JP5141856B2 - Method for manufacturing surface acoustic wave device and surface acoustic wave device - Google Patents

Method for manufacturing surface acoustic wave device and surface acoustic wave device Download PDF

Info

Publication number
JP5141856B2
JP5141856B2 JP2006103404A JP2006103404A JP5141856B2 JP 5141856 B2 JP5141856 B2 JP 5141856B2 JP 2006103404 A JP2006103404 A JP 2006103404A JP 2006103404 A JP2006103404 A JP 2006103404A JP 5141856 B2 JP5141856 B2 JP 5141856B2
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
wave device
excitation electrode
quartz substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006103404A
Other languages
Japanese (ja)
Other versions
JP2007281701A (en
Inventor
慶吾 飯澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2006103404A priority Critical patent/JP5141856B2/en
Publication of JP2007281701A publication Critical patent/JP2007281701A/en
Application granted granted Critical
Publication of JP5141856B2 publication Critical patent/JP5141856B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

本発明は、弾性表面波装置の製造方法、及び弾性表面波装置に係り、特に弾性表面波装置の周波数温度特性を向上させることに好適な弾性表面波装置の製造方法、及び弾性表面波装置に関する。   The present invention relates to a surface acoustic wave device manufacturing method and a surface acoustic wave device, and more particularly to a surface acoustic wave device manufacturing method and a surface acoustic wave device suitable for improving frequency temperature characteristics of a surface acoustic wave device. .

従来より、圧電デバイスの中でも、水晶基板によって構成される素子片を用いたものは、周波数温度特性(温度変化に対する周波数変動特性)が良好であることが知られている。そして、水晶振動片を用いた圧電デバイスの中でも、振動片として、ATカット水晶基板を用いたATカット水晶振動子は、特に周波数温度特性が良好であることも知られている。   Conventionally, it has been known that among piezoelectric devices, those using an element piece constituted by a quartz substrate have good frequency temperature characteristics (frequency fluctuation characteristics with respect to temperature changes). It is also known that among piezoelectric devices using a crystal resonator element, an AT-cut crystal resonator using an AT-cut crystal substrate as the resonator element has particularly good frequency temperature characteristics.

また、圧電デバイスの分野では、励起する振動の高周波数化が望まれており、これに対応して、高周波を励起可能な構成とした振動片としては、STカット水晶基板を採用した弾性表面波(SAW:surface acoustic wave)素子片を用いた弾性表面波装置(SAW装置)が知られている。しかし、SAW素子片を用いたSAW装置は、ATカット水晶振動片を用いたAT振動子に比べて周波数温度特性が悪い。このため、SAW装置の周波数温度特性を改善するための技術が種々提案されている。   In the field of piezoelectric devices, it is desired to increase the frequency of vibration to be excited. Correspondingly, as a resonator element having a configuration capable of exciting a high frequency, a surface acoustic wave using an ST cut quartz substrate is adopted. A surface acoustic wave device (SAW device) using (SAW: surface acoustic wave) element pieces is known. However, the SAW device using the SAW element piece has poor frequency temperature characteristics as compared with the AT vibrator using the AT-cut quartz crystal piece. For this reason, various techniques for improving the frequency temperature characteristics of the SAW device have been proposed.

例えば、特許文献1には、STカット水晶基板に特定の面内回転角ψを与えることにより、SAW装置の周波数温度特性を改善することが提案されている。
特許第3622202号公報 特開2005−57666号公報
For example, Patent Document 1 proposes improving the frequency temperature characteristics of the SAW device by giving a specific in-plane rotation angle ψ to the ST cut quartz substrate.
Japanese Patent No. 3622202 JP 2005-57666 A

特許文献1に示されるように、STカット水晶基板によって構成されるSAW素子片の面内回転角ψを適正に変化させることによれば、確かにSAW素子片の周波数温度特性を改善することができると考えられる。   As shown in Patent Document 1, by appropriately changing the in-plane rotation angle ψ of the SAW element piece constituted by the ST cut quartz substrate, the frequency temperature characteristic of the SAW element piece can surely be improved. It is considered possible.

しかし、本願出願人が鋭意研究する中で、上述するように水晶基板の面内回転角を調整し、周波数温度特性を改善したSAW素子片であっても、共振周波数の調整、及び電極間における短絡防止等を目的として励振電極を構成するIDT(interdigital transducer)に保護膜を付与することにより、前記周波数温度特性に変化が生ずることが判明した。   However, while the applicant of the present application intensively researches, even with a SAW element piece in which the in-plane rotation angle of the quartz crystal substrate is adjusted and the frequency temperature characteristics are improved as described above, the resonance frequency is adjusted and It has been found that the frequency temperature characteristic is changed by applying a protective film to an IDT (interdigital transducer) constituting the excitation electrode for the purpose of preventing a short circuit or the like.

上記のように、励振電極に対して保護膜を付与することは特許文献2にも開示されているが、特許文献2を含む従来技術における保護膜の付与は、あくまでSAW素子片の共振周波数を調整することを目的としたものであり、温度特性に対する影響というものは考慮されていなかった。また一般に、STカット水晶基板を採用したSAW素子片の励振電極に対して保護膜を付与した際には、SAW装置における周波数温度特性への影響が殆ど無い。このため従来は、面内回転STカット水晶基板を用いたSAW素子片については、保護膜付与による影響は無いものと考えられていた。   As described above, the provision of a protective film to the excitation electrode is also disclosed in Patent Document 2, but the provision of the protective film in the prior art including Patent Document 2 only gives the resonance frequency of the SAW element piece. The purpose is to adjust, and the influence on the temperature characteristics was not considered. In general, when a protective film is applied to the excitation electrode of the SAW element piece using the ST cut quartz substrate, there is almost no influence on the frequency temperature characteristics in the SAW device. For this reason, conventionally, it has been considered that the SAW element piece using the in-plane rotation ST-cut quartz substrate is not affected by the provision of the protective film.

このため、本願出願人の研究により、STカット水晶基板の面内回転角ψを設定された共振周波数下において周波数温度特性が使用温度範囲内で最適な値となるように設計をした場合であっても、製造の最終段階として励振電極に保護膜を付与することにより、前述した周波数温度特性が劣化するという現象が生じることが初めて明らかとなったのである。   For this reason, in the case where the design by the applicant of the present application is such that the frequency temperature characteristic becomes an optimum value within the operating temperature range under the resonance frequency at which the in-plane rotation angle ψ of the ST cut quartz substrate is set. However, it became clear for the first time that the above-described phenomenon that the frequency temperature characteristics deteriorate due to the application of the protective film to the excitation electrode as the final stage of production.

そこで本発明では、励振電極に保護膜が付与された際に、SAW装置の周波数温度特性が良好となるSAW装置の製造方法、及びSAW装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for manufacturing a SAW device and a SAW device in which the frequency temperature characteristics of the SAW device are improved when a protective film is applied to the excitation electrode.

本発明は、上記課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
第1の形態の弾性表面波装置の製造方法は、オイラー角表示で(0°,95°≦θ≦155°,33°≦|ψ|≦46°)の範囲内にある面内回転STカット水晶基板を用い、励振電極に保護膜を有する弾性表面波装置を製造するための方法であって、前記励振電極に前記保護膜として陽極酸化膜を付与することによって生ずる弾性表面波装置の周波数温度特性の変化量を求めると共に、ストップバンドの上限モードに設定された共振周波数fと前記陽極酸化膜を構成する際に前記励振電極に印加される電圧xとの値に基づき、前記変化量を補うための面内回転角ψの補正量Δψを、


により求め、前記設定された共振周波数において所望する周波数温度特性を得るために算出されるオイラー角から前記補正量Δψだけψの角度をずらした前記面内回転STカット水晶基板を形成し、当該面内回転STカット水晶基板、前記励振電極と前記陽極酸化膜を用いて弾性表面波装置を製造することを特徴とする弾性表面波装置の製造方法。
第2の形態の弾性表面波装置の製造方法は、オイラー角表示で(0°,113°≦θ≦135°,40°≦|ψ|≦49°)の範囲内にある面内回転STカット水晶基板を用い、励振電極に保護膜を有する弾性表面波装置を製造するための方法であって、前記励振電極に前記保護膜として陽極酸化膜を付与することによって生ずる弾性表面波装置の周波数温度特性の変化量を求めると共に、ストップバンドの上限モードに設定された共振周波数fと前記陽極酸化膜を構成する際に前記励振電極に印加される電圧xとの値に基づき、前記変化量を補うための面内回転角ψの補正量Δψを、


により求め、前記設定された共振周波数において所望する周波数温度特性を得るために算出されるオイラー角から前記補正量Δψだけψの角度をずらした前記面内回転STカット水晶基板を形成し、当該面内回転STカット水晶基板、前記励振電極と前記陽極酸化膜を用いて弾性表面波装置を製造することを特徴とする弾性表面波装置の製造方法。
また、上記目的を達成するための適応例は以下の通りである。
本発明に係る弾性表面波装置の製造方法は、オイラー角表示で(0°,95°≦θ≦155°,33°≦|ψ|≦46°)の範囲内にある面内回転STカット水晶基板を用い、励振電極に保護膜を有する弾性表面波装置を製造するための方法であって、前記励振電極に前記保護膜として陽極酸化膜を付与することによって生ずる弾性表面波装置の周波数温度特性の変化量を求めると共に、前記変化量を補うための面内回転角ψの補正量Δψを求め、設定された共振周波数において所望する周波数温度特性を得るために算出されるオイラー角から前記補正量Δψだけψの角度をずらした前記面内回転STカット水晶基板を形成し、当該面内回転STカット水晶基板、前記励振電極と前記陽極酸化膜を用いて弾性表面波装置を製造することを特徴とする。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.
The surface acoustic wave device manufacturing method according to the first embodiment is an in-plane rotation ST cut in the range of (0 °, 95 ° ≦ θ ≦ 155 °, 33 ° ≦ | ψ | ≦ 46 °) in terms of Euler angles. using a quartz substrate, a method for manufacturing a surface acoustic wave device having a protective film to the excitation electrode, the frequency-temperature of the surface acoustic wave device produced by applying anodic oxide film as the protective film on the excitation electrode The amount of change of the characteristic is obtained, and the amount of change is compensated based on the value of the resonance frequency f set to the upper limit mode of the stop band and the voltage x applied to the excitation electrode when the anodic oxide film is formed. Correction amount Δψ of in-plane rotation angle ψ for


The calculated, to form the plane rotation ST-cut quartz substrate Euler angle calculated to obtain a frequency-temperature characteristic is shifted an angle of only ψ the correction amount Δψ to desired at the set resonant frequency, the surface method of manufacturing an inner rotational ST-cut quartz substrate, surface acoustic wave device characterized by manufacturing a surface acoustic wave device have use the anodic oxide film and the excitation electrode.
The method of manufacturing the surface acoustic wave device according to the second embodiment is the in-plane rotation ST cut in the range of (0 °, 113 ° ≦ θ ≦ 135 °, 40 ° ≦ | ψ | ≦ 49 °) in the Euler angle display. using a quartz substrate, a method for manufacturing a surface acoustic wave device having a protective film to the excitation electrode, the frequency-temperature of the surface acoustic wave device produced by applying anodic oxide film as the protective film on the excitation electrode The amount of change of the characteristic is obtained, and the amount of change is compensated based on the value of the resonance frequency f set to the upper limit mode of the stop band and the voltage x applied to the excitation electrode when the anodic oxide film is formed. Correction amount Δψ of in-plane rotation angle ψ for


The calculated, to form the plane rotation ST-cut quartz substrate Euler angle calculated to obtain a frequency-temperature characteristic is shifted an angle of only ψ the correction amount Δψ to desired at the set resonant frequency, the surface method of manufacturing an inner rotational ST-cut quartz substrate, surface acoustic wave device characterized by manufacturing a surface acoustic wave device have use the anodic oxide film and the excitation electrode.
Moreover, the example of an adaptation for achieving the said objective is as follows.
Method of manufacturing a surface acoustic wave device according to the present invention, in Euler angle display (0 °, 95 ° ≦ θ ≦ 155 °, 33 ° ≦ | ψ | ≦ 46 °) plane rotation ST-cut in the range of using a quartz substrate, a method for manufacturing a surface acoustic wave device having a protective film to the excitation electrode, the frequency-temperature of the surface acoustic wave device produced by applying anodic oxide film as the protective film on the excitation electrode The amount of change of the characteristic is obtained, the amount of correction Δψ of the in-plane rotation angle ψ to compensate for the amount of change is obtained, and the correction is made from the Euler angle calculated to obtain the desired frequency temperature characteristic at the set resonance frequency. Forming an in- plane rotated ST-cut quartz substrate having an angle of ψ shifted by an amount Δψ, and manufacturing a surface acoustic wave device using the in- plane rotated ST-cut quartz substrate , the excitation electrode, and the anodic oxide film ; Features.

上記のようなカット角を基本とする面内回転STカット水晶基板を用いる弾性表面波装置の製造方法において、上記のような方法によりカット角を定めて弾性表面波装置を製造することによれば、励振電極に保護膜を付与することで補正量Δψに相当する変化量だけ周波数温度特性を示す曲線(温度特性曲線)が所望する周波数温度特性に近づくようにずれることとなる。このため、上記のようにしてカット角を定めた面内回転STカット水晶基板を用いて製造される弾性表面波装置は、励振電極に保護膜を付与した後の周波数温度特性が良好になる。   According to the surface acoustic wave device manufacturing method using the in-plane rotation ST-cut quartz substrate based on the cut angle as described above, the surface acoustic wave device is manufactured by determining the cut angle by the above method. By applying a protective film to the excitation electrode, a curve (temperature characteristic curve) indicating frequency temperature characteristics is shifted so as to approach the desired frequency temperature characteristics by a change amount corresponding to the correction amount Δψ. For this reason, the surface acoustic wave device manufactured using the in-plane rotating ST-cut quartz substrate with the cut angle determined as described above has good frequency temperature characteristics after the protective film is applied to the excitation electrode.

また、上記目的を達成するための本発明に係る弾性表面波装置の製造方法は、カット角がオイラー角表示で(0°,113°≦θ≦135°,40°≦|ψ|≦49°)の範囲内にある事を基本とする面内回転STカット水晶基板を用い、励振電極に保護膜を有する弾性表面波装置を製造するための方法であって、励振電極に保護膜を付与することによって生ずる弾性表面波装置の周波数温度特性の変化量を求めると共に、前記変化量を補うための面内回転角ψの補正量Δψを求め、設定された共振周波数において所望する周波数温度特性を得るために算出される面内回転STカット水晶基板のカット角から前記補正量Δψだけカット角をずらしてカット角を設定して水晶基板を形成し、当該水晶基板を用いて弾性表面波装置を製造することを特徴とするものであっても良い。   Further, in the method for manufacturing the surface acoustic wave device according to the present invention for achieving the above object, the cut angle is expressed by Euler angle (0 °, 113 ° ≦ θ ≦ 135 °, 40 ° ≦ | ψ | ≦ 49 °). ) Is a method for manufacturing a surface acoustic wave device having a protective film on an excitation electrode using an in-plane rotating ST-cut quartz substrate that is basically in the range of The amount of change in the frequency temperature characteristic of the surface acoustic wave device caused by this is obtained, and the correction amount Δψ of the in-plane rotation angle ψ to compensate for the amount of change is obtained to obtain the desired frequency temperature characteristic at the set resonance frequency. The cut angle is set by shifting the cut angle by the correction amount Δψ from the cut angle of the in-plane rotation ST cut quartz substrate calculated for the purpose, and the surface acoustic wave device is manufactured using the quartz substrate. To be characterized by It may be a shall.

上記のようなカット角を基本とする面内回転STカット水晶基板を用いる弾性表面波装置であっても、上述した方法に示したカット角を基本とする弾性表面波装置と、その特性は同じである。したがって、上記のようにしてカット角を定めた面内回転STカット水晶基板を用いて製造される弾性表面波装置は、励振電極に保護膜を付与した後の周波数温度特性が良好になる。   Even the surface acoustic wave device using the in-plane rotation ST-cut quartz substrate based on the cut angle as described above has the same characteristics as the surface acoustic wave device based on the cut angle shown in the above-described method. It is. Therefore, the surface acoustic wave device manufactured using the in-plane rotating ST-cut quartz substrate with the cut angle determined as described above has good frequency temperature characteristics after the protective film is applied to the excitation electrode.

また、上記のような弾性表面波装置の製造方法において、前記励振電極に付与される保護膜を陽極酸化膜とし、前記補正量Δψは、前記設定された共振周波数fと前記陽極酸化膜を構成する際に前記励振電極に印加される電圧xとの値に基づき、
と定めるようにすることが望ましい。
In the method of manufacturing the surface acoustic wave device as described above, the protective film applied to the excitation electrode is an anodic oxide film, and the correction amount Δψ constitutes the set resonant frequency f and the anodic oxide film. Based on the value of the voltage x applied to the excitation electrode when
It is desirable to define

このような係数により補正量を定めることで、補正量を実験による経験則のみによって定めるという不安定要素を排除することができる。よって、経験等に関わり無く安定して良好な周波数温度特性を得られるようになる。   By determining the correction amount using such a coefficient, it is possible to eliminate an unstable factor in which the correction amount is determined only by an experimental rule of thumb. Therefore, it becomes possible to obtain a stable frequency temperature characteristic regardless of experience.

また、上記目的を達成するための本発明に係る弾性表面波装置は、カット角がオイラー角表示で(0°,95°≦θ≦155°,33°≦|ψ|≦46°)の範囲内にある事を基本とする面内回転STカット水晶基板を用いた弾性表面波装置であって、設定された共振周波数において所望する周波数温度特性を得るために必要とされる前記面内回転STカット水晶基板のカット角に、水晶基板の主面に構成する励振電極に対する保護膜付与の影響による周波数温度特性の変化量に基づいて予め求めた面内回転角ψの補正量Δψを加えたカット角によって構成した水晶基板と、前記水晶基板の主面に形成された励振電極と、前記補正量Δψによる周波数温度特性の変化量に対応した膜厚に設定されて前記励振電極に付与される保護膜とを有することを特徴とする。   Further, in the surface acoustic wave device according to the present invention for achieving the above object, the cut angles are in the range of Euler angles (0 °, 95 ° ≦ θ ≦ 155 °, 33 ° ≦ | ψ | ≦ 46 °). A surface acoustic wave device using an in-plane rotation ST-cut quartz crystal substrate that is based on the in-plane rotation ST, and the in-plane rotation ST required to obtain a desired frequency-temperature characteristic at a set resonance frequency Cut by adding a correction amount Δψ of in-plane rotation angle ψ determined in advance based on the amount of change in frequency temperature characteristics due to the effect of applying a protective film to the excitation electrode configured on the main surface of the quartz substrate to the cut angle of the cut quartz substrate A crystal substrate constituted by corners, an excitation electrode formed on the main surface of the crystal substrate, and a protection applied to the excitation electrode set to a film thickness corresponding to the amount of change in frequency temperature characteristics due to the correction amount Δψ Specially having a membrane To.

このような構成の弾性表面波装置によれば、励振電極に保護膜を付与することにより、使用温度範囲内での周波数温度特性を所望する範囲に定めることが可能なる。   According to the surface acoustic wave device having such a configuration, it is possible to set a frequency temperature characteristic within a use temperature range within a desired range by providing a protective film on the excitation electrode.

また、上記目的を達成するための本発明に係る弾性表面波装置は、カット角がオイラー角表示で(0°,113°≦θ≦135°,40°≦|ψ|≦49°)の範囲内にある事を基本とする面内回転STカット水晶基板を用いた弾性表面波装置であって、設定された共振周波数において所望する周波数温度特性を得るために必要とされる前記面内回転STカット水晶基板のカット角に、水晶基板の主面に構成する励振電極に対する保護膜付与の影響による周波数温度特性の変化量に基づいて予め求めた面内回転角ψの補正量Δψを加えたカット角によって構成した水晶基板と、前記水晶基板の主面に形成された励振電極と、前記補正量Δψによる周波数温度特性の変化量に対応した膜厚に設定されて前記励振電極に付与される保護膜とを有することを特徴とするものであっても良い。   Further, in the surface acoustic wave device according to the present invention for achieving the above object, the cut angle is in the range of Euler angle display (0 °, 113 ° ≦ θ ≦ 135 °, 40 ° ≦ | ψ | ≦ 49 °). A surface acoustic wave device using an in-plane rotation ST-cut quartz crystal substrate that is based on the in-plane rotation ST, and the in-plane rotation ST required to obtain a desired frequency-temperature characteristic at a set resonance frequency Cut by adding a correction amount Δψ of in-plane rotation angle ψ determined in advance based on the amount of change in frequency temperature characteristics due to the effect of applying a protective film to the excitation electrode configured on the main surface of the quartz substrate to the cut angle of the cut quartz substrate A crystal substrate constituted by corners, an excitation electrode formed on the main surface of the crystal substrate, and a protection applied to the excitation electrode set to a film thickness corresponding to the amount of change in frequency temperature characteristics due to the correction amount Δψ Having a membrane It may be one of the symptoms.

上記のようなカット角を基本とする面内回転STカット水晶基板を用いた弾性表面波装置であっても、上記構成の弾性表面波装置と同様、励振電極に保護膜を付与することで、使用温度範囲内での周波数温度特性を所望する範囲にシフトさせるという効果を得ることができる。   Even in the surface acoustic wave device using the in-plane rotation ST-cut quartz substrate based on the cut angle as described above, similarly to the surface acoustic wave device having the above configuration, by applying a protective film to the excitation electrode, The effect of shifting the frequency temperature characteristics within the operating temperature range to a desired range can be obtained.

また、上記のような構成の弾性表面波装置では、前記励振電極に付与される保護膜は陽極酸化膜であり、前記補正量Δψは、前記設定された共振周波数fと前記陽極酸化膜を構成する際に前記励振電極に印加される電圧xとの値に基づき、
と定めることが望ましい。
In the surface acoustic wave device having the above-described configuration, the protective film applied to the excitation electrode is an anodic oxide film, and the correction amount Δψ constitutes the set resonant frequency f and the anodic oxide film. Based on the value of the voltage x applied to the excitation electrode when
It is desirable that

このような係数により補正量を定めることで、補正量を実験による経験則のみによって定めるという不安定要素を排除することができる。よって、製造される弾性表面波装置は、経験等に関わり無く安定して良好な周波数温度特性を得られるようになる。   By determining the correction amount using such a coefficient, it is possible to eliminate an unstable factor in which the correction amount is determined only by an experimental rule of thumb. Therefore, the manufactured surface acoustic wave device can stably obtain good frequency temperature characteristics regardless of experience or the like.

以下、本発明の弾性表面波装置の製造方法、及び弾性表面波装置に係る実施の形態について、図面を参照しつつ詳細に説明する。なお、本発明はその主要部を変えない限度において種々の形態を有するものとする。   Hereinafter, a method for manufacturing a surface acoustic wave device according to the present invention and an embodiment according to the surface acoustic wave device will be described in detail with reference to the drawings. In addition, this invention shall have a various form in the limit which does not change the principal part.

本実施形態では、水晶基板のカット角を説明する上で周知とされている、(φ,θ,ψ)というオイラー角表示を基準として水晶基板のカット角の説明を行うこととする。また、本実施形態におけるSAW装置は、ストップバンドの上限モードを利用するものとする。弾性表面波のストップバンドにおける上限モードは、下限モードに比べて、周波数温度特性における2次温度係数の絶対値が小さく、IDT電極の厚みを増加させたときの2次温度係数の絶対値の変化も小さいという特徴を持つ。また、弾性表面波のストップバンドにおける上限モードでは、下限モードに比べ、励振電極を構成するIDTの厚みを増加させた際の発振周波数の変化量が小さいという特徴も持つ。   In the present embodiment, the cut angle of the crystal substrate will be described with reference to the Euler angle display (φ, θ, ψ), which is well known in describing the cut angle of the crystal substrate. In addition, the SAW device according to the present embodiment uses the stopband upper limit mode. The upper limit mode in the stop band of the surface acoustic wave has a smaller absolute value of the secondary temperature coefficient in the frequency temperature characteristics than the lower limit mode, and the change in the absolute value of the secondary temperature coefficient when the thickness of the IDT electrode is increased. Is also small. Further, the upper limit mode in the stop band of the surface acoustic wave also has a feature that the change amount of the oscillation frequency when the thickness of the IDT constituting the excitation electrode is increased is smaller than that in the lower limit mode.

図1に、本実施形態で製造するSAW装置に用いられるSAW素子片の構成を示す。なお、図1において図1(A)はSAW素子片の構成を示す平面図であり、図1(B)は同図(A)におけるA−A断面を示す図である。   FIG. 1 shows the configuration of a SAW element piece used in the SAW device manufactured in this embodiment. 1A is a plan view showing the configuration of the SAW element piece, and FIG. 1B is a cross-sectional view taken along the line AA in FIG. 1A.

本実施形態に係るSAW素子片10は、圧電基板12と、この圧電基板12の一主面に形成された励振電極とより成ることを基本とする。前記圧電基板12は、構成材料を水晶とし、そのカット角及び弾性表面波の伝搬方向を、オイラー角表示で(0°,95°≦θ≦155°,33°≦|ψ|≦46°)の範囲内で示すものを基本とし、面内回転角ψについては、後述する励振電極の構成によって定まる共振周波数fや、前記励振電極本体18に付与する保護膜20の設定等により詳細を定めるものとする。   The SAW element piece 10 according to the present embodiment basically includes a piezoelectric substrate 12 and an excitation electrode formed on one main surface of the piezoelectric substrate 12. The piezoelectric substrate 12 is made of quartz, and its cut angle and surface acoustic wave propagation direction are expressed in Euler angles (0 °, 95 ° ≦ θ ≦ 155 °, 33 ° ≦ | ψ | ≦ 46 °). The in-plane rotation angle ψ is determined in detail by the resonance frequency f determined by the configuration of the excitation electrode described later, the setting of the protective film 20 applied to the excitation electrode body 18, and the like. And

前記励振電極本体18は、種々の導電性材料によって構成することができるが、本実施形態では、アルミ(Al)又はAlを主な原料とする合金を構成材料とした場合について説明することとする。   The excitation electrode body 18 can be composed of various conductive materials. In the present embodiment, the case where aluminum (Al) or an alloy mainly composed of Al is used as a constituent material will be described. .

励振電極は、一対の櫛型電極から構成されるIDT14と、前記IDT14を挟み込むようにして配置された一対の反射器16とを基本とする。前記IDT14は、弾性表面波の伝搬方向に対して直交するように設けられた複数の電極指14aを、前記弾性表面波の伝搬方向に沿って配置されたバスバー14bによって接続して構成される2つの櫛型電極を組み合わせて構成される。2つの櫛型電極の配置関係は、2つのバスバー14bから伸びる電極指14aが、互い違いに噛合うように配置するというものである。前記反射器16は、前記櫛型電極の電極指14aと平行に配置された複数の導体ストリップ16aの両端部をバスバー16bに接続することにより構成される格子状を成す電極である。   The excitation electrode is basically composed of an IDT 14 composed of a pair of comb electrodes and a pair of reflectors 16 arranged so as to sandwich the IDT 14. The IDT 14 is configured by connecting a plurality of electrode fingers 14a provided so as to be orthogonal to the propagation direction of the surface acoustic wave by bus bars 14b arranged along the propagation direction of the surface acoustic wave. Composed of two comb electrodes. The arrangement relationship between the two comb-shaped electrodes is that the electrode fingers 14a extending from the two bus bars 14b are arranged so as to alternately engage with each other. The reflector 16 is a grid-like electrode configured by connecting both ends of a plurality of conductor strips 16a arranged in parallel with the electrode fingers 14a of the comb-shaped electrode to a bus bar 16b.

前記励振電極本体18に付与する保護膜20は、陽極酸化膜やSiO膜等、種々選択することが可能であるが、本実施形態では、保護膜として、Alを陽極酸化することにより得られる陽極酸化膜を例に挙げて説明する。陽極酸化は、電界液(例えばリン酸アンモニウム系)に、励振電極本体18を形成した圧電基板12を浸漬させて、電圧をかけることにより構成される。ここで、励振電極本体18に被覆(付与)される陽極酸化膜の膜厚は、浸漬時に励振電極本体18に印加する電圧、及び電圧を印加する時間等によって定めることができる。なお、電圧が一定である場合には、一定時間を越えた後における陽極酸化膜の膜厚は一定となる。 The protective film 20 applied to the excitation electrode body 18 can be variously selected such as an anodic oxide film or SiO 2 film. In this embodiment, the protective film 20 is obtained by anodizing Al as the protective film. A description will be given by taking an anodic oxide film as an example. Anodization is configured by applying a voltage by immersing the piezoelectric substrate 12 on which the excitation electrode body 18 is formed in an electric field solution (for example, ammonium phosphate). The thickness of the anodic oxide film to be coated (applied) to the excitation electrode body 18, the voltage applied to the excitation electrode body 18 during immersion, and the voltage can be determined by the time such as the application of a. When the voltage is constant, the thickness of the anodic oxide film after a certain time is constant.

ここで、本願出願人は、面内回転STカット水晶基板を採用したSAW素子片の励振電極に陽極酸化膜(保護膜)を付与すると、製造されるSAW装置の周波数温度特性に変化が生じることを見出した。上述したように、このような保護膜の付与による周波数温度特性の変化という現象は、通常のSTカット水晶基板(例えばカット角をオイラー角表示で(0°,113°≦θ≦135°,0°)とした水晶基板)を用いたSAW装置では殆ど確認できないものであり、従来は生じ得ないと考えられていた。   Here, when the applicant of the present invention applies an anodic oxide film (protective film) to the excitation electrode of the SAW element piece using the in-plane rotating ST-cut quartz substrate, a change occurs in the frequency temperature characteristics of the manufactured SAW device. I found. As described above, the phenomenon of the change in the frequency temperature characteristic due to the application of such a protective film is caused by a normal ST-cut quartz substrate (for example, the cut angle is displayed in Euler angle (0 °, 113 ° ≦ θ ≦ 135 °, 0 It was almost impossible to confirm with a SAW device using a quartz substrate), and it was thought that this could not occur in the past.

保護膜付与による周波数温度特性の変化の特徴は、保護膜を付与することにより温度特性を示す温度特性曲線が、測定温度の基準点を中心として反時計回りに回転するような変化を示すというものである。ここで、面内回転STカット水晶基板を用いたSAW装置の周波数温度特性は、基板の面内回転角ψを変化させることにより調整することができることが知られている。このため、本願出願人は、保護膜付与後の周波数温度特性を想定して水晶基板の面内回転角ψを定めることにより、励振電極に保護膜を付与することで温度特性曲線の傾向を使用温度範囲で最適なものとすることができるSAW装置を得ることができると考えた。   The characteristic of the change in frequency temperature characteristics due to the provision of the protective film is that the temperature characteristic curve showing the temperature characteristics by applying the protective film shows a change that rotates counterclockwise around the reference point of the measured temperature. It is. Here, it is known that the frequency temperature characteristics of the SAW device using the in-plane rotation ST-cut quartz substrate can be adjusted by changing the in-plane rotation angle ψ of the substrate. For this reason, the applicant of the present application uses the tendency of the temperature characteristic curve by applying a protective film to the excitation electrode by determining the in-plane rotation angle ψ of the quartz substrate assuming the frequency temperature characteristic after applying the protective film. It was considered that a SAW device that can be optimized in the temperature range can be obtained.

そして、本願出願人は、保護膜付与による温度特性曲線の変化量が、励振電極と保護膜の膜厚の相対的な関係によって定まるということを見出した。   The applicant of the present application has found that the amount of change in the temperature characteristic curve due to the provision of the protective film is determined by the relative relationship between the thickness of the excitation electrode and the protective film.

陽極酸化膜の膜厚は、陽極酸化時に印加する電圧と、IDT14の膜厚やピッチによって定められる周波数に依存する。また、電圧と膜厚との関係は比例関係にあり、膜厚と周波数との関係は、陽極酸化時に印加する電圧が一定であれば、電極膜厚に対する陽極酸化膜の膜厚の比率が相対的に変化するという関係にある。 The thickness of the anodic oxide film depends on the voltage applied during anodic oxidation and the frequency determined by the film thickness and pitch of the IDT 14. In addition, the relationship between the voltage and the film thickness is proportional, and the relationship between the film thickness and the frequency is that the ratio of the film thickness of the anodized film to the electrode film thickness is relative if the voltage applied during anodization is constant. There is a relationship that changes.

図2には、IDT14の電極膜厚を一定、すなわち設定する共振周波数を一定とし、陽極酸化膜を付与するための電圧を変化させた場合において、陽極酸化膜付与後における使用温度範囲内でのSAW装置の周波数温度特性の変化量を特定の範囲内に納めるために必要とされる面内回転角ψの補正量Δψの変化を示す。また、図3には、陽極酸化膜を付与するための電圧を一定とした場合において、設定する共振周波数を変化、具体的にはIDT14の電極膜厚を変化させた場合における面内回転角ψの補正量Δψの変化を示す。なお、図2、図3に示す面内回転角ψの補正量Δψの変化の傾向は、SAW素子片10の製造と、製造時に取得したデータのフィードバック、及びフィードバックデータに基づくSAW素子片10の再製造という実験のサイクルによって得られた経験的なものである。   FIG. 2 shows that the electrode film thickness of the IDT 14 is constant, that is, the resonance frequency to be set is constant, and the voltage for applying the anodic oxide film is changed. The change of the correction amount Δψ of the in-plane rotation angle ψ required for keeping the change amount of the frequency temperature characteristic of the SAW device within a specific range is shown. FIG. 3 shows an in-plane rotation angle ψ when the resonance frequency to be set is changed, specifically, when the electrode film thickness of the IDT 14 is changed when the voltage for applying the anodic oxide film is constant. The change of the correction amount Δψ is shown. 2 and 3, the tendency of the change in the correction amount Δψ of the in-plane rotation angle ψ is due to the manufacture of the SAW element piece 10, the feedback of data acquired at the time of manufacture, and the SAW element piece 10 based on the feedback data. It is empirical gained through an experimental cycle of remanufacturing.

図2、図3からは、両者とも、補正量Δψとの関係においては比例関係にあるということを読み取ることができる。また、共振周波数と励振電極に付与される保護膜20の膜厚とは相互に影響しあう関係であることが知られている。これらの関係より、面内回転角ψの補正量Δψと共振周波数f〔MHz〕、陽極酸化電圧x〔V〕との関係は、
という関係を有することを導き出すことができる。
From FIG. 2 and FIG. 3, it can be read that both are proportional to the correction amount Δψ. Further, it is known that the resonance frequency and the film thickness of the protective film 20 applied to the excitation electrode have a mutually affecting relationship. From these relationships, the relationship between the correction amount Δψ of the in-plane rotation angle ψ, the resonance frequency f [MHz], and the anodic oxidation voltage x [V] is
Can be derived.

次に、SAW装置に使用するSAW素子片を製造する上での具体例について説明する。例えば、所望する共振周波数を314.85MHzとした場合、励振電極の膜厚比:H/λ、ライン占有率:η、IDT部分の波長:λのそれぞれの関係、及び温度特性曲線が最適な傾向を示すカット角は、表1に示すようなものとなる。
Next, a specific example of manufacturing a SAW element piece used for the SAW device will be described. For example, when the desired resonance frequency is 314.85 MHz, the relationship between the excitation electrode thickness ratio: H / λ, the line occupancy: η, the wavelength of the IDT portion: λ, and the temperature characteristic curve tend to be optimal. The cut angle indicating is as shown in Table 1.

ここで、上記のような条件によって得られるSAW素子片に60Vの電圧で陽極酸化膜を被覆することとした場合、温度特性曲線は最適な傾向から外れ、図4に破線で示すような傾向を示すこととなる。   Here, when the SAW element piece obtained under the above conditions is coated with an anodic oxide film at a voltage of 60 V, the temperature characteristic curve deviates from the optimum tendency, and the tendency shown by the broken line in FIG. Will be shown.

そこで、上記のような温度特性曲線の傾向の変化を想定し、数式1に示した関係に基づき、予め求めた補正量Δψを設計値に加えるとすると、補正量Δψは計算により、
約0.6であると求めることができる。
Therefore, assuming the change in the tendency of the temperature characteristic curve as described above and assuming that the correction amount Δψ obtained in advance is added to the design value based on the relationship shown in Equation 1, the correction amount Δψ is calculated by
It can be calculated to be about 0.6.

よって、上記条件のSAW素子片を製造する上で、保護膜付与後に温度特性曲線の傾向を最適なものとするための水晶基板のカット角は、オイラー角表示で(0°,123°,42.6°)ということになる。このようなカット角の水晶基板を用いてSAW素子片を製造した場合、保護膜を付与する前の段階では、SAW装置の温度特性曲線は図4に一点鎖線で示すような傾向を示すこととなる。そして、上記構成で製造したSAW素子片に対し、60Vの電圧をかけて保護膜となる陽極酸化膜を被覆することにより、温度特性曲線の傾向は改善され、図4に実線で示す傾向のものとなる。   Therefore, when manufacturing the SAW element piece under the above conditions, the cut angle of the quartz substrate for optimizing the tendency of the temperature characteristic curve after applying the protective film is expressed in Euler angles (0 °, 123 °, 42 .6 °). When a SAW element piece is manufactured using a quartz substrate having such a cut angle, the temperature characteristic curve of the SAW device shows a tendency as shown by a one-dot chain line in FIG. 4 before the protective film is applied. Become. Then, the trend of the temperature characteristic curve is improved by applying a voltage of 60 V to the SAW element piece manufactured in the above configuration and covering it with an anodic oxide film serving as a protective film, and the tendency shown by the solid line in FIG. It becomes.

上記実施形態、及び実施例の説明は、オイラー角表示で(0°,95°≦θ≦155°,33°≦|ψ|≦46°)の範囲で得られるカット角の面内回転STカット水晶基板に基づいたものであった。しかし、本発明を適用することができるSAW装置はこの構成に限られるものではなく、オイラー角表示で(0°,113°≦θ≦135°,40°≦|ψ|≦49°)の範囲で得られるカット角の面内回転STカット水晶基板を用いたものであっても良い。このような場合であっても、保護膜の付与により周波数温度特性が変化し、当該周波数温度特性の変化は同様の傾向を示すことを本願出願人が見出したからである。   The above embodiments and examples are described in terms of Euler angle display (0 °, 95 ° ≦ θ ≦ 155 °, 33 ° ≦ | ψ | ≦ 46 °) in-plane rotation ST cut with a cut angle obtained. It was based on a quartz substrate. However, the SAW device to which the present invention can be applied is not limited to this configuration, and is a range of Euler angles (0 °, 113 ° ≦ θ ≦ 135 °, 40 ° ≦ | ψ | ≦ 49 °). It is also possible to use an in-plane rotated ST-cut quartz substrate with a cut angle obtained in the above. This is because even in such a case, the applicant of the present application has found that the frequency temperature characteristic changes due to the application of the protective film, and the change in the frequency temperature characteristic shows the same tendency.

また、上記実施形態では、保護膜として、陽極酸化膜のみを挙げているが、SiO膜等、他の絶縁保護膜であっても、周波数温度特性の変化が生じる。よって、前記SiO膜等他の保護膜を施す場合であっても、本発明を適用することができる。 In the above embodiment, as the protective film, but mentions only the anodic oxide film, SiO 2 film or the like, be other insulating protective film, the change in frequency temperature characteristics. Therefore, the present invention can be applied even when another protective film such as the SiO 2 film is applied.

SAW素子片の構成を示す図である。It is a figure which shows the structure of a SAW element piece. 保護膜形成時の酸化電圧と面内回転角ψの補正量Δψの関係を示す図である。It is a figure which shows the relationship between the oxidation amount at the time of protective film formation, and correction amount (DELTA) (psi) of in-plane rotation angle (psi). SAW装置に所望する周波数と保護膜形成後に必要とされる面内回転角ψの補正量Δψの関係を示す図である。It is a figure which shows the relationship between the correction amount (DELTA) (psi) of the in-plane rotation angle (psi) required after formation of a protective film and the frequency desired for a SAW apparatus. SAW装置の温度特性曲線の変化を示す図である。It is a figure which shows the change of the temperature characteristic curve of a SAW apparatus.

符号の説明Explanation of symbols

10………SAW素子片(弾性表面波素子片)、12………圧電基板、14………IDT、16………反射器、18………励振電極本体、20………保護膜。   DESCRIPTION OF SYMBOLS 10 ... SAW element piece (surface acoustic wave element piece), 12 ......... Piezoelectric substrate, 14 ... IDT, 16 ... Reflector, 18 ... Excitation electrode body, 20 ... Protection film.

Claims (2)

オイラー角表示で(0°,95°≦θ≦155°,33°≦|ψ|≦46°)の範囲内にある面内回転STカット水晶基板を用い、励振電極に保護膜を有する弾性表面波装置を製造するための方法であって、
前記励振電極に前記保護膜として陽極酸化膜を付与することによって生ずる弾性表面波装置の周波数温度特性の変化量を求めると共に、ストップバンドの上限モードに設定された共振周波数fと前記陽極酸化膜を構成する際に前記励振電極に印加される電圧xとの値に基づき、前記変化量を補うための面内回転角ψの補正量Δψを、


により求め、
前記設定された共振周波数において所望する周波数温度特性を得るために算出されるオイラー角から前記補正量Δψだけψの角度をずらした前記面内回転STカット水晶基板を形成し、
当該面内回転STカット水晶基板、前記励振電極と前記陽極酸化膜を用いて弾性表面波装置を製造することを特徴とする弾性表面波装置の製造方法。
An elastic surface having an in-plane rotated ST-cut quartz substrate in the range of Euler angles (0 °, 95 ° ≦ θ ≦ 155 °, 33 ° ≦ | ψ | ≦ 46 °) and having a protective film on the excitation electrode A method for manufacturing a wave device comprising:
The amount of change in the frequency temperature characteristic of the surface acoustic wave device generated by applying the anodic oxide film as the protective film to the excitation electrode is determined, and the resonance frequency f set in the upper limit mode of the stop band and the anodic oxide film are determined. Based on the value of the voltage x applied to the excitation electrode when configuring, the correction amount Δψ of the in-plane rotation angle ψ to compensate for the change amount,


Sought by
Forming the in- plane rotated ST-cut quartz substrate in which the angle of ψ is shifted by the correction amount Δψ from the Euler angle calculated to obtain a desired frequency temperature characteristic at the set resonance frequency;
Method of manufacturing a surface acoustic wave device characterized by manufacturing a surface acoustic wave device have use the plane rotation ST-cut quartz substrate, and the excitation electrode of the anodic oxide film.
オイラー角表示で(0°,113°≦θ≦135°,40°≦|ψ|≦49°)の範囲内にある面内回転STカット水晶基板を用い、励振電極に保護膜を有する弾性表面波装置を製造するための方法であって、
前記励振電極に前記保護膜として陽極酸化膜を付与することによって生ずる弾性表面波装置の周波数温度特性の変化量を求めると共に、ストップバンドの上限モードに設定された共振周波数fと前記陽極酸化膜を構成する際に前記励振電極に印加される電圧xとの値に基づき、前記変化量を補うための面内回転角ψの補正量Δψを、


により求め、
前記設定された共振周波数において所望する周波数温度特性を得るために算出されるオイラー角から前記補正量Δψだけψの角度をずらした前記面内回転STカット水晶基板を形成し、
当該面内回転STカット水晶基板、前記励振電極と前記陽極酸化膜を用いて弾性表面波装置を製造することを特徴とする弾性表面波装置の製造方法。
Elastic surface with in- plane rotated ST-cut quartz substrate in Euler angle display (0 °, 113 ° ≦ θ ≦ 135 °, 40 ° ≦ | ψ | ≦ 49 °) and a protective film on the excitation electrode A method for manufacturing a wave device comprising:
The amount of change in the frequency temperature characteristic of the surface acoustic wave device generated by applying the anodic oxide film as the protective film to the excitation electrode is determined, and the resonance frequency f set in the upper limit mode of the stop band and the anodic oxide film are determined. Based on the value of the voltage x applied to the excitation electrode when configuring, the correction amount Δψ of the in-plane rotation angle ψ to compensate for the change amount,


Sought by
Forming the in- plane rotated ST-cut quartz substrate in which the angle of ψ is shifted by the correction amount Δψ from the Euler angle calculated to obtain a desired frequency temperature characteristic at the set resonance frequency;
Method of manufacturing a surface acoustic wave device characterized by manufacturing a surface acoustic wave device have use the plane rotation ST-cut quartz substrate, and the excitation electrode of the anodic oxide film.
JP2006103404A 2006-04-04 2006-04-04 Method for manufacturing surface acoustic wave device and surface acoustic wave device Expired - Fee Related JP5141856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006103404A JP5141856B2 (en) 2006-04-04 2006-04-04 Method for manufacturing surface acoustic wave device and surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006103404A JP5141856B2 (en) 2006-04-04 2006-04-04 Method for manufacturing surface acoustic wave device and surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2007281701A JP2007281701A (en) 2007-10-25
JP5141856B2 true JP5141856B2 (en) 2013-02-13

Family

ID=38682727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006103404A Expired - Fee Related JP5141856B2 (en) 2006-04-04 2006-04-04 Method for manufacturing surface acoustic wave device and surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP5141856B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4591800B2 (en) 2008-02-20 2010-12-01 エプソントヨコム株式会社 Surface acoustic wave device and surface acoustic wave oscillator
JP4645923B2 (en) 2009-02-27 2011-03-09 セイコーエプソン株式会社 Surface acoustic wave resonator and surface acoustic wave oscillator
US8952596B2 (en) 2009-02-27 2015-02-10 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
JP5678486B2 (en) 2010-06-17 2015-03-04 セイコーエプソン株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator and electronic device
JP5934464B2 (en) 2010-08-26 2016-06-15 セイコーエプソン株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
JP2012049818A (en) 2010-08-26 2012-03-08 Seiko Epson Corp Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
JP2012049817A (en) 2010-08-26 2012-03-08 Seiko Epson Corp Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
JP2012060420A (en) 2010-09-09 2012-03-22 Seiko Epson Corp Surface acoustic wave device, electronic apparatus and sensor device
JP5652606B2 (en) 2010-12-03 2015-01-14 セイコーエプソン株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
JP5648908B2 (en) 2010-12-07 2015-01-07 セイコーエプソン株式会社 Vibration device, oscillator, and electronic device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057666A (en) * 2003-08-07 2005-03-03 Seiko Epson Corp Method for manufacturing surface acoustic wave chip, surface acoustic wave chip manufactured by the manufacturing method and surface acoustic wave device
JP3969368B2 (en) * 2003-08-18 2007-09-05 セイコーエプソン株式会社 SAW chip manufacturing method, SAW chip and SAW device
JP2005086233A (en) * 2003-09-04 2005-03-31 Seiko Epson Corp Surface acoustic wave device and method of adjusting frequency temperature characteristic thereof
US7327205B2 (en) * 2004-03-12 2008-02-05 Murata Manufacturing Co., Ltd. Demultiplexer and surface acoustic wave filter
JP4461910B2 (en) * 2004-06-03 2010-05-12 株式会社村田製作所 Method for manufacturing acoustic wave device
JP2006033791A (en) * 2004-06-15 2006-02-02 Seiko Epson Corp Manufacturing method of surface acoustic wave device and surface acoustic wave device made using the manufacturing method
DE112005001677B4 (en) * 2004-07-26 2009-11-12 Murata Manufacturing Co., Ltd., Nagaokakyo Surface acoustic wave device

Also Published As

Publication number Publication date
JP2007281701A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP5141856B2 (en) Method for manufacturing surface acoustic wave device and surface acoustic wave device
JP4968510B2 (en) Method for adjusting frequency-temperature characteristics of surface acoustic wave element piece, surface acoustic wave element piece, and surface acoustic wave device
JP4591800B2 (en) Surface acoustic wave device and surface acoustic wave oscillator
JP7377920B2 (en) surface acoustic wave device
JP4645923B2 (en) Surface acoustic wave resonator and surface acoustic wave oscillator
JP5488825B2 (en) Surface acoustic wave resonator and surface acoustic wave oscillator
JP5151823B2 (en) Piezoelectric vibrating piece, piezoelectric vibrator and oscillator
JP5934464B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
JPWO2018097016A1 (en) Elastic wave device
JP2007267033A (en) Surface acoustic wave element and surface acoustic wave device
JP4858730B2 (en) Surface acoustic wave device and surface acoustic wave oscillator
JP5835765B2 (en) Elastic wave element
JP5648908B2 (en) Vibration device, oscillator, and electronic device
JP2012049818A (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
JPWO2018070369A1 (en) Elastic wave device
JPH0134411B2 (en)
JP5563378B2 (en) Elastic wave element
JP5589403B2 (en) Piezoelectric resonator
WO2022085565A1 (en) Elastic wave device
WO2012137027A1 (en) Surface acoustic wave resonator
WO2022085624A1 (en) Elastic wave device
JP7493306B2 (en) Elastic Wave Device
JP5737490B2 (en) Transversal surface acoustic wave device, surface acoustic wave oscillator and electronic equipment
JP5750683B2 (en) Two-terminal-pair surface acoustic wave resonator, surface acoustic wave oscillator and electronic device
CN114079436A (en) Elastic wave element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090403

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121024

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121106

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees