JP5110603B2 - Direct load control system - Google Patents

Direct load control system Download PDF

Info

Publication number
JP5110603B2
JP5110603B2 JP2009019063A JP2009019063A JP5110603B2 JP 5110603 B2 JP5110603 B2 JP 5110603B2 JP 2009019063 A JP2009019063 A JP 2009019063A JP 2009019063 A JP2009019063 A JP 2009019063A JP 5110603 B2 JP5110603 B2 JP 5110603B2
Authority
JP
Japan
Prior art keywords
power consumption
max
load
power
consumption rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009019063A
Other languages
Japanese (ja)
Other versions
JP2010068704A (en
Inventor
潤次 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009019063A priority Critical patent/JP5110603B2/en
Publication of JP2010068704A publication Critical patent/JP2010068704A/en
Application granted granted Critical
Publication of JP5110603B2 publication Critical patent/JP5110603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、電力系統の負荷平準化および需給バランスの適正化を図った直接負荷制御システムに関する。   The present invention relates to a direct load control system that achieves load leveling of an electric power system and optimization of a supply and demand balance.

電力系統において,ピークシフトやボトムアップといった負荷平準化を行うことは,安定かつ経済的な運用のために重要である。
また,太陽光・風力発電といった出力変動の激しい分散型電源が,将来,大量導入されると考えられ,発電側の平準化(出力変動の平滑化)も重要課題となってきている。
さらに将来,分散型電源の割合が増加した場合,分散型電源が突然解列すると,ローカルな送電線路の潮流が急変し過負荷状態が発生する可能性があり,このような場合は過負荷状態を速やかに緩和する必要がある。
以上のような平準化は,揚水発電や定置型蓄電池システムのような電力貯蔵装置を用いて行うのが主であるが,電力貯蔵装置は高価であるし,充放電に伴い2〜3割のエネルギーが損失として失われる問題がある。
In power systems, load leveling such as peak shift and bottom-up is important for stable and economical operation.
In addition, distributed power sources with severe output fluctuations such as solar and wind power generation are expected to be introduced in large quantities in the future, and leveling on the power generation side (smoothing of output fluctuations) has become an important issue.
Furthermore, when the proportion of distributed power sources increases in the future, if the distributed power sources suddenly disconnect, the power flow in the local transmission line may change suddenly and an overload condition may occur. Need to be promptly eased.
The leveling as described above is mainly performed using a power storage device such as a pumped-storage power generation system or a stationary storage battery system. However, the power storage device is expensive, and 20-30% of the power is charged and discharged. There is a problem that energy is lost as a loss.

これに対し,電力系統において系統運用装置が負荷の消費電力を制御することでも,電力貯蔵装置を用いる場合と同様の平準化効果が得られる。
従来,負荷制御の対象は主に消費電力を大幅に変更できる大口需要家であったが,家電機器のような小容量の負荷も,その普及台数の多さからまとめて制御すれば系統制御に有効な量の消費電力調整を行える。
しかしながら、多数の家電機器と通信する設備を設けるのは容易ではないため,系統運用装置による家電機器の消費電力制御は,非特許文献1のようなプロジェクトで研究されたことがあるものの,我が国では実用化例はなかった。
ここにきて,情報家電やIT技術の進展に伴い通信網の整備が容易になってきたことから,急遽有望な負荷平準化手段となってきた。
On the other hand, the leveling effect similar to the case where the power storage device is used can be obtained even when the grid operation device controls the power consumption of the load in the power system.
Conventionally, load control has been mainly targeted at large consumers who can significantly change power consumption. However, small-capacity loads such as home appliances can also be controlled by system control if they are controlled together due to the large number of popularized devices. An effective amount of power consumption can be adjusted.
However, since it is not easy to provide facilities that communicate with a large number of home appliances, power consumption control of home appliances by system operation devices has been studied in projects such as Non-Patent Document 1, but in Japan There were no practical applications.
Now, with the advancement of information appliances and IT technology, it has become a promising means of load leveling, as communication networks have become easier to develop.

家電機器の消費電力を調節する場合,各家電機器の運転状況や家電機器の利用者の意思に関わらず系統運用装置からの指令通りに各家電機器の消費電力が調節される「直接負荷制御」と,系統運用装置によって調整されるリアルタイム電気料金等の情報に基づいて需要家が消費電力を調節する「間接負荷制御」がある。このうち,今までは直接負荷制御が一般に採用されてきた(非特許文献2,3)。系統運用装置にとっては直接負荷制御の方が需要の制御が容易かつ確実なため好都合であるが,各家電機器の運転状況や家電機器の利用者の意思が考慮されないので,家電機器の利用者の利便性が損なわれることになる。   When adjusting the power consumption of home appliances, "direct load control" is used to adjust the power consumption of each home appliance according to the command from the grid operation device regardless of the operating status of each home appliance and the intention of the user of the home appliance In addition, there is “indirect load control” in which a consumer adjusts power consumption based on information such as real-time electricity charges adjusted by the grid operation device. Of these, direct load control has been generally employed so far (Non-Patent Documents 2 and 3). Direct load control is more convenient for grid operation devices because demand control is easier and more reliable, but the operation status of each home appliance and the intention of the home appliance user are not taken into account. Convenience will be impaired.

そこで,家電機器の利用者の利便性を損なわない制御方法として考え出されたものが特許文献1に示される発明者らの系統情報監視システムである。この系統情報監視システムにおいて制御対象とする家電機器は,瞬時瞬時の消費電力を変化させても,規定期間内毎に要求されるエネルギーを消費すれば,その使用目的を達成できる可制御負荷である。このような可制御負荷において,消費電力pと将来消費電力平均値pfutと最大消費電力pmaxと最小消費電力pminから計算される電力消費率γ=(pfut−pmin)/(pmax−pmin)に着目する。消費電力を減らす場合は電力消費率γの小さい可制御負荷から順番に選択し、増やす場合は電力消費率gの大きい可制御負荷から順番に選択することで,γを常に0以上1以下に維持する。γを常に0以上1以下に維持することで規定期間内毎に要求されるエネルギーを消費でき,家電機器の利用者の利便性が維持される。 Therefore, the inventors have devised a control method that does not impair the convenience of users of home appliances, which is the system information monitoring system of the inventors shown in Patent Document 1. The home appliances to be controlled in this grid information monitoring system are controllable loads that can achieve their intended purpose if the required energy is consumed every specified period even if the instantaneous power consumption changes. . In such a controllable load, the power consumption rate γ = (p ft −p min ) / (p calculated from the power consumption p, the future power average value p fut , the maximum power consumption p max, and the minimum power consumption p min attention is paid to the max -p min). When reducing power consumption, select a controllable load with a low power consumption rate γ in order, and when increasing, select a controllable load with a high power consumption rate g in order, so that γ is always maintained between 0 and 1. To do. By always maintaining γ at 0 or more and 1 or less, it is possible to consume the energy required for each specified period, and the convenience for the user of the home appliance is maintained.

特開2007−267600号公報JP 2007-267600 A

柿本仁司:「負荷集中制御実証試験」,電気評論,第382号,30−35頁,1997年7月。Hitoshi Enomoto: “Centralized Load Control Demonstration Test”, Electrical Review, No. 382, pp. 30-35, July 1997. M. Andreolas:「Mega Load Management System Pays Dividends」,Transmission & Distribution World,2004年2月。M.M. Andrewolas: “Mega Load Management System Pays Dividends”, Transmission & Distribution World, February 2004. James R. Stitt:「Implementation of a Large−Scale Direct Load Control System−Some Critical Factors」,IEEE Trans.Power App.Sys.,104巻,7号,1663−1669頁,1985年。James R.D. Stitt: "Implementation of a Large-Scale Direct Load Load System-Some Critical Factors", IEEE Trans. Power App. Sys. 104, 7, 1663-1669, 1985. J. Kondoh他:「Future Consumed Power Estimation of Time Deferrable Loads for Frequency Regulation」,Proc. 18th International Conference on Electricity Distribution (CIRED),505,Turin,Italy,2005年6月。J. et al. Kondo, et al .: “Future Consumed Power Estimate of Time Deferable Loads for Frequency Regulation”, Proc. 18th International Conference on Electricity Distribution (CIRED), 505, Turin, Italy, June 2005. 近藤潤次:電気温水器群の自律的周波数調整による風力発電導入可能量増大の定量的評価」,電気学会電力技術・電力系統技術合同研究会,PE−08−142, PSE−08−151,39−44頁,2008年8月。Kondo Junji: Quantitative evaluation of the increase in the amount of wind power generation that can be introduced by autonomous frequency adjustment of electric water heaters, ”IEEJ Power Technology and Power System Technology Joint Study Group, PE-08-142, PSE-08-151 39-44, August 2008.

しかし特許文献1では,電力消費率γの小さい可制御負荷または大きい可制御負荷を順番に選択していく方法が明らかにされていない。実際の系統では非常に多数の可制御負荷がつながっているが,それらすべてを電力消費率γの順番に並べ替えた上で,それぞれの消費電力可変幅(増やす場合はpmax−p,減らす場合はpmin−p)が系統の運用上必要な消費電力調整量の総量ΔPになるまで積み重ねていく計算処理は非常に膨大になる。また,選択した可制御負荷にのみ消費電力調節を要請し,他の可制御負荷には消費電力調節しないように分けて通信することも,可制御負荷が非常に多数であることを考えると困難である。 However, Patent Document 1 does not disclose a method for sequentially selecting a controllable load having a small power consumption rate γ or a controllable load having a large power consumption rate γ. In an actual system, a very large number of controllable loads are connected. After all of them are rearranged in the order of the power consumption rate γ, each power consumption variable width (in the case of increasing p max −p, in the case of decreasing) The calculation process that accumulates until p min −p) reaches the total amount ΔP of the power consumption adjustment amount necessary for system operation becomes very large. Also, it is difficult to request only the selected controllable load for power consumption adjustment and communicate with other controllable loads so that the power consumption is not adjusted, considering that there are a large number of controllable loads. It is.

本発明の目的は、電力消費率γに基づき系統にぶら下がる多くの可制御負荷の消費電力調節を負荷の利用者の利便性を損なわずに行い、電力系統の負荷平準化および需給バランスの適正化を図る直接負荷制御システムを提供することにある。   The purpose of the present invention is to adjust the power consumption of many controllable loads hanging on the system based on the power consumption rate γ without impairing the convenience of users of the load, and to optimize the load balance of the power system and the balance between supply and demand It is an object of the present invention to provide a direct load control system.

本発明は、上記目的を達成するために下記の手段を採用する。
本発明の直接負荷制御システムは、基本的には、複数の可制御負荷が該負荷の電力消費率γ=(pfut−pmin)/(pmax−pmin)を算出し,系統運用装置が各可制御負荷から受け取った電力消費率γに基づき消費電力上げ代pmax−pと下げ代pmin−pのγに対する分布を表すヒストグラムを作成し,より広域の系統を運用する上位の系統運用装置がそのヒストグラムに基づき系統の運用上必要な消費電力調整量ΔPからγの閾値を演算し、可制御負荷がこの閾値により消費電力制御を行う。
The present invention employs the following means in order to achieve the above object.
In the direct load control system according to the present invention, basically, a plurality of controllable loads calculate the power consumption rate γ = (p fut −p min ) / (p max −p min ) of the load, and the system operation device Creates a histogram representing the distribution of the power consumption increase p max -p and the decrease power p min -p with respect to γ based on the power consumption rate γ received from each controllable load, and operates a wider system. Based on the histogram, the operation device calculates a threshold value of γ from the power consumption adjustment amount ΔP necessary for system operation, and the controllable load performs power consumption control using this threshold value.

上記直接負荷制御システムは、以下の第1から第3の手段を備える。
第1の手段は、下位の系統運用装置が運用する配電系統において,当該配電系統につながる複数の可制御負荷がある時点から次の区切時刻までの将来消費電力平均値pfutと最大消費電力pmaxと最小消費電力pminから電力消費率γ=(pfut−pmin)/(pmax−pmin)を算出し,下位の系統運用装置が各可制御負荷からある時点の消費電力pと最大消費電力pmaxと最小消費電力pminと電力消費率γの情報を受け取り、γに関する上げ代pmax−pおよび下げ代pmin−pの分布を表すヒストグラムを作成し,より広域の系統を運用する上位の系統運用装置にそのヒストグラムを送信することを特徴とする直接負荷制御システムである。
The direct load control system includes the following first to third means.
The first means is that in the power distribution system operated by the subordinate system operation device, the future power consumption average value p fut and the maximum power consumption p from the time when there are a plurality of controllable loads connected to the power distribution system to the next break time. The power consumption rate γ = (p ft −p min ) / (p max −p min ) is calculated from the max and the minimum power consumption p min, and the power consumption p at a certain point in time when the lower level system operation device is from each controllable load Receives information on maximum power consumption p max , minimum power consumption p min, and power consumption rate γ, creates a histogram representing the distribution of increase allowance p max −p and decrease allowance p min −p for γ, The direct load control system is characterized in that the histogram is transmitted to a higher-level system operation device to be operated.

第2の手段は,第1の手段において、上位の系統運用装置が下位の系統運用装置から送られてきた複数のヒストグラムの和のヒストグラムを作成した上で,系統運用上必要な可制御負荷の消費電力調節量の総量ΔPを判断し、和のヒストグラムを用いて前記総量ΔPが正の場合は最大化閾値γonをγ>γonである全可制御負荷による上げ代pmax−pの総和が前記総量ΔPとなるように算出し,前記総量ΔPが負の場合は最小化閾値γoffをγ<γoffである全可制御負荷による下げ代pmin−pの総和が前記総量ΔPとなるように算出し,最大化閾値γonおよび最小化閾値γoffの情報を可制御負荷群へ送信することを特徴とする直接負荷制御システムである。 The second means is that, in the first means, the upper system operation device creates a histogram of the sum of a plurality of histograms sent from the lower system operation device, and then the controllable load necessary for the system operation is determined. The total amount ΔP of the power consumption adjustment amount is determined, and when the total amount ΔP is positive using the sum histogram, the maximum threshold γ on is the sum of the increase allowances p max −p for all controllable loads where γ> γ on Is the total amount ΔP, and when the total amount ΔP is negative, the sum of the reduction margins p min −p by the total controllable load where γ <γ off is set as the minimization threshold γ off becomes the total amount ΔP. Thus, the direct load control system is characterized by transmitting information of the maximum threshold value γ on and the minimum threshold value γ off to the controllable load group.

第3の手段は,第2の手段において,γonおよびγoffの情報を収集した各可制御負荷が自身のγとγonおよびγoffを比較しγ>γonであれば消費電力をpmaxまで増加させ,γ<γoffであれば消費電力をpminまで減少させることを特徴とする直接負荷制御システムである。 Third means, in the second means, the power consumption if gamma on and gamma respective controllable load to collect information off to compare their gamma and gamma on and γ off γ> γ on p The direct load control system is characterized in that the power consumption is increased to max and the power consumption is decreased to p min if γ <γ off .

具体的には、以下の解決手段をとる。
(1)直接負荷制御システムは、以下の事項を備える。
配電網は、少なくとも、自負荷の消費電力を制御する制御手段を備えた任意数の可制御負荷を含むと共に、前記配電網を制御する系統制御装置を備え、
前記可制御負荷は、実測データに基づき指定時間内の将来消費電力平均値pfutを演算する将来消費電力平均値pfut演算手段、最大消費電力pmaxを記憶する最大消費電力pmax記憶手段、最小消費電力pminを記憶する最小消費電力pmin記憶手段、電力消費率γ=(pfut−pmin)/(pmax−pmin)を演算する電力消費率γ演算手段、可制御負荷自身の消費電力pを記憶する記憶手段、前記最大消費電力pmax、前記最小消費電力pmin、前記電力消費率γ、前記消費電力pを系統制御装置に送信する送信手段,
系統運用装置で作成した最大化閾値γonと最小化閾値γoffに基づき消費電力を制御する消費電力制御手段を備え、
前記系統制御装置は、各可制御負荷からの、前記最大消費電力pmax、前記最小消費電力pmin、前記電力消費率γ、前記消費電力pに基づき電力消費率γ対消費電力上げ代pmax−p分布ヒストグラムおよび電力消費率γ対消費電力下げ代pmin−p分布ヒストグラムを作成する電力消費率γ対消費電力上げ代pmax−p分布ヒストグラムおよび電力消費率γ対消費電力下げ代pmin−p分布ヒストグラム作成手段、および、系統運用上必要な消費電力調整量の総量ΔPに基づき電力消費率の最大化閾値γonと最小化閾値γoffを前記電力消費率γ対消費電力上げ代pmax−p分布ヒストグラムおよび電力消費率γ対消費電力下げ代pmin−p分布ヒストグラムより求める演算手段を備え、前記最大化閾値γonと最小化閾値γoffを前記可制御負荷へ送信するように構成する。
Specifically, the following solution is taken.
(1) The direct load control system includes the following items.
The power distribution network includes at least an arbitrary number of controllable loads including control means for controlling power consumption of the own load, and includes a system control device for controlling the power distribution network,
The controllable load, future power mean value p fut calculating means for calculating a future power average value p fut within a specified time based on actual measurement data, the maximum power consumption p max storing means for storing the maximum power consumption p max, lowest power p min storing means, the power consumption rate γ = (p fut -p min) / (p max -p min) power consumption rate gamma calculating means for calculating a storing the lowest power p min, the controllable load itself Storage means for storing the power consumption p, transmission means for transmitting the maximum power consumption p max , the minimum power consumption p min , the power consumption rate γ, and the power consumption p to the system control device,
Power consumption control means for controlling power consumption based on the maximum threshold value γ on and the minimum threshold value γ off created by the grid operation device,
The system controller, from the controllable load, the maximum power consumption p max, the minimum power p min, the power consumption rate gamma, the power consumption rate of power consumption based on p gamma versus power up allowance p max -P distribution histogram and power consumption rate γ vs. power consumption reduction allowance p min -power consumption rate γ vs. power consumption increase allowance p max for creating p distribution histogram -p distribution histogram and power consumption rate γ vs. power consumption reduction allowance p min -P distribution histogram creation means and power consumption rate maximization threshold γ on and minimization threshold γ off based on total amount ΔP of power consumption adjustment amount necessary for system operation, power consumption rate γ vs. power consumption increase allowance p max -p distribution comprises a histogram and power consumption rate gamma versus power consumption reduced cost p min -p distribution obtained from the histogram calculation unit, the maximization threshold gamma o To constitute minimize threshold gamma off to send to the controllable load.

(2)上記(1)記載の直接負荷制御システムは、以下の事項を備える。
前記系統制御装置はローカルエリアの系統運用装置および広域の上位の系統運用装置からなり、
任意数の可制御負荷の制御系は直近のローカルエリアの系統運用装置の制御系に接続され、任意数の前記ローカルエリアの系統運用装置は前記広域の上位の系統運用装置の制御系に接続され、
前記ローカルエリアの系統運用装置は、該装置内の電力消費率γ対消費電力上げ代pmax−p分布ヒストグラムおよび電力消費率γ対消費電力下げ代pmin−p分布ヒストグラム作成手段により、前記最大消費電力pmax、前記最小消費電力pmin、前記電力消費率γ、前記消費電力pに基づき電力消費率γ対消費電力上げ代pmax−p分布ヒストグラムおよび電力消費率γ対消費電力下げ代pmin−p分布ヒストグラムを作成し、
前記広域の上位の系統運用装置は、該装置内の演算手段により、前記電力消費率γ対消費電力上げ代pmax−p分布ヒストグラムおよび電力消費率γ対消費電力下げ代pmin−p分布ヒストグラムに基づき電力消費率γ対消費電力上げ代pmax−p分布と電力消費率γ対消費電力下げ代pmin−p分布の和ヒストグラムをそれぞれ求め、系統運用上必要な消費電力調整量の総量ΔPに基づき電力消費率の最大化閾値γonと最小化閾値γoffを求め、前記最大化閾値γonと最小化閾値γoffを前記ローカルエリアの系統運用装置へ送信し、前記ローカルエリアの系統運用装置は前記最大化閾値γonと最小化閾値γoffを前記可制御負荷へ送信し、前記可制御負荷は、前記最大化閾値γonと最小化閾値γoffに基づき消費電力を制御する。
(2) The direct load control system described in the above (1) includes the following items.
The system control device comprises a local area system operation device and a wide area upper system operation device,
An arbitrary number of controllable load control systems are connected to the control system of the system operation device in the nearest local area, and an arbitrary number of system operation devices in the local area are connected to the control system of the upper system operation device in the wide area. ,
The local area system operation device uses the power consumption rate γ vs. power consumption increase margin p max -p distribution histogram and the power consumption rate γ vs. power consumption reduction margin p min -p distribution histogram creation means in the device, Based on the power consumption p max , the minimum power consumption p min , the power consumption rate γ, and the power consumption p, the power consumption rate γ vs. power consumption increase allowance p max -p distribution histogram and power consumption rate γ vs. power consumption reduction allowance p create a min- p distribution histogram,
The upper-level system operation device in the wide area has the power consumption rate γ vs. power consumption increase margin p max -p distribution histogram and the power consumption rate γ vs. power consumption reduction margin p min -p distribution histogram by the calculation means in the device. The sum histogram of the power consumption rate γ vs. power consumption increase allowance p max −p distribution and the power consumption rate γ vs. power consumption reduction allowance p min −p distribution is respectively obtained, and the total amount ΔP of power consumption adjustment amount necessary for system operation Maximization threshold γ on and minimization threshold γ off of power consumption rate are obtained based on the above, and the maximization threshold γ on and minimization threshold γ off are transmitted to the local area system operation device, and the local area system operation device transmits the maximization threshold gamma on the minimization threshold gamma off to the controllable load, the controllable load, based on the maximization threshold gamma on the minimization threshold gamma off To control the cost of power.

本発明の直接負荷制御システムによれば,上位の系統運用装置は上記和のヒストグラムを用いてγonおよびγoffという2つの閾値を求めるのみで消費電力を調節する可制御負荷を選択できる。また,上位の系統運用装置は、全ての可制御負荷にγonおよびγoffという2つの閾値情報のみを送信するだけで系統全体の制御ができるようになる。各可制御負荷は、消費電力を調節すべきかどうかを各可制御負荷自身で自身のγと上記閾値を比較して判断するだけで、負荷制御をすることができるようになる。
本発明の系統情報監視システムによれば、系統の負荷平準化や需給バランス維持のための有効電力調節をどの可制御負荷に行わせるかを明確に選定できる。各可制御負荷は規定時間内に必要なエネルギーを消費することができるので,可制御負荷の利用者の利便性は維持される。また、分散型電源の出力を調整する機会を減らすことができ、エネルギーの有効利用を図ることができる。
According to the direct load control system of the present invention, the host system operation device can select a controllable load that adjusts power consumption only by obtaining two threshold values γ on and γ off using the sum histogram. Further, the host system operation device can control the entire system only by transmitting only two pieces of threshold information γ on and γ off to all controllable loads. Each controllable load can perform load control only by determining whether or not the power consumption should be adjusted by comparing each γ with the above-mentioned threshold value.
According to the system information monitoring system of the present invention, it is possible to clearly select which controllable load is to perform active power adjustment for system load leveling and supply / demand balance maintenance. Since each controllable load can consume the required energy within a specified time, the convenience of the user of the controllable load is maintained. In addition, the opportunity for adjusting the output of the distributed power source can be reduced, and energy can be used effectively.

本発明の実施例1〜実施例3に係る直接負荷制御システムにおける情報通信の流れを示す図である。It is a figure which shows the flow of the information communication in the direct load control system which concerns on Example 1- Example 3 of this invention. 図1内における下位の系統運用装置DSO−1が作成するヒストグラムの例を示す図である。It is a figure which shows the example of the histogram which the low-order system operation apparatus DSO-1 in FIG. 1 produces. 図1内における下位の系統運用装置DSO−2が作成するヒストグラムの例を示す図である。It is a figure which shows the example of the histogram which the low-order system operation apparatus DSO-2 in FIG. 1 produces. 図1内における上位の系統運用装置TSOが作成するヒストグラムの例を示す図である。It is a figure which shows the example of the histogram which the high-order system operation apparatus TSO in FIG. 1 produces. 数値解析を行った配電系統モデルの構成を示す図である。It is a figure which shows the structure of the power distribution system model which performed the numerical analysis. 数値解析によって得られた,変圧器負荷電力Ptfと,全可制御負荷の総消費電力Pacと,あるDACとCAC1台ずつの消費電力の時間変化を示す図である。負荷制御を行った場合を実線で,負荷制御を行わない場合を点線で示している。Obtained by numerical analysis, a diagram illustrating a transformer load power P tf, the total power consumption P ac of all controllable load, the time variation of the power consumption of each is DAC and CAC1 units. A solid line indicates the case where the load control is performed, and a dotted line indicates a case where the load control is not performed. 図1に基づく系統の制御系の構成図例である。It is a block diagram example of the control system of the system | strain based on FIG. 本発明の可制御負荷の制御フローを示す。The control flow of the controllable load of this invention is shown. 需給バランスと周波数変動との関係を表すブロック線図である。It is a block diagram showing the relationship between supply and demand balance and frequency fluctuation. 設置された風力発電設備の総容量が705MWで本発明の制御法を適用せずに各電気温水器に従来の運転を行わせた場合に,2006年11月9−10日の風速データを用いて算出した周波数偏差,各電力,ある電気温水器の消費電力とγの時間変化を示す図である。When the total capacity of the installed wind power generation equipment is 705 MW and each electric water heater is operated in a conventional manner without applying the control method of the present invention, the wind speed data of November 9-10, 2006 is used. It is a figure which shows the time variation of the frequency deviation calculated in this, each electric power, the power consumption of a certain electric water heater, and (gamma). 設置された風力発電設備の総容量が705MWで本発明の制御法を適用した場合に,2006年11月9−10日の風速データを用いて算出した周波数偏差,各電力,ある電気温水器の消費電力とγ,TSOからのγon, γoff指令の時間変化を示す図である。When the installed wind power generation facility has a total capacity of 705 MW and the control method of the present invention is applied, the frequency deviation calculated using the wind speed data of November 9-10, 2006, each power, and the electric water heater It is a figure which shows the time change of (gamma) on and (gamma) off instruction | command from power consumption and (gamma) and TSO. 周波数偏差|Δf|の最大値と風力発電設備の総容量との関係を示す図である。It is a figure which shows the relationship between the maximum value of frequency deviation | (DELTA) f |, and the total capacity | capacitance of a wind power generation equipment.

本発明の直接負荷制御システムは、上位の系統運用装置、下位の系統運用装置、および、下位の系統運用装置が運用する配電系統につながる複数の可制御負荷を含み、
(a)下位の系統運用装置が運用する配電系統において,当該配電系統につながる複数の可制御負荷がある時点から次の区切時刻までの将来消費電力平均値pfutと最大消費電力pmaxと最小消費電力pminから電力消費率γ=(pfut−pmin)/(pmax−pmin)を算出し,下位の系統運用装置が各可制御負荷からある時点の消費電力pと最大消費電力pmaxと最小消費電力pminと電力消費率γの情報を受け取り、γに関する上げ代pmax−pおよび下げ代pmin−pの分布を表すヒストグラムを作成し,より広域の系統を運用する上位の系統運用装置にそのヒストグラムを送信し、
The direct load control system of the present invention includes a plurality of controllable loads connected to a power distribution system operated by an upper system operation device, a lower system operation device, and a lower system operation device,
(A) In the distribution system operated by the lower-level system operation device, the average future power consumption p put and the maximum power consumption p max and the minimum from the time when there are a plurality of controllable loads connected to the power distribution system to the next break time The power consumption rate γ = (p fut −p min ) / (p max −p min ) is calculated from the power consumption p min, and the power consumption p and the maximum power consumption at a certain point in time when the lower level system operation device is from each controllable load Receives information on p max , minimum power consumption p min, and power consumption rate γ, creates a histogram representing the distribution of increase allowance p max −p and decrease allowance p min −p related to γ, and operates a wider system The histogram is sent to

(b)上位の系統運用装置が下位の系統運用装置から送られてきた複数のヒストグラムの和のヒストグラムを作成した上で,系統運用上必要な可制御負荷の消費電力調節量の総量ΔPから、和のヒストグラムを用いて前記総量ΔPが正の場合は最大化閾値γonをγ>γonである全可制御負荷による上げ代pmax−pの総和が前記総量ΔPとなるように算出し,前記総量ΔPが負の場合は最小化閾値γoffをγ<γoffである全可制御負荷による下げ代pmin−pの総和が前記総量ΔPとなるように算出し,最大化閾値γonおよび最小化閾値γoffの情報を可制御負荷群へ送信し、 (B) After creating a histogram of the sum of a plurality of histograms sent from the lower system operation device by the upper system operation device, from the total amount ΔP of the power consumption adjustment amount of the controllable load necessary for system operation, When the total amount ΔP is positive using a sum histogram, the maximum threshold γ on is calculated so that the total sum of the increase allowances p max −p by all controllable loads where γ> γ on becomes the total amount ΔP; When the total amount ΔP is negative, the minimization threshold γ off is calculated so that the sum of the reduction allowances p min −p due to all controllable loads where γ <γ off becomes the total amount ΔP, and the maximum threshold γ on and Send information of minimization threshold γ off to controllable load group,

(c)上記γonおよびγoffの情報を収集した各可制御負荷が自身のγとγonおよびγoffを比較しγ>γonであれば消費電力をpmaxまで増加させ,γ<γoffであれば消費電力をpminまで減少させるように制御する。 (C) increasing the gamma power consumption if on and gamma respective controllable load to collect information off to compare their gamma and gamma on and gamma off gamma> gamma on to p max, γ <γ If it is off , the power consumption is controlled to be reduced to p min .

ここに,将来消費電力平均値pfutとは,pfut=erest/trestで定義される。trestは規定時間の残り時間であり,電気温水器で言えば深夜電力料金時間帯が終わる翌朝午前7時までの時間である。また,erestは負荷の使用目的を達成するためにtrestの間に消費しなければならないエネルギーである。すなわち,当該負荷はtrest時間後まで消費電力をpfutで運転し続ければ,ちょうどerestのエネルギーを消費し,負荷の使用目的を達成できる。 Here, the future power consumption average value p fut is defined as p f u t = e rest / t rest . t rest is the remaining time of the specified time. In the case of an electric water heater, t rest is the time until 7:00 am the next morning when the late-night electricity rate period ends. E rest is the energy that must be consumed during t rest to achieve the intended use of the load. That is, if the load continues to operate at power consumption of p fut until t rest time, the energy of e rest is consumed and the intended use of the load can be achieved.

ここで、trest時間後までの電力消費率γを数式(pfut−pmin)/(pmax−pmin)で定義する。例えば、この値が1のときは、pfut=pmaxであるので,trest時間後までずっと最大消費電力pmaxで運転し続ける必要がある。逆にこの値が0のときは、pfut=pminであるので,trest時間後までずっと最小消費電力pminで運転し続ける必要がある。この値が0.5のときは、pfut=(pmax+pmin)/2であるので,trest時間後までずっと最大消費電力と最小消費電力の中間の電力である(pmax+pmin)/2で運転しても,trest/2時間後まで最大消費電力で運転し、その後trest時間後まで最小消費電力で運転しても、trest/2時間後まで最小消費電力で運転し、その後trest時間後まで最大消費電力で運転しても良い。 Here, the power consumption rate γ up to the time after t rest time is defined by a formula (p ft −p min ) / (p max −p min ). For example, when this value is 1, since p f u t = p max, it is necessary to continue operation with the maximum power consumption p max until after t rest time. On the contrary, when this value is 0, since p fut = p min, it is necessary to continue the operation with the minimum power consumption p min until t rest time. When this value is 0.5, since it is p fut = (p max + p min) / 2, which is the maximum intermediate power consumption and minimum consumption much until after t rest time (p max + p min) / it is operated with 2, operating at maximum power until t rest / 2 hours later, then be operated at the minimum power until after t rest time, operating at minimum power consumption until t rest / 2 hours after Then, operation may be performed with the maximum power consumption until after t rest time.

この系統において電力需要が供給をオーバーすることとなり、いくつかの可制御負荷の消費電力を減らさなければならなくなったとする。消費電力を減らす可制御負荷としては、電力消費率が小さいものから順番に選択し、それらに消費電力を最小値pminにするように指令する。選択した可制御負荷の消費電力を最小値pminにすることで減らすことのできる消費電力p−pminを足していき、必要な消費電力調節量を得られるまで選択する。消費電力を最小値pminにするように指令され続けている可制御負荷は,将来平均消費電力pfutが時間の経過と共に高くなるので,電力消費率(pfut−pmin)/(pmax−pmin)も時間の経過と共に高くなる。電力消費率が1になった可制御負荷は、その後trest時間後までずっと最大消費電力pmaxで運転し続けることで,trest時間後までに所定のエネルギーを消費できる。 Assume that the power demand in this system exceeds the supply, and the power consumption of some controllable loads must be reduced. The controllable loads that reduce the power consumption are selected in order from the one with the lowest power consumption rate, and commands are given to them so that the power consumption becomes the minimum value p min . Will add the power consumption p-p min of the power consumption of the selected controllable load can be reduced by a minimum value p min, it selects to obtain a power adjustment amount required. Controllable loads continue to be commanded to a minimum value p min of the power consumption, the average power consumption p fut future increases over time, the power consumption rate (p fut -p min) / ( p max −p min ) also increases with time. Controllable load power consumption rate becomes 1, by continuing to operate at subsequent maximum power dissipation all the way to the post-t rest time p max, it can consume a predetermined energy until after t rest time.

逆にこの系統において供給過多となり、いくつかの可制御負荷の消費電力を増やさなければならなくなったとする。消費電力を増やす可制御負荷としては、電力消費率が大きいものから順番に選択し、それらに消費電力を最大値pmaxにするように指令する。選択した可制御負荷の消費電力を最大値pmaxにすることで増やすことのできる消費電力pmax−pを足していき、必要な消費電力調節量を得られるまで選択する。消費電力を最大値pmaxにするように指令され続けている可制御負荷は,将来平均消費電力pfutが時間の経過と共に低くなるので,電力消費率(pfut−pmin)/(pmax−pmin)も時間の経過と共に低くなる。電力消費率が0になった可制御負荷は、その後trest時間後までずっと最小消費電力pminで運転し続けることで,trest時間後までに所定のエネルギーを消費できる。 Conversely, it is assumed that there is an excessive supply in this system, and it is necessary to increase the power consumption of some controllable loads. The controllable loads that increase the power consumption are selected in descending order of the power consumption rate, and commands are given to the power consumption at the maximum value p max . The power consumption of the selected controllable load will add the power p max -p which can be increased by a maximum value p max, to select up to obtain a power adjustment amount required. Controllable loads continue to be commanded to the maximum value p max power consumption, the average power consumption p fut future becomes lower over time, power consumption rate (p fut -p min) / ( p max −p min ) also decreases with time. Controllable load power consumption rate becomes 0, by continuing to operate at then t rest power minimum consumption all the way to the time after p min, can consume a predetermined energy until after t rest time.

このように電力消費率の大きさに着目して消費電力を調節する可制御負荷を選択することにより、すべての可制御負荷が指定されたtrest時間後までに所定のエネルギーを消費できるように制御できる。
本発明の実施例1を図1〜図4を用いて説明する。
In this way, by selecting a controllable load that adjusts the power consumption by paying attention to the magnitude of the power consumption rate, all the controllable loads can consume predetermined energy by the specified t rest time. Can be controlled.
A first embodiment of the present invention will be described with reference to FIGS.

本発明の直接負荷制御システムにおいて制御対象とする負荷は,消費電力量の制御が可能な負荷、すなわち、可制御負荷(CL:Controllable Loads)である。任意数の可制御負荷の制御系は直近のローカルエリアの系統運用装置(DSO:区間制御装置等)の制御系に接続され、任意数のDSOは広域の上位の系統運用装置(TSO:系統制御装置等)の制御系に接続されている。なお、基本的には、実施例2で説明するように系統運用装置の上下関係の段数を何段にするかは任意に設定できる。この実施例1では、DSOとTSOの例で説明する。
系統に接続されている機器は、可制御負荷を含めてIPアドレス等の固有の情報伝送用のアドレスを有し、このアドレスを用いて、各種サンプリング・計算結果データ(pmax、γ、pmin、p等)、ヒストグラム等を伝送する。
なお、系統には可制御負荷以外の制御できない負荷が接続されていても良い。
The load to be controlled in the direct load control system of the present invention is a load capable of controlling the power consumption, that is, controllable loads (CL). A control system of an arbitrary number of controllable loads is connected to a control system of a system operation device (DSO: section control device, etc.) in the nearest local area, and an arbitrary number of DSOs is an upper system operation device (TSO: system control) in a wide area. Device). Basically, as will be described in the second embodiment, the number of stages in the vertical relationship of the system operation device can be arbitrarily set. In the first embodiment, an example of DSO and TSO will be described.
A device connected to the system has a unique information transmission address such as an IP address including a controllable load. Using this address, various sampling / calculation result data (p max , γ, p min , P, etc.), histogram, etc. are transmitted.
A load that cannot be controlled other than a controllable load may be connected to the system.

この可制御負荷は、具体的には,例えば、冷熱または温熱を作り出す家電機器で,電気温水器,CO冷媒ヒートポンプ式給湯器,冷蔵庫,空調機等がある。
例えば、電気温水器やCO冷媒ヒートポンプ式給湯器は,電気料金の安価な夜間(午後11時から翌朝午前7時まで)に貯湯槽内の水を80℃付近まで沸き上げることが使用目的である。
午後11時から翌朝午前7時までの消費電力パターンをどのように変化させても,その時間内に沸き上げに必要なエネルギーを消費しさえすれば使用目的は達成されるので,利用者の利便性を損なうことはない。
Specifically, the controllable load is, for example, a home appliance that generates cold or hot heat, and includes an electric water heater, a CO 2 refrigerant heat pump water heater, a refrigerator, an air conditioner, and the like.
For example, electric water heaters and CO 2 refrigerant heat pump water heaters are used for boiling water in a hot water tank to around 80 ° C at night when electricity is cheap (from 11:00 pm to 7:00 am the following morning). is there.
Regardless of how the power consumption pattern is changed from 11:00 pm to 7:00 am the next morning, as long as the energy required for boiling is consumed within that time, the purpose of use will be achieved. There is no loss of sex.

空調機や冷蔵庫の場合,電気エネルギーによりコンプレッサを回して冷熱または温熱を作り出して室内または庫内に放出することで,その温度を設定温度付近に保つことが使用目的である。
しかし実際の空調機では,45分程度の周期でコンプレッサの運転・停止が繰り返され,これに伴い温度も設定温度から数℃のずれが生じている(非特許文献4参照)。
よって,10〜30分間の平均温度を設定温度に維持するのに必要なエネルギーを消費しさえすれば,その間の消費電力パターンを変化させても,実際の空調機でも許容されている温度のずれの範囲内にできる。
冷熱または温熱を作り出すもの以外では,電気自動車やプラグイン・ハイブリッド車のように電気エネルギーを貯蔵する負荷がある。これらは翌日の走行に必要な電気エネルギーを電気料金の安価な夜間に蓄えるが,翌朝までに必要な電気エネルギーを蓄えさえすれば,蓄電中の消費電力パターンをどのように変化させても利用者の利便性を損なうことはない。
In the case of air conditioners and refrigerators, the purpose of use is to keep the temperature close to the set temperature by rotating the compressor with electric energy to produce cold or hot heat and releasing it into the room or cabinet.
However, in an actual air conditioner, the compressor is repeatedly operated and stopped at a cycle of about 45 minutes, and accordingly, the temperature also deviates by several degrees from the set temperature (see Non-Patent Document 4).
Therefore, as long as the energy required to maintain the average temperature for 10 to 30 minutes at the set temperature is consumed, the temperature deviation allowed in an actual air conditioner can be changed even if the power consumption pattern is changed. Can be within the range.
Other than those that produce cold or hot heat, there are loads that store electrical energy, such as electric vehicles and plug-in hybrid vehicles. They store the electrical energy required for the next day's travel at night when the electricity bill is cheap, but as long as the necessary electrical energy is stored by the next morning, the user can change the power consumption pattern during storage. There is no loss of convenience.

ここで,消費電力制御は時間間隔Δt毎に行うとする。各制御の間に必要な情報通信の流れを図1に示す。図1では,前の制御時刻をtα、次の制御時刻をtβとする。tβ=tα+Δtの関係がある。その他の記号の意味については,以下の文章中で説明する。
まず,これら可制御負荷がtαにおける自身の消費電力p(tα)をサンプリングして記憶しておく。そして,tβにおける将来消費電力平均値pfut(tβ)=erest(tβ)/trest(tβ)と電力消費率γ(tβ)を算出する。但し,trest(tβ)は次の制御時刻tβの時点における規定時間の残り時間である。
また,erest(tβ)は負荷の使用目的を達成するためにtrest(tβ)の間に消費しなければならないエネルギーである。
次に,各可制御負荷はpmax、pmin、p(tα)、γ(tβ)をローカルエリアの系統運用装置(以下,DSOという)に送信する。
Here, it is assumed that the power consumption control is performed every time interval Δt. The flow of information communication required during each control is shown in FIG. In FIG. 1, the previous control time is t α and the next control time is t β . There is a relationship of t β = t α + Δt. The meaning of other symbols is explained in the following text.
First, stored these controllable load samples the power p (t alpha) of its own in t alpha. Then, t future power average value in β p fut (t β) = e rest (t β) / t rest (t β) and calculates the power consumption rate γ a (t beta). However, t rest (t β ) is the remaining time of the specified time at the next control time t β .
Further, e rest (t β ) is energy that must be consumed during t rest (t β ) in order to achieve the intended use of the load.
Next, each controllable load transmits p max , p min , p (t α ), and γ (t β ) to the local area system operation device (hereinafter referred to as DSO).

DSOはtβにおける可制御負荷による消費電力の可制御幅のγ分布を表すヒストグラムを作成する。
このヒストグラムでは,まず可制御負荷をγに関する間隔Δγ(今回の例では0.05)の離散変数γ’毎の集合に分割する。そして各集団毎の消費電力の総上げ代P histと総下げ代P histを下記数1および数2の式より求める。
The DSO creates a histogram representing the γ distribution of the controllable width of the power consumption due to the controllable load at t β .
In this histogram, the controllable load is first divided into a set for each discrete variable γ ′ with an interval Δγ (0.05 in this example) with respect to γ. Then, the total increase allowance P p hist and the total decrease allowance P n hist of the power consumption for each group are obtained by the following equations (1) and (2).

ここに,R(γ’)はγ’−Δγ/2≦γ(tβ)<γ’+Δγ/2 にあてはまる可制御負荷の集合を表す。図1のDSO−1が作成したヒストグラムの例を図2に,DSO−2が作成したヒストグラムの例を図3に示す。
図2〜4は、横軸がγ値、縦軸が各集団毎の消費電力の総上げ代P histと総下げ代P histの値を示す。
Here, R (γ ′) represents a set of controllable loads that satisfy γ′−Δγ / 2 ≦ γ (t β ) <γ ′ + Δγ / 2. An example of a histogram created by DSO-1 in FIG. 1 is shown in FIG. 2, and an example of a histogram created by DSO-2 is shown in FIG.
2 to 4, the horizontal axis represents the γ value, and the vertical axis represents the value of the total increase allowance P p hist and the total decrease allowance P n hist for each group.

各DSOは作成したヒストグラムの情報を上位の系統運用装置(以下,TSOという)に送信する。TSOは受け取った複数のヒストグラムの和となるヒストグラム(以下、「和ヒストグラム」という)を作成する。この和ヒストグラムの例を図4に示す。この和ヒストグラムは下記数3および数4の式で表される2変数P spare(tβ、γon)、P spare(tβ、γoff)の算出に用いられる。 Each DSO transmits the created histogram information to a host system operation device (hereinafter referred to as TSO). The TSO creates a histogram that is the sum of a plurality of received histograms (hereinafter referred to as “sum histogram”). An example of this sum histogram is shown in FIG. This sum histogram is used to calculate the two variables P p spare (t β , γ on ) and P n spare (t β , γ off ) expressed by the following equations (3) and (4).

但し,γは連続変数であり,P histとP histを各Δγ間隔において一定の階段状関数として扱う。TSOは自系統内の消費電力を可制御負荷の消費電力調整により最大でP spare(tβ、0)だけ増やし、または−P spare(tβ、1)だけ減らすことができる。
TSOは系統運用上必要な消費電力調整量ΔPを求める。ΔPはたとえばTSOが可制御負荷を負荷周波数制御のために利用する場合は,次式で求まる。
However, γ is a continuous variable, and P p hist and P n hist are treated as constant step-like functions at each Δγ interval. The TSO can increase the power consumption in its own system by P p spare (t β , 0) at maximum or reduce -P n spare (t β , 1) by adjusting the power consumption of the controllable load.
TSO obtains a power consumption adjustment amount ΔP required for system operation. For example, when TSO uses a controllable load for load frequency control, ΔP is obtained by the following equation.

但し,Δfは系統の周波数偏差,KとKはそれぞれ比例ゲインと積分ゲインである。またΔPはたとえばTSOが可制御負荷を当該可制御負荷がつながる送電路の混雑(過負荷)の緩和に使用する場合は,次式で求まる。
但し,P(tβ)は次の制御時刻tβにおける可制御負荷による調整をしない場合の当該送電路の送電電力の予測値,Ptar(tβ)は次の制御時刻tβにおける可制御当該送電路の送電電力の可制御負荷の調整により緩和したい目標値である。
However, Delta] f is the frequency deviation of the system, the K P and K I is an integral gain, respectively proportional gain. ΔP is obtained by the following equation when, for example, the TSO uses a controllable load to reduce congestion (overload) of a transmission path to which the controllable load is connected.
However, P p (t β ) is a predicted value of the transmission power of the transmission line when adjustment is not performed by a controllable load at the next control time t β , and P tar (t β ) is a control value at the next control time t β . This is a target value to be relaxed by adjusting the controllable load of the transmission power of the control transmission line.

ΔPが正値であれば(数3)式のP spare(tβ、γon)をΔPに置き換えて数値的にγon(tβ)を解く。このときγoff(tβ)を0とする。ΔPが負値であれば(数3)式のP spare(tβ、γoff)をΔPに置き換えて数値的にγoff(tβ)を解く。このときγon(tβ)を1とする。ΔPが零であればγoff(tβ)を0,γon(tβ)を1とする。 If ΔP is a positive value, P p spare (t β , γ on ) in equation (3) is replaced with ΔP to numerically solve γ on (t β ). At this time, γ off (t β ) is set to 0. If ΔP is a negative value, P n spare (t β , γ off ) in equation (3) is replaced with ΔP to numerically solve γ off (t β ). At this time, γ on (t β ) is set to 1. If ΔP is zero, γ off (t β ) is 0 and γ on (t β ) is 1.

TSOは決定したγon(tβ)とγoff(tβ)の2値をDSOに送信し,DSOはこの2値を可制御負荷である家電機器に送る。それぞれの可制御負荷は、γ(tβ)がγoff(tβ)より低ければ次の制御時刻tβに消費電力pをpminまで下げる。γ(tβ)がγon(tβ)より高ければ次の制御時刻tβに消費電力pをpmaxまで上げる。
以下、同様に処理して次の制御時刻の消費電力を決めて制御する。
The TSO transmits the determined two values of γ on (t β ) and γ off (t β ) to the DSO, and the DSO transmits the two values to the home appliance that is a controllable load. Each controllable load is lowered gamma (t beta) power consumption p in the γ off (t β) if lower than the next control time t beta to p min. If γ (t β ) is higher than γ on (t β ), the power consumption p is raised to p max at the next control time t β .
Thereafter, the same processing is performed to determine and control the power consumption at the next control time.

ここで、図4を用いて、本発明の概要を説明する。
系統運用者は、各負荷のパラメータγの情報から図4に示すようなヒストグラムを作成する。消費電力をΔPだけ増やす場合、図4の上側のグラフをγonから1まで積分してΔγで除した値がΔPと等しくなるγonを算出し、各負荷にγonの値を送信する。
逆に消費電力を−ΔPだけ減らす場合、下側のグラフを0からγoffまで積分してΔγで除した値が−ΔPと等しくなるγoffを算出し、各負荷にγoffの値を送信する。各負荷は自身のγとγon、γoffを比較し、γ>γonならオン、γ<γoffならオフする(図4)。この本発明のシステムでは、系統運用者は各負荷のγをヒストグラムにまとめ、そのヒストグラムを用いて最大化閾値γonと最小化閾値γoffを求め各負荷に送信するのみで、必要な電力制御を行うことができる。
図4中、「A」はγ>γonの負荷をオンして増やせる消費電力分、「B」はγ<γoffの負荷をオフして減らせる電力消費分を意味する。
なお、図2および図3の場合も図4における上記概要と同様になる。
Here, the outline | summary of this invention is demonstrated using FIG.
The system operator creates a histogram as shown in FIG. 4 from information on the parameter γ of each load. If you increase the power consumption by [Delta] P, divided by Δγ by integrating the upper graph of Figure 4 to 1 from gamma on it calculates the equal gamma on the [Delta] P, and transmits the value of the gamma on each load.
To reduce only -DerutaP power consumption Conversely, divided by Δγ the lower graph by integrating from 0 to gamma off calculates the equal gamma off a -DerutaP, sending the value of gamma off to each load To do. Each load compares its own γ with γ on and γ off, and turns on when γ> γ on and turns off when γ <γ off (FIG. 4). In this system according to the present invention, the system operator collects γ of each load in a histogram, uses the histogram to obtain the maximum threshold value γ on and the minimum threshold value γ off , and transmits the required power control to each load. It can be performed.
In FIG. 4, “A” means power consumption that can be increased by turning on a load of γ> γ on , and “B” means power consumption that can be reduced by turning off a load of γ <γ off .
2 and 3 are the same as the outline in FIG.

図7は、図1に基づく系統の制御系の構成図例である。
可制御負荷(cl)は、主に、負荷制御部(cl−1)、電力を消費する被制御負荷(cl−8)、各種データを記憶するメモリ(cl−9)からなる。
可制御負荷(cl)は、他のローカルエリアの系統運用装置(DSO:区間制御装置等)や上位の系統運用装置(TSO:系統制御装置等)と同様に、例えばI/Oインターフェース、メモリおよびCPU(中央演算装置)等からなり、好ましくはマイクロコンピュータ等のコンピュータで構成されている。
負荷制御部(cl−1)は、少なくとも、指定時間内の将来消費電力平均値pfut演算手段(cl−2)、電力消費率γ=(pfut−pmin)/(pmax−pmin)演算手段(cl−5)、消費電力pのサンプリング手段(cl−6)、γonとγoffに基づく消費電力制御手段(cl−7)を備えている。
FIG. 7 is an example of a configuration diagram of a control system of the system based on FIG.
The controllable load (cl) mainly includes a load control unit (cl-1), a controlled load (cl-8) that consumes power, and a memory (cl-9) that stores various data.
The controllable load (cl) is, for example, an I / O interface, memory, and the like, as with other local area system operation devices (DSO: section control device, etc.) and higher system operation devices (TSO: system control device, etc.). It consists of CPU (central processing unit) etc., Preferably it is comprised with computers, such as a microcomputer.
The load control unit (cl-1) includes at least a future power consumption average value p fut calculation means (cl-2) within a specified time, a power consumption rate γ = (p f t −p min ) / (p max −p min ) Calculation means (cl-5), power consumption p sampling means (cl-6), and power consumption control means (cl-7) based on γ on and γ off .

これらの演算手段(cl−2)および(cl−5)は、CPUが、メモリに格納されているプログラムを読み出し、実行して、所定の演算を行い、その演算結果をメモリへ記憶するとともに次の演算処理に使うためにレジスタにセットする。サンプリング手段(cl−6)は、CPUがメモリからサンプリング情報を読み出しその情報に基づいて被制御負荷(cl−8)の消費電力pを電力計の値として求めるかまたは予めメモリに格納された運転状態と消費電力の関係を示す表より読み取り、メモリにサンプリング時の情報とともに記憶する。消費電力制御手段(cl−7)は、CPUがDSOを介してTSOから送られてきた次の制御時刻(tβ)における最大化閾値γonと最小化閾値γoffのデータをメモリに記憶するとともにレジスタにセットし、可制御負荷自身の電力消費率γ(tβ)とγoff(tβ)およびγon(tβ)を比較し、可制御負荷自身の電力消費率γ(tβ)がγoff(tβ)より低ければ次の制御時刻tβに消費電力pをpminまで下げるように制御し、γ(tβ)がγon(tβ)より高ければ次の制御時刻tβに消費電力pをpmaxまで上げるように制御する。 In these calculation means (cl-2) and (cl-5), the CPU reads out and executes a program stored in the memory, executes a predetermined calculation, stores the calculation result in the memory and executes the next. Set to a register for use in arithmetic processing. In the sampling means (cl-6), the CPU reads the sampling information from the memory and determines the power consumption p of the controlled load (cl-8) as the value of the wattmeter based on the information, or the operation stored in the memory in advance. It is read from a table showing the relationship between the state and the power consumption, and stored together with information at the time of sampling in the memory. The power consumption control means (cl-7) stores data of the maximization threshold γ on and the minimization threshold γ off at the next control time (t β ) sent from the TSO via the DSO by the CPU in the memory. Together with the power consumption rate γ (t β ) of the controllable load itself, γ off (t β ) and γ on (t β ), and the power consumption rate γ (t β ) of the controllable load itself If γ is lower than γ off (t β ), the power consumption p is controlled to decrease to p min at the next control time t β , and if γ (t β ) is higher than γ on (t β ), the next control time t Control is performed such that the power consumption p is increased to p max at β .

負荷の消費電力の最大値pmaxおよび最小値pminは,負荷の設計時または完成後の試運転により明らかになるので,負荷の出荷前に求めておき,メモリ(cl−9)に予め記憶させておく。
負荷制御部(cl−1)は、被制御負荷(cl−8:自負荷)の消費電力p(tα)をサンプリング手段(cl−6)によりサンプリングしてメモリ(cl−9)に記憶する。また、負荷制御部(cl−1)は、次の制御時刻tβにおける将来消費電力平均値pfut(tβ)を、手段(cl−2)により、将来消費電力平均値pfut(t)=erest(tβ)/trest(tβ)として演算する。そして,電力消費率γ演算手段(cl−5)は,電力消費率γ(tβ)をγ(tβ)=(pfut(tβ)−pmin)/(pmax−pmin)として演算する。
The maximum value p max and the minimum value p min of the power consumption of the load are clarified by the test operation at the time of designing the load or after completion. Therefore, they are obtained before the load is shipped and stored in the memory (cl-9) in advance. Keep it.
The load control unit (cl-1) samples the power consumption p (t α ) of the controlled load (cl-8: own load) by the sampling means (cl-6) and stores it in the memory (cl-9). . Further, the load control unit (cl-1) calculates the future power consumption average value p fut (t β ) at the next control time t β by means (cl-2) of the future power consumption average value p fut (t). = E rest (t β ) / t rest (t β ) Then, the power consumption rate γ calculating means (cl-5) sets the power consumption rate γ (t β ) as γ (t β ) = (p fut (t β ) −p min ) / (p max −p min ). Calculate.

可制御負荷(cl)は、求めた上記γ(tβ)、p(tα)、pmaxおよびpminをローカルエリアの系統運用装置(DSO:区間制御装置等)へ送信する。
DSOは、CPU、メモリおよびI/Oインターフェース等から構成される少なくとも電力消費率γ対上げ代pmax−p分布ヒストグラム作成手段(dso−1)、電力消費率γ対下げ代pmin−p分布ヒストグラム作成手段(dso−2)を備える。DSOは、上記手段(dso−1、dso−2)により、受信したγ(tβ)、p(tα)、pmaxおよびpminに基づいて、電力消費率γ対上げ代pmax−p分布ヒストグラムと電力消費率γ対下げ代pmin−p分布ヒストグラムを作成する。
The controllable load (cl) transmits the obtained γ (t β ), p (t α ), p max and p min to the local area system operation device (DSO: section control device or the like).
The DSO is composed of a CPU, a memory, an I / O interface, and the like, at least a power consumption rate γ vs. increase margin p max -p distribution histogram creation means (dso-1), a power consumption rate γ vs. a decrease margin p min -p distribution Histogram creation means (dso-2) is provided. The DSO is based on the received γ (t β ), p (t α ), p max, and p min by the above means (dso-1, dso-2), and the power consumption rate γ is increased by p max −p A distribution histogram and a power consumption rate γ versus reduction allowance p min -p distribution histogram are created.

このとき、両ヒストグラム作成手段(dso−1)および(dso−2)は、CPUにより、それぞれpが正値の部分の電力消費率γ対上げ代pmax−p分布ヒストグラムとpが負値の部分の電力消費率γ対上げ代pmin−p分布ヒストグラムを作成する手段を構成し、対象の系統に接続された複数の可制御負荷(cl)それぞれの最大消費電力pmax、最小消費電力pmin、電力消費率γ、消費電力pを取り込んでメモリに記憶するとともにレジスタにセットし、pmax−pを演算しその結果をγ(tβ)値と対応付けてメモリのテーブルに記憶する。同じくpmin−pを演算しその結果をγ(tβ)値と対応付けてテーブルに記憶する。 At this time, both the histogram generating means (dso-1) and (dso-2) are processed by the CPU with the power consumption rate γ of the portion where p is positive value vs. the increase margin p max -p distribution histogram and p being negative value, respectively. A means for creating a partial power consumption rate γ versus raising allowance p min -p distribution histogram is configured, and the maximum power consumption p max and the minimum power consumption p of each of a plurality of controllable loads (cl) connected to the target system Min , power consumption rate γ, and power consumption p are taken in and stored in the memory and set in a register, p max −p is calculated, and the result is stored in the memory table in association with the γ (t β ) value. Similarly, p min −p is calculated and the result is stored in the table in association with the γ (t β ) value.

このようにCPUにより、電力消費率γ対消費電力上げ代pmax−p分布ヒストグラムおよび電力消費率γ対消費電力下げ代pmin−p分布ヒストグラム作成手段により、最大消費電力pmax、最小消費電力pmin、電力消費率γ、消費電力pに基づき図2〜3に示すような電力消費率γ対消費電力上げ代pmax−p分布ヒストグラムおよび電力消費率γ対消費電力下げ代pmin−p分布ヒストグラムを作成して、メモリに記憶する。 In this way, the CPU uses the power consumption rate γ vs. power consumption increase allowance p max -p distribution histogram and the power consumption rate γ vs. power consumption decrease allowance p min -p distribution histogram creation means to generate the maximum power consumption p max and the minimum power consumption. Based on p min , power consumption rate γ, and power consumption p, power consumption rate γ vs. power consumption increase allowance p max -p distribution histogram and power consumption rate γ vs. power consumption reduction allowance p min −p as shown in FIGS. A distribution histogram is created and stored in memory.

DSOは、CPUにより作成した電力消費率γ対上げ代pmax−p分布ヒストグラムと電力消費率γ対下げ代pmin−p分布ヒストグラムをメモリのテーブルから読み出し上位の系統運用装置(TSO:系統制御装置等)へ送信する。
TSOは、CPU、メモリおよびI/Oインターフェース等から構成される少なくとも、和ヒストグラム演算手段(tso−1)、消費電力調整量の総量ΔP演算手段(tso−2)、最大化閾値γonと最小化閾値γoffの演算手段(tso−3)を備える。
The DSO reads the power consumption rate γ vs. increase allowance p max -p distribution histogram and the power consumption rate γ vs. decrease allowance p min -p distribution histogram created from the CPU from a memory table, and the upper system operation device (TSO: system control) Device).
The TSO includes at least a sum histogram calculation means (tso-1), a total power consumption adjustment amount ΔP calculation means (tso-2), a maximum threshold γ on and a minimum including a CPU, a memory, an I / O interface, and the like. The calculation means (tso-3) of the conversion threshold value γ off is provided.

TSOは、和ヒストグラム演算手段(tso−1)により,複数のDSOより受信した電力消費率γ対上げ代pmax−p分布ヒストグラムデータと電力消費率γ対下げ代pmin−p分布ヒストグラムデータをメモリに記憶するとともにレジスタにセットし、例えば、γ値毎のpmax−p値の合計値とγ値毎のpmin−p値の合計値を演算によりそれぞれ求め、図4に示すような電力消費率γ対上げ代pmax−p分布の和ヒストグラムと電力消費率γ対下げ代pmin−p分布の和ヒストグラムをそれぞれ作成しメモリに記憶する。また,消費電力調整量の総量ΔP演算手段(tso−2)により,系統の運用状況に基づき次の制御時刻(tβ)の時点で必要とされる消費電力調整量ΔPを求める。そして、最大化閾値γonと最小化閾値γoffの演算手段(tso−3)により,求めた和ヒストグラムと消費電力調整量ΔPをメモリから読み出し,次の制御時刻(tβ)における電力消費率の最小化閾値γoff(tβ)および最大化閾値γon(tβ)を演算し、メモリに記憶する。 The TSO uses the sum histogram calculation means (tso-1) to calculate the power consumption rate γ vs. increase margin p max -p distribution histogram data and the power consumption rate γ vs. decrease margin p min -p distribution histogram data received from a plurality of DSOs. For example, the total value of p max -p value for each γ value and the total value of p min -p value for each γ value are obtained by calculation, and stored in a memory and set in a register. A sum histogram of the consumption rate γ vs. increase allowance p max -p distribution and a sum histogram of the power consumption rate γ vs. decrease allowance p min -p distribution are created and stored in the memory. Also, the power consumption adjustment amount ΔP calculating means (tso-2) obtains the power consumption adjustment amount ΔP required at the next control time (t β ) based on the operation status of the system. Then, the calculated sum histogram and the power consumption adjustment amount ΔP are read from the memory by the calculation means (tso-3) of the maximization threshold γ on and the minimization threshold γ off , and the power consumption rate at the next control time (t β ) Are calculated and stored in the memory. The minimization threshold γ off (t β ) and the maximum threshold γ on (t β )

CPUは、次の制御時刻(tβ)における電力消費率の最小化閾値γoff(tβ)および最大化閾値γon(tβ)をメモリから読み出しDSOへ送信する。
DSOは、TSOから送られてきた次の制御時刻(tβ)における電力消費率の最小化閾値γoff(tβ)および最大化閾値γon(tβ)をメモリに記憶するとともに更に各可制御負荷へ転送する。
各可制御負荷は、次の制御時刻(tβ)における最小化閾値γoff(tβ)および最大化閾値γon(tβ)を受け取りメモリに記憶し、可制御負荷自身の電力消費率γ(tβ)とγoff(tβ)およびγon(tβ)を比較し、可制御負荷自身の電力消費率γ(tβ)がγoff(tβ)より低ければ次の制御時刻tβに消費電力pをpminまで下げるように制御し、γ(tβ)がγon(tβ)より高ければ次の制御時刻tβに消費電力pをpmaxまで上げるように制御する。
The CPU reads out the power consumption rate minimization threshold γ off (t β ) and the maximum threshold γ on (t β ) from the memory at the next control time (t β ), and transmits them to the DSO.
The DSO stores the power consumption rate minimization threshold γ off (t β ) and the maximization threshold γ on (t β ) in the memory at the next control time (t β ) sent from the TSO and further allows each Transfer to control load.
Each controllable load receives and stores the minimization threshold γ off (t β ) and the maximum threshold γ on (t β ) at the next control time (t β ) in the memory, and the power consumption rate γ of the controllable load itself. (T β ) is compared with γ off (t β ) and γ on (t β ), and if the power consumption rate γ (t β ) of the controllable load itself is lower than γ off (t β ), the next control time t controls power p in beta as down to p min, γ (t β) is controlled so as to raise is higher than γ on (t β) power consumption p for the next control time t beta to p max.

図8は、本発明の可制御負荷の制御フローを示す。
スタート
(1)前の制御時刻tαにおける消費電力p(tα)を記憶する(ステップS1)。
(2)次の制御時刻tβにおける規定時間の残り時間trest(tβ)、負荷の使用目的を達成するためにtrest(tβ)の間に消費しなければならないエネルギーerest(tβ)を算出する(ステップS2)。
(3)将来消費電力平均値pfut(tβ)、電力消費率γ(tβ)を算出する。(ステップS3)。
(4)p(tα)、γ(tβ)、読み出したpmaxとpminをDSOに送信する。(ステップS4)。
(5)DSOから最大化閾値γon(tβ)と最小化閾値γoff(tβ)の送信があるか?判断し、送信が無い場合は、ステップS5の始めへ進み、送信がある場合は、ステップS6へ進む。(ステップS5)。
(6)自負荷の電力消費率γ(tβ)とDSOからの最大化閾値γon(tβ)および最小化閾値γoff(tβ)を比較し、γ(tβ)<γoff(tβ)なら時刻tβにおける消費電力p(tβ)をpminに,γ(tβ)>γon(tβ)なら時刻tβにおける消費電力p(tβ)をpmaxに制御する。(ステップS6)。
ストップ
FIG. 8 shows a control flow of the controllable load of the present invention.
The power consumption p (t α ) at the control time t α before the start (1) is stored (step S1).
(2) Remaining time t rest (t β ) of the specified time at the next control time t β, energy e rest (t that must be consumed during t rest (t β ) to achieve the intended use of the load β ) is calculated (step S2).
(3) Calculate the future power consumption average value p fut (t β ) and the power consumption rate γ (t β ). (Step S3).
(4) Transmit p (t α ), γ (t β ), and read p max and p min to the DSO. (Step S4).
(5) Is there a transmission of the maximization threshold γ on (t β ) and the minimization threshold γ off (t β ) from the DSO? If there is no transmission, the process proceeds to the beginning of step S5, and if there is transmission, the process proceeds to step S6. (Step S5).
(6) The self-load power consumption rate γ (t β ) is compared with the maximization threshold γ on (t β ) and the minimization threshold γ off (t β ) from the DSO, and γ (t β ) <γ off ( If t β ), the power consumption p (t β ) at time t β is controlled to p min , and if γ (t β )> γ on (t β ), the power consumption p (t β ) at time t β is controlled to p max . . (Step S6).
stop

次に,本発明の効果を数値解析によって示す。図5は数値解析を行った配電系統の構成を示す。配電系統内の負荷には,電力系統から配電用変電所を通って供給される電力と,分散型電源の出力電力によって供給されている。この配電系統では,配電用変電所の変圧器の容量が10MVAであるが,需要がそれ以上であるとする。よって,配電系統内の分散型電源が解列すると,すぐに変圧器が過負荷状態になる。この時に本発明の直接負荷制御法により可制御負荷の消費電力を調節することで,変圧器の過負荷状態を緩和する。   Next, the effect of the present invention will be shown by numerical analysis. FIG. 5 shows the configuration of the power distribution system subjected to numerical analysis. The load in the distribution system is supplied by the power supplied from the power system through the distribution substation and the output power of the distributed power source. In this distribution system, the capacity of the transformer in the distribution substation is 10 MVA, but the demand is more than that. Therefore, as soon as the distributed power supply in the distribution system is disconnected, the transformer is overloaded. At this time, by adjusting the power consumption of the controllable load by the direct load control method of the present invention, the overload state of the transformer is alleviated.

可制御負荷としては,pmin=0kW,pmax=1.9kWの家庭用空調機(以下,DACという)が2652台と,pmin=0kW,pmax=12.1kWの商業用空調機(以下,CACという)が181台あるとする。これらの消費電力を2分毎に制御するとする。これらはオン・オフ切替型の空調機とし,消費電力はpminとpmaxの2値のいずれかしかとり得ないとする。また,無効電力は充分小さく無視できるとする。 The controllable load, p min = 0kW, p max = 1.9kW household air conditioner (hereinafter, referred to as DAC) is 2652 units,, p min = 0kW, p max = 12.1kW commercial air conditioner ( Hereinafter, it is assumed that there are 181 CAC). Assume that these power consumptions are controlled every two minutes. These are on / off switching type air conditioners, and power consumption can only take one of the two values p min and p max . The reactive power is sufficiently small and can be ignored.

変圧器負荷電力Ptfと,全可制御負荷の総消費電力Pacと,あるDACとCAC1台ずつの消費電力pの時間変化を,負荷制御を行った場合を実線で,負荷制御を行わない場合を点線で図6に示す。図6の横軸は時間(h)、図6(a)、(b)の縦軸は各可制御負荷の消費電力p(kW)、図6(c)の縦軸は各可制御負荷の総消費電力Pac(MW)、図6(d)の縦軸は変圧器負荷Ptf(MW)を表す。
時刻18時近辺で分散型電源が解列したとしており,負荷制御の有無による違いは可制御負荷の消費電力のみで,それ以外はすべて同じ条件で解析した。
負荷制御を行わない場合は図6(d)でtと示されている時刻18:06に過負荷状態となり,図6(d)でtと示されている時刻18:10付近まで過負荷状態が続いている。
Transformer load power P tf , total power consumption P ac of all controllable loads, and time variation of power consumption p of each DAC and one CAC, when load control is performed, the solid line shows no load control The case is shown in FIG. The horizontal axis of FIG. 6 is time (h), the vertical axis of FIGS. 6 (a) and 6 (b) is the power consumption p (kW) of each controllable load, and the vertical axis of FIG. 6 (c) is the controllable load. The total power consumption P ac (MW), and the vertical axis of FIG. 6D represents the transformer load P tf (MW).
It is assumed that the distributed power source was disconnected at around 18:00, and the difference depending on the presence or absence of load control was only the power consumption of the controllable load, and all other cases were analyzed under the same conditions.
When load control is not performed, an overload condition occurs at time 18:06 indicated as t 1 in FIG. 6 (d), and overload occurs until around time 18:10 indicated as t 2 in FIG. 6 (d). The load condition continues.

負荷制御を行わない場合は,tにTSOからγoff=1.0が送信されてすべての可制御負荷が消費電力をpminに下げた。TSOは過負荷状態を緩和すべく,tまでγoff=1.0を送信し続けたが,ある割合の可制御負荷はγ=1となってしまった。γ=1となった負荷は利用者の利便性を維持するために消費電力をpmaxに上げなければならない。このためにtにおいて図6(c)のようにPacは0とはなっていない。しかし,負荷制御を行わない場合と比べて,過負荷状態は緩和されている。 When load control is not performed, γ off = 1.0 is transmitted from TSO at t 1 , and all controllable loads reduce the power consumption to p min . TSO continued to transmit γ off = 1.0 until t 2 to alleviate the overload condition, but a certain controllable load was γ = 1. For the load with γ = 1, the power consumption must be increased to p max in order to maintain user convenience. P ac As shown in FIG. 6 (c) at t 2 because this has not become zero. However, the overload condition is alleviated compared to when no load control is performed.

本数値解析では,全てのDACとCACにおいて30分間毎に必要とされるエネルギーは負荷制御を行う場合と行わない場合で同じとした。図6(a)および(b)において,各30分間隔の開始および終了時刻を区切時刻として示している。区切時刻は負荷の利用者が負荷の電源を入りにしてからの時間で割り振られるが,電源を入りにするタイミングは確率的に分散するので,区切時刻は各可制御負荷毎に異なる。   In this numerical analysis, the energy required every 30 minutes in all DACs and CACs is the same when performing load control and when not performing load control. 6 (a) and 6 (b), the start and end times of each 30-minute interval are shown as delimiter times. The delimiter time is assigned by the time after the load user turns on the load power, but the timing of turning on the power is probabilistically distributed, so the delimiter time is different for each controllable load.

図6(b)において,ある家庭用空調機DAC No.355では,区切時刻18:06からの30分間で,pmaxで4分間運転してエネルギー消費しなければならない。負荷制御を行わない場合は時刻18:04に消費電力をpminからpmaxに変化させ,そのまま18:10までpmaxとすることで,このエネルギーを消費した。 In FIG. 6B, a certain domestic air conditioner DAC No. In 355, energy must be consumed by driving for 4 minutes at p max in 30 minutes from the break time 18:06. When load control was not performed, the energy was consumed by changing the power consumption from p min to p max at time 18:04 and setting p max to 18:10 as it was.

負荷制御を行う場合は,時刻18:06(t)に変圧器過負荷を緩和すべく一度消費電力をpminまで低下させている。そして,変圧器過負荷が生じていない時刻18:28に消費電力をpminからpmaxに変化させ,そのまま18:32までpmaxとした。これにより,区切時刻18:06からの30分間で,負荷制御を行う場合と行わない場合でのエネルギー消費は同じであるにもかかわらず,負荷制御を行う場合では変圧器過負荷を緩和すべく消費電力を調節できた。 When performing load control, the power consumption is once reduced to p min in order to alleviate the transformer overload at time 18:06 (t 1 ). The power consumption was changed from p min to p max at time 18:28 when no transformer overload occurred, and was set to p max as it was until 18:32. As a result, the energy consumption between when load control is performed and when it is not performed is the same for 30 minutes from the break time 18:06, but when load control is performed, the transformer overload should be alleviated. The power consumption could be adjusted.

図6(a)において,ある商業用空調機CAC No.107では,区切時刻17:52からの30分間で,pmaxで4分間運転してエネルギー消費しなければならない。負荷制御を行わない場合は時刻18:06に消費電力をpminからpmaxに変化させ,そのまま18:10までpmaxとすることで,このエネルギーを消費した。
負荷制御を行う場合は,変圧器過負荷を助長しないように時刻18:06(t)には消費電力をpminのままにしている。そして,変圧器過負荷が生じていない時刻18:12に消費電力をpminからpmaxに変化させ,そのまま18:16までpmaxとした。これにより,区切時刻17:52からの30分間で,負荷制御を行う場合と行わない場合でのエネルギー消費は同じであるにもかかわらず,負荷制御を行う場合では変圧器過負荷を緩和すべく消費電力を調節できた。
In FIG. 6A, a commercial air conditioner CAC No. In 107, energy must be consumed by driving for 4 minutes at p max for 30 minutes from the break time 17:52. If you do not load control the power consumption at the time 18:06 is changed from p min to p max, as by the p max to 18:10, it consumed the energy.
When performing load control, the power consumption is kept at p min at time 18:06 (t 1 ) so as not to promote transformer overload. Then, the power consumption at the time 18:12 to transformer overload is not generated is changed from p min to p max, was p max remains until 18:16. As a result, in the 30 minutes from the break time 17:52, the energy consumption in the case of performing the load control is the same as that in the case of not performing the load control. The power consumption could be adjusted.

実施例1では、上位の系統運用装置(TSO:系統制御装置等)は複数のローカルエリアの系統運用装置(DSO:区間制御装置等)を統括して制御するように構成されているが、制御対象の可制御負荷の数が少ない配電網等では上位の系統運用装置(TSO:系統制御装置等)とローカルエリアの系統運用装置(DSO:区間制御装置等)を1つの系統制御装置として構成することもできる。また、上下関係の系統運用装置を何段で構成するかは配電系統に接続された可制御負荷等の負荷の台数や消費電力量等による。
これらの例における配電網は、少なくとも、自負荷の消費電力を制御する制御手段を備えた任意数の可制御負荷を含むと共に、前記配電網を制御する系統制御手段を備えることになる。
In the first embodiment, the host system operation device (TSO: system control device, etc.) is configured to control the system operation devices (DSO: section control devices, etc.) in a plurality of local areas. In a distribution network with a small number of target controllable loads, an upper system operation device (TSO: system control device, etc.) and a local area system operation device (DSO: section control device, etc.) are configured as one system control device. You can also. In addition, the number of stages in which the hierarchical system operation device is configured depends on the number of loads such as controllable loads connected to the power distribution system, power consumption, and the like.
The power distribution networks in these examples include at least an arbitrary number of controllable loads including control means for controlling the power consumption of the own load, and also include system control means for controlling the power distribution network.

実施例3を説明する。電力系統では一般に,発電設備が発電電力を消費電力の変化に追従するように調整することで,系統全体での発電と消費を釣り合わせて,系統周波数を一定に保っている。
しかし,発電出力が風況の変化により時々刻々と変化する風力発電を大量に電力系統に導入すると,発電と消費のバランスを維持できなくなり,周波数変動が大きくなることが懸念されている。
特に,発電設備の調整力が少ない軽負荷の深夜時間帯が問題となる。これに対し,わが国ではこの時間帯の負荷として,多数の電気温水器が運転している。そこで,多数の電気温水器の消費電力を本発明の直接負荷制御システムで制御することで,周波数変動を抑制することを数値シミュレーションで示す。
A third embodiment will be described. Generally, in a power system, the power generation equipment adjusts the generated power so as to follow the change in power consumption, thereby balancing the power generation and consumption in the entire system and keeping the system frequency constant.
However, there is a concern that if a large amount of wind power generation whose power generation output changes from moment to moment due to changes in wind conditions is introduced into the power system, the balance between power generation and consumption cannot be maintained, and frequency fluctuations will increase.
In particular, light load late-night hours with less power generation facility adjustment are a problem. In contrast, in Japan, many electric water heaters are operating as loads during this time period. Therefore, it is shown by numerical simulation that the frequency fluctuation is suppressed by controlling the power consumption of many electric water heaters with the direct load control system of the present invention.

解析対象エリアとして北海道地区を例に挙げ,系統全体の需給バランスから周波数偏差Δfを計算した。
発電側としては風力発電出力PWF,固定出力PCG,経済負荷配分運転出力PEDC,負荷周波数制御運転出力PLFC,ガバナフリー制御運転出力PGFを考慮した。よって出力変動可能な総発電出力PVGは,PGF+PLFC+PEDCとなる。
北海道・本州直流連系線による本州系統との電力融通は考慮しなかった。
需要側は17万台の電気温水器群の総消費電力PEWHとその他の負荷による総消費電力POLからなる総需要P=PEWH+POL,および負荷周波数特性に伴う変動分PLSを考慮した。PWFと,電気温水器群を本発明の方法で制御しなかった場合のPの時系列データは,非特許文献5に記載の方法で模擬した。ただしPの模擬に用いた1時間毎の負荷曲線データは,非特許文献5より若干の修正を加えている。また,各電気温水器において一日にどれだけのエネルギーを消費するかは貯湯槽内のお湯がどれだけ使われたかによって異なるが,その消費エネルギーのばらつき度合いについても,非特許文献5に記載の方法で模擬した。
Taking the Hokkaido area as an example of the analysis target area, the frequency deviation Δf was calculated from the supply and demand balance of the entire system.
On the power generation side, wind power generation output P WF , fixed output P CG , economic load distribution operation output P EDC , load frequency control operation output P LFC , and governor-free control operation output P GF were considered. Therefore, the total power generation output P VG whose output can be varied is P GF + P LFC + P EDC .
The power interchange with the Honshu system by the Hokkaido-Honshu DC interconnection was not considered.
On the demand side, the total demand P L = P EWH + P OL consisting of the total power consumption P EWH of the 170,000 electric water heaters and the total power consumption P OL due to other loads, and the variation P LS associated with the load frequency characteristics Considering. And P WF, time-series data of P L in the case of not controlling the electric water heater group in the method of the present invention was simulated according to the method described in Non-Patent Document 5. However load curve data of 1 hour each using the simulated P L is slight modification from non-patent document 5. In addition, how much energy is consumed per day in each electric water heater depends on how much hot water in the hot water tank is used, but the degree of variation in energy consumption is also described in Non-Patent Document 5. Simulated by the method.

非特許文献5には、北海道において風力発電を大量に導入した場合の系統周波数変動に関する数値解析の例が示され、また、電気温水器群の消費電力を制御して系統周波数変動を抑制する例が検討されている。この文献5における電気温水器群の制御方法は、各電気温水器が自分で系統周波数をモニターして自律的に消費電力を調節している。
これに対し、本発明では、各電気温水器はTSOとの情報通信を行い、TSOからのγon、γoff信号と自身のγ値を比較して、消費電力を調整している。
Non-Patent Document 5 shows an example of numerical analysis related to system frequency fluctuation when a large amount of wind power generation is introduced in Hokkaido, and an example of controlling power consumption of an electric water heater group to suppress system frequency fluctuation Is being considered. In the control method of the electric water heater group in Document 5, each electric water heater monitors the system frequency by itself and adjusts the power consumption autonomously.
On the other hand, in the present invention, each electric water heater performs information communication with the TSO, and adjusts power consumption by comparing the γ on and γ off signals from the TSO with its own γ value.

需給バランスと周波数変動との関係は図9のブロック線図に従い計算した。
図9は、需給バランスと周波数変動抑制の制御を行う制御系を表すブロック線図である。
図9中の定数は非特許文献5の表1に記載の値を用いた。
図9のブロック線図は、総発電電力(PWF+PCG+PVG)と総消費電力(PEWH+POL+PLS)に差が生じると、周波数偏差Δfが生じるように構成されている。但し、系統の慣性(電力系統につながっている全回転機の慣性モーメントに相当する)Jがあるので、電力需給の差の積分値が周波数偏差に反映されることになる。
図9の制御系では、周波数偏差が生じると,それを抑制する方向に発電機の出力が制御される。
The relationship between supply and demand balance and frequency fluctuation was calculated according to the block diagram of FIG.
FIG. 9 is a block diagram showing a control system that controls supply and demand balance and frequency fluctuation suppression.
The constants in FIG. 9 used the values described in Table 1 of Non-Patent Document 5.
The block diagram of FIG. 9 is configured such that a frequency deviation Δf is generated when a difference occurs between the total generated power (P WF + P CG + P VG ) and the total power consumption (P EWH + P OL + P LS ). However, since there is a system inertia (corresponding to the moment of inertia of all rotating machines connected to the power system) J, the integrated value of the difference between power supply and demand is reflected in the frequency deviation.
In the control system of FIG. 9, when a frequency deviation occurs, the output of the generator is controlled in a direction to suppress it.

ガバナフリー制御は周波数偏差に比例した出力調整制御で,比例定数が−Kとなる。
ただし,ガバナフリー制御による出力変動分(PGF)には上下限値(±CGF)があり、それを超えることはできないようになっている。
負荷周波数制御は上記ガバナフリー制御よりももう少し複雑な制御をする。周波数偏差だけでなく,その積分値も考慮することになる。
負荷周波数制御による出力変動分(PLFC)には、上下限値(±CLFC)があり,かつ変化率(dPLFC/dt)にも制限値(±SLFC)がある。
経済負荷配分運転による出力変動PEDCについては,以下のように制御している。
In the output adjustment control governor-free control in proportion to the frequency deviation, the proportionality constant is -K G.
However, there is an upper and lower limit value (± C GF ) for the output fluctuation (P GF ) by the governor-free control, and it cannot be exceeded.
The load frequency control is slightly more complicated than the above governor-free control. Not only the frequency deviation but also its integrated value will be considered.
There is an upper and lower limit value (± C LFC ) for the output fluctuation (P LFC ) due to load frequency control, and there is also a limit value (± S LFC ) for the rate of change (dP LFC / dt).
The output fluctuation PEDC due to the economic load distribution operation is controlled as follows.

本発明の制御法を適用せずに各電気温水器に従来の運転を行わせる場合については,PLFC+PGFがなるべく零になるように,非特許文献5中の(5)式を目標値とする。本発明の制御法を適用する場合も,PGFやPLFCが偏ってそれらの上下限値に近い場合や,周波数偏差が大きい場合は非特許文献5中の(5)式を目標値とする。
しかし,それらの偏りが小さい場合は,Pの最低需要を増すように,非特許文献5中の(6)式を目標値とする。ただし,PEDCは変化率(dPEDC/dt)にも制限値(±SEDC)があり,その値が小さいので,ゆっくりしか変化できない。さらに,PVG(=PGF+PLFC+PEDC)に下限値CVGmin=650MWが存在する。ブロック線図中ではPEDCの下限値としてCVGmin−PGF−PLFCとしている。これらは,非特許文献5と同じになる。
電気温水器制御が何をやっているかについては,段落0067に記す。
In the case of causing each electric water heater to perform a conventional operation without applying the control method of the present invention, Equation (5) in Non-Patent Document 5 is set to a target value so that P LFC + P GF becomes zero as much as possible. And Even when the control method of the present invention is applied, if PGF and PLFC are biased and close to the upper and lower limit values, or if the frequency deviation is large, Equation (5) in Non-Patent Document 5 is used as the target value. .
However, if their deviation is small, to increase the minimum demand of P L, the non-patent document 5 in (6) below the target value. However, P EDC has a limit value (± S EDC ) in the rate of change (dP EDC / dt), and since this value is small, it can only change slowly. Further, there is a lower limit value C VGmin = 650 MW in P VG (= P GF + P LFC + P EDC ). In the block diagram are a C VGmin -P GF -P LFC as the lower limit of the P EDC. These are the same as in Non-Patent Document 5.
Paragraph 0067 describes what the electric water heater control is doing.

図9の中の,電気温水器制御と記したブロックの中で,本発明の制御法を適用した場合と,本発明の制御法を適用せずに各電気温水器に従来の運転を行わせた場合について,比較を行う。   In the block labeled “electric water heater control” in FIG. 9, when the control method of the present invention is applied, each electric water heater is caused to perform a conventional operation without applying the control method of the present invention. Compare the cases.

本発明の制御法を適用せずに各電気温水器に従来の運転を行わせた場合については,各電器温水器は午後11:00からの30分間の間にオンしヒータ通電を開始し,必要なエネルギーを消費するまでオンし続け,必要なエネルギーを消費し終えた時点でオフするとした。各電気温水器が30分間のうちのいつオンするかについては,一様ランダムとした。   In the case where each electric water heater is caused to perform a conventional operation without applying the control method of the present invention, each electric water heater is turned on for 30 minutes from 11:00 pm and starts energizing the heater. It was turned on until the necessary energy was consumed, and turned off when the necessary energy was consumed. The time when each electric water heater was turned on in 30 minutes was uniformly random.

本発明の制御法を適用した場合については,各電気温水器とTSOが相互通信をして,図8のような制御フローが8秒毎に処理され,8秒毎にTSOから各電気温水器へγon, γoffの信号が送られるとした。実施例1が2分毎の制御であったのに比べて制御周期が短いが,これは電力系統の回転機の慣性が小さいため,周波数調整のためには短い制御周期とする必要があるためである。全電気温水器の総消費電力PEWHの制御方針は以下の2つである。 When the control method of the present invention is applied, the electric water heaters and the TSO communicate with each other, and a control flow as shown in FIG. 8 is processed every 8 seconds, and from the TSO to each electric water heater every 8 seconds. Γ on , γ off signals are sent to. The control cycle is shorter than that in Example 1 where the control is performed every two minutes, but this is because the inertia of the rotating machine of the power system is small, and therefore it is necessary to set a short control cycle for frequency adjustment. It is. The control policy of the total power consumption P EWH of all the electric water heaters is the following two.

(1)PGFやPLFCが上限値(CGFやCLFC)に近づいたときはPEWHを減らし,逆に下限値(−CGFや−CLFC)に近づいたときはPEWHを増やして,PGFやPLFCが上下限値に達しないようにする。
(2)Pの最低需要を増やす。すなわち,POLが低い時はPEWHを増やす。これにより,PVGが下限値に達しないようにする。
(1) Decrease P EWH when P GF or P LFC approaches the upper limit (C GF or C LFC ), and conversely increase P EWH when it approaches the lower limit (-C GF or -C LFC ) Therefore, PGF and PLFC are prevented from reaching the upper and lower limits.
(2) increase the minimum demand of the P L. That is, when the P OL is low, the P EWH is increased. This prevents PVG from reaching the lower limit.

数値解析結果の一例として,2006年11月9−10日の風速データを用いて計算した結果を,本発明の制御法を適用せずに各電気温水器に従来の運転を行わせた場合については図10に,本発明の制御法を適用した場合については図11にそれぞれ示す。   As an example of numerical analysis results, the results calculated using the wind speed data of November 9-10, 2006, when each electric water heater is made to perform a conventional operation without applying the control method of the present invention. FIG. 10 shows the case where the control method of the present invention is applied, and FIG.

図10は、設置された風力発電設備の総容量が705MWで本発明の制御法を適用せずに各電気温水器に従来の運転を行わせた場合に,2006年11月9−10日における周波数偏差,各電力,ある電気温水器の消費電力とgの時間変化を示す図である。
図10中、10aは制御目標範囲、10bは最低需要、10cは最低出力,10dは17万台のうちのある一台の電気温水器の消費電力パターン,10eはその電気温水器のγ値の時間変化を表す。
図10では、時刻4時44分0秒に周波数偏差Δfは1.345Hzに達した。このとき、PEWH=26.0MW,POL=2422.5MW,PLS=90.4MW,PWF=209.2MW,PEDC=710.0MW,PLFC=−30.0MW,PGF=−30.0MWの値をとる。
FIG. 10 shows a case where the total capacity of the installed wind power generation facility is 705 MW and each electric water heater is operated without applying the control method of the present invention on November 9-10, 2006. It is a figure which shows the time variation of frequency deviation, each electric power, the power consumption of a certain electric water heater, and g.
In FIG. 10, 10a is the control target range, 10b is the minimum demand, 10c is the minimum output, 10d is the power consumption pattern of one of the 170,000 electric water heaters, and 10e is the γ value of the electric water heater. Represents time change.
In FIG. 10, the frequency deviation Δf reached 1.345 Hz at 4: 44: 0. At this time, P EWH = 26.0 MW, P OL = 2422.5 MW, P LS = 90.4 MW, P WF = 209.2 MW, P EDC = 710.0 MW, P LFC = -30.0 MW, P GF = − It takes a value of 30.0 MW.

図11は、設置された風力発電設備の総容量が705MWで本発明の制御法を適用した場合に,2006年11月9−10日における周波数偏差,各電力,ある電気温水器の消費電力とγ,TSOからのγon, γoff指令の時間変化を示す図である。
図11中、11aは制御目標範囲、11bはボトムアップされたP曲線,11cは17万台のうちのある一台の電気温水器(10d,10eの電気温水器と同じ)の消費電力パターン,11dはその電気温水器のγ値の時間変化、11eはTSOからの制御指令値であるγon,γoffの時間変化を表す。
図11では、時刻4時44分0秒に周波数偏差Δfは0.084Hzであった。このとき、PEWH=322.5MW,POL=2422.5MW,PLS=5.6MW,PWF=209.2MW,PEDC=891.8MW,PLFC=−12.9MW,PGF=−25.8MW,γon=0.3801,γoff=0.0の値をとる。
FIG. 11 shows the frequency deviation, each power, and the power consumption of a certain electric water heater on November 9-10, 2006 when the total capacity of the installed wind power generation equipment is 705 MW and the control method of the present invention is applied. It is a figure which shows the time change of (gamma) on and (gamma) off instruction | command from (Gamma) and TSO.
In Figure 11, 11a is the power consumption pattern of the control target range, 11b is P L curves bottom-up, 11c one single electric water heater Certain of 170,000 (10d, same as 10e of electric water heater) , 11d represents a time change of the γ value of the electric water heater, and 11e represents a time change of γ on , γ off which are control command values from the TSO.
In FIG. 11, the frequency deviation Δf was 0.084 Hz at time 4: 44: 0. At this time, P EWH = 322.5 MW, P OL = 2422.5 MW, P LS = 5.6 MW, P WF = 209.2 MW, P EDC = 891.8 MW, P LFC = −12.9 MW, P GF = − It takes values of 25.8 MW, γ on = 0.3801, γ off = 0.0.

図10と図11のそれぞれの図において,図(a)は周波数偏差Δf,図(b)は全ウィンドファームからの総出力電力PWF,図(c)は出力調整可能な総発電出力PVGと全電気温水器の総消費電力PEWHとその他の負荷の総消費電力POLと総需要P,図(d)はある1台の電気温水器の消費電力パターン,図(e)はその1台の電気温水器のg値の時間変化を,示している。本発明の制御法を適用した場合に関しては,TSOからの制御指令値であるγon,γoffの時間変化を図11(f)に示してある。どちらの場合においても,設置された風力発電設備の総容量を705MWとしており,PWFおよびPOLはどちらの場合も全く同じである。 In each of FIGS. 10 and 11, the figure (a) shows the frequency deviation Δf, the figure (b) shows the total output power P WF from all the wind farms, and the figure (c) shows the total power output P VG with adjustable output. And total power consumption P EWH of all electric water heaters, total power consumption P OL and total demand P L of other loads, figure (d) is the power consumption pattern of one electric water heater, figure (e) is its The time change of g value of one electric water heater is shown. When the control method of the present invention is applied, the time change of γ on and γ off which are control command values from the TSO is shown in FIG. In either case, the total capacity of the installed wind power generation equipment has a 705MW, P WF and P OL is exactly the same in both cases.

本発明の制御法を適用せずに各電気温水器に従来の運転を行わせた場合は,図10(a)より周波数偏差Δfが4:30−6:00頃の期間に制御目標幅を大きく逸脱している。現在でも,周波数偏差は制御目標範囲である±0.3Hzを逸脱することはあり,多少の逸脱は許容できる。しかし,図10(a)のように±0.5Hzを超えるような逸脱は許容できない。図10(c)より,周波数偏差の大きい4:30−6:00頃の期間に総需要P需要は最低値2500MW程度であり,出力調整可能な総発電出力PVGが下限値CVGmin=650MWになっている。PVGが下限値CVGminに達し下げ代が無くなってしまったことが,周波数偏差Δfが制御目標幅を大きく逸脱した原因である。また,図10(a)より,周波数偏差Δfが0:10−0:20頃の期間に制御目標幅を大きく逸脱しているが,このときはPVGが下限値CVGminに達したわけではないが,応答の速いPGFやPLFCが下限値(−CGFや−CLFC)に達してしまったことが原因である。 When each electric water heater is made to perform a conventional operation without applying the control method of the present invention, the control target width is set in a period where the frequency deviation Δf is around 4:30 to 6:00 from FIG. A major departure. Even now, the frequency deviation may deviate from ± 0.3 Hz, which is the control target range, and some deviation is acceptable. However, a deviation exceeding ± 0.5 Hz as shown in FIG. 10 from (c), the frequency deviation large 4:30 to 6:00 total demand P L demand period time is about the minimum value 2500 MW, the output adjustable total power output P VG lower limit C VGmin = It is 650 MW. The P VG has disappeared lowers cost reaches the lower limit value C VGmin is responsible for the frequency deviation Δf has deviated larger control target width. Further, from FIG. 10 (a), the frequency deviation Δf is 0:10 to 0:20 deviates greatly the control target width period time, but not reached the lower limit value C VGmin is P VG this time However, this is because the fast-response PGF or P LFC has reached the lower limit (−C GF or −C LFC ).

これに対し本発明の制御法を適用した場合は,図11(a)より,周波数偏差Δfがずっと制御目標幅以内に収まっている。図10(c)と図11(c)を比較すると,PEWHを0:00付近では減らし逆に4:00−6:00付近では増やしており,結果として総需要Pの最低値を2500MWより増やしている。このため,出力調整可能な総発電出力PVGが下限値CVGminに達しておらず,下げ代が残されている。このため,4:30−6:00頃の期間に周波数偏差Δfが大きくならないようにできている。また,常にPGFやPLFCが上下限値に達しないようにPEWHを制御して,それ以外の期間にも周波数偏差Δfが大きくならないようにできた。 On the other hand, when the control method of the present invention is applied, the frequency deviation Δf is always within the control target width as shown in FIG. Figure 10 (c) and a comparison of FIG. 11 (c), the reversed reduced in the vicinity of 0:00 to P EWH 4: 00-6: 00 is increased in the vicinity of the minimum value of the total demand P L as a result of 2500MW More. For this reason, the total power output P VG that can be adjusted for output does not reach the lower limit C VGmin , and a reduction margin remains. For this reason, the frequency deviation Δf is prevented from becoming large during the period of about 4:30 to 6:00. Also, always controls the P EWH as P GF and P LFC does not reach the upper limit value, it was also so that the frequency deviation Δf is not increased in other periods.

図10(d)(e)と図11(d)(e)を比較すると,ある一台の電気温水器に着目すると,本発明の制御法を適用しない場合は23:00過ぎにオンして,貯湯槽内の水が沸きあがってγが零になった時点でオフしている。これに対し本発明の制御法を適用した場合は,TSOからのγon, γoff指令に従いオン・オフを5回繰り返しているが,最終的には貯湯槽内の水が沸きあがってgが零になった。 When comparing FIG. 10 (d) (e) and FIG. 11 (d) (e), focusing on one electric water heater, when the control method of the present invention is not applied, it turns on after 23:00. , It turns off when the water in the hot water tank boils and γ becomes zero. On the other hand, when the control method of the present invention is applied, ON / OFF is repeated five times in accordance with the γ on and γ off commands from the TSO, but eventually the water in the hot water tank boils up and g becomes It became zero.

以上のような計算を2006年の1年間の風速データを用いて各日の深夜時間について,導入された風力発電設備の総容量を変化させて実施した。その結果得られた,周波数偏差|Δf|の最大値と風力発電設備の総容量との関係を図12に示す。
図12中、12aは本発明の制御法を適用しない場合の特性を表し、12bは本発明の制御法を適用した場合の特性を表す。
本発明の制御法を適用しない場合は風力発電設備の総容量が240MWでも最大0.45Hzの周波数偏差が発生してしまうが,本発明の制御法を適用した場合は風力発電設備の総容量が705MWでも最大0.35Hzの周波数偏差しか生じないという結果になった。以上より,本発明の方法で電気温水器群を制御することで,風力発電設備の導入可能量が飛躍的に増加することがわかった。
The above calculation was carried out by using the wind speed data for one year in 2006, and changing the total capacity of the installed wind power generation facilities for midnight hours of each day. FIG. 12 shows the relationship between the maximum value of the frequency deviation | Δf | and the total capacity of the wind power generation equipment obtained as a result.
In FIG. 12, 12a represents a characteristic when the control method of the present invention is not applied, and 12b represents a characteristic when the control method of the present invention is applied.
When the control method of the present invention is not applied, a frequency deviation of a maximum of 0.45 Hz occurs even if the total capacity of the wind power generation facility is 240 MW. However, when the control method of the present invention is applied, the total capacity of the wind power generation facility is As a result, even at 705 MW, only a maximum frequency deviation of 0.35 Hz occurred. From the above, it was found that the amount of wind power generation facilities that can be introduced dramatically increases by controlling the electric water heater group by the method of the present invention.

TSO 上位の系統運用装置
DSO ローカルエリアの系統運用装置
DAC 家庭用空調機
CAC 商業用空調機
cl 可制御負荷
cl−1 負荷制御部
cl−2 指定時間内の将来消費電力平均値pfut演算手段
cl−5 電力消費率γ=(pfut−pmin)/(pmax−pmin)演算手段
cl−6 消費電力pのサンプリング手段
cl−7 γonとγoffに基づく消費電力制御手段
cl−8 被制御負荷
cl−9 メモリ
TSO Host system operation device DSO Local area system operation device DAC Home air conditioner CAC Commercial air conditioner cl Controllable load cl-1 Load control unit cl-2 Future power consumption average value p ft calculation means cl within specified time -5 power consumption rate γ = (p fut -p min) / (p max -p min) power based on sampling means cl-7 gamma on the gamma off computing means cl-6 power p controller cl-8 Controlled load cl-9 memory

Claims (2)

配電網は、少なくとも、自負荷の消費電力を制御する制御手段を備えた任意数の可制御負荷を含むと共に、前記配電網を制御する系統制御装置を備え、
前記可制御負荷は、実測データに基づき指定時間内の将来消費電力平均値pfutを演算する将来消費電力平均値pfut演算手段、最大消費電力pmaxを記憶する最大消費電力pmax記憶手段、最小消費電力pminを記憶する最小消費電力pmin記憶手段、電力消費率γ=(pfut−pmin)/(pmax−pmin)を演算する電力消費率γ演算手段、可制御負荷自身の消費電力pを記憶する記憶手段、前記最大消費電力pmax、前記最小消費電力pmin、前記電力消費率γ、前記消費電力pを系統制御装置に送信する送信手段,系統運用装置で作成した最大化閾値γonと最小化閾値γoffに基づき消費電力を制御する消費電力制御手段を備え、
前記系統制御装置は、各可制御負荷から送信された、前記最大消費電力pmax、前記最小消費電力pmin、前記電力消費率γ、前記消費電力pに基づき電力消費率γ対消費電力上げ代pmax−p分布ヒストグラムおよび電力消費率γ対消費電力下げ代pmin−p分布ヒストグラムを作成する電力消費率γ対消費電力上げ代pmax−p分布ヒストグラムおよび電力消費率γ対消費電力下げ代pmin−p分布ヒストグラム作成手段、および、
系統の運用上必要な消費電力調整量の総量ΔPを求め、前記消費電力調整量の総量ΔPに基づき電力消費率の最大化閾値γonと最小化閾値γoffを前記電力消費率γ対消費電力上げ代pmax−p分布ヒストグラムおよび電力消費率γ対消費電力下げ代pmin−p分布ヒストグラムを用いて求める演算手段を備え、
前記最大化閾値γonと最小化閾値γoffを前記可制御負荷へ送信するように構成したことを特徴とする直接負荷制御システム。
The power distribution network includes at least an arbitrary number of controllable loads including control means for controlling power consumption of the own load, and includes a system control device for controlling the power distribution network,
The controllable load, future power mean value p fut calculating means for calculating a future power average value p fut within a specified time based on actual measurement data, the maximum power consumption p max storing means for storing the maximum power consumption p max, lowest power p min storing means, the power consumption rate γ = (p fut -p min) / (p max -p min) power consumption rate gamma calculating means for calculating a storing the lowest power p min, the controllable load itself Created by storage means for storing power consumption p, transmission means for transmitting the maximum power consumption p max , minimum power consumption p min , power consumption rate γ, power consumption p to the system control device, and system operation device Power consumption control means for controlling power consumption based on the maximum threshold value γ on and the minimum threshold value γ off ,
The system controller transmits the power consumption rate γ to the power consumption increase based on the maximum power consumption p max , the minimum power consumption p min , the power consumption rate γ, and the power consumption p transmitted from each controllable load. p max -p distribution histogram and power consumption rate γ vs. power consumption reduction allowance p min -p distribution histogram and power consumption rate γ vs. power consumption reduction allowance p max -p distribution histogram and power consumption rate γ vs. power consumption reduction allowance p min -p distribution histogram creation means, and
A total amount ΔP of power consumption adjustment amount necessary for system operation is obtained, and a power consumption rate maximization threshold γ on and a minimization threshold γ off are calculated based on the power consumption adjustment amount ΔP and the power consumption rate γ versus power consumption. A calculation means for obtaining using an increase margin p max -p distribution histogram and a power consumption rate γ vs. power consumption decrease margin p min -p distribution histogram;
A direct load control system configured to transmit the maximization threshold γ on and the minimization threshold γ off to the controllable load.
前記系統制御装置はローカルエリアの系統運用装置および広域の上位の系統運用装置からなり、
任意数の可制御負荷の制御系は直近のローカルエリアの系統運用装置の制御系に接続され、任意数の前記ローカルエリアの系統運用装置は前記広域の上位の系統運用装置の制御系に接続され、
前記ローカルエリアの系統運用装置は、該装置内の電力消費率γ対消費電力上げ代pmax−p分布ヒストグラムおよび電力消費率γ対消費電力下げ代pmin−p分布ヒストグラム作成手段により、前記最大消費電力pmax、前記最小消費電力pmin、前記電力消費率γ、前記消費電力pに基づき電力消費率γ対消費電力上げ代pmax−p分布ヒストグラムおよび電力消費率γ対消費電力下げ代pmin−p分布ヒストグラムを作成し、
前記広域の上位の系統運用装置は、該装置内の演算手段により、前記電力消費率γ対消費電力上げ代pmax−p分布ヒストグラムおよび電力消費率γ対消費電力下げ代pmin−p分布ヒストグラムに基づき電力消費率γ対消費電力上げ代pmax−p分布と電力消費率γ対消費電力下げ代pmin−p分布の和ヒストグラムをそれぞれ求め、前記系統の運用上必要な消費電力調整量の総量ΔPに基づき電力消費率の最大化閾値γonと最小化閾値γoffを前記和ヒストグラムを用いて求め、前記最大化閾値γonと最小化閾値γoffを前記ローカルエリアの系統運用装置へ送信し、
前記ローカルエリアの系統運用装置は前記最大化閾値γonと最小化閾値γoffを前記可制御負荷へ送信し、
前記可制御負荷は、前記最大化閾値γonと最小化閾値γoffに基づき消費電力を制御する
ことを特徴とする請求項1記載の直接負荷制御システム。
The system control device comprises a local area system operation device and a wide area upper system operation device,
An arbitrary number of controllable load control systems are connected to the control system of the system operation device in the nearest local area, and an arbitrary number of system operation devices in the local area are connected to the control system of the upper system operation device in the wide area. ,
The local area system operation device uses the power consumption rate γ vs. power consumption increase margin p max -p distribution histogram and the power consumption rate γ vs. power consumption reduction margin p min -p distribution histogram creation means in the device, Based on the power consumption p max , the minimum power consumption p min , the power consumption rate γ, and the power consumption p, the power consumption rate γ vs. power consumption increase allowance p max -p distribution histogram and power consumption rate γ vs. power consumption reduction allowance p create a min- p distribution histogram,
The upper-level system operation device in the wide area has the power consumption rate γ vs. power consumption increase margin p max -p distribution histogram and the power consumption rate γ vs. power consumption reduction margin p min -p distribution histogram by the calculation means in the device. The power consumption rate γ vs. power consumption increase allowance p max -p distribution and the power consumption rate γ vs. power consumption reduction allowance p min -p distribution sum histograms are respectively obtained, and the power consumption adjustment amount necessary for operation of the system is calculated. Based on the total amount ΔP, the power consumption rate maximization threshold γ on and the minimization threshold γ off are obtained using the sum histogram, and the maximization threshold γ on and the minimization threshold γ off are transmitted to the local area system operation device. And
The local area system operation device transmits the maximization threshold γ on and the minimization threshold γ off to the controllable load,
The direct load control system according to claim 1, wherein the controllable load controls power consumption based on the maximization threshold γ on and the minimization threshold γ off .
JP2009019063A 2008-08-13 2009-01-30 Direct load control system Expired - Fee Related JP5110603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019063A JP5110603B2 (en) 2008-08-13 2009-01-30 Direct load control system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008208293 2008-08-13
JP2008208293 2008-08-13
JP2009019063A JP5110603B2 (en) 2008-08-13 2009-01-30 Direct load control system

Publications (2)

Publication Number Publication Date
JP2010068704A JP2010068704A (en) 2010-03-25
JP5110603B2 true JP5110603B2 (en) 2012-12-26

Family

ID=42193784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019063A Expired - Fee Related JP5110603B2 (en) 2008-08-13 2009-01-30 Direct load control system

Country Status (1)

Country Link
JP (1) JP5110603B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8301311B2 (en) * 2009-07-06 2012-10-30 Siemens Aktiengesellschaft Frequency-responsive wind turbine output control
JP5268977B2 (en) * 2010-03-15 2013-08-21 中国電力株式会社 Power supply system control method and power supply system
JP5415347B2 (en) * 2010-04-16 2014-02-12 中国電力株式会社 Power supply system control method and power supply system
CN102529737B (en) 2010-11-25 2014-07-09 株式会社电装 Electricity demand estimation device for estimating consumption of electrical power during movement of electric car, has estimation portion provided in vehicle to estimate electricity demand for drive of vehicle
JP5663280B2 (en) * 2010-11-26 2015-02-04 京セラ株式会社 Control apparatus and control method
JP5457407B2 (en) * 2011-08-23 2014-04-02 株式会社日立製作所 Power system load leveling system
JP5925791B2 (en) * 2011-09-26 2016-05-25 京セラ株式会社 Power management system, power management method and host power management apparatus
JP5318239B2 (en) * 2012-03-14 2013-10-16 中国電力株式会社 Power system supply and demand control method and information processing apparatus
CN102780219B (en) * 2012-05-17 2014-01-29 清华大学 Method for discriminating wind power digestion capability from multiple dimensions based on wind power operation simulation
CN103257571B (en) * 2013-04-22 2015-01-28 东南大学 Air conditioning load control strategy making method based on direct load control
CN103259285B (en) * 2013-05-03 2015-04-29 国家电网公司 Method for optimizing short running of electric power system comprising large-scale wind power
CN103259262B (en) * 2013-05-03 2015-07-22 国家电网公司 Method for optimizing maintenance plan of electric power system comprising large-scale wind power
CN103762619B (en) * 2014-02-12 2016-04-20 国家电网公司 A kind of nuclear power based on peak load regulation network capacitance balance participates in peak load regulation network determination methods
CN104466951A (en) * 2014-11-24 2015-03-25 珠海格力电器股份有限公司 Control method and device for automatically detecting and adjusting loads
WO2016084347A1 (en) 2014-11-25 2016-06-02 日本電気株式会社 Energy management apparatus, energy management method, and program recording medium
US10211634B2 (en) * 2016-02-24 2019-02-19 Mitsubishi Electric Research Laboratories, Inc. Dynamic state estimation of power distribution system
JP7184716B2 (en) * 2019-08-30 2022-12-06 株式会社日立製作所 Distributed resource adjustability management device and adjustability management method
CN110989394B (en) * 2019-12-31 2021-07-20 海信集团有限公司 Power control method and device for shared household appliances
JP7450504B2 (en) 2020-09-16 2024-03-15 三菱電機株式会社 Grid stabilization system and grid stabilization method
CN114597870B (en) * 2022-03-18 2022-11-11 安徽领电智能科技有限公司 Intelligent power distribution system of building equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004364463A (en) * 2003-06-06 2004-12-24 Sumitomo Electric Ind Ltd Power controlling system
JP4019150B2 (en) * 2004-03-17 2007-12-12 独立行政法人産業技術総合研究所 Distribution system information monitoring system

Also Published As

Publication number Publication date
JP2010068704A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
JP5110603B2 (en) Direct load control system
Shi et al. Dynamic demand control for system frequency regulation: Concept review, algorithm comparison, and future vision
US9261284B2 (en) Operation planning method, and heat pump hot water supply and heating system operation method
US8972073B2 (en) Operation planning method, operation planning device, heat pump hot water supply system operation method, and heat pump hot water supply and heating system operation method
KR101408404B1 (en) System and method for estimating and providing dispatchable operating reserve energy capacity through use of active load management
US9677784B2 (en) Heat pump operation method and heat pump system
CN110729726B (en) Intelligent community energy optimization scheduling method and system
Wang et al. Optimal coordination control strategy of hybrid energy storage systems for tie-line smoothing services in integrated community energy systems
WO2012047898A2 (en) Dynamic control of small-scale electrical loads for matching variations in electric utility supply
Bhattarai et al. Demand flexibility from residential heat pump
Cheng et al. Performance of industrial melting pots in the provision of dynamic frequency response in the Great Britain power system
JP2020184881A (en) Energy management system, energy management method, and computer program
JP7285053B2 (en) Power supply and demand control device, power supply and demand control system, and power supply and demand control method
Abou Daher et al. Improve the HVAC contribution in wind power smoothing
CN107785932B (en) Energy real-time balance control system based on phase change heat storage and control method thereof
US20190089161A1 (en) Systems and methods for integrating distributed energy resources
JP5779417B2 (en) Operation management apparatus, operation management method, and operation management program
CN116169723A (en) Voltage control method and related device for stabilizing uncertainty of photovoltaic power generation
JP2017050911A (en) Operation plan calculation device and calculation method, and computer program
Paudyal et al. Incentive-based residential energy optimization considering comfort and voltage impacts
Mohammad et al. Optimization of thermostatically controlled appliances to minimize energy consumption cost based on real-time pricing
Yazdkhasti et al. Demand side management using model-free fuzzy controller in a direct load control program
US10199826B2 (en) System and method for combining load response and energy storage for grid regulation
JP2022167768A (en) Output control device, output control program, and solar self-consumption system using the same
GB2607639A (en) A system for controlling energy supply and/or consumption from an energy network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees