抗変化型可変抵抗素子1で構成された積演算装置に比べて、素子サイズはかなり大きい。   However, the switched current source is provided with a switch circuit and a constant current source, and the element size is considerably larger than that of the product calculation device configured by the single variable resistance element 1 of the present embodiment. .

したがって、抵抗変化型可変抵抗素子1の単一セルで構成された積和演算装置10に複数セットの入力を与えて、コンデンサ5に順次蓄える構成とした場合でも、従来の単一のスイッチト電流源を用いる積和演算装置に比べて、これらの装置を含む回路全体の面積に対する積演算装置の占有面積を小さくすることができる。   Therefore, even in the case where a plurality of sets of inputs are given to the product-sum operation apparatus 10 constituted by a single cell of the variable resistance variable resistance element 1 and the capacitors 5 are sequentially stored, the conventional single switched current is used. Compared to a product-sum operation device using a source, the area occupied by the product operation device with respect to the area of the entire circuit including these devices can be reduced.

本実施形態では、結局構成自体は、実施の形態1と同一の構成を考慮すれば良いので、以下では、実施の形態2における積和演算装置10の動作について説明する。   In the present embodiment, the configuration itself may be the same as that of the first embodiment, so the operation of the product-sum operation apparatus 10 in the second embodiment will be described below.

ここでは、実施の形態1の動作シーケンスを変更し、更に処理ステップを削減した場合について説明する。   Here, the case where the operation sequence of the first embodiment is changed and the processing steps are further reduced will be described.

図6(a)に示す書き込み動作であるが、まず、ビット線3にパルス幅T1で定義される単一電圧パルスを印加し、データ線2には、パルス周波数=F1で定義される電圧パルス列を印加する。   In the write operation shown in FIG. 6A, first, a single voltage pulse defined by a pulse width T1 is applied to the bit line 3, and a voltage pulse train defined by a pulse frequency = F1 is applied to the data line 2. Is applied.

この場合、コンダクタンスσ11∝F1・T1で示される情報が抵抗変化型可変抵抗素子1に書き込まれたことになる。   In this case, information indicated by conductance σ11∝F1 · T1 is written in the variable resistance variable resistance element 1.

次に、ビット線3にパルス幅T2で定義される単一電圧パルスを印加し、データ線2には、パルス周波数=F2で定義される電圧パルス列を印加する。   Next, a single voltage pulse defined by a pulse width T2 is applied to the bit line 3, and a voltage pulse train defined by a pulse frequency = F2 is applied to the data line 2.

この場合、コンダクタンス(σ11+σ22)∝(F1・T1+F2・T2)で示される情報が抵抗変化型可変抵抗素子1に書き込まれたことになる。   In this case, information represented by conductance (σ11 + σ22) ∝ (F1 · T1 + F2 · T2) is written in the variable resistance variable resistance element 1.

同様な書き込み処理を繰り返す事により、最終的に抵抗変化型可変抵抗素子1には、Σσii=Σ(Fi・Ti)で示される情報が書き込まれたことになる。   By repeating the same writing process, information represented by Σσii = Σ (Fi · Ti) is finally written in the variable resistance variable resistance element 1.

すなわち、本実施形態の積和演算装置10は、抵抗変化型可変抵抗素子1は、複数セットの単一電圧パルス及び電圧パルス列の入力による前記セット毎の積演算の累積結果を、抵抗変化型可変抵抗素子1の電気抵抗の変化によって記憶するものである。   That is, in the product-sum operation apparatus 10 according to the present embodiment, the resistance variable variable resistance element 1 is a variable resistance variable variable that is configured to calculate a cumulative result of the product operation for each set by inputting a plurality of sets of single voltage pulses and voltage pulse trains. The data is stored by changing the electric resistance of the resistance element 1.

上述したように、抵抗変化型可変抵抗素子1は、電圧パルスの印加回数に応じて素子に流れる電流を制御でき、また、電圧パルス幅及びパルス電圧値に応じて素子に流れる電流を制御できる。   As described above, the variable resistance variable resistance element 1 can control the current flowing through the element in accordance with the number of voltage pulses applied, and can control the current flowing in the element in accordance with the voltage pulse width and the pulse voltage value.

言い換えれば、抵抗変化型可変抵抗素子1は、電圧パルスの印加回数に応じて、或いは、電圧パルス幅及びパルス電圧値に応じて素子の電気抵抗が変化する。   In other words, in the variable resistance variable resistance element 1, the electric resistance of the element changes according to the number of voltage pulse applications or according to the voltage pulse width and the pulse voltage value.

すなわち、抵抗変化型可変抵抗素子1は、複数セットの単一電圧パルス及び電圧パルス列の入力による前記セット毎の積演算の累積結果を、抵抗変化型可変抵抗素子1の電気抵抗の変化によって記憶する。これにより、本実施形態の積和演算装置10(抵抗変化型可変抵抗素子1)自体による前記積演算の累積結果の記憶が可能となる。   That is, the variable resistance variable resistance element 1 stores the cumulative result of the product operation for each set by the input of a plurality of sets of single voltage pulses and voltage pulse trains according to the change in electrical resistance of the variable resistance variable resistance element 1. . Thereby, the accumulation result of the product calculation by the product-sum calculation apparatus 10 (resistance variable variable resistance element 1) itself of the present embodiment can be stored.

次に、読み出し動作であるが、図6(b)に示すように、データ線2を0Vに固定し、ビット線3にパルス電圧値=Vo、電圧パルス幅=Toで定義される電圧パルスを印加する。この場合、抵抗変化型可変抵抗素子1には、(Σσii)・Vo=Σ(Fi・Ti)・Voで示される電流が流れ、コンデンサ5には、電荷量Q=Σσii・Vo・To∝ΣFi・Ti・Vo・Toで定義される積和演算の結果(積演算の累積結果)が蓄積されたことになる。   Next, in the read operation, as shown in FIG. 6B, the data line 2 is fixed to 0 V, and the voltage pulse defined by the pulse voltage value = Vo and the voltage pulse width = To is applied to the bit line 3. Apply. In this case, a current represented by (Σσii) · Vo = Σ (Fi · Ti) · Vo flows through the resistance variable variable resistance element 1, and a charge amount Q = Σσii · Vo · To∝ΣFi flows through the capacitor 5. The result of the product-sum operation defined by Ti, Vo, and To (accumulated result of the product operation) is accumulated.

なお、新たに積和演算処理を行うには、データ読みだし後に一旦リセット処理を行い、初期化する必要がある。   In order to newly perform a product-sum operation process, it is necessary to perform a reset process once after data reading and to initialize it.

すなわち、本実施形態の積和演算装置10は、前記電気抵抗の変化によって記憶された前記積演算の累積結果は、抵抗変化型可変抵抗素子1に所定の電圧パルスを印加することにより、消去可能となっている。   That is, the product-sum operation apparatus 10 of the present embodiment can erase the accumulated result of the product operation stored by the change in the electrical resistance by applying a predetermined voltage pulse to the resistance variable variable resistance element 1. It has become.

例えば、抵抗変化型可変抵抗素子1をバイポーラ動作させた場合は、書き込み時のパルスと時間・電圧が同じで、極性の異なる電圧パルスを再度印加することにより、前記電気抵抗の変化によって記憶された前記積演算の結果を消去することができる。また、抵抗変化型可変抵抗素子1をモノポーラ動作させた場合は、極性が同じで時間が長いパルスを再度印加することにより、前記電気抵抗の変化によって記憶された前記積演算の結果を消去することができる。   For example, when the variable resistance variable resistance element 1 is operated in a bipolar manner, it is memorized by the change in the electrical resistance by reapplying a voltage pulse having the same time and voltage as the pulse at the time of writing but having a different polarity. The result of the product operation can be deleted. Further, when the variable resistance variable resistance element 1 is operated in a monopolar manner, the result of the product operation stored by the change in the electrical resistance is erased by reapplying a pulse having the same polarity and a long time. Can do.

〔実施の形態3〕
本発明のさらに他の実施の形態について図7(a)〜図8に基づいて説明すれば、以下の通りである。なお、本実施の形態において説明すること以外の構成は、前記実施の形態1及び2と同じである。また、説明の便宜上、前記の実施の形態1及び2の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。なお、以下の〔実施の形態4〕以降は、同様の説明は省略する。
[Embodiment 3]
The following will describe still another embodiment of the present invention with reference to FIGS. Configurations other than those described in the present embodiment are the same as those in the first and second embodiments. For convenience of explanation, members having the same functions as those shown in the drawings of Embodiments 1 and 2 are given the same reference numerals, and explanation thereof is omitted. In the following [Embodiment 4], the same description is omitted.

本実施形態では、実施の形態1及び2で説明した抵抗変化型可変抵抗素子1をユニットセルとして、複数のビット線とデータ線の交点にユニットセルを配置したアレイ構成(マトリクス状配置)の場合の積和演算装置100について説明する。   In this embodiment, the resistance variable variable resistance element 1 described in the first and second embodiments is used as a unit cell, and an array configuration (matrix arrangement) in which unit cells are arranged at intersections of a plurality of bit lines and data lines. The product-sum operation apparatus 100 will be described.

図7(a)は、抵抗変化型可変抵抗素子1をユニットセルする複数個のセル(抵抗変化型可変抵抗素子(積演算装置)111,抵抗変化型可変抵抗素子(積演算装置)121,抵抗変化型可変抵抗素子(積演算装置)211,抵抗変化型可変抵抗素子(積演算装置)221・・・)により構成された積和演算装置100の書き込みの際の構成を示す回路図であり、図7(b)は、抵抗変化型可変抵抗素子1(抵抗変化型可変抵抗素子111)の端子A(ビット線)に入力される電圧パルス(パルス幅Tj:jは、自然数)の様子を示す波形図であり、(c)は、端子B(データ線)に入力される電圧パルス(パルス周波数Fi)の様子を示す波形図であり、(d)は、端子A・B間の電位差と閾値電位Vthとの関係を示す波形図である。   FIG. 7A shows a plurality of cells (resistance change type variable resistance element (product operation device) 111, resistance change type variable resistance device (product operation device) 121, resistance, resistance cell, variable resistance element 1. FIG. 2 is a circuit diagram showing a configuration at the time of writing of a product-sum operation device 100 configured by a variable variable resistance element (product operation device) 211, a resistance change type variable resistance element (product operation device) 221. FIG. 7B shows a state of a voltage pulse (pulse width Tj: j is a natural number) input to the terminal A (bit line) of the resistance variable variable resistance element 1 (resistance variable variable resistance element 111). It is a waveform diagram, (c) is a waveform diagram showing the state of the voltage pulse (pulse frequency Fi) input to the terminal B (data line), (d) is the potential difference between the terminals A and B and the threshold value It is a wave form diagram which shows the relationship with the electric potential Vth.

図8は、抵抗変化型可変抵抗素子1をユニットセルとする複数個のセル(抵抗変化型可変抵抗素子111,抵抗変化型可変抵抗素子121,抵抗変化型可変抵抗素子211,抵抗変化型可変抵抗素子221・・・)により構成された積和演算装置の読み出しの際の構成を示す回路図である。   FIG. 8 shows a plurality of cells (the resistance variable variable resistance element 111, the resistance variable variable resistance element 121, the resistance variable variable resistance element 211, the resistance variable variable resistance, which have the resistance variable variable resistance element 1 as a unit cell. It is a circuit diagram which shows the structure at the time of the reading of the product-sum calculation apparatus comprised by the element 221 ...).

図7(a)〜図8に示すように、本実施形態の積和演算装置100は、抵抗変化型可変抵抗素子1を複数(抵抗変化型可変抵抗素子111,抵抗変化型可変抵抗素子121,抵抗変化型可変抵抗素子211,抵抗変化型可変抵抗素子221・・・)備えており、該複数の抵抗変化型可変抵抗素子1のそれぞれから出力される出力値の累積値に対応する出力値(第2出力値)が出力されるように構成されていても良い。   As shown in FIGS. 7A to 8, the product-sum operation apparatus 100 according to this embodiment includes a plurality of resistance variable variable resistance elements 1 (resistance variable variable resistance element 111, resistance variable variable resistance element 121, Resistance change type variable resistance element 211, resistance change type variable resistance element 221..., And an output value corresponding to a cumulative value of output values output from each of the plurality of resistance change type variable resistance elements 1. The second output value may be output.

以上によれば、複数の抵抗変化型可変抵抗素子への書き込み、読み出しが同時に処理できるため、単体の抵抗変化型可変抵抗素子で積和演算装置を構成した場合に比較して、前記積演算の累積結果の書き込み読み出しの処理速度が速くなる。   According to the above, since writing to and reading from a plurality of variable resistance variable resistance elements can be processed at the same time, compared with the case where the product-sum calculation apparatus is configured with a single variable resistance variable resistance element, the product calculation The processing speed for writing and reading the accumulated result is increased.

図7(a)及び図8に示すように、本実施形態の積和演算装置100は、データ線1i2(データ線112,122・・・:iは自然数)、ビット線1j3(ビット線113,123・・・:jは自然数)、抵抗変化型可変抵抗素子(積演算装置)ij1(抵抗変化型可変抵抗素子111,121,211,221・・・:i,jは、自然数)、スイッチングトランジスタ1i4(スイッチングトランジスタ114,124・・・:iは自然数)、コンデンサ1i5(コンデンサ115,コンデンサ125・・・:iは、自然数)、オペアンプ1i6(オペアンプ116,126・・・:iは自然数)、スイッチングトランジスタ1j7(スイッチングトランジスタ117,127・・・:iは自然数)からなる構成である。   As shown in FIG. 7A and FIG. 8, the product-sum operation apparatus 100 of this embodiment includes a data line 1i2 (data lines 112, 122..., I is a natural number), a bit line 1j3 (bit lines 113, 123...: J is a natural number), variable resistance variable resistance element (product arithmetic unit) ij 1 (resistance variable variable resistance elements 111, 121, 211, 221...: I, j are natural numbers), switching transistor 1i4 (switching transistors 114, 124 ...: i is a natural number), capacitor 1i5 (capacitor 115, capacitor 125 ...: i is a natural number), operational amplifier 1i6 (op amps 116, 126 ...: i is a natural number), The switching transistor 1j7 (switching transistors 117, 127..., I is a natural number) is configured.

図7(a)に示すように、積和演算装置100では、データ線1i2(データ線112,122・・・:iは、自然数)には、読み出し回路が接続されている。なお、図7(a)では、書き込み動作を示しているが、書き込み時は、抵抗変化型可変抵抗素子と演算結果を蓄積するキャパシタの間は、導通されていない状態になっている。   As shown in FIG. 7A, in the product-sum calculation apparatus 100, a read circuit is connected to the data line 1i2 (data lines 112, 122..., I is a natural number). FIG. 7A shows a write operation. At the time of write, the resistance change type variable resistance element and the capacitor for storing the calculation result are not electrically connected.

この時、ビット線1j3(ビット線113、ビット線123・・・:jは、自然数)には、パルス幅=Tjで定義される単一電圧パルスを印加する。   At this time, a single voltage pulse defined by a pulse width = Tj is applied to the bit line 1j3 (bit line 113, bit line 123..., J is a natural number).

なお、ビット線1j3に接続されているトランジスタは導通状態になっている。データ線1i2には、パルス周波数=Fiで定義される複数パルス電圧を印可する。   Note that the transistor connected to the bit line 1j3 is in a conductive state. A plurality of pulse voltages defined by the pulse frequency = Fi are applied to the data line 1i2.

図7(a)には、各抵抗変化型可変抵抗素子間に印加される電圧が記述されているが、閾値電位Vthで表される閾値以上の電圧値が加わった場合に、ビット線1j3及びデータ線1i2で選択された抵抗変化型可変抵抗素子(積演算装置)ij1(抵抗変化型可変抵抗素子111,抵抗変化型可変抵抗素子121,抵抗変化型可変抵抗素子211,抵抗変化型可変抵抗素子221・・・:i,jは、自然数)には、コンダクタンスσij∝Fi・Tjで示される情報が書き込まれることになる。(コンダクタンスσijは素子抵抗値Rijの逆数。)
なお、抵抗変化型可変抵抗素子ij1には、データを保持する機能があるため、電源を切っても、書き込まれた情報が消失することは無い。
FIG. 7A describes the voltage applied between the resistance variable variable resistance elements. When a voltage value equal to or higher than the threshold value represented by the threshold potential Vth is applied, the bit lines 1j3 and Variable resistance element (product calculation device) ij1 selected by the data line 1i2 (resistance variable variable element 111, variable resistance variable element 121, variable resistance variable element 211, variable resistance variable element 211, variable resistance variable element) 221...: I, j are natural numbers), information indicated by conductance σij∝Fi · Tj is written. (The conductance σij is the reciprocal of the element resistance value Rij.)
Note that the variable resistance variable element ij1 has a function of holding data, so that written information does not disappear even when the power is turned off.

すなわち、抵抗変化型可変抵抗素子ij1は、単一電圧パルス及び電圧パルス列の入力による積演算の結果を、抵抗変化型可変抵抗素子ij1の電気抵抗(コンダクタンスσijに対応)の変化によって記憶するものである。   In other words, the resistance variable variable resistance element ij1 stores the result of product operation by inputting a single voltage pulse and a voltage pulse train by a change in the electric resistance (corresponding to the conductance σij) of the resistance variable variable resistance element ij1. is there.

ここで、特許文献1及び2に記載された従来技術の上述した問題点とは、別の問題点について説明する。従来技術では、スイッチト電流源(SCS)のそれぞれが、情報を記録したり消去したりする機能がないため、個々のスイッチト電流源(SCS)の出力値(積演算の結果)のそれぞれを再利用等することができないといった問題点がある。   Here, a problem different from the above-described problems of the prior art described in Patent Documents 1 and 2 will be described. In the prior art, each of the switched current sources (SCS) does not have a function of recording or erasing information, so that each output value (result of product operation) of each switched current source (SCS) is obtained. There is a problem that it cannot be reused.

しかしながら、上述したように、抵抗変化型可変抵抗素子ij1は、電圧パルスの印加回数(SETパルス回数)に応じて素子に流れる電流を制御でき、また、電圧パルス幅及びパルス電圧値に応じて素子に流れる電流が制御できる。   However, as described above, the variable resistance variable element ij1 can control the current flowing through the element in accordance with the number of application of voltage pulses (the number of SET pulses), and the element in accordance with the voltage pulse width and the pulse voltage value. The current flowing through the can be controlled.

言い換えれば、抵抗変化型可変抵抗素子ij1は、電圧パルスの印加回数に応じて、或いは、電圧パルス幅及びパルス電圧値に応じて素子の電気抵抗が変化する。   In other words, in the resistance variable variable resistance element ij1, the electrical resistance of the element changes according to the number of voltage pulse applications or according to the voltage pulse width and the pulse voltage value.

すなわち、抵抗変化型可変抵抗素子ij1は、単一電圧パルス及び電圧パルス列(又は、パルス電圧)の入力による積演算の結果を、抵抗変化型可変抵抗素子ij1の電気抵抗の変化によって記憶する。これにより、抵抗変化型可変抵抗素子ij1自体による積演算の結果の記憶が可能となる。   That is, the resistance variable variable resistance element ij1 stores the result of product operation by inputting a single voltage pulse and a voltage pulse train (or pulse voltage) by a change in electric resistance of the resistance variable variable resistance element ij1. As a result, it is possible to store the result of product calculation by the variable resistance variable element ij1 itself.

次に、図8に基づき、積和演算装置100の読み出し動作について説明する。   Next, the read operation of the product-sum operation apparatus 100 will be described with reference to FIG.

読み出し時は、抵抗変化型可変抵抗素子ij1と電荷量として演算結果を蓄積するコンデンサ1i5(コンデンサ115,コンデンサ125・・・:iは、自然数)との間は、導通された状態になっている。   At the time of reading, the variable resistance variable element ij1 and the capacitor 1i5 (capacitor 115, capacitor 125..., I is a natural number) that accumulates the calculation result as a charge amount are in a conductive state. .

データ線1i2を0Vに固定し、ビット線1j3にパルス電圧値=Vo、電圧パルス幅=Toで定義される電圧パルスを印加する事により、データ線1i2上に接続された抵抗変化型可変抵抗素子ij1には、(Σσij)・Vo∝(ΣFi・Tj)・Voで示される電流が流れ、コンデンサ1i5には、電荷量Q=(Σσij)・Vo・To∝(ΣFi・Tj)・Vo・Toで定義される電荷量が蓄積されることになる。   A variable resistance variable resistance element connected on the data line 1i2 by fixing the data line 1i2 to 0V and applying a voltage pulse defined by a pulse voltage value = Vo and a voltage pulse width = To to the bit line 1j3 A current represented by (Σσij) · Vo∝ (ΣFi · Tj) · Vo flows through ij1, and a charge amount Q = (Σσij) · Vo · To∝ (ΣFi · Tj) · Vo · To flows through the capacitor 1i5. The charge amount defined by is accumulated.

また、データを加算するのに、電流を検出する方法も可能である。例えば、本実施形態では、複数個の抵抗変化型可変抵抗素子ij1の積演算の結果を総和するだけであるから、電流を検出する方法では、単に線を繋いで抵抗器で電流を見れば良いことになる。なお、直接抵抗器を繋ぐと共通線の電位が変化するので、コンデンサ1i5に蓄積される電荷量Qによる方法の時と同様に、オペアンプを使った加算回路を用いれば良い。   In addition, a method of detecting a current for adding data is also possible. For example, in the present embodiment, the result of product operation of the plurality of variable resistance variable elements ij1 is merely summed, and therefore, in the method of detecting current, it is only necessary to connect the lines and view the current with a resistor. It will be. Since the potential of the common line changes when a resistor is directly connected, an adder circuit using an operational amplifier may be used as in the method using the charge amount Q stored in the capacitor 1i5.

なお、読み出し完了後、新しい積和演算処理を行うには、リセット動作を行い、初期化するする必要がある。   In order to perform a new sum-of-products operation process after the reading is completed, it is necessary to perform a reset operation and initialize.

例えば、抵抗変化型可変抵抗素子ij1をバイポーラー動作させた場合は、書き込み時の電圧パルスと時間(パルス幅)・電圧(パルス電圧値)が同じで、極性の異なる電圧パルスを再度印加することにより、電気抵抗の変化によって記憶された積演算の結果を消去することができる。また、抵抗変化型可変抵抗素子ij1をモノポーラ動作させた場合は、極性が同じで時間(パルス幅)が長い電圧パルスを再度印加することにより、電気抵抗の変化によって記憶された積演算の結果を消去することができる。   For example, when the variable resistance variable element ij1 is operated in a bipolar manner, a voltage pulse having the same time (pulse width) and voltage (pulse voltage value) as that at the time of writing is applied again with a different polarity. Thus, the result of the product operation stored by the change in electrical resistance can be erased. In addition, when the variable resistance variable element ij1 is monopolarly operated, a voltage pulse having the same polarity and a long time (pulse width) is applied again, so that the product operation result stored by the change in the electrical resistance is obtained. Can be erased.

本実施形態においては、複数のセルへの書き込み、読み出しが同時に処理できるため、実施の形態1及び実施の形態2の積和演算装置10に比べ、データの処理速度が速い。また抵抗変化型可変抵抗素子ij1内に書き込まれた情報を読み出ししたくない場合は、そのセルにつながったビット線1j3のスイッチングトランジスタ1j7(スイッチングトランジスタ117,スイッチングトランジスタ127・・・:jは、自然数)をOFFにすることにより読み出しができなくなり、結果として部分的な積和演算が可能となる。   In the present embodiment, since writing to and reading from a plurality of cells can be performed simultaneously, the data processing speed is faster than the product-sum operation apparatus 10 of the first and second embodiments. If the information written in the variable resistance variable element ij1 is not to be read, the switching transistor 1j7 (switching transistor 117, switching transistor 127...: J is a natural number) of the bit line 1j3 connected to the cell. ) Is turned off, reading becomes impossible, and as a result, partial product-sum operation is possible.

また、素子面積に関しては、実施の形態1及び実施の形態2の積和演算装置10のように、ユニットセルの大きさは4F2(F:デザインルール)で表される。ただし、複数個のセルで構成されているため、積和演算装置100全体としての面積は、実施の形態1及び実施の形態2の積和演算装置10に較べて大きい。   As for the element area, the unit cell size is represented by 4F2 (F: design rule) as in the product-sum operation apparatus 10 of the first and second embodiments. However, since it is composed of a plurality of cells, the area of the product-sum operation apparatus 100 as a whole is larger than that of the product-sum operation apparatus 10 of the first and second embodiments.

以上のように、本実施形態の積和演算装置100は、複数の抵抗変化型可変抵抗素子ij1のうち、所定数の抵抗変化型可変抵抗素子ij1のそれぞれから出力される出力値の累積値に対応する出力値(第3出力値)が出力されるように構成されていても良い。   As described above, the product-sum operation apparatus 100 according to the present embodiment calculates the accumulated output value output from each of the predetermined number of variable resistance variable elements ij1 from among the variable resistance variable elements ij1. A corresponding output value (third output value) may be output.

前記構成によれば、所定数の抵抗変化型可変抵抗素子ij1のそれぞれから出力される出力値の累積値に対応する第3出力値(部分和)が出力される、すなわち、部分的な積和演算(部分和の算出)が可能となる。   According to the above configuration, the third output value (partial sum) corresponding to the cumulative value of the output values output from each of the predetermined number of variable resistance elements ij1 is output. Calculation (partial sum calculation) is possible.

また、本発明の積和演算装置は、前記構成に加えて、前記複数の抵抗変化型可変抵抗素子ij1のうち、所定数の抵抗変化型可変抵抗素子ij1のそれぞれから出力される出力値の累積値を記憶するコンデンサ1i5(記憶部)を備えていることが好ましい。   In addition to the above-described configuration, the product-sum operation apparatus according to the present invention accumulates output values output from each of a predetermined number of variable resistance variable elements ij1 among the variable resistance variable elements ij1. It is preferable to include a capacitor 1i5 (storage unit) that stores values.

以上によれば、適宜コンデンサ1i5などを設けることにより、複数の抵抗変化型可変抵抗素子ij1を、複数のブロック部分に分割して、当該ブロック部分毎に、前記複数の抵抗変化型可変抵抗素子ij1のうち、所定数の抵抗変化型可変抵抗素子ij1のそれぞれから出力される出力値の累積値を記憶させることができる。また、コンデンサ1i5に記録されていれば、積演算の累積結果を直ぐに引き出すことができるので、当該ブロック部分毎にコンデンサ1i5に記憶されている部分和の算出処理が速くなる。   As described above, by appropriately providing the capacitor 1i5 and the like, the plurality of variable resistance variable elements ij1 are divided into a plurality of block parts, and the variable resistance variable element ij1 is divided into a plurality of block parts. Among these, the cumulative value of the output values output from each of the predetermined number of variable resistance elements ij1 can be stored. Moreover, since the accumulation result of the product operation can be immediately extracted if it is recorded in the capacitor 1i5, the calculation process of the partial sum stored in the capacitor 1i5 is accelerated for each block portion.

〔実施の形態4〕
本発明のさらに他の実施の形態である積和演算装置20について図9(a)〜図10(b)に基づいて説明すれば、以下の通りである。
[Embodiment 4]
A product-sum operation apparatus 20 according to still another embodiment of the present invention will be described below with reference to FIGS. 9 (a) to 10 (b).

図9(a)は、抵抗変化型可変抵抗素子21をユニットセルにし、単一セルにより構成された積和演算装置20の構成を示す回路図であり、図9(b)は、抵抗変化型可変抵抗素子21の端子A(ビット線)に入力される電圧パルス(パルス幅Ti)の様子を示す波形図であり、図9(c)は、端子A・B間の電位差と閾値電位Vthとの関係を示す波形図である。   FIG. 9A is a circuit diagram showing a configuration of a product-sum operation apparatus 20 configured by a single cell using the resistance variable variable resistance element 21 as a unit cell, and FIG. 9B is a resistance variable type. FIG. 9C is a waveform diagram showing a state of a voltage pulse (pulse width Ti) input to the terminal A (bit line) of the variable resistance element 21, and FIG. 9C shows the potential difference between the terminals A and B and the threshold potential Vth. It is a wave form diagram which shows the relationship.

図10(a)は、積和演算装置20の構成と、電圧パルス時間(電圧パルス幅に相当)及び電圧パルス振幅(パルス電圧)を、それぞれ乗数、及び被乗数に用いた読み出し動作方法を示す回路図であり、図10(b)は、読み出し動作方法を示すシーケンス図である。   FIG. 10A shows a configuration of the product-sum operation apparatus 20 and a read operation method using a voltage pulse time (corresponding to a voltage pulse width) and a voltage pulse amplitude (pulse voltage) as a multiplier and a multiplicand, respectively. FIG. 10B is a sequence diagram illustrating a read operation method.

本実施形態の積和演算装置20は、被乗数と乗数とを入力することにより、これらの積演算の結果を出力するものであり、図9(a)に示すように、抵抗変化型可変抵抗素子21,データ線22,ビット線23,スイッチングトランジスタ24,コンデンサ(記憶部)25,及びコンパレータ26,スイッチングトランジスタ27を備える構成である。   The product-sum operation apparatus 20 of this embodiment outputs a result of these product operations by inputting a multiplicand and a multiplier. As shown in FIG. 9A, the variable resistance variable resistance element 21, a data line 22, a bit line 23, a switching transistor 24, a capacitor (storage unit) 25, a comparator 26, and a switching transistor 27.

積和演算装置10と違いは、コンデンサ25は、コンパレータ26の入出力端子間に接続されていない(フィードバック回路を構成していない)点と、データ線22上に、新たにスイッチングトランジスタ27が設けられている点である。   Unlike the product-sum operation device 10, the capacitor 25 is not connected between the input and output terminals of the comparator 26 (does not constitute a feedback circuit), and a switching transistor 27 is newly provided on the data line 22. This is the point.

本実施形態では、図9(a)に示すように、単体の抵抗変化型可変抵抗素子21をユニットセルとして単一セルにより積和演算装置20を構成し、電圧パルス振幅(Vi:パルス電圧値に相当)及び電圧パルス時間(Ti:電圧パルス幅に相当)を、それぞれ、乗数及び被乗数に用いた動作について説明する。   In the present embodiment, as shown in FIG. 9A, a product-sum operation device 20 is configured by a single cell using a single variable resistance element 21 as a unit cell, and a voltage pulse amplitude (Vi: pulse voltage value). ) And voltage pulse time (Ti: equivalent to voltage pulse width) will be described respectively for the multiplier and multiplicand.

図9(a)に示すように、書き込み時は、抵抗変化型可変抵抗素子21と演算結果を電荷量として蓄積するコンデンサ25の間は、導通されていない状態になっている。   As shown in FIG. 9A, at the time of writing, the resistance variable variable resistance element 21 and the capacitor 25 that accumulates the calculation result as a charge amount are not in conduction.

まず、抵抗変化型可変抵抗素子21に接続されたビット線23とデータ線22とに電圧パルスを印加する。この時、ビット線23には、電圧パルス振幅=Viで定義される単一電圧パルスを印加する。   First, a voltage pulse is applied to the bit line 23 and the data line 22 connected to the resistance variable variable resistance element 21. At this time, a single voltage pulse defined by voltage pulse amplitude = Vi is applied to the bit line 23.

データ線22は、グランドに接続されているが、通常はデータ線23とセル間のスイッチングトランジスタ(選択トランジスタ)27がOFFになっている(ハイインピーダンス状態)。   The data line 22 is connected to the ground, but normally the switching transistor (select transistor) 27 between the data line 23 and the cell is OFF (high impedance state).

データの書き込みを行いたい時間(Ti:単一電圧パルスの電圧パルス幅に相当)のみスイッチングトランジスタ27をON状態にする。図16(a)には、抵抗変化型可変抵抗素子21の端子A・Bに印加される電圧が記載されているが、閾値電位Vthで表される閾値以上の電圧値が加わった場合に、抵抗変化型可変抵抗素子21には、コンダクタンスσii∝Ti・Viで示される情報が書き込まれることになる。(コンダクタンスσiiは素子抵抗値Riiの逆数である。)
なお、抵抗変化型可変抵抗素子21には、上述した抵抗変化型可変抵抗素子1などと同様にデータを保持する機能があるため、電源を切っても、書き込まれた情報が消失することは無い。
The switching transistor 27 is turned on only during the time when data writing is desired (Ti: equivalent to the voltage pulse width of a single voltage pulse). FIG. 16A shows the voltage applied to the terminals A and B of the variable resistance variable resistance element 21, but when a voltage value equal to or higher than the threshold value represented by the threshold potential Vth is applied, Information indicated by conductance σii∝Ti · Vi is written in the resistance variable variable resistance element 21. (The conductance σii is the reciprocal of the element resistance value Rii.)
The variable resistance variable element 21 has a function of holding data in the same manner as the variable resistance variable element 1 and the like described above, so that written information will not be lost even when the power is turned off. .

次に、図17(a)に基づき、積和演算装置20の読み出し動作について説明する。読み出し時は、抵抗変化型可変抵抗素子21及び積演算の結果を電荷量として蓄積するコンデンサ25間は、導通された状態になっている。   Next, a read operation of the product-sum operation apparatus 20 will be described with reference to FIG. At the time of reading, the resistance variable variable resistance element 21 and the capacitor 25 that accumulates the result of product operation as a charge amount are in a conductive state.

データ線22を0Vに固定し、ビット線23にパルス電圧値=Vo、電圧パルス幅=Toで定義されるパルス電圧を印加することにより、抵抗変化型可変抵抗素子21には、σii・Vo∝Ti・Vi・Voで示される電流が流れ、コンデンサ25には、電荷量Q=σii・Vo・To∝Ti・Vi・Vo・Toで定義される電荷量が蓄積されることになる。   By fixing the data line 22 to 0V and applying a pulse voltage defined by a pulse voltage value = Vo and a voltage pulse width = To to the bit line 23, the resistance variable variable resistance element 21 has σii · Vo∝. A current indicated by Ti, Vi, and Vo flows, and the capacitor 25 accumulates the charge amount defined by the charge amount Q = σii · Vo · To∝Ti · Vi · Vo · To.

以上で説明した書き込みと読み出しを交互に繰り返す事により、電荷量Q=(Σσii)・Vo・To∝(ΣTi・Vi)・Vo・To、で定義される積演算の累積結果がコンデンサ25に蓄積されたことになる。   By alternately repeating the writing and reading described above, the accumulation result of the product operation defined by the charge amount Q = (Σσii) · Vo · To∝ (ΣTi · Vi) · Vo · To is accumulated in the capacitor 25. It will be done.

なお、図17(b)に示しているが、書き込み読み出し処理後には、上述したように、リセット動作を行い、初期化する必要が有る。本実施形態の積和演算装置20における抵抗変化型可変抵抗素子21の素子サイズは、4F2(F:デザインルール)で示される。   As shown in FIG. 17B, after the write / read process, as described above, it is necessary to perform a reset operation and initialize. The element size of the variable resistance variable resistance element 21 in the product-sum operation apparatus 20 of the present embodiment is represented by 4F2 (F: design rule).

例えば、デザインルールを0.1μmとした場合、積和演算装置20の基本素子サイズは、0.04μm2となり、図14(a)〜図15で示した従来技術に比べ、2桁〜3桁程度、素子面積が縮小できる。   For example, when the design rule is 0.1 μm, the basic element size of the product-sum calculation device 20 is 0.04 μm 2, which is about 2 to 3 digits compared to the prior art shown in FIGS. The element area can be reduced.

また、電圧パルス振幅、電圧パルス時間を乗数、被乗数に用いた動作手法において本実施形態に示した他、実施の形態2に示した処理シーケンスの変更、実施の形態3で示した複数のセル構成についても、上記と同様に構成することが可能である。   In addition, the operation method using the voltage pulse amplitude and voltage pulse time as a multiplier and a multiplicand is shown in the present embodiment, the processing sequence shown in the second embodiment is changed, and the plurality of cell configurations shown in the third embodiment are used. It is also possible to configure in the same manner as described above.

〔実施の形態5〕
本発明のさらに他の実施の形態である積和演算回路(積演算装置,積和演算装置)30について図11に基づいて説明すれば、以下の通りである。
[Embodiment 5]
A product-sum operation circuit (product operation device, product-sum operation device) 30 according to still another embodiment of the present invention will be described below with reference to FIG.

積和演算回路30は、積和演算における被演算値の演算順序や演算範囲を制御することで、低消費電力かつ高速な積和演算回路を提供するものである。すなわち、被演算値を降順または昇順に出力するソーティングにより、無駄な電位変化を抑え、低消費電力化と高速化を実現する。   The product-sum operation circuit 30 provides a low-power consumption and high-speed product-sum operation circuit by controlling the operation order and operation range of the operand values in the product-sum operation. That is, by sorting the output values in descending order or ascending order, unnecessary potential changes are suppressed, and low power consumption and high speed are realized.

図11は、本発明の一実施形態である積和演算回路30の各処理ブロックの構成を示すブロック図である。本実施形態においては、実施の形態3における積和演算装置100を用いた場合の具体例について説明する。   FIG. 11 is a block diagram showing a configuration of each processing block of the product-sum operation circuit 30 according to the embodiment of the present invention. In the present embodiment, a specific example in the case of using the product-sum operation apparatus 100 in the third embodiment will be described.

図11に示すように、積和演算回路30は、入力値保持ブロック(演算値保持ブロック)31,ソーティングブロック32,スイッチングブロック(1)33,荷重値保持ブロック(被演算値保持ブロック)34,スイッチングブロック(2)35,及び演算処理ブロック36を備える構成である。   As shown in FIG. 11, the product-sum operation circuit 30 includes an input value holding block (calculated value holding block) 31, a sorting block 32, a switching block (1) 33, a load value holding block (operated value holding block) 34, The switching block (2) 35 and the arithmetic processing block 36 are provided.

図11に示すように、積和演算回路30は、演算処理ブロック36を、単一の積和演算装置100で構成することができる点が、図15に示す従来の積和演算回路3000と異なっている。   As shown in FIG. 11, the product-sum operation circuit 30 is different from the conventional product-sum operation circuit 3000 shown in FIG. 15 in that the operation processing block 36 can be configured by a single product-sum operation device 100. ing.

すなわち、従来技術においては、複数個(n個:nは、自然数)の積和演算処理を行うには、複数個(n個)の演算ブロックを必要とした。積和演算回路30においては、ビット線とデータ線で交差された位置の所定領域のそれぞれに抵抗変化型可変抵抗素子1を配置したアレイ構造を適用しているため、一つの演算処理ブロック36にて複数の積和演算処理が可能になる。また、演算処理ブロック36のユニットセル部が小さくなるため、従来技術に較べて、2桁〜3桁程度、演算処理ブロック36が縮小できる。   That is, in the prior art, in order to perform a plurality of (n: n is a natural number) product-sum operation processing, a plurality (n) of operation blocks are required. In the product-sum operation circuit 30, an array structure in which the resistance change type variable resistance element 1 is arranged in each of the predetermined regions at positions intersected by the bit lines and the data lines is applied. Multiple product-sum operations. Further, since the unit cell portion of the arithmetic processing block 36 becomes small, the arithmetic processing block 36 can be reduced by about two to three digits as compared with the prior art.

入力値保持ブロック(演算値保持ブロック)31は、演算値(乗数)Xiを保持するものである。   The input value holding block (calculated value holding block) 31 holds a calculated value (multiplier) Xi.

ソーティングブロック32は、演算値Xiを値の大きい順若しくは小さい順に出力するものである。   The sorting block 32 outputs the calculated values Xi in order of increasing or decreasing values.

スイッチングブロック(1)33は、演算処理ブロック36の演算値Xiのラベルiに対応する端子へ演算値Xiを入力するものである。   The switching block (1) 33 is for inputting the operation value Xi to a terminal corresponding to the label i of the operation value Xi of the operation processing block 36.

荷重値保持ブロック(被演算値保持ブロック)34は、被演算値(被乗数)Wiを保持するものである。   The load value holding block (calculated value holding block) 34 holds the calculated value (multiplicand) Wi.

スイッチングブロック(2)35は、演算処理ブロック36の被演算値Wiのラベルiに対応する端子へ被演算値Wiを入力するものである。   The switching block (2) 35 inputs the operand value Wi to a terminal corresponding to the label i of the operand value Wi of the arithmetic processing block 36.

なお、演算値Xiと被演算値Wiのiは、それぞれ異なるXとWを表す添え字であり、1,2,3・・・の自然数をとる(以下同様)。   Note that i of the calculation value Xi and the value to be calculated Wi are subscripts representing different X and W, respectively, and take 1, 2, 3,... Natural numbers (the same applies hereinafter).

次ぎに、本実施形態における積和演算回路30による演算処理工程を説明する。   Next, an operation processing step by the product-sum operation circuit 30 in the present embodiment will be described.

まず、図11に示すように、複数の演算値Xiは入力値保持ブロック31に保持され、さらにソーティングブロック32により、値の大きいもの順若しくは小さい順にソートされ出力される。   First, as shown in FIG. 11, the plurality of operation values Xi are held in the input value holding block 31 and further sorted and output by the sorting block 32 in order of increasing or decreasing value.

ここで本実施形態においては、値が等しい演算値Xiがある場合には、値が等しい演算値間での出力の順番は任意としているが、事前に適当な順番を設定しておいても良い。   Here, in the present embodiment, when there are operation values Xi having the same value, the order of output between the operation values having the same value is arbitrary, but an appropriate order may be set in advance. .

続いて、演算値Xiが有するラベルiが,ソーティングブロック32からスイッチングブロック(1)33に入力され、そのラベルiに応じて,スイッチングブロック(1)33がスイッチングを行い、ソーティングブロック32から出力された演算値Xiをそのラベルiに対応する端子に入力する。   Subsequently, the label i included in the operation value Xi is input from the sorting block 32 to the switching block (1) 33, and the switching block (1) 33 performs switching according to the label i and is output from the sorting block 32. The calculated value Xi is input to the terminal corresponding to the label i.

ここで、本実施形態においては、以上の入力値保持ブロック31とソーティングブロック32で実行される処理は、連想メモリ回路(不図示)を用いて実現する。   Here, in the present embodiment, the processing executed by the input value holding block 31 and the sorting block 32 described above is realized using an associative memory circuit (not shown).

この連想メモリ回路には、演算値Xiの値と、それぞれの演算値Xiが有するラベルiと検出フラグとが保持されている。   This associative memory circuit holds the value of the operation value Xi, the label i of each operation value Xi, and the detection flag.

連想メモリ回路は、入力された検索値と、保持しているデータを比較し、両者の値が一致するものを出力する機能を有する。この連想メモリ回路の一般的な機能を利用し、検出フラグが立っていない演算値Xiの中から値の大きな順に、1つずつその値とラベルを読み出し、読み出した値に検出フラグを立てることにより、前記の入力値保持ブロック31とソーティングブロック32で実行される処理を実現することが可能となる。   The associative memory circuit has a function of comparing the input search value with the stored data and outputting a data whose values match. By utilizing the general function of this associative memory circuit, reading the values and labels one by one in descending order from the calculated value Xi for which no detection flag is set, and setting the detection flag to the read value The processing executed by the input value holding block 31 and the sorting block 32 can be realized.

すなわち連想メモリ回路に対して、検索値として演算値Xiの最大値に相当する値から大きいもの順に一つずつ入力し、値が一致するデータを順に読み出すことにより、ソーティング機能を実現することが可能となる(逆に、演算値Xiの値の小さなもの順に読み出すことも可能である)。   That is, it is possible to realize a sorting function by inputting one by one in ascending order from the value corresponding to the maximum value of the operation value Xi to the associative memory circuit and sequentially reading the data with the matching values. (Conversely, it is possible to read out in ascending order of the calculated value Xi).

なお本実施形態では、前記の通り、入力値保持ブロック31とソーティングブロック32の機能を連想メモリ回路で実現したが、具体的な回路構成は本発明の主眼とするところではなく、同様の処理が可能なものであれば、その他の処理構成を用いても良い。   In this embodiment, as described above, the functions of the input value holding block 31 and the sorting block 32 are realized by the associative memory circuit. However, the specific circuit configuration is not the main point of the present invention, and the same processing is performed. If possible, other processing configurations may be used.

一方、荷重値保持ブロック34から出力される複数の被演算値Wiは、それぞれ演算処理ブロック36の所定の端子に入力される。ここで本実施形態においては、被演算値Wiについても、演算値Xiと同様に、演算値Xiが有するラベルiに応じてスイッチングブロック(2)35においてスイッチングが行なわれ、ラベルiによって決定される所定の端子に入力される。   On the other hand, the plurality of operand values Wi output from the load value holding block 34 are respectively input to predetermined terminals of the arithmetic processing block 36. Here, in the present embodiment, similarly to the calculation value Xi, the operation value Wi is switched in the switching block (2) 35 according to the label i of the calculation value Xi, and is determined by the label i. It is input to a predetermined terminal.

なお、本実施形態とは異なり、被演算値Wiが入力される演算ブロックが、演算値Xiのラベルiにはよらずに、事前に設定されている手法を用いることも可能である。また、各端子に入力される被演算値Wiの値は、演算毎に同一の場合も異なる場合もある。   Unlike the present embodiment, it is also possible to use a method that is set in advance for the calculation block to which the calculation value Wi is input, without depending on the label i of the calculation value Xi. Further, the value of the operand value Wi input to each terminal may be the same or different for each calculation.

本実施形態においては、荷重値保持ブロック34は一般的なSRAM(static random access memory)回路によって構成しても良いが、同様の処理が可能なものであれば、その他の処理構成を用いても良い。以上の処理を実行することにより、所定の演算ブロックに演算値Xiと被演算値Wiが入力される。   In the present embodiment, the load value holding block 34 may be configured by a general SRAM (static random access memory) circuit, but other processing configurations may be used as long as similar processing is possible. good. By executing the above processing, the calculated value Xi and the calculated value Wi are input to a predetermined calculation block.

これ以降の処理は、実施の形態3と同様であるので、説明は省略する。   Since the subsequent processing is the same as that of the third embodiment, description thereof is omitted.

〔実施の形態6〕
本発明のさらに他の実施の形態であるニューラルネットワーク40について図12〜図13に基づいて説明すれば、以下の通りである。なお、本実施の形態において説明すること以外の構成は、前記実施の形態5と同じである。また、説明の便宜上、前記の実施の形態5の図面に示した部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。
[Embodiment 6]
A neural network 40 according to still another embodiment of the present invention will be described below with reference to FIGS. The configuration other than that described in the present embodiment is the same as that of the fifth embodiment. For convenience of explanation, members having the same functions as those shown in the drawings of the fifth embodiment are given the same reference numerals, and explanation thereof is omitted.

図12は、本発明の一実施形態であるニューラルネットワーク40に対して積和演算方法を適用する際の演算処理ブロックの構成図である。   FIG. 12 is a configuration diagram of an operation processing block when the product-sum operation method is applied to the neural network 40 according to the embodiment of the present invention.

図13は、ニューラルネットワーク40に対して積和演算方法を適用する際の演算処理における各ステップのフローチャートである。   FIG. 13 is a flowchart of each step in the calculation process when the product-sum calculation method is applied to the neural network 40.

図12に示すように、ニューラルネットワーク40は、積和演算回路30A,積和演算回路30B,関数処理ブロック41A,及び関数処理ブロック41Bを備えるものである。   As shown in FIG. 12, the neural network 40 includes a product-sum operation circuit 30A, a product-sum operation circuit 30B, a function processing block 41A, and a function processing block 41B.

積和演算回路30A及び積和演算回路30Bは、実施の形態5で説明した積和演算回路30と同様の構成である。   The product-sum operation circuit 30A and the product-sum operation circuit 30B have the same configuration as the product-sum operation circuit 30 described in the fifth embodiment.

よって、本実施形態では、積和演算回路30A,積和演算回路30Bなどが、関数処理ブロック41A,及び関数処理ブロック41Bなどを介して接続されてニューラルネットワークを構成している点が実施の形態5と異なっている。   Therefore, in the present embodiment, the product-sum operation circuit 30A, the product-sum operation circuit 30B, and the like are connected via the function processing block 41A, the function processing block 41B, and the like to constitute a neural network. It is different from 5.

すなわち、図11で説明した演算値Xiが前段ニューロ素子の出力値に相当し、また被演算値Wiがシナプス荷重値に相当し、ニューロン素子の内部状態値を決定する。   That is, the operation value Xi described in FIG. 11 corresponds to the output value of the previous neuro element, and the operation value Wi corresponds to the synapse load value, which determines the internal state value of the neuron element.

次ぎに、図13のフローチャートに基づき、ニューラルネットワーク40の動作について説明する。   Next, the operation of the neural network 40 will be described based on the flowchart of FIG.

ステップS1(以下、「ステップ」は省略する)では、ニューラルネットワーク40の前段のニューロン素子のそれぞれの出力値が演算値Xiとして、1意対応で、次段の1つのニューロン素子内の積和演算回路30Aの入力値保持ブロック31Aに入力され、S2に進む。   In step S1 (hereinafter, “step” is omitted), the output value of each neuron element in the previous stage of the neural network 40 is calculated as the operation value Xi, and the product-sum operation in one neuron element in the next stage is uniquely associated. The value is input to the input value holding block 31A of the circuit 30A, and the process proceeds to S2.

なお、「一意対応」とは、「1対1対応」及び「他対1対応」を含む概念である。   “Unique correspondence” is a concept including “one-to-one correspondence” and “other-to-one correspondence”.

より具体的には、「1対1対応」とは、前段における1つのニューロン素子の出力値に対してシナプス荷重値で重み付けした値を、次段の1つのニューロン素子に入力する場合の対応関係のことである。   More specifically, “one-to-one correspondence” is a correspondence relationship when a value obtained by weighting the output value of one neuron element in the previous stage with a synapse load value is input to one neuron element in the next stage. That is.

また、「他対1対応」とは、前段における複数のニューロン素子のそれぞれの出力値に対してシナプス荷重値で重み付けした値の総和を、次段の1つのニューロン素子に入力する場合の対応関係のことである。   Also, “other-to-one correspondence” is a correspondence relationship when the sum of values weighted by synaptic load values for the output values of a plurality of neuron elements in the previous stage is input to one neuron element in the next stage. That is.

S2では、入力値保持ブロック31Aが、入力された演算値Xiをラベルiに応じて、ソーティングブロック32Aに渡してS3に進む。   In S2, the input value holding block 31A passes the input operation value Xi to the sorting block 32A according to the label i, and proceeds to S3.

なお、「ラベルi」は、前記出力先のニューロン素子を識別する情報である。   “Label i” is information for identifying the output neuron element.

S3では、ソーティングブロック32Aが、演算値Xiを値が大きいもの順又は小さいもの順に並べて、S4に進む。   In S3, the sorting block 32A arranges the operation values Xi in the order of increasing value or decreasing value, and proceeds to S4.

S4では、ソーティングブロック32Aが、S3で大きいもの順又は小さいもの順に並べられた演算値Xiが記憶されるメモリ(不図示)内の所定の記憶領域を指定するためのフラグを決定し、決定されたフラグとラベルi若しくは演算値Xiとをスイッチングブロック(1)33Aに送信してS5に進む。   In S4, the sorting block 32A determines and determines a flag for designating a predetermined storage area in a memory (not shown) in which the operation values Xi arranged in the descending order from S3 are stored in S3. The flag and the label i or the calculated value Xi are transmitted to the switching block (1) 33A, and the process proceeds to S5.

S5では、スイッチングブロック(1)33Aが、前記メモリに記憶された演算値Xiとラベルiとを読み出し、演算処理ブロック36Aの所定の端子に、入力する。   In S5, the switching block (1) 33A reads the operation value Xi and the label i stored in the memory and inputs them to a predetermined terminal of the operation processing block 36A.

なお、S1からS5までと並行して、S6からS9までが進行する。   In parallel with S1 to S5, S6 to S9 proceed.

S6では、演算値Xiに対応する被演算値Wiを、シナプス荷重値として前記次段の1つのニューロン素子の荷重値保持ブロック34Aに入力し、S7に進む。なお、被演算値Wiは、ラベルiと対応づけられている。   In S6, the operation value Wi corresponding to the operation value Xi is input to the load value holding block 34A of one neuron element in the next stage as a synapse load value, and the process proceeds to S7. The operand value Wi is associated with the label i.

S7では、荷重値保持ブロック34Aが、被演算値Wiが記憶されるメモリ(不図示)内の所定の記憶領域を指定するためのフラグを決定し、S8に進む。   In S7, the load value holding block 34A determines a flag for designating a predetermined storage area in a memory (not shown) in which the operation value Wi is stored, and the process proceeds to S8.

S8では、荷重値保持ブロック34Aが、ソーティングブロック32Aから被演算値Wiに対応するラベルiを受け取り、決定したフラグに基づき、被演算値Wiとラベルiとをメモリ内の所定領域に記憶させ、S9に進む。   In S8, the load value holding block 34A receives the label i corresponding to the calculated value Wi from the sorting block 32A, and stores the calculated value Wi and the label i in a predetermined area in the memory based on the determined flag. Proceed to S9.

S9では、スイッチングブロック(2)35Aが、S7で決定されたフラグに基づき、S8でメモリに保持した被演算値Wiとラベルiとを、演算処理ブロック36Aの所定の端子に入力して、S10に進む。   In S9, based on the flag determined in S7, the switching block (2) 35A inputs the operand value Wi and the label i held in the memory in S8 to predetermined terminals of the arithmetic processing block 36A, and S10 Proceed to

S10では、演算処理ブロック36Aで演算値Xiと被演算値Wiとの積演算の結果のi=1から前記前段のニューロン素子の所定数までの、累積値が算出され関数処理ブロック41Aに入力されてS11に進む。   In S10, an accumulated value from i = 1 as a result of product operation of the operation value Xi and the operand value Wi to a predetermined number of the preceding neuron elements is calculated and input to the function processing block 41A in the operation processing block 36A. To S11.

S11では、前記累積値が、関数処理ブロック41Aによって関数処理しS12に進む。   In S11, the accumulated value is function-processed by the function processing block 41A, and the process proceeds to S12.

S12では、関数処理ブロック41Aが、関数処理後の出力値を後段(次段)の積和演算回路30Bに入力する。   In S12, the function processing block 41A inputs the output value after the function processing to the product-sum operation circuit 30B in the subsequent stage (next stage).

本実施形態のニューラルネットワーク40では、S1〜S12までの各処理が繰り返される。   In the neural network 40 of this embodiment, each process from S1 to S12 is repeated.

以上のように、ニューラルネットワーク40は、複数段のニューロン素子を有しており、特定段における所定数のニューロン素子の出力値に対してシナプス荷重値で重み付けした値のそれぞれを、一意対応で、該特定段に隣接する次段のニューロン素子に入力することにより、該ニューロン素子の内部状態を示す内部状態値が決定されるニューラルネットワークであって、前記各ニューロン素子は、前記積和演算装置を備えており、前記特定段におけるニューロン素子の出力値は、前記被乗数として前記次段のニューロン素子に備えられた積和演算装置へ入力されると共に、前記シナプス荷重値は、前記乗数として前記次段のニューロン素子に備えられた積和演算装置に入力され、前記次段のニューロン素子の内部状態を示す内部状態値は、前記積演算の累積結果に対応する出力値として前記次段のニューロン素子に備えられた積和演算装置から出力されるように構成されている。   As described above, the neural network 40 has a plurality of neuron elements, and each of the values weighted by the synapse load values with respect to the output values of a predetermined number of neuron elements in a specific stage is uniquely supported. A neural network in which an internal state value indicating an internal state of the neuron element is determined by inputting to a neuron element in a next stage adjacent to the specific stage, wherein each neuron element includes the product-sum operation device. An output value of the neuron element in the specific stage is input as a multiplicand to a product-sum operation device provided in the neuron element in the next stage, and the synapse load value is input as the multiplier in the next stage. An internal state value indicating the internal state of the next-stage neuron element is input to the product-sum operation device provided in the neuron element of Miracle is configured to be outputted from the next stage of the product sum operation device provided in the neuron elements as an output value corresponding to the cumulative result of the operation.

前記構成によれば、前記各ニューロン素子は、前記積和演算装置を備えており、これらのニューロン素子の出力値、シナプス荷重値及び内部状態値のそれぞれを、前記積和演算装置に入・出力される、被乗数、乗数、及び被乗数及び乗数の積演算の累積結果で、ニューラルネットワークが構成されるため、従来のニューラルネットワークにおいて各ニューロン素子毎の内部状態値を算出する演算処理ブロックのそれぞれの縮小が可能になる。   According to the above configuration, each neuron element includes the product-sum operation device, and the output value, the synapse load value, and the internal state value of these neuron elements are input to and output from the product-sum operation device. Since the neural network is composed of the multiplicand, the multiplier, and the accumulated result of the product operation of the multiplicand and the multiplier, each of the arithmetic processing blocks for calculating the internal state value for each neuron element in the conventional neural network is reduced. Is possible.

以上説明した様に、本発明によれば、回路が簡素化された素子サイズの小さい積演算装置及び積和演算装置が実現できる。また、抵抗変化型可変抵抗素子に書き込んだ入力信号の積又は積和演算の結果を記憶することができ、必要に応じて、全体和又は部分和を出力することが可能になる。   As described above, according to the present invention, it is possible to realize a product operation device and a product-sum operation device with a small element size and a simplified circuit. Further, the product of the input signal written in the variable resistance variable resistance element or the result of the product-sum operation can be stored, and the total sum or the partial sum can be output as necessary.

よって、積演算装置及び積和演算装置における構成を簡素化し、これらの装置を含む回路全体の面積に対する積演算装置及び積和演算装置の占有面積を小さくすることが可能な積演算装置、及び積和演算装置、これらの装置を各ニューロン素子に備えるニューラルネットワーク、並びに積演算方法などを提供することができる。   Therefore, the configuration of the product operation device and the product-sum operation device is simplified, and the product operation device and the product operation device capable of reducing the occupied area of the product-sum operation device with respect to the area of the entire circuit including these devices, and the product A sum operation device, a neural network including these devices in each neuron element, a product operation method, and the like can be provided.

なお、本発明は、上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and the technical means disclosed in different embodiments can be appropriately combined. Such embodiments are also included in the technical scope of the present invention.

なお、本発明の積和演算装置は、抵抗変化型可変抵抗素子の一方の端子に被乗数、他方の端子に乗数を入力し、入力信号の積を出力値として利用しても良い。   The product-sum operation apparatus of the present invention may input a multiplicand to one terminal of the variable resistance variable resistance element and a multiplier to the other terminal, and use the product of the input signals as an output value.

本発明の大きなポイントは、積和演算装置に抵抗変化型可変抵抗素子を用いる事にある。抵抗変化型可変抵抗素子とは、電圧パルスを印可する事によって可逆的に電気抵抗が変化する素子であり、近年、フラッシュメモリに代わる高速動作可能な次世代不揮発性ランダムアクセスメモリ(NVRAM:Nonvolatile Random Access Memory)として応用が期待されている。尚、抵抗変化型可変抵抗素子としては、非特許文献1に記載されている様なRRAM(Resistance RAM)やPCRAM(Phase Change RAM)が挙げられる。   A major point of the present invention is to use a variable resistance variable resistance element in the product-sum operation device. A variable resistance variable resistance element is an element whose electrical resistance reversibly changes when a voltage pulse is applied. In recent years, it is a next-generation non-volatile random access memory (NVRAM) that can operate at high speed instead of a flash memory. Application is expected as Access Memory). Examples of the resistance variable variable resistance element include RRAM (Resistance RAM) and PCRAM (Phase Change RAM) as described in Non-Patent Document 1.

即ち、本発明の積和演算装置においては、抵抗変化型可変抵抗素子の一方の端子に被乗数、他方の端子に乗数を入力し、入力信号の積を出力値として利用するようになっている。   That is, in the product-sum operation apparatus of the present invention, the multiplicand is input to one terminal of the variable resistance variable resistance element, and the multiplier is input to the other terminal, and the product of the input signals is used as the output value.

また、本発明の積和演算装置は、前記積和演算装置の入力値において、乗数である電圧パルス幅及び被乗数であるパルス周波数により出力値が制御できても良い。   In the product-sum operation apparatus according to the present invention, the output value of the input value of the product-sum operation apparatus may be controlled by a voltage pulse width that is a multiplier and a pulse frequency that is a multiplicand.

また、本発明の積和演算装置は、前記積和演算装置の入力値において、乗数である電圧パルス幅及び被乗数であるパルス電圧により出力値が制御できても良い。   In the product-sum operation apparatus of the present invention, the output value of the input value of the product-sum operation apparatus may be controlled by a voltage pulse width that is a multiplier and a pulse voltage that is a multiplicand.

また、本発明の積和演算装置は、前記積和演算装置において、単体の抵抗変化型可変抵抗素子により素子を形成しても良い。   In the product-sum operation apparatus of the present invention, the element may be formed of a single variable resistance variable resistance element in the product-sum operation apparatus.

また、本発明の積和演算装置は、前記積和演算装置において、行線と列線に接続された複数の抵抗変化型可変抵抗素子により素子を形成しても良い。   In the product-sum operation apparatus according to the present invention, the element may be formed by a plurality of variable resistance variable resistance elements connected to the row line and the column line in the product-sum operation apparatus.

また、本発明の積和演算装置は、前記積和演算装置において、抵抗変化型可変抵抗素子に書き込んだ積和演算結果を記憶できても良い。   The product-sum operation apparatus of the present invention may store the product-sum operation result written in the variable resistance variable resistance element in the product-sum operation apparatus.

なお、抵抗変化型可変抵抗素子は、電源を切って素子に電圧がかからなくても、書き込みにより記憶した情報を保持することが可能である。   Note that the variable resistance variable resistance element can hold information stored by writing even when the power is turned off and no voltage is applied to the element.

また、本発明の積和演算装置は、前記積和演算装置において、各行線と列線により指定される抵抗変化型可変抵抗素子に書き込んだ入力信号の積を記憶できても良い。   The product-sum operation apparatus of the present invention may be configured to store the product of the input signals written in the variable resistance variable resistance element designated by each row line and column line in the product-sum operation apparatus.

また、本発明の積和演算装置は、前記積和演算装置において、各行線と列線により指定される抵抗変化型可変抵抗素子に書き込んだ入力信号の積の部分和が出力できても良い。   In the product-sum operation apparatus of the present invention, the product-sum operation apparatus may be capable of outputting a partial sum of products of input signals written in the variable resistance variable resistance element designated by each row line and column line.

また、本発明のニューラルネットワークは、複数段のニューロン素子を有するニューラルネットワークであって、各ニューロン素子が前記積和演算回路を備え、当該積和演算回路が前段のニューロン素子の出力値を前段複数の被演算値として入力し、前記乗算手段により各被演算値としてシナプス荷重を乗じ、前記乗算和として内部状態を算出しても良い。   The neural network of the present invention is a neural network having a plurality of stages of neuron elements, each neuron element including the product-sum operation circuit, and the product-sum operation circuit outputs the output values of the preceding stage neuron elements to a plurality of stages. It is also possible to calculate the internal state as the sum of multiplications by multiplying by the multiplication means the synaptic load as each calculated value.

本発明は、電気的ストレスの印加によって電気抵抗を変化させることで情報を記憶することが可能な抵抗変化型可変抵抗素子を備えた積演算装置、及び積和演算装置、これらの装置を各ニューロン素子に備えるニューラルネットワーク、並びに積演算方法などに適用することができる。なお、本発明は、積演算及び積和演算を行なう演算回路を必要とする電子機器、及び電気機器であれば、どのような機器であっても適用可能である。   The present invention relates to a product operation device including a resistance change type variable resistance element capable of storing information by changing an electrical resistance by applying an electrical stress, a product-sum operation device, and the device for each neuron. The present invention can be applied to a neural network provided in an element, a product calculation method, and the like. Note that the present invention can be applied to any device as long as it is an electronic device and an electrical device that require an arithmetic circuit that performs product operation and product-sum operation.

本発明の一実施形態である抵抗変化型可変抵抗素子をユニットセルとする単一セルにより構成された積和演算装置の書き込みの際の構成を示す回路図である。It is a circuit diagram which shows the structure at the time of writing of the product-sum calculation apparatus comprised by the single cell which makes the resistance change type variable resistance element which is one Embodiment of this invention a unit cell. (a)は、前記抵抗変化型可変抵抗素子の端子A(ビット線)に入力される電圧パルス(パルス幅Ti)の様子を示す波形図であり、(b)は、端子B(データ線)に入力される電圧パルス(パルス周波数Fi)の様子を示す波形図であり、(c)は、端子A・B間の電位差と閾値電位Vthとの関係を示す波形図である。(A) is a wave form diagram which shows the mode of the voltage pulse (pulse width Ti) input into the terminal A (bit line) of the said resistance change type variable resistance element, (b) is a terminal B (data line). FIG. 6C is a waveform diagram illustrating a state of a voltage pulse (pulse frequency Fi) input to the terminal, and FIG. 5C is a waveform diagram illustrating a relationship between a potential difference between the terminals A and B and a threshold potential Vth. (a)は、前記抵抗変化型可変抵抗素子をユニットセルとする単一セルにより構成された積和演算装置の読み出しの際の構成を示す回路図であり、(b)は、前記積和演算装置の動作を示すシーケンス図である。(A) is a circuit diagram which shows the structure at the time of the reading of the product-sum operation apparatus comprised by the single cell which uses the said resistance change type variable resistance element as a unit cell, (b) is the said product-sum operation It is a sequence diagram which shows operation | movement of an apparatus. 前記抵抗変化型可変抵抗素子の構造及び電気特性測定の際の等価回路を示す回路図である。It is a circuit diagram which shows the structure of the said variable resistance variable resistance element, and the equivalent circuit in the case of an electrical property measurement. (a)は、前記抵抗変化型可変抵抗素子に流れる電流値のSETパルス回数依存性を示すグラフ図であり、(b)は、前記抵抗変化型可変抵抗素子に流れる電流値の所定パルス電圧の電圧パルス幅(所定パルス電圧の印加時間)依存性を示すグラフ図であり、(c)は、パルス電圧依存性を示すグラフ図である。(A) is a graph showing the SET pulse frequency dependence of the current value flowing through the resistance variable variable resistance element, and (b) is a graph showing a predetermined pulse voltage of the current value flowing through the resistance variable variable resistance element. It is a graph which shows voltage pulse width (application time of a predetermined pulse voltage) dependence, (c) is a graph which shows pulse voltage dependence. (a)は、単一セルにより構成された積和演算装置の構成と書き込み動作とを示す回路図であり、(b)は、読み出し動作を示す回路図である。(図1,図2(a)〜図2(c)及び図3(a)・図3(b)とは、別の動作方法)(A) is a circuit diagram which shows the structure and write-in operation | movement of a product-sum operation apparatus comprised by the single cell, (b) is a circuit diagram which shows read-out operation | movement. (Operation method different from FIG. 1, FIG. 2 (a) to FIG. 2 (c) and FIG. 3 (a) and FIG. 3 (b)) (a)は、前記抵抗変化型可変抵抗素子をユニットセルする複数個のセルにより構成された積和演算装置の書き込みの際の構成を示す回路図であり、(b)は、前記抵抗変化型可変抵抗素子の端子A(ビット線)に入力される電圧パルス(パルス幅Ti)の様子を示す波形図であり、(c)は、端子B(データ線)に入力される電圧パルス(パルス周波数Fi)の様子を示す波形図であり、(d)は、端子A・B間の電位差と閾値電位Vthとの関係を示す波形図である。(A) is a circuit diagram which shows the structure at the time of writing of the product-sum arithmetic unit comprised by the some cell which unit-cells the said resistance change type variable resistance element, (b) is the said resistance change type It is a wave form diagram which shows the mode of the voltage pulse (pulse width Ti) input into the terminal A (bit line) of a variable resistance element, (c) is the voltage pulse (pulse frequency input into the terminal B (data line). (D) is a waveform diagram showing the relationship between the potential difference between the terminals A and B and the threshold potential Vth. 前記抵抗変化型可変抵抗素子をユニットセルとする複数個のセルにより構成された積和演算装置の読み出しの際の構成を示す回路図である。It is a circuit diagram which shows the structure at the time of the reading of the product-sum arithmetic unit comprised by the some cell which uses the said resistance change type variable resistance element as a unit cell. (a)は、前記抵抗変化型可変抵抗素子をユニットセルにし、単一セルにより構成された積和演算装置の構成を示す回路図であり、(b)は、前記抵抗変化型可変抵抗素子の端子A(ビット線)に入力される電圧パルス(パルス幅Ti)の様子を示す波形図であり、(c)は、端子A・B間の電位差と閾値電位Vthとの関係を示す波形図である。(A) is the circuit diagram which shows the structure of the product-sum arithmetic unit comprised by the said variable resistance variable resistance element as a unit cell, and was comprised by the single cell, (b) is the said variable resistance variable resistance element It is a wave form diagram which shows the mode of the voltage pulse (pulse width Ti) input into the terminal A (bit line), (c) is a wave form diagram which shows the relationship between the electric potential difference between terminal A and B, and threshold potential Vth. is there. (a)は、前記抵抗変化型可変抵抗素子をユニットセルにし、単一セルにより構成された積和演算装置の構成と、電圧パルス幅及びパルス電圧を、それぞれ乗数、及び被乗数に用いた読み出し動作方法を示す回路図であり、(b)は、読み出し動作方法を示すシーケンス図である。(A) is a read-out operation in which the variable resistance variable resistance element is a unit cell and the product-sum operation unit is composed of a single cell, and the voltage pulse width and pulse voltage are used as a multiplier and a multiplicand, respectively. It is a circuit diagram which shows a method, (b) is a sequence diagram which shows the read-out operation method. 本発明の一実施形態である積和演算回路の各処理ブロックの構成を示すブロック図である。It is a block diagram which shows the structure of each process block of the product-sum operation circuit which is one Embodiment of this invention. 本発明の一実施形態であるニューラルネットワークに対して積和演算方法を適用する際の演算処理ブロックの構成図である。It is a block diagram of the calculation processing block at the time of applying the product-sum calculation method with respect to the neural network which is one Embodiment of this invention. 前記ニューラルネットワークに対して積和演算方法を適用する際の演算処理における各ステップのフローチャートである。It is a flowchart of each step in the calculation processing when applying the product-sum calculation method to the neural network. (a)は、従来のPWM(Pulse Width Modulation:パルス幅変調)信号を用いた積和演算装置の構成を示す回路図であり、(b)は、前記積和演算装置における端子電圧Vout及び参照ランプ電圧Vrefの線形関係を示すグラフ図である。(A) is a circuit diagram which shows the structure of the product-sum operation apparatus using the conventional PWM (Pulse Width Modulation: Pulse width modulation) signal, (b) is the terminal voltage Vout and reference in the said product-sum operation apparatus It is a graph which shows the linear relationship of the lamp voltage Vref. 従来技術における積和演算回路の構成を示すブロック図である。It is a block diagram which shows the structure of the product-sum operation circuit in a prior art. 図15に示す各処理ブロックにおいて、1つの演算ブロックをアナログ回路で構成したアナログ演算回路を示す回路図である。FIG. 16 is a circuit diagram showing an analog arithmetic circuit in which one arithmetic block is constituted by an analog circuit in each processing block shown in FIG. 15. 図15に示す各処理ブロックにおいて、入力値(演算値)保持ブロックをアナログ回路で構成した回路図である。FIG. 16 is a circuit diagram in which an input value (calculated value) holding block is configured by an analog circuit in each processing block shown in FIG. 15. 従来のニューラルネットワークモデルの構成を示す図である。It is a figure which shows the structure of the conventional neural network model. 図18に示したニューラルネットワークに対して積和演算方法を適用する際の各演算処理ブロックの構成を示すブロック図である。It is a block diagram which shows the structure of each calculation processing block at the time of applying the product-sum calculation method with respect to the neural network shown in FIG. シグモイド変換を示すグラフ図である。It is a graph which shows sigmoid conversion. 図14(a)の積和演算装置におけるスイッチト電流源のより詳細な構成を示す回路図である。It is a circuit diagram which shows the more detailed structure of the switched current source in the product-sum calculation apparatus of Fig.14 (a).

符号の説明Explanation of symbols

1 抵抗変化型可変抵抗素子(積演算装置)
2 データ線
3 ビット線
4 スイッチングトランジスタ
5 コンデンサ(記憶部)
6 オペアンプ
10 積和演算装置(積演算装置)
11A 上部電極(一方の端子,他方の端子)
11B 下部電極(一方の端子,他方の端子)
12 抵抗体
20 積和演算装置(積演算装置)
21 抵抗変化型可変抵抗素子
22 データ線
23 ビット線
24,27 スイッチングトランジスタ
25 コンデンサ(記憶部)
26 コンパレータ
100 積和演算装置(積演算装置)
ij1(111,121,211,221・・・:i,jは、自然数) 抵抗変化型可変抵抗素子
1i2(112,122・・・:iは、自然数) データ線
1j3(113,123・・・:jは、自然数) ビット線
1i4(114,124・・・:iは、自然数) スイッチングトランジスタ
1j7(117,127・・・:jは、自然数) スイッチングトランジスタ
1i5(115,125・・・:jは、自然数) コンデンサ(記憶部)
1i6(116,126・・・:jは、自然数) オペアンプ
30,30A,30B 積和演算回路(積演算装置,積和演算装置)
31,31A,31B 入力値保持ブロック(演算値保持ブロック)
32,32A,32B ソーティングブロック
33,33A,33B スイッチングブロック(1)
34,34A,34B 荷重値保持ブロック(被演算値保持ブロック)
35,35A,35B スイッチングブロック(2)
36,36A,36B 演算処理ブロック
40 ニューラルネットワーク
41A,41B 関数処理ブロック
A 端子(一方の端子)
B 端子(他方の端子)
σii コンダクタンス(iは、自然数)
Fi パルス周波数(電圧パルス周波数:iは、自然数)
Q 電荷量(出力値の累積値)
Ti パルス幅(電圧パルス幅:iは、自然数)
Vref 参照電圧
Vth 閾値電位
Wi 被演算値(被乗数:iは、自然数)
Xi 演算値(乗数:iは、自然数)
1 Variable resistance variable resistance element (product calculation device)
2 Data line 3 Bit line 4 Switching transistor 5 Capacitor (storage unit)
6 operational amplifier 10 product-sum operation device (product operation device)
11A Upper electrode (one terminal, the other terminal)
11B Lower electrode (one terminal, the other terminal)
12 resistors 20 product-sum operation device (product operation device)
21 variable resistance variable resistance element 22 data line 23 bit line 24, 27 switching transistor 25 capacitor (storage unit)
26 Comparator 100 Multiply-sum arithmetic unit (product arithmetic unit)
ij1 (111, 121, 211, 221 ..., i, j are natural numbers) Resistance variable variable resistance element 1i2 (112, 122 ...: i is a natural number) Data line 1j3 (113, 123 ... : J is a natural number) Bit line 1i4 (114, 124 ...: i is a natural number) Switching transistor 1j7 (117, 127 ...: j is a natural number) Switching transistor 1i5 (115, 125 ...: j Is a natural number) Capacitor (storage unit)
1i6 (116, 126..., J is a natural number) Operational amplifier 30, 30A, 30B Product-sum operation circuit (product operation device, product-sum operation device)
31, 31A, 31B Input value holding block (calculation value holding block)
32, 32A, 32B Sorting block 33, 33A, 33B Switching block (1)
34, 34A, 34B Load value holding block (operation value holding block)
35, 35A, 35B Switching block (2)
36, 36A, 36B Arithmetic processing block 40 Neural network 41A, 41B Function processing block A terminal (one terminal)
B terminal (the other terminal)
σii conductance (i is a natural number)
Fi pulse frequency (voltage pulse frequency: i is a natural number)
Q Charge amount (cumulative value of output value)
Ti pulse width (voltage pulse width: i is a natural number)
Vref reference voltage Vth threshold potential Wi operand value (multiplicand: i is a natural number)
Xi operation value (multiplier: i is a natural number)

Claims (13)

被乗数と乗数とを入力することにより、これらの積演算の結果を出力する積演算装置であって、
電圧パルスを印加することによって可逆的に電気抵抗が変化し、少なくとも2つの端子を有する抵抗変化型可変抵抗素子を備えており、
該抵抗変化型可変抵抗素子の前記2つの端子の一方の端子に被乗数に対応する第1入力信号を入力し、他方の端子に前記被乗数に乗算される乗数に対応する第2入力信号を入力することにより、前記被乗数と前記乗数との積演算の結果に対応する出力値が出力されるように構成されていることを特徴とする積演算装置。
A product operation device that outputs a result of these product operations by inputting a multiplicand and a multiplier,
The electric resistance is reversibly changed by applying a voltage pulse, and includes a variable resistance variable resistance element having at least two terminals,
A first input signal corresponding to a multiplicand is input to one of the two terminals of the variable resistance variable resistance element, and a second input signal corresponding to a multiplier multiplied by the multiplicand is input to the other terminal. Thereby, an output value corresponding to the result of the product operation of the multiplicand and the multiplier is configured to be output.
前記第1入力信号及び前記第2入力信号は、電圧パルスであり、
前記第1入力信号の電圧パルス幅と、前記第2入力信号のパルス周波数とにより前記出力値を制御するように構成されていることを特徴とする請求項1に記載の積演算装置。
The first input signal and the second input signal are voltage pulses;
The product operation device according to claim 1, wherein the output value is controlled by a voltage pulse width of the first input signal and a pulse frequency of the second input signal.
前記第1入力信号及び前記第2入力信号は、電圧パルスであり、
前記第1入力信号の電圧パルス幅と、前記第2入力信号のパルス電圧とにより前記出力値を制御するように構成されていることを特徴とする請求項1に記載の積演算装置。
The first input signal and the second input signal are voltage pulses;
The product operation device according to claim 1, wherein the output value is controlled by a voltage pulse width of the first input signal and a pulse voltage of the second input signal.
前記抵抗変化型可変抵抗素子は、前記第1入力信号及び前記第2入力信号の入力による前記積演算の結果を、該抵抗変化型可変抵抗素子の電気抵抗の変化によって記憶することを特徴とする請求項1から3までのいずれか1項に記載の積演算装置。   The variable resistance variable resistance element stores a result of the product operation by inputting the first input signal and the second input signal according to a change in electric resistance of the variable resistance variable resistance element. The product operation device according to any one of claims 1 to 3. 前記電気抵抗の変化によって記憶された前記積演算の結果は、前記抵抗変化型可変抵抗素子に所定の電圧パルスを印加することにより、消去可能となっていることを特徴とする請求項4に記載の積演算装置。   The result of the product operation stored by the change in the electrical resistance is erasable by applying a predetermined voltage pulse to the variable resistance variable resistance element. Product operation unit. 請求項1から5までのいずれか1項に記載の積演算装置を少なくとも1つ備えており、
複数セットの前記第1信号及び前記第2信号の入力により、該積演算装置から出力される前記セット毎の前記出力値の累積値に対応する第2出力値が出力されるように構成されていることを特徴とする積和演算装置。
Comprising at least one product computing device according to any one of claims 1 to 5,
A second output value corresponding to a cumulative value of the output values for each set output from the product operation device is output by inputting the first signal and the second signal of a plurality of sets. A product-sum operation apparatus.
前記抵抗変化型可変抵抗素子は、複数セットの前記第1入力信号及び前記第2入力信号の入力による前記セット毎の前記積演算の累積結果を、該抵抗変化型可変抵抗素子の電気抵抗の変化によって記憶することを特徴とする請求項6に記載の積和演算装置。   The variable resistance variable resistance element is configured to calculate an accumulation result of the product operation for each set by inputting a plurality of sets of the first input signal and the second input signal, and to change the electrical resistance of the variable resistance variable resistance element. The product-sum operation apparatus according to claim 6, wherein: 前記電気抵抗の変化によって記憶された前記積演算の累積結果は、前記抵抗変化型可変抵抗素子に所定の電圧パルスを印加することにより、消去可能となっていることを特徴とする請求項7に記載の積和演算装置。   The accumulated result of the product operation stored by the change in the electrical resistance can be erased by applying a predetermined voltage pulse to the variable resistance variable resistance element. The product-sum operation apparatus described. 請求項1から5までのいずれか1項に記載の積演算装置を複数備えており、
該複数の積演算装置のそれぞれから出力される出力値の累積値に対応する第2出力値が出力されるように構成されていることを特徴とする積和演算装置。
A plurality of product operation devices according to any one of claims 1 to 5,
A product-sum operation apparatus configured to output a second output value corresponding to a cumulative value of output values output from each of the plurality of product operation apparatuses.
前記複数の積演算装置のうちの、所定数の積演算装置のそれぞれから出力される出力値の累積値に対応する第3出力値が出力されるように構成されていることを特徴とする請求項9に記載の積和演算装置。   The third output value corresponding to a cumulative value of output values output from each of a predetermined number of product operation devices among the plurality of product operation devices is output. Item 10. The product-sum operation apparatus according to item 9. 前記複数の積演算装置のうち、所定数の積演算装置のそれぞれから出力される出力値の累積値を記憶する記憶部を備えていることを特徴とする請求項10に記載の積和演算装置。   The product-sum operation apparatus according to claim 10, further comprising a storage unit that stores a cumulative value of output values output from each of a predetermined number of product operation apparatuses among the plurality of product operation apparatuses. . 複数段のニューロン素子を有しており、特定段における所定数のニューロン素子の出力値に対してシナプス荷重値で重み付けした値のそれぞれを、一意対応で、該特定段に隣接する次段のニューロン素子に入力することにより、該ニューロン素子の内部状態を示す内部状態値が決定されるニューラルネットワークであって、
前記各ニューロン素子は、請求項6から11までのいずれか1項に記載の積和演算装置を備えており、
前記特定段におけるニューロン素子の出力値は、前記被乗数として前記次段のニューロン素子に備えられた積和演算装置へ入力されると共に、
前記シナプス荷重値は、前記乗数として前記次段のニューロン素子に備えられた積和演算装置に入力され、
前記次段のニューロン素子の内部状態を示す内部状態値は、前記積演算の累積結果に対応する出力値として前記次段のニューロン素子に備えられた積和演算装置から出力されるように構成されていることを特徴とするニューラルネットワーク。
Each of the neuron elements in the next stage adjacent to the specific stage has a multi-stage neuron element, and each of the output values of a predetermined number of neuron elements in the specific stage is weighted by the synapse load value uniquely. A neural network in which an internal state value indicating an internal state of the neuron element is determined by inputting to the element,
Each of the neuron elements includes the product-sum operation apparatus according to any one of claims 6 to 11,
The output value of the neuron element in the specific stage is input as a multiplicand to the product-sum operation device provided in the neuron element in the next stage,
The synapse load value is input as a multiplier to a product-sum operation device provided in the next-stage neuron element,
An internal state value indicating an internal state of the next-stage neuron element is configured to be output from a product-sum operation device provided in the next-stage neuron element as an output value corresponding to the accumulation result of the product operation. A neural network characterized by
電圧パルスを印加することによって可逆的に電気抵抗が変化し、少なくとも2つの端子を有する抵抗変化型可変抵抗素子を備えており、被乗数と乗数とを入力することにより、これらの積演算の結果を出力する積演算装置により実行される積演算方法であって、
前記抵抗変化型可変抵抗素子の前記2つの端子の一方の端子に被乗数に対応する第1入力信号を入力する第1信号入力ステップと、
前記2つの端子の他方の端子に前記被乗数に乗算される乗数に対応する第2入力信号を入力する第2信号入力ステップと、
前記被乗数と前記乗数との積演算の結果に対応する出力値を出力する演算結果出力ステップと実行することを特徴とする積演算方法。
The electrical resistance is reversibly changed by applying a voltage pulse, and a variable resistance variable resistance element having at least two terminals is provided. By inputting a multiplicand and a multiplier, the result of these product operations is obtained. A product operation method executed by a product operation device for outputting,
A first signal input step of inputting a first input signal corresponding to a multiplicand to one of the two terminals of the variable resistance variable resistance element;
A second signal input step of inputting a second input signal corresponding to a multiplier multiplied by the multiplicand to the other terminal of the two terminals;
A product operation method comprising: an operation result output step for outputting an output value corresponding to a product operation result of the multiplicand and the multiplier.
JP2008134682A 2008-05-22 2008-05-22 Product operation device including variable resistance variable resistance element, product-sum operation device, neural network including these devices in each neuron element, and product operation method Expired - Fee Related JP5160304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134682A JP5160304B2 (en) 2008-05-22 2008-05-22 Product operation device including variable resistance variable resistance element, product-sum operation device, neural network including these devices in each neuron element, and product operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008134682A JP5160304B2 (en) 2008-05-22 2008-05-22 Product operation device including variable resistance variable resistance element, product-sum operation device, neural network including these devices in each neuron element, and product operation method

Publications (2)

Publication Number Publication Date
JP2009282782A JP2009282782A (en) 2009-12-03
JP5160304B2 true JP5160304B2 (en) 2013-03-13

Family

ID=41453169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134682A Expired - Fee Related JP5160304B2 (en) 2008-05-22 2008-05-22 Product operation device including variable resistance variable resistance element, product-sum operation device, neural network including these devices in each neuron element, and product operation method

Country Status (1)

Country Link
JP (1) JP5160304B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665614B (en) * 2018-03-15 2019-07-11 旺宏電子股份有限公司 Device for generating sum-of-products data and method for operating the same
US10964369B2 (en) 2018-09-26 2021-03-30 Tdk Corporation Memristor circuit, memristor control system, analog product-sum operator, and neuromorphic device
US11429348B2 (en) 2018-03-16 2022-08-30 Tdk Corporation Multiply and accumulate calculation device, neuromorphic device, and method for using multiply and accumulate calculation device
US11442695B2 (en) 2017-12-28 2022-09-13 Tdk Corporation Product-sum operation device, neuromorphic device, and method for determining malfunction in product-sum operation device
US11449742B2 (en) 2017-12-28 2022-09-20 Tdk Corporation Product-sum operation device, neuromorphic device, and method for using product-sum operation device
US11726745B2 (en) 2017-12-28 2023-08-15 Tdk Corporation Product-sum operation device, neuromorphic device, and method for using product-sum operation device
US11797829B2 (en) 2017-12-28 2023-10-24 Tdk Corporation Product-sum operation device, neuromorphic device, and method for using product-sum operation device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108299A1 (en) * 2012-01-20 2013-07-25 パナソニック株式会社 Learning method for neural network circuit
JP5289647B1 (en) * 2012-01-23 2013-09-11 パナソニック株式会社 Learning method of neural network circuit
JP5659361B1 (en) 2013-07-04 2015-01-28 パナソニックIpマネジメント株式会社 Neural network circuit and learning method thereof
JP6333477B2 (en) * 2014-10-23 2018-05-30 ヒューレット パッカード エンタープライズ デベロップメント エル ピーHewlett Packard Enterprise Development LP Memristive crossbar array for determining dot product
JP6281024B2 (en) * 2014-10-30 2018-02-14 ヒューレット パッカード エンタープライズ デベロップメント エル ピーHewlett Packard Enterprise Development LP Double bias memristive dot product engine for vector processing
JP6481667B2 (en) * 2016-07-20 2019-03-13 株式会社デンソー Neural network circuit
JP6556768B2 (en) * 2017-01-25 2019-08-07 株式会社東芝 Multiply-accumulator, network unit and network device
JP6901163B2 (en) 2017-03-14 2021-07-14 国立大学法人北海道大学 Weight code fixed learning device
JP6668282B2 (en) * 2017-03-21 2020-03-18 キオクシア株式会社 Semiconductor storage device
CN111052154B (en) 2017-09-07 2023-10-17 松下控股株式会社 Neural network operation circuit using nonvolatile semiconductor memory element
JP2019179499A (en) 2018-03-30 2019-10-17 ソニー株式会社 Semiconductor device and product-sum computation device
JP7089750B2 (en) * 2018-07-18 2022-06-23 国立研究開発法人産業技術総合研究所 Boltzmann machine
US20220004853A1 (en) * 2018-09-27 2022-01-06 Tdk Corporation Product-sum calculation unit, neuromorphic device, and product-sum calculation method
US20210349693A1 (en) * 2018-10-11 2021-11-11 Tdk Corporation Product-sum operation device, logical calculation device, neuromorphic device, and multiply-accumulate method
JP6841393B1 (en) * 2020-02-27 2021-03-10 Tdk株式会社 Arithmetic circuits and neuromorphic devices
JP6892026B1 (en) * 2020-02-27 2021-06-23 Tdk株式会社 Arithmetic circuits and neuromorphic devices

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57120178A (en) * 1981-01-16 1982-07-27 Yamatake Honeywell Co Ltd Multiplying circuit
JPH01161585A (en) * 1987-12-18 1989-06-26 Toshiba Corp Multiplier
JPH11161730A (en) * 1997-12-01 1999-06-18 Sharp Corp Analog multiplying circuit
JP2000035878A (en) * 1998-07-17 2000-02-02 Texas Instr Japan Ltd Addition operating device and semiconductor memory device with addition operation function
JP4620944B2 (en) * 2003-10-16 2011-01-26 キヤノン株式会社 Product-sum operation circuit and method thereof
JP4620943B2 (en) * 2003-10-16 2011-01-26 キヤノン株式会社 Product-sum operation circuit and method thereof
JP4367281B2 (en) * 2004-08-03 2009-11-18 ソニー株式会社 Arithmetic circuit
JP4728055B2 (en) * 2005-06-24 2011-07-20 エルピーダメモリ株式会社 Artificial neural circuit
JP4579798B2 (en) * 2005-09-02 2010-11-10 キヤノン株式会社 Arithmetic unit
JP2007115116A (en) * 2005-10-21 2007-05-10 Hiroshima Industrial Promotion Organization Neuron element and information processing method using it
JP2007241475A (en) * 2006-03-06 2007-09-20 Canon Inc Differential multiplication circuit and sum of products arithmetic circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11442695B2 (en) 2017-12-28 2022-09-13 Tdk Corporation Product-sum operation device, neuromorphic device, and method for determining malfunction in product-sum operation device
US11449742B2 (en) 2017-12-28 2022-09-20 Tdk Corporation Product-sum operation device, neuromorphic device, and method for using product-sum operation device
US11726745B2 (en) 2017-12-28 2023-08-15 Tdk Corporation Product-sum operation device, neuromorphic device, and method for using product-sum operation device
US11797829B2 (en) 2017-12-28 2023-10-24 Tdk Corporation Product-sum operation device, neuromorphic device, and method for using product-sum operation device
TWI665614B (en) * 2018-03-15 2019-07-11 旺宏電子股份有限公司 Device for generating sum-of-products data and method for operating the same
US11429348B2 (en) 2018-03-16 2022-08-30 Tdk Corporation Multiply and accumulate calculation device, neuromorphic device, and method for using multiply and accumulate calculation device
US10964369B2 (en) 2018-09-26 2021-03-30 Tdk Corporation Memristor circuit, memristor control system, analog product-sum operator, and neuromorphic device

Also Published As

Publication number Publication date
JP2009282782A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5160304B2 (en) Product operation device including variable resistance variable resistance element, product-sum operation device, neural network including these devices in each neuron element, and product operation method
Nandakumar et al. Mixed-precision deep learning based on computational memory
Wang et al. In situ training of feed-forward and recurrent convolutional memristor networks
JP6477924B2 (en) Memristor neuromorphological circuit and method for training memristor neuromorphological circuit
JP4620943B2 (en) Product-sum operation circuit and method thereof
Yang et al. Transiently chaotic simulated annealing based on intrinsic nonlinearity of memristors for efficient solution of optimization problems
US20230113231A1 (en) Methods and systems of operating a neural circuit in a non-volatile memory based neural-array
US10896242B2 (en) Resistive memory device for matrix-vector multiplications
US20180114569A1 (en) Hardware accelerators for calculating node values of neural networks
Liu et al. A memristor crossbar based computing engine optimized for high speed and accuracy
KR102542532B1 (en) Mixed-Signal Computing Systems and Methods
Covi et al. Ferroelectric-based synapses and neurons for neuromorphic computing
US11544540B2 (en) Systems and methods for neural network training and deployment for hardware accelerators
US11055611B2 (en) Circuit for CMOS based resistive processing unit
CN110007895B (en) Analog multiplication circuit, analog multiplication method and application thereof
Dong et al. Neuromorphic extreme learning machines with bimodal memristive synapses
Dong et al. Hybrid dual‐complementary metal–oxide–semiconductor/memristor synapse‐based neural network with its applications in image super‐resolution
KR102105936B1 (en) Weight matrix input circuit and weight matrix circuit
CN113643175A (en) Data processing method and electronic device
Lim et al. Highly reliable inference system of neural networks using gated Schottky diodes
Hassan et al. Hybrid spiking-based multi-layered self-learning neuromorphic system based on memristor crossbar arrays
Daoud et al. A high precision write/read circuits for memristors using digital input/output interfaces
Molahasani Majdabadi et al. Hybrid CMOS/memristor crossbar structure for implementing hopfield neural network
Antolini et al. Combined hw/sw drift and variability mitigation for pcm-based analog in-memory computing for neural network applications
Aguirre et al. Hardware implementation of memristor-based artificial neural networks

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees