JP5053531B2 - Fresnel lens - Google Patents

Fresnel lens Download PDF

Info

Publication number
JP5053531B2
JP5053531B2 JP2005266321A JP2005266321A JP5053531B2 JP 5053531 B2 JP5053531 B2 JP 5053531B2 JP 2005266321 A JP2005266321 A JP 2005266321A JP 2005266321 A JP2005266321 A JP 2005266321A JP 5053531 B2 JP5053531 B2 JP 5053531B2
Authority
JP
Japan
Prior art keywords
prism
fresnel lens
degrees
total reflection
deflection angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005266321A
Other languages
Japanese (ja)
Other versions
JP2007079082A (en
Inventor
貴志 天野
恒久 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005266321A priority Critical patent/JP5053531B2/en
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US12/063,042 priority patent/US7701648B2/en
Priority to RU2008109316/28A priority patent/RU2008109316A/en
Priority to EP06803349A priority patent/EP1932030A4/en
Priority to KR1020087006221A priority patent/KR20080038405A/en
Priority to MX2008003429A priority patent/MX2008003429A/en
Priority to PCT/US2006/035335 priority patent/WO2007033089A1/en
Priority to CA002622126A priority patent/CA2622126A1/en
Priority to CN2006800338558A priority patent/CN101263406B/en
Priority to BRPI0615820-0A priority patent/BRPI0615820A2/en
Publication of JP2007079082A publication Critical patent/JP2007079082A/en
Application granted granted Critical
Publication of JP5053531B2 publication Critical patent/JP5053531B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • G03B21/625Lenticular translucent screens
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Lenses (AREA)
  • Planar Illumination Modules (AREA)

Description

本発明はフレネルレンズに関する。   The present invention relates to a Fresnel lens.

フレネルレンズは、凸レンズまたは凹レンズの傾斜面を、同心円状または平行に並べた複数のプリズムによる不連続な傾斜面に置き換えることにより、レンズの厚みを傾斜を実現するに必要最小限の厚みとして軽量でコンパクトな平板状のレンズとしたものである。   The Fresnel lens is a lightweight lens with a minimum thickness required to achieve tilting by replacing the inclined surface of a convex or concave lens with a discontinuous inclined surface with multiple concentric or parallel prisms. It is a compact flat lens.

フレネルレンズは、例えば液晶表示装置のバックライトに用いるレンズ(例えば下記特許文献2参照)のように、点光源からの光を平行光線とするため、およびこれとは逆に、太陽光発電装置における集光レンズ(例えば下記特許文献3)のように、平行光線を集光するため等に広く用いられている。   A Fresnel lens, for example, a lens used for a backlight of a liquid crystal display device (for example, see Patent Document 2 below) is used to convert light from a point light source into parallel rays, and on the contrary, in a solar power generation device. Like a condensing lens (for example, the following patent document 3), it is widely used for condensing parallel rays.

F値(焦点距離/レンズ径)の小さいフレネルレンズでは、光軸から離れたレンズの周辺部で光を曲げる角度(偏角:Deviation Angle)が大きくなる。そのような区域ではプリズムの斜面の傾斜が大きくなり屈折界面への入射角が大きくなるため屈折界面での反射の割合が大きくなって透過率(Transmittance)が低下する。そこで、大きい偏角が必要とされる区域ではプリズムの斜面で全反射させた後垂直面で屈折させるようにプリズムの頂角(Vertex Angle)を設計することで透過率を向上させることが知られており、例えば下記特許文献1,2,4にもそのようなフレネルレンズが記載されている。   In a Fresnel lens having a small F value (focal length / lens diameter), the angle (deviation angle) at which light is bent at the periphery of the lens far from the optical axis is large. In such an area, the slope of the prism becomes large and the incident angle to the refractive interface increases, so that the ratio of reflection at the refractive interface increases and the transmittance decreases. Therefore, in areas where a large declination is required, it is known that the transmittance can be improved by designing the vertex angle of the prism so that it is refracted on the vertical surface after being totally reflected by the slope of the prism. For example, Patent Documents 1, 2, and 4 listed below also describe such Fresnel lenses.

米国特許4,755,921US Pat. No. 4,755,921 特開2002−221605号公報JP 2002-221605 A 特開2004−172255号公報JP 2004-172255 A 米国特許4,337,759US Pat. No. 4,337,759

本発明は、従来よりも透過率を改善したプリズムを用いたフレネルレンズを提供する。   The present invention provides a Fresnel lens using a prism with improved transmittance compared to the prior art.

本発明によれば、複数のプリズムからなるフレネルレンズであって、該複数のプリズムの少なくとも一部は、焦点からの入射光またはその反対側からの光軸に平行な入射光をその内部で少なくとも2回全反射させる頂角を有するフレネルレンズが提供される。   According to the present invention, there is provided a Fresnel lens including a plurality of prisms, and at least a part of the plurality of prisms at least receives incident light from a focal point or incident light parallel to the optical axis from the opposite side. A Fresnel lens having an apex angle that is totally reflected twice is provided.

このフレネルレンズは例えば、前記入射光を全反射させない頂角を有するプリズムからなる第1の区域、及びそれに隣接して該入射光をその内部で2回全反射させる頂角を有するプリズムからなる第2の区域を具備する。   The Fresnel lens includes, for example, a first area composed of a prism having an apex angle that does not totally reflect the incident light, and a prism having an apex angle adjacent to the first area that totally reflects the incident light twice. It has two areas.

このフレネルレンズはさらに、前記第2の区域に隣接し、前記入射光をその内部で1回全反射させる頂角を有するプリズムからなる第3の区域をさらに具備する場合ある。   The Fresnel lens may further include a third section that is composed of a prism adjacent to the second section and having an apex angle that totally reflects the incident light once inside.

内部で2回以上全反射させるプリズムを一部に導入することにより、屈折面での反射が少なくなり、透過率を一層改善することができる。
〔発明の実施の形態〕
By introducing a prism that totally reflects twice or more inside, reflection on the refracting surface is reduced, and the transmittance can be further improved.
[Embodiment of the Invention]

太陽光発電装置などに用いられる集光用のフレネルレンズと液晶表示装置のバックライトなどに用いられる平行光線を得るためのフレネルレンズとでは光の向きが異なるのみである。したがって、以下には集光用フレネルレンズについて説明するが、この説明は平行光線を得るためのフレネルレンズに対しても同様に適用できる。また、プリズムが同心円に配置された円形フレネルレンズについて説明するが、プリズムが平行に並べられたリニアフレネルレンズについても同様に適用できる。   Only the direction of light is different between a condensing Fresnel lens used in a solar power generation device or the like and a Fresnel lens for obtaining a parallel light beam used in a backlight of a liquid crystal display device or the like. Therefore, although the following description will be made on a condensing Fresnel lens, this description can be similarly applied to a Fresnel lens for obtaining parallel rays. Although a circular Fresnel lens in which prisms are arranged concentrically will be described, the present invention can be similarly applied to a linear Fresnel lens in which prisms are arranged in parallel.

集光用フレネルレンズは、図1に示すように多数のプリズムを形成するための溝(groove)10が多数形成されたGroove面12から光が入射するタイプと、図2に示すように平面14側から入射するタイプがある。Groove面12から入射するタイプでは図1に示すようにプリズムの垂直面17に近い部位に入射した光16は垂直面17で全反射して最終的に目的とする焦点位置に集光されず、集光率に寄与しない。このため、太陽光を高効率で集光するためには図2のような平面から入射するタイプが集光率に関しては有効である。然るに、光軸から離れるにつれてプリズムの斜面18の傾斜が急になり、それにつれて界面で起す反射の割合が多くなり集光率の低下を招く。そこで、光軸から離れた部分については図3のごとくに斜面18で全反射した後垂直面17で屈折させるタイプのプリズムを用いた設計がなされてきた。これにより、高い集光率が得ることが可能である。特に焦点距離とレンズの直径の比で表されるF値(焦点距離/レンズ径)が小さくなる領域で特に有効で屈折型フレネルレンズより優れた集光率を得ることができる。   The condensing Fresnel lens has a type in which light is incident from a Groove surface 12 in which a large number of grooves 10 for forming a large number of prisms are formed as shown in FIG. 1, and a flat surface 14 as shown in FIG. There is a type that enters from the side. In the type incident from the Groove surface 12, as shown in FIG. 1, the light 16 incident on the portion close to the vertical surface 17 of the prism is totally reflected by the vertical surface 17 and is not finally collected at the target focal position. Does not contribute to the light collection rate. For this reason, in order to condense sunlight with high efficiency, the type of incident light from the plane as shown in FIG. However, as the distance from the optical axis increases, the slope 18 of the prism becomes steeper, and as a result, the ratio of reflection occurring at the interface increases, leading to a reduction in the light collection rate. Therefore, the part away from the optical axis has been designed using a prism of the type that is totally reflected by the inclined surface 18 and refracted by the vertical surface 17 as shown in FIG. Thereby, a high condensing rate can be obtained. In particular, in a region where the F value (focal length / lens diameter) represented by the ratio of the focal length and the lens diameter is small, a light collection rate that is particularly effective and superior to a refractive Fresnel lens can be obtained.

ところで、これまで利用されてきた全反射型のプリズムでは図4に示すように、平面aに垂直に入射した光は、斜面cで1回全反射を起し、垂直面bで屈折を起して焦点に向かう。   By the way, in the total reflection type prism that has been used so far, as shown in FIG. 4, light incident perpendicularly to the plane a undergoes total reflection once on the inclined surface c and refracts on the vertical surface b. To focus.

これに対して、図5に示すようなプリズムでは、平面aに垂直に入射した光は斜面cで全反射を起し、さらに垂直面bで2回目の全反射を生じて、斜面cで屈折を起して焦点に向かう。このようなプリズムでは、同じ偏角を得るのに、屈折の際の入射角が小さくなり、フレネル反射によるロスが少なくなる。これにより、従来の内部1回の全反射を起すプリズムを備えた反射屈折型フレネルレンズに比べて、内部で2回以上の全反射を起すプリズムを備えた反射屈折型フレネルレンズは高い集光効率が得られることが期待される。   On the other hand, in the prism as shown in FIG. 5, the light incident perpendicularly to the plane a undergoes total reflection at the inclined surface c, and further causes the second total reflection at the vertical surface b, and is refracted at the inclined surface c. To go to the focus. In such a prism, in order to obtain the same declination, the incident angle at the time of refraction is reduced, and the loss due to Fresnel reflection is reduced. As a result, compared with the conventional catadioptric Fresnel lens having a prism that causes total internal reflection once, the catadioptric Fresnel lens having a prism that causes total internal reflection twice or more has a higher light collection efficiency. Is expected to be obtained.

図6に示す屈折型の場合、偏角βは、プリズムの頂角をα、プリズムの材料の屈折率をnとするとき
β=sin-1(nsinα)−α
となる。
In the case of the refraction type shown in FIG. 6, the declination β is β = sin −1 (nsin α) −α where α is the apex angle of the prism and n is the refractive index of the prism material.
It becomes.

図4に示す1回全反射の場合の偏角β(deg)は、
β=90−sin-1(nsin(2α−90))
となり、
図5に示す2回全反射の場合の偏角βは、
β=α−sin-1(3α−180)
となる。
The declination β (deg) in the case of one-time total reflection shown in FIG.
β = 90−sin −1 (nsin (2α−90))
And
The declination β in the case of two-time total reflection shown in FIG.
β = α-sin −1 (3α−180)
It becomes.

また、一般にmを整数として、mが偶数でm回の全反射が内部で起こる場合の偏角βは、
β=α−sin-1(nsin((m+1)α−90m))
となり、
mが奇数の場合は、
β=90−sin-1(nsin(m+1)α−90m))
となる。
In general, when m is an integer, and m is an even number and m total reflections occur internally, the declination β is
β = α−sin −1 (nsin ((m + 1) α−90 m))
And
If m is odd,
β = 90−sin −1 (nsin (m + 1) α−90m))
It becomes.

表1〜表5に屈折率1.49のアクリル樹脂の場合の、それぞれ屈折型、1回全反射型、2回全反射型、3回全反射型、および4回全反射型のプリズムについて、頂角に対する偏角βおよび透過率Iの計算結果を示す。表中「※」を記した範囲は、隣接するプリズムとの干渉のため透過率が低下する範囲を示す。また、これらをグラフにしたものを図7に示す。   In the case of acrylic resin having a refractive index of 1.49 in Tables 1 to 5, for prisms of refraction type, once total reflection type, two times total reflection type, three times total reflection type, and four times total reflection type, The calculation results of the deflection angle β and transmittance I with respect to the apex angle are shown. The range marked with “*” in the table indicates the range in which the transmittance decreases due to interference with adjacent prisms. FIG. 7 shows a graph of these.

Figure 0005053531
Figure 0005053531

Figure 0005053531
Figure 0005053531

Figure 0005053531
Figure 0005053531

Figure 0005053531
Figure 0005053531

Figure 0005053531
Figure 0005053531

表1と表2を比較すると、従来から明らかなように、偏角βがより大きい範囲では、屈折型のプリズムよりも1回全反射型のプリズムの方がより高い透過率が得られることがわかる。例えば、屈折型プリズムで頂角αを38.5°とすると偏角βは30.0°となり、このときの透過率Iが0.813となるのに対して、同じ偏角を与える頂角αが62.7°の1回全反射型では透過率Iがそれよりも高い0.875となる。   When Table 1 and Table 2 are compared, as is clear from the prior art, in the range where the deflection angle β is larger, the one-time total reflection prism can obtain a higher transmittance than the refractive prism. Recognize. For example, when the apex angle α is 38.5 ° with a refractive prism, the declination β is 30.0 °, and the transmittance I at this time is 0.813, whereas the apex angle that gives the same declination In the one-time total reflection type in which α is 62.7 °, the transmittance I is 0.875, which is higher than that.

さらに表3を参照すると、2回全反射型でも頂角αを68°とすると偏角β=30°が得られ、このときの透過率Iは0.914とさらに高いことが注目される。   Further, referring to Table 3, it is noted that even in the two-time total reflection type, when the apex angle α is 68 °, the deflection angle β = 30 ° is obtained, and the transmittance I at this time is 0.914, which is even higher.

図8は横軸に偏角βを、たて軸に透過率Iをとり、それぞれのタイプのプリズムの透過率Iを偏角βに対してプロットしたものである。図8から明らかなように、屈折率1.49のアクリル樹脂の場合、β<19.5°の区域20では屈折型のプリズムが最も透過率Iが高く19.5°<β<31.0°の区域22では2回全反射型のプリズムが最も透過率Iが高く、31.0°<βの区域24では1回全反射型のプリズムが最も透過率Iが高いことがわかる。   FIG. 8 plots the transmissivity I on the horizontal axis and transmissivity I on the vertical axis, and plots the transmissivity I of each type of prism against the declination β. As is clear from FIG. 8, in the case of an acrylic resin having a refractive index of 1.49, the refractive prism has the highest transmittance I in the region 20 where β <19.5 °, and 19.5 ° <β <31.0. It can be seen that the two-time total reflection type prism has the highest transmittance I in the region 22 at °, and the one-time total reflection type prism has the highest transmittance I in the region 24 at 31.0 ° <β.

表6には、種々のF値のレンズについて、屈折型のプリズムのみを用いた場合(従来技術1と表記)、20°≦βで1回全反射プリズムを用いたもの(従来技術2と表記)、および本発明により、20°≦β≦29°で2回全反射プリズム、29°≦βで1回全反射プリズムを使用したもの(本発明と表記)の集光率を示す。また、図9には、それをグラフ化したものを示す。   Table 6 shows lenses having various F-numbers when only a refraction prism is used (referred to as Prior Art 1) and a total reflection prism is used once at 20 ° ≦ β (referred to as Prior Art 2). ), And according to the present invention, the light condensing rate of 20 ° ≦ β ≦ 29 ° using a total reflection prism twice and 29 ° ≦ β using a total reflection prism once (denoted as the present invention) is shown. FIG. 9 shows a graph of this.

Figure 0005053531
Figure 0005053531

表6および図9から明らかなように、F値1.00以下のレンズでは一部に2回全反射型のプリズムを用いた本発明のフレネルレンズが高い集光率を示すことがわかる。   As is apparent from Table 6 and FIG. 9, it can be seen that the lens having the F value of 1.00 or less has a high light collection rate when the Fresnel lens of the present invention using a partially reflecting prism in part is high.

屈折率1.49のアクリル樹脂を用いて、200mm角、焦点距離200mmの正方形の円形フレネルレンズ(同心円のフレネルレンズを正方形にカットしたもの)を作る場合について説明する。200mm角のレンズは対角が282mmとなり、F値は正方形の対角線において0.709となり、1以下である。したがって、屈折だけのプリズムではレンズ全体の集光効率はかなり下がってしまう。そこで、光軸より離れた部分に全反射プリズムを導入する。屈折プリズムと反射プリズムの光透過率が逆転する位置を境に内部で2回の全反射を起す全反射プリズム、及び1回の全反射プリズムを図10のように配置する。図10で、偏角βが0度から19.5度までは屈折率のプリズムを用い、19.5度から31度までは2回の全反射を起すプリズムを配置し、31度から35.26度までは1回の全反射プリズムを配置する。このようにしてできたフレネルレンズは屈折プリズムと1回全反射プリズムだけのものより集光効率が優れている。   A case of making a square circular Fresnel lens (concentric Fresnel lens cut into a square) having a 200 mm square and a focal length of 200 mm using an acrylic resin having a refractive index of 1.49 will be described. The 200 mm square lens has a diagonal of 282 mm, and the F value is 0.709 on a square diagonal, which is 1 or less. Therefore, the light collection efficiency of the entire lens is considerably lowered with a refraction-only prism. Therefore, a total reflection prism is introduced in a portion away from the optical axis. A total reflection prism that causes two total internal reflections at a position where the light transmittances of the refraction prism and the reflection prism are reversed are arranged as shown in FIG. In FIG. 10, a prism having a refractive index is used when the declination β is 0 ° to 19.5 °, and a prism that causes two total reflections is arranged from 19.5 ° to 31 °. One total reflection prism is arranged up to 26 degrees. The Fresnel lens thus made has better light collection efficiency than a refractive prism and a single total reflection prism.

表7〜9には、屈折率n=1.40のシリコンゴムの場合の屈折型、1回全反射型、および2回全反射型の偏角βと透過率Iの計算結果を示す。図11には、各タイプのプリズムについて、透過率Iを偏角βに対してプロットしたものを示す。   Tables 7 to 9 show the calculation results of the deflection angle β and the transmittance I of the refraction type, the once total reflection type, and the twice total reflection type in the case of silicon rubber having a refractive index n = 1.40. FIG. 11 shows the transmittance I plotted against the deflection angle β for each type of prism.

Figure 0005053531
Figure 0005053531

Figure 0005053531
Figure 0005053531

Figure 0005053531
Figure 0005053531

図11から、n=1.40のシリコンゴムの場合、図12に示すように、β<18.2°の区域30では屈折型のプリズムを用い、18.2°<β<31.8°の区域32では2回全反射型のプリズムを用い、31.8°<βの区域34では1回全反射型のプリズムを用いれば高い集光率のフレネルレンズが得られる。   From FIG. 11, in the case of silicon rubber with n = 1.40, as shown in FIG. 12, a refractive prism is used in the region 30 where β <18.2 °, and 18.2 ° <β <31.8 °. If the total reflection type prism is used twice in the area 32 and the total reflection type prism is used once in the area 34 where 31.8 ° <β, a Fresnel lens having a high light collection rate can be obtained.

groove面側から入射する場合の集光用フレネルレンズを示す図である。It is a figure which shows the Fresnel lens for condensing in the case of injecting from the groove surface side. 平面側から入射する場合の集光用フレネルレンズを示す図である。It is a figure which shows the Fresnel lens for condensing in the case of entering from a plane side. 1回全反射型プリズムを一部に用いる集光用フレネルレンズを示す図である。It is a figure which shows the Fresnel lens for condensing which uses a 1 time total reflection type prism for a part. 1回全反射型プリズムの光路を説明する図である。It is a figure explaining the optical path of a 1 time total reflection type prism. 2回全反射型プリズムの光路を説明する図である。It is a figure explaining the optical path of a 2 times total reflection type prism. 屈折型プリズムの光路を説明する図である。It is a figure explaining the optical path of a refraction type prism. 偏角βと透過率Iを頂角αに対してプロットしたグラフである。6 is a graph in which the deflection angle β and the transmittance I are plotted against the apex angle α. 各タイプのプリズムの透過率Iを偏角βに対してプロットしたグラフである。It is the graph which plotted the transmittance | permeability I of each type of prism with respect to the deflection angle (beta). 本発明のフレネルレンズと従来技術のフレネルレンズの集光率を比較したグラフである。It is the graph which compared the condensing rate of the Fresnel lens of this invention, and the Fresnel lens of a prior art. 屈折率1.49のアクリル樹脂を用いた場合の本発明のフレネルレンズの一例を示す図である。It is a figure which shows an example of the Fresnel lens of this invention at the time of using the acrylic resin of refractive index 1.49. 屈折率1.40のシリコンゴムを用いた場合の各タイプのプリズムの透過率Iを偏角βに対してプロットしたグラフである。It is the graph which plotted the transmittance | permeability I of each type of prism at the time of using the silicon rubber of refractive index 1.40 with respect to the declination (beta). 屈折率1.40のシリコンゴムを用いた場合の本発明のフレネルレンズの一例を示す図である。It is a figure which shows an example of the Fresnel lens of this invention at the time of using the silicon rubber of refractive index 1.40.

Claims (4)

複数のプリズムからなるフレネルレンズであって、レンズの中央に位置して焦点からの入射光またはその反対側からの光軸に平行な入射光を全反射させない頂角を有するプリズムからなる第1の区域、及びその外側に位置して該入射光をプリズムの内部で2回全反射させる頂角を有するプリズムからなる第2の区域を具備する、フレネルレンズ。 A Fresnel lens comprising a plurality of prisms, the first prism comprising an apex angle that is located at the center of the lens and does not totally reflect incident light from a focal point or incident light parallel to the optical axis from the opposite side . A Fresnel lens comprising a zone and a second zone consisting of a prism located outside and having an apex angle that totally reflects the incident light twice inside the prism . 前記第2の区域のさらに外側に位置し、前記入射光をプリズムの内部で1回全反射させる頂角を有するプリズムからなる第3の区域をさらに具備する請求項記載のフレネルレンズ。 The second and further located outside the zone, the third Fresnel lens of claim 1, further comprising an area consisting of a prism having an apex angle which once totally reflected incident light inside the prism. 屈折率1.485以上1.495未満の材料からなり、前記第1の区域に属するプリズムの偏角は20度以下であり、前記第2の区域に属するプリズムの偏角は19度以上32度以下であり、前記第3の区域に属するプリズムの偏角は30度以上である請求項記載のフレネルレンズ。 It is made of a material having a refractive index of 1.485 or more and less than 1.495, the deflection angle of the prism belonging to the first section is 20 degrees or less, and the deflection angle of the prism belonging to the second section is 19 degrees or more and 32 degrees. The Fresnel lens according to claim 2 , wherein the deflection angle of the prism belonging to the third area is 30 degrees or more. 屈折率1.395以上1.405未満の材料からなり、前記第1の区域に属するプリズムの偏角は19度以下であり、前記第2の区域に属するプリズムの偏角は18度以上32度以下であり、前記第3の区域に属するプリズムの偏角は31度以上である請求項記載のフレネルレンズ。 A prism made of a material having a refractive index of 1.395 or more and less than 1.405, the deflection angle of the prism belonging to the first section is 19 degrees or less, and the deflection angle of the prism belonging to the second section is 18 degrees or more and 32 degrees. 3. The Fresnel lens according to claim 2 , wherein a deflection angle of the prism belonging to the third section is 31 degrees or more.
JP2005266321A 2005-09-14 2005-09-14 Fresnel lens Expired - Fee Related JP5053531B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2005266321A JP5053531B2 (en) 2005-09-14 2005-09-14 Fresnel lens
CN2006800338558A CN101263406B (en) 2005-09-14 2006-09-11 Fresnel lens
EP06803349A EP1932030A4 (en) 2005-09-14 2006-09-11 Fresnel lens
KR1020087006221A KR20080038405A (en) 2005-09-14 2006-09-11 Fresnel lens
MX2008003429A MX2008003429A (en) 2005-09-14 2006-09-11 Fresnel lens.
PCT/US2006/035335 WO2007033089A1 (en) 2005-09-14 2006-09-11 Fresnel lens
US12/063,042 US7701648B2 (en) 2005-09-14 2006-09-11 Fresnel lens
RU2008109316/28A RU2008109316A (en) 2005-09-14 2006-09-11 FRESNEL LENS
BRPI0615820-0A BRPI0615820A2 (en) 2005-09-14 2006-09-11 fresnel lens
CA002622126A CA2622126A1 (en) 2005-09-14 2006-09-11 Fresnel lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005266321A JP5053531B2 (en) 2005-09-14 2005-09-14 Fresnel lens

Publications (2)

Publication Number Publication Date
JP2007079082A JP2007079082A (en) 2007-03-29
JP5053531B2 true JP5053531B2 (en) 2012-10-17

Family

ID=37865271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005266321A Expired - Fee Related JP5053531B2 (en) 2005-09-14 2005-09-14 Fresnel lens

Country Status (10)

Country Link
US (1) US7701648B2 (en)
EP (1) EP1932030A4 (en)
JP (1) JP5053531B2 (en)
KR (1) KR20080038405A (en)
CN (1) CN101263406B (en)
BR (1) BRPI0615820A2 (en)
CA (1) CA2622126A1 (en)
MX (1) MX2008003429A (en)
RU (1) RU2008109316A (en)
WO (1) WO2007033089A1 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2297020C1 (en) * 2005-09-16 2007-04-10 Самсунг Электромеканикс (СЕМКО) Micro-lens array, based on effect of full internal reflection, for wide-angle lighting systems
EP2147339A1 (en) * 2007-05-14 2010-01-27 Heptagon OY Illumination system
WO2008152157A1 (en) * 2007-06-12 2008-12-18 Concentración Solar La Mancha, S.L. Refractive optical system for collecting and concentrating solar energy
JP5248305B2 (en) * 2008-12-26 2013-07-31 日本特殊光学樹脂株式会社 Solar system
CN101561115B (en) * 2009-04-08 2012-07-25 上海三思电子工程有限公司 Design method of ultra-thin lens used for LED
JP5358280B2 (en) * 2009-05-12 2013-12-04 日立コンシューマエレクトロニクス株式会社 Projection board device and transmissive screen used therefor
JP5054725B2 (en) * 2009-05-14 2012-10-24 日本特殊光学樹脂株式会社 Fresnel lens for solar system and solar system
JP5054730B2 (en) * 2009-06-04 2012-10-24 日本特殊光学樹脂株式会社 Fresnel lens for solar system and solar system
CN101995593A (en) * 2009-08-19 2011-03-30 富士迈半导体精密工业(上海)有限公司 Nonimaging condenser lens and solar energy light focusing device
EP2343578A1 (en) * 2009-12-23 2011-07-13 José Vicente Garcia Ortiz A fresnel-type lens
US9097841B2 (en) * 2010-03-12 2015-08-04 Luigi Salvatore Fornari Fresnel lens array with novel lens element profile
DE102010014107A1 (en) * 2010-04-07 2011-10-13 Concentrix Solar Gmbh Optical arrangement for concentration of radiation in solar cell concentrator module, has total internal reflection Fresnel lens region that is assigned with focus arranged in refractive Fresnel lens region
JP6006547B2 (en) * 2011-07-06 2016-10-12 ミネベア株式会社 LIGHTING DEVICE AND LENS SHEET USED FOR THE SAME
US9122000B2 (en) * 2011-08-24 2015-09-01 Minebea Co., Ltd. Illuminator using a combination of pseudo-white LED and lens sheet
JP5192067B2 (en) 2011-09-09 2013-05-08 シャープ株式会社 Fresnel lens
TWI475706B (en) * 2012-01-11 2015-03-01 Nat Univ Chung Hsing A collector and a solar cell module with a collector
JP2013161611A (en) * 2012-02-03 2013-08-19 Optex Fa Co Ltd Ring-shaped lighting device
US20130286653A1 (en) * 2012-04-30 2013-10-31 Qualcomm Mems Technologies, Inc. Multi-beam light engine
US9201228B1 (en) 2013-02-27 2015-12-01 Focal Technologies, Inc. Light processing system
JP6217590B2 (en) * 2013-11-05 2017-10-25 信越化学工業株式会社 UV-curable adhesive organopolysiloxane composition
WO2015086850A1 (en) 2013-12-15 2015-06-18 Vkr Holding A/S Skylight with sunlight pivot
JP6370626B2 (en) * 2014-07-24 2018-08-08 オリンパス株式会社 Illumination optical system, illumination device, and illumination optical element
US10338451B2 (en) 2015-08-03 2019-07-02 Facebook Technologies, Llc Devices and methods for removing zeroth order leakage in beam steering devices
US10459305B2 (en) 2015-08-03 2019-10-29 Facebook Technologies, Llc Time-domain adjustment of phase retardation in a liquid crystal grating for a color display
US10297180B2 (en) 2015-08-03 2019-05-21 Facebook Technologies, Llc Compensation of chromatic dispersion in a tunable beam steering device for improved display
US10274730B2 (en) 2015-08-03 2019-04-30 Facebook Technologies, Llc Display with an embedded eye tracker
US10552676B2 (en) 2015-08-03 2020-02-04 Facebook Technologies, Llc Methods and devices for eye tracking based on depth sensing
JP2017059472A (en) 2015-09-18 2017-03-23 ミネベアミツミ株式会社 Lighting device
US10665942B2 (en) * 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10416454B2 (en) * 2015-10-25 2019-09-17 Facebook Technologies, Llc Combination prism array for focusing light
US10247858B2 (en) 2015-10-25 2019-04-02 Facebook Technologies, Llc Liquid crystal half-wave plate lens
US10203566B2 (en) 2015-12-21 2019-02-12 Facebook Technologies, Llc Enhanced spatial resolution using a segmented electrode array
CN106772718B (en) * 2017-01-16 2018-11-02 广州弥德科技有限公司 Fresnel Lenses and display device with the Fresnel Lenses
CN110376742A (en) 2017-03-23 2019-10-25 华为机器有限公司 Near-eye display and near-eye display system
CN107490816B (en) * 2017-08-04 2019-06-11 广州市焦汇光电科技有限公司 Fully-reflected type Fresnel Lenses

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US540122A (en) * 1895-05-28 taylor
US2117252A (en) * 1935-12-18 1938-05-10 Kapella Ltd Lens for photography and the like
US4337759A (en) * 1979-10-10 1982-07-06 John M. Popovich Radiant energy concentration by optical total internal reflection
JPS62195601A (en) * 1985-09-20 1987-08-28 Nissho Giken Kk Optical direction converter
US4755921A (en) * 1986-04-02 1988-07-05 Minnesota Mining And Manufacturing Company Lens
US4904069A (en) * 1987-12-14 1990-02-27 Ichikoh Industries, Ltd. Fresnel-type aspheric prism lens
WO1995022772A1 (en) * 1994-02-16 1995-08-24 Minnesota Mining And Manufacturing Company Dual grooved fresnel lens for overhead projection
US5871653A (en) * 1996-10-30 1999-02-16 Advanced Materials Engineering Research, Inc. Methods of manufacturing micro-lens array substrates for implementation in flat panel display
JPH11344605A (en) 1998-06-02 1999-12-14 Asahi Chem Ind Co Ltd Linear type fresnel prism plate for natural lighting
JP2000019309A (en) 1998-07-07 2000-01-21 Asahi Chem Ind Co Ltd Fresnel prism plate for lighting and its production
US6046859A (en) * 1998-10-26 2000-04-04 Intel Corporation Segmented lens
ES2157846B1 (en) * 1999-12-02 2002-03-01 Univ Madrid Politecnica DEVICE WITH DISCONTINUOUS LENS WITH INTERNAL TOTAL REFLECTION AND ASPHERIC DIOPTRIC FOR CONCENTRATION OR COLIMATION OF RADIANT ENERGY.
US6821810B1 (en) * 2000-08-07 2004-11-23 Taiwan Semiconductor Manufacturing Company High transmittance overcoat for optimization of long focal length microlens arrays in semiconductor color imagers
JP2002055273A (en) * 2000-08-07 2002-02-20 Enplas Corp Image pickup lens
JP2002221611A (en) * 2001-01-26 2002-08-09 Nippon Tokushu Kogaku Jushi Kk Prism sheet for projection image display device, sheet type optical element, method for manufacturing sheet type optical element and projection image display device
JP2002221605A (en) 2001-01-26 2002-08-09 Sharp Corp Fresnel lens, illumination device and display device which use the same, method for designing fresnel lens and designing device therefor
KR100390435B1 (en) 2001-04-25 2003-07-07 엘지전자 주식회사 Optical system for digital camera
DE10214566B4 (en) 2002-04-02 2007-05-24 G.L.I. Global Light Industries Gmbh Homogeneously parallel light-emitting light-emitting diode
US7102820B2 (en) * 2002-08-16 2006-09-05 Infocus Corporation Flat valley fresnel lens for a display device
US20040112424A1 (en) * 2002-10-03 2004-06-17 Daido Steel Co., Ltd. Solar cell assembly, and photovoltaic solar electric generator of concentrator type
FR2864851A1 (en) * 2004-01-07 2005-07-08 Thomson Licensing Sa Fresnel lens for use in projection display device, has two prisms in one zone and one prism in another zone, each including two sides, where one side of prism in latter zone reflects incident ray along direction different from main axis

Also Published As

Publication number Publication date
RU2008109316A (en) 2009-10-20
US20080204901A1 (en) 2008-08-28
CN101263406A (en) 2008-09-10
KR20080038405A (en) 2008-05-06
EP1932030A1 (en) 2008-06-18
WO2007033089A1 (en) 2007-03-22
CN101263406B (en) 2010-08-11
EP1932030A4 (en) 2010-12-01
US7701648B2 (en) 2010-04-20
CA2622126A1 (en) 2007-03-22
MX2008003429A (en) 2008-03-27
JP2007079082A (en) 2007-03-29
BRPI0615820A2 (en) 2011-05-24

Similar Documents

Publication Publication Date Title
JP5053531B2 (en) Fresnel lens
JP5195656B2 (en) Color separation optical device and image device using the same
JP5678354B2 (en) REFLAXICON apparatus and assembly method thereof
KR101455892B1 (en) Compact Optics for Concentration, Aggregation and Illumination of Light Energy
US20100265720A1 (en) Reflector and system
US20070014035A1 (en) Compact non-imaging light collector
WO2007084518A2 (en) A hybrid primary optical component for optical concentrators
EP2118692A1 (en) Fresnel lens
JP4684322B2 (en) Composite light guide film module
US20050057828A1 (en) Half-round total internal reflection magnifying prism
CN114488499A (en) Condenser lens group, illumination system and projection device
JP2005292570A (en) Diffraction optical device and optical system having the same
EP2343578A1 (en) A fresnel-type lens
US9557526B2 (en) Freeform imaging lens and freeform imaging system using the same
JP2010217142A (en) Optical sensor
JP2005292571A (en) Diffraction optical device and optical system having the same
JPWO2019208407A1 (en) How to manufacture camera modules, optical instruments, and camera modules
WO2012110851A1 (en) A lens with an out-coupling element
RU2222819C2 (en) Gradient lens ( variants )
KR101059761B1 (en) Prism Solar Concentrator
JP2009264615A (en) Solar light collector
Viera-González et al. Optimization design of nonimaging Fresnel lens using total internal reflection prisms for sunlight concentration
US20160147051A1 (en) Miltonian Mirror for Oblique Catoptric Telescopes
US20070076424A1 (en) Backlight module
JP2013109284A (en) Light condensing sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110104

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120410

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees