JP2010217142A - Optical sensor - Google Patents

Optical sensor Download PDF

Info

Publication number
JP2010217142A
JP2010217142A JP2009067570A JP2009067570A JP2010217142A JP 2010217142 A JP2010217142 A JP 2010217142A JP 2009067570 A JP2009067570 A JP 2009067570A JP 2009067570 A JP2009067570 A JP 2009067570A JP 2010217142 A JP2010217142 A JP 2010217142A
Authority
JP
Japan
Prior art keywords
light
lens
light receiving
condenser lens
central axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009067570A
Other languages
Japanese (ja)
Other versions
JP5563230B2 (en
Inventor
Nagayuki Sato
永幸 佐藤
Manabu Mizobuchi
学 溝渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2009067570A priority Critical patent/JP5563230B2/en
Publication of JP2010217142A publication Critical patent/JP2010217142A/en
Application granted granted Critical
Publication of JP5563230B2 publication Critical patent/JP5563230B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical sensor of a simple configuration in which light condensed by a condenser lens is guided without waste toward a light-receiving element through a prism serving as a reflecting body. <P>SOLUTION: In a side-view optical sensor including a condenser lens that condenses light coming from an outside source, a light-receiving element provided so that its light-receiving surface faces in such a direction as to intersect with the optical axis of the condenser lens, and a prism body for reflecting light condensed by the condenser lens and guiding the light toward the light-receiving surface, the condenser lens is optically rotated asymmetrically to the central axis of the beam of light, condensed by the condenser lens, so that the beam of light is incident at an angle equal to or greater than its critical angle with respect to a reflecting surface of the prism body. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、光学センサに係り、より詳しくは集光レンズと反射体とを備え、受光素子の受光面の向きと交差する方向からセンサに到来する光を検出する光学センサに関する。   The present invention relates to an optical sensor, and more particularly to an optical sensor that includes a condensing lens and a reflector, and detects light arriving at the sensor from a direction that intersects the direction of the light receiving surface of the light receiving element.

一般的に知られているサイドビュー型の光学センサの1つに、例えば図5にその概略構成を示すようにレンズ面を検出領域に向けて設けた集光レンズ1と、この集光レンズ1の光軸と交差する向きに受光面2aを向けた受光素子2に向けて、前記集光レンズ1を介して集光された光(光束)を反射する反射体、例えばプリズム体3とを備えて構成したものがある。ちなみに上記プリズム体3は、例えば互いに直交する2つの面の一方を前記集光レンズ1に対峙する入射面、他方の面に光前記受光素子2の受光面に対峙する射出面とし、上記2つの面に対して45度の角度をなす傾斜面を反射面3aとした直角プリズムからなる。   For example, a condensing lens 1 having a lens surface facing a detection region as shown in a schematic configuration in FIG. And a reflector such as a prism body 3 that reflects the light (light beam) collected through the condenser lens 1 toward the light receiving element 2 having the light receiving surface 2a directed in a direction crossing the optical axis of the light. There is something configured. Incidentally, the prism body 3 has, for example, one of two surfaces orthogonal to each other as an incident surface facing the condenser lens 1 and the other surface as an exit surface facing the light receiving surface of the light receiving element 2. It is composed of a right-angle prism having an inclined surface that forms an angle of 45 degrees with respect to the surface as a reflecting surface 3a.

尚、このようなプリズム体3を用いてサイドビューを実現する光学(光電)センサについては、例えば特許文献1の図5に開示されるサイドビューアタッチメントとして知られている。またこのようなプリズム体3を反射体として用いれば、金属蒸着ミラーを用いた場合のように製造コストが高い等の不具合を解消することができる。   Note that an optical (photoelectric) sensor that realizes a side view using such a prism body 3 is known as, for example, a side viewer attachment disclosed in FIG. Moreover, if such a prism body 3 is used as a reflector, it is possible to eliminate problems such as high manufacturing costs as in the case of using a metal vapor deposition mirror.

特開平7−14478号公報Japanese Patent Laid-Open No. 7-14478

ところで前記受光素子2での受光量を多くしてその検出感度を高めるべく、専ら、集光レンズ1の開口面積を、そのセンサ構造の制約の範囲内においてできる限り広くし、また広くした前記集光レンズ1の開口周辺部に入射する光についても無駄なく前記受光素子2の受光面2aに導くようにレンズ設計が行われる。しかしながらこのようにして集光レンズ1のレンズ設計を行った場合、図4に示すように前記集光レンズ1の開口周辺部から入射した光が前記プリズム体3にて反射されずに該プリズム体3を抜け出てしまうと言う不具合が生じる。   By the way, in order to increase the amount of light received by the light receiving element 2 and increase its detection sensitivity, the aperture area of the condensing lens 1 is exclusively made as wide as possible within the limits of the sensor structure, and the collection is made wide. The lens is designed so that light incident on the periphery of the aperture of the optical lens 1 is guided to the light receiving surface 2a of the light receiving element 2 without waste. However, when the lens design of the condensing lens 1 is performed in this way, as shown in FIG. 4, the light incident from the periphery of the opening of the condensing lens 1 is not reflected by the prism body 3 and is not reflected by the prism body. The problem of exiting 3 occurs.

即ち、前記集光レンズ1を通る光は該レンズ1の中心軸Mから離れるに従って大きな角度で曲げられて(屈折して)該集光レンズ1の焦点位置fに向けて絞り込まれる。一方、前記プリズム体3の反射面3aは前記集光レンズ1の中心軸Mに対して傾斜して設けられる。この為、集光レンズ1の周辺部を通り、前記プリズム体3の反射面3aの前記集光レンズ1の主面Lから離れた位置に導かれる光は、前記反射面3aに対する入射角が小さくなり該反射面3aにて全反射されることなく透過する。この結果、前記集光レンズ1の開口面積を広くしたにも拘わらず、前記受光素子2に導き得る光量を多くすることができないと言う問題がある。   That is, the light passing through the condenser lens 1 is bent (refracted) at a larger angle as it is away from the central axis M of the lens 1 and is narrowed down toward the focal position f of the condenser lens 1. On the other hand, the reflecting surface 3 a of the prism body 3 is provided to be inclined with respect to the central axis M of the condenser lens 1. For this reason, the light guided to the position away from the main surface L of the condensing lens 1 of the reflecting surface 3a of the prism body 3 through the periphery of the condensing lens 1 has a small incident angle with respect to the reflecting surface 3a. Therefore, the light is transmitted without being totally reflected by the reflecting surface 3a. As a result, there is a problem that the amount of light that can be guided to the light receiving element 2 cannot be increased in spite of increasing the aperture area of the condenser lens 1.

本発明はこのような事情を考慮してなされたもので、その目的は、集光レンズを介して集光された光を反射体としてのプリズム体を介して、無駄なく受光素子に導くことのできる簡易な構成の光学センサを提供することにある。   The present invention has been made in consideration of such circumstances, and its purpose is to guide light collected through a condenser lens to a light receiving element without waste through a prism body as a reflector. An object of the present invention is to provide an optical sensor having a simple configuration.

上述した目的を達成するべく本発明に係る光学センサは、外部からの光を集光する集光レンズと、この集光レンズの光軸と交差する向きに受光面を向けて設けられた受光素子と、前記集光レンズにて集光された光を反射して前記受光素子の受光面に導くプリズム体とを具備した、いわゆるサイドビュー型のものであって、
特に前記集光レンズにて集光された光束が前記プリズム体の反射面に対してその臨界角以上の角度で入射するように、前記光束の中心軸に対して前記集光レンズを光学的に回転非対称化し、若しくはレンズ中心部よりもレンズ周辺部の焦点距離を長く設定したことを特徴としている。
In order to achieve the above-described object, an optical sensor according to the present invention includes a condensing lens for condensing light from the outside, and a light receiving element provided with a light receiving surface facing in a direction intersecting with the optical axis of the condensing lens. And a prism body that includes a prism body that reflects the light collected by the condenser lens and guides it to the light receiving surface of the light receiving element,
In particular, the condensing lens is optically arranged with respect to the central axis of the light beam so that the light beam collected by the condensing lens is incident on the reflecting surface of the prism body at an angle greater than the critical angle. It is characterized in that it is rotationally asymmetric or the focal length of the lens periphery is set longer than the center of the lens.

ちなみに前記光束の中心軸に対する前記集光レンズの回転非対称化、若しくは焦点距離の設定は、前記集光レンズの中心軸(光学的中心軸)を該集光レンズに入射する前記光束の中心軸からずらして配置することによって、或いは前記集光レンズのレンズ面における曲率を部分的に大きくし、若しくは前記集光レンズの屈折率を部分的に小さくし、当該レンズ部分での焦点距離を長くすることによって達せられる。尚、これらの手法を併用することも勿論可能である。   Incidentally, the rotational asymmetry of the condensing lens with respect to the central axis of the light beam, or the setting of the focal length is performed by setting the central axis (optical central axis) of the condensing lens from the central axis of the light beam incident on the condensing lens. By shifting the position, or by partially increasing the curvature of the lens surface of the condenser lens, or partially reducing the refractive index of the condenser lens, and increasing the focal length of the lens portion. Reached by. Of course, these methods can be used in combination.

前記プリズム体は、例えば互いに直交する2つの面の一方を前記集光レンズに対峙する入射面、他方の面を前記受光素子の受光面に対峙する射出面とし、上記2つの面に対して所定の角度、例えば45度をなす傾斜面を反射面とした直角プリズムである。尚、前記集光レンズおよび前記プリズム体は、これらを一体に成形したものも含む。また前記受光素子は、その受光面に光を導く受光レンズまたは光ファイバを備えたものを含む。   The prism body has, for example, one of two surfaces orthogonal to each other as an incident surface facing the condenser lens and the other surface as an exit surface facing the light receiving surface of the light receiving element. This is a right angle prism having a reflecting surface with an inclined surface forming an angle of 45 degrees, for example. In addition, the said condensing lens and the said prism body include what shape | molded these integrally. The light receiving element includes a light receiving lens or an optical fiber for guiding light to the light receiving surface.

上記構成の光学センサによれば、光束の中心軸に対する集光レンズの回転非対称化、若しくは焦点距離の設定だけで該集光レンズを介した光をプリズム体にて無駄なく反射させて受光素子に導くことができるので、前記受光素子での受光量を増大させ、その検出感度を高めることができる。しかもその構成が簡単であり、また金属蒸着ミラーを用いる場合に比較して低コストで製造できると言う利点がある。   According to the optical sensor having the above configuration, the light passing through the condensing lens can be reflected by the prism body without waste by merely making rotational asymmetry of the condensing lens with respect to the central axis of the light beam or setting the focal length to the light receiving element. Therefore, the amount of light received by the light receiving element can be increased, and its detection sensitivity can be increased. In addition, the structure is simple, and there is an advantage that it can be manufactured at a low cost as compared with the case of using a metal vapor deposition mirror.

本発明の第1の実施形態に係る光学センサの要部概略構成図。The principal part schematic block diagram of the optical sensor which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る光学センサの要部概略構成図。The principal part schematic block diagram of the optical sensor which concerns on the 2nd Embodiment of this invention. 光束の光軸に対する回転非対称化を実現する集光レンズの他の例を示す図。The figure which shows the other example of the condensing lens which implement | achieves the rotational asymmetry with respect to the optical axis of a light beam. 本発明の変形例を示す図。The figure which shows the modification of this invention. 従来の光学センサの構成とその問題点を説明する為の図。The figure for demonstrating the structure of the conventional optical sensor, and its problem.

以下、図面を参照して本発明に係る光学センサの実施形態である光電センサについて説明する。
この実施形態に係る光電センサは、図1および図2にそれぞれ示すように、基本的には検出領域から到来する光(例えば平行光線束)を集光する集光レンズ1と、この集光レンズ1の光軸と交差する向き、例えば直角にその受光面2aを向けて設けられた受光素子2と、前記集光レンズ1にて集光された光を反射して前記受光素子2の受光面2aに導くプリズム体3とを具備した、いわゆるサイドビュー型のものからなる。尚、前記集光レンズ1は、そのレンズ主面Lを前記平行光線束に対して直角に配置される。また前記反射体としてのプリズム体3は、互いに直交する2つの面の一方を前記集光レンズ1に対峙する入射面、他方の面を前記受光素子2の受光面2aに対峙する射出面とし、上記2つの面に対して所定の角度、例えば45度の角度をなす傾斜面を反射面3aとした直角プリズムである。
Hereinafter, a photoelectric sensor as an embodiment of an optical sensor according to the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the photoelectric sensor according to this embodiment basically includes a condenser lens 1 that collects light (for example, a parallel beam) coming from a detection region, and the condenser lens. A light receiving element 2 provided in a direction crossing the optical axis 1, for example, at a right angle with its light receiving surface 2 a facing, and a light receiving surface of the light receiving element 2 that reflects the light collected by the condenser lens 1. It consists of a so-called side view type comprising a prism body 3 leading to 2a. The condensing lens 1 is arranged such that its lens main surface L is perpendicular to the parallel beam bundle. The prism body 3 serving as the reflector has one of two surfaces orthogonal to each other as an incident surface facing the condenser lens 1 and the other surface as an exit surface facing the light receiving surface 2a of the light receiving element 2. This is a right-angle prism in which an inclined surface that forms a predetermined angle with respect to the two surfaces, for example, 45 degrees, is used as the reflection surface 3a.

ちなみに前記集光レンズ1および前記プリズム体3は、それぞれ所定の屈折率を有する光透過性の材料、例えばガラス材または透明な合成樹脂素材からなり、また前記受光素子2は、例えばフォトダイオード(PD)からなる。またこれらの集光レンズ1、受光素子2およびプリズム体3は、予め設定された光学的配置の下で図示しない筐体に一体に組み付けられて光電センサ、或いは光電センサヘッドを構築する。尚、ここでは光電センサヘッドを含めて光電センサと総称する。   Incidentally, the condenser lens 1 and the prism body 3 are each made of a light transmissive material having a predetermined refractive index, for example, a glass material or a transparent synthetic resin material, and the light receiving element 2 is, for example, a photodiode (PD). ). Further, the condenser lens 1, the light receiving element 2, and the prism body 3 are integrally assembled in a housing (not shown) under a preset optical arrangement to construct a photoelectric sensor or a photoelectric sensor head. Here, the photoelectric sensor including the photoelectric sensor head is collectively referred to as a photoelectric sensor.

そしてこの光電センサは、例えば図示しない投光部から検出領域に向けて投光された平行光線束を該検出領域を介して受光し、その受光量から検出領域における物体の有無を検出するように構成される。尚、上述した受光系を構築した光電センサは、検出領域に向けて光を照射する前記投光部と一体に、その投受光方向を揃えて並べて設けられる場合もある。   The photoelectric sensor receives, for example, a parallel light beam projected from a light projecting unit (not shown) toward the detection region through the detection region, and detects the presence or absence of an object in the detection region from the received light amount. Composed. Note that the photoelectric sensor having the above-described light receiving system may be provided so as to be aligned with the light projecting / receiving direction integrally with the light projecting unit that emits light toward the detection region.

さて図1を参照して本発明の第1の実施形態に係る光電センサについて説明すると、この光電センサは、集光レンズ1の中心軸Mを該集光レンズ1に入射する光束の中心軸Nからずらして配置することで、該集光レンズ1を前記光束の中心軸Nに対して回転非対称化し、これによって前記集光レンズ1にて集光された光束が、より多く前記プリズム体3の反射面3aに対してその臨界角以上の角度で入射するようにしたことを特徴としている。即ち、前記集光レンズ1を通った光が、前記プリズム体3の反射面3aに対してその臨界角以上の角度で入射し、該反射面3aにて全反射して受光素子2の受光面2aに導かれるようにしたことを特徴としている。   Now, the photoelectric sensor according to the first embodiment of the present invention will be described with reference to FIG. 1. This photoelectric sensor uses the central axis M of the condenser lens 1 as the central axis N of the light beam incident on the condenser lens 1. By shifting the lens from the center, the condenser lens 1 is rotationally asymmetrical with respect to the central axis N of the light beam, so that more of the light beam collected by the condenser lens 1 is It is characterized in that it is incident on the reflecting surface 3a at an angle greater than the critical angle. That is, the light passing through the condenser lens 1 is incident on the reflecting surface 3a of the prism body 3 at an angle greater than the critical angle, and is totally reflected by the reflecting surface 3a to receive the light receiving surface of the light receiving element 2. It is characterized by being guided to 2a.

より具体的には、前記集光レンズ1そのものは、該集光レンズ1の中心軸Mに対して回点対称なものであって、基本的には前記中心軸Mから離れた周辺部になる程、該中心軸Mと平行に入射する光に対する曲げ角が大きくなり、該集光レンズ1を通った光を前記中心軸M上の所定の焦点位置fに結像する光学特性を有する。このような光学特性を有する集光レンズ1を、この第1の実施形態においては該集光レンズ1の中心軸Mを該集光レンズ1に導かれる光(平行光線束)の中心軸Nからずらし、特にプリズム体3に反射された光が導かれる受光素子2側にずらすことにより、前記集光レンズ1の受光素子2側の端部(図1における下端側)での光の曲げ角を浅くし、これによって前記集光レンズ1を通る光が前記プリズム体3の反射面3aに対して、その臨界角以上の角度で入射するようにしている。   More specifically, the condensing lens 1 itself is rotationally symmetric with respect to the central axis M of the condensing lens 1 and basically becomes a peripheral portion away from the central axis M. The bending angle with respect to light incident in parallel with the central axis M increases, and the light passing through the condenser lens 1 has an optical characteristic of forming an image at a predetermined focal position f on the central axis M. In the first embodiment, the condensing lens 1 having such optical characteristics is separated from the central axis N of the light (parallel light bundle) guided to the condensing lens 1 with the central axis M of the condensing lens 1. In particular, by shifting to the light receiving element 2 side where the light reflected by the prism body 3 is guided, the bending angle of the light at the light receiving element 2 side end (lower end side in FIG. 1) of the condenser lens 1 is changed. In this way, light passing through the condenser lens 1 is incident on the reflecting surface 3a of the prism body 3 at an angle greater than the critical angle.

ちなみに臨界角とは、プリズム3における反射面3aの法線に対して所定の角度で入射する光が、該プリズム体3と空気との界面(反射面3a)にて屈折して透過することなく、上記界面にてその全てが反射する(全反射する)角度である。例えば前記プリズム3がアクリルやポリカーボネイト等の合成樹脂材やBK7と称されるガラス素材を用いて構成される場合、その屈折率n2が略1.514であるので前述した臨界角は略41度程度となる。これに対してプリズム体3の反射面3aが前記集光レンズ1の中心軸Mに対して45度の角度に設けられているので、集光レンズ1の下端を通過する光の曲がり角が略3.7度以下であれば、該集光レンズ7を通った光の殆どが前記反射面3aに対して前述した臨界角以上の角度で入射することになり、これらの光が全反射されることになるので、従来に比べて集光レンズ1を通った光をより多く全反射させて受光素子2に導くことが可能となる。また理想的には集光レンズ1の下端を透過する光束が前記条件を満たすように該集光レンズ1の中心軸Mを前記光束の中心軸Nに対してずらすことで、集光レンズ3を通った光の全てを全反射させて受光素子2に導くことが可能となり、より効果的である。   Incidentally, the critical angle means that light incident at a predetermined angle with respect to the normal line of the reflecting surface 3a of the prism 3 is not refracted and transmitted at the interface (reflecting surface 3a) between the prism body 3 and air. The angle at which all of the light is reflected (totally reflected) at the interface. For example, when the prism 3 is made of a synthetic resin material such as acrylic or polycarbonate or a glass material called BK7, the refractive index n2 is about 1.514, so the aforementioned critical angle is about 41 degrees. It becomes. On the other hand, since the reflecting surface 3a of the prism body 3 is provided at an angle of 45 degrees with respect to the central axis M of the condenser lens 1, the bending angle of light passing through the lower end of the condenser lens 1 is approximately 3. If the angle is less than 7 degrees, most of the light passing through the condenser lens 7 is incident on the reflecting surface 3a at an angle greater than the critical angle described above, and the light is totally reflected. As a result, more light that has passed through the condenser lens 1 can be totally reflected and guided to the light receiving element 2 as compared with the prior art. Ideally, the condenser lens 3 is moved by shifting the central axis M of the condenser lens 1 with respect to the central axis N of the luminous flux so that the luminous flux transmitted through the lower end of the condenser lens 1 satisfies the above condition. All of the light that has passed through can be totally reflected and guided to the light receiving element 2, which is more effective.

尚、前記プリズム3の屈折率n2が略1.414である場合には、前記反射面3aでの前記臨界角は略45度である。従って且つ前記集光レンズ3の中心軸Mが光束の中心軸Nと同軸に設けられており、反射面3aの傾斜角が45度である場合には、該集光レンズ3の中心軸Mよりも上側を通る光が全反射され、中心軸Mよりも下側を通る光は全反射することなく透過することになる。従ってこのような場合には、例えば集光レンズ3の上半分の領域だけを開口領域とするように前記光束の中心軸Nに対して前記集光レンズ1の中心軸Mをずらせば、集光レンズ3を通った光を全反射させて受光素子2に導くことが可能となる。   When the refractive index n2 of the prism 3 is approximately 1.414, the critical angle at the reflecting surface 3a is approximately 45 degrees. Therefore, when the central axis M of the condenser lens 3 is provided coaxially with the central axis N of the light beam and the inclination angle of the reflecting surface 3a is 45 degrees, the central axis M of the condenser lens 3 In addition, the light passing through the upper side is totally reflected, and the light passing below the central axis M is transmitted without being totally reflected. Accordingly, in such a case, for example, if the central axis M of the condenser lens 1 is shifted with respect to the central axis N of the light beam so that only the upper half region of the condenser lens 3 is an aperture region, the light is condensed. The light that has passed through the lens 3 can be totally reflected and guided to the light receiving element 2.

尚、このようにして集光レンズ3の中心軸Mを前記光束の中心軸Nからずらす場合、そのずれ量については、集光レンズ1の焦点距離fや集光レンズ1とプリズム体3との配置間隔、更にはプリズム体3における反射面3aの前記光束の中心軸Nに対する傾斜角度等に応じて、その光学的条件が前述した全反射条件を満たすように設定すれば十分である。またこのようにしてプリズム体3にて反射された光が、前記受光素子2の受光面内に導かれるように、その光学的配置を決定することも勿論のことである。   When the central axis M of the condensing lens 3 is shifted from the central axis N of the light beam in this way, the amount of deviation is determined by the focal length f of the condensing lens 1 or the condensing lens 1 and the prism body 3. It is sufficient to set the optical conditions so as to satisfy the above-described total reflection condition in accordance with the arrangement interval and the inclination angle of the reflecting surface 3a of the prism body 3 with respect to the central axis N of the light beam. Of course, the optical arrangement of the light reflected by the prism 3 in this way is determined so as to be guided into the light receiving surface of the light receiving element 2.

かくして上述した如く光学系を設定した光電センサによれば、従来の光学系を設定した光電センサに比して、検出領域から到来して前記集光レンズ1にて集光された光をより多く全反射させることができる。この結果、集光レンズ1を介した光を前記受光素子2に無駄なく導くことができるので、該受光素子2での受光量を効果的に増大させてその検出感度を高めることができる。しかも高価な金属蒸着ミラーを用いたり、プリズム体3の反射面3aに金属膜を蒸着しなくても、簡易にして効果的に受光素子2での受光量を増大させることができる。従って高感度な光電センサを安価に製作することができる等の効果が奏せられる。   Thus, according to the photoelectric sensor in which the optical system is set as described above, more light that comes from the detection region and is collected by the condenser lens 1 than the photoelectric sensor in which the conventional optical system is set. It can be totally reflected. As a result, since the light passing through the condenser lens 1 can be guided to the light receiving element 2 without waste, the amount of light received by the light receiving element 2 can be effectively increased and the detection sensitivity can be increased. In addition, the amount of light received by the light receiving element 2 can be simply and effectively increased without using an expensive metal deposition mirror or by depositing a metal film on the reflecting surface 3a of the prism body 3. Therefore, it is possible to produce a highly sensitive photoelectric sensor at a low cost.

ところでプリズム体3の反射面3aでの全反射条件を満たすように、例えば図2に示すように前記集光レンズ1のレンズ面における曲率を部分的に大きくし、当該レンズ部分での焦点距離を長くすることで該集光レンズ1を前記光束の中心軸Nに対して回転非対称化することも可能である。即ち、図2に本発明の第2の実施形態を示すように、前記集光レンズ1の受光素子2側の端部(図2における下端側)での光の曲げ角が浅くなるように、そのレンズ面の曲率を部分的に大きくする。そして当該部分を通過した光の焦点距離を長くすることで、プリズム体3の反射面3aに対する入射角が前述した臨界角以上となるように設定する。   Incidentally, in order to satisfy the total reflection condition at the reflecting surface 3a of the prism body 3, for example, as shown in FIG. 2, the curvature of the lens surface of the condenser lens 1 is partially increased, and the focal length at the lens portion is increased. By increasing the length, the condenser lens 1 can be rotationally asymmetric with respect to the central axis N of the luminous flux. That is, as shown in FIG. 2 according to the second embodiment of the present invention, the light bending angle at the light receiving element 2 side end (the lower end side in FIG. 2) of the condenser lens 1 is reduced. The curvature of the lens surface is partially increased. And the incident angle with respect to the reflective surface 3a of the prism body 3 is set to be equal to or larger than the above-mentioned critical angle by increasing the focal length of the light passing through the portion.

このようにして集光レンズ1自体の曲面(曲率)を部分的に変えることで該集光レンズ1の回転非対称化を実現しても、先の実施形態と同様に集光レンズ1を通った光をより多く前記プリズム体3の反射面3aにて全反射させ、前記受光素子2の受光面2aに導くことが可能である。この場合には、上述した如くレンズ面の曲率を部分的に大きくした部位における焦点距離については、当該部位を通過した光が前述した全反射条件を満たす焦点距離(下限)から、その反射光が受光素子2の受光面2aに導かれる焦点距離(上限)の範囲内に設定すれば十分である。但し、反射面3aによる反射光が受光素子2の受光面2aに導かれる焦点距離(上限)は、前記受光素子2の受光面2aの大きさと、該受光素子2とプリズム体3との配置関係により規定されるものである。従ってこのように集光レンズ3を前記光束の中心軸Nに対して回転非対称化しても、先に説明した第1の実施形態と同様な効果が奏せられる。   In this way, even when the rotational asymmetry of the condenser lens 1 is realized by partially changing the curved surface (curvature) of the condenser lens 1 itself, it passes through the condenser lens 1 as in the previous embodiment. More light can be totally reflected by the reflecting surface 3 a of the prism body 3 and guided to the light receiving surface 2 a of the light receiving element 2. In this case, as described above, with respect to the focal length at the part where the curvature of the lens surface is partially increased, the reflected light is reflected from the focal length (lower limit) where the light passing through the part satisfies the total reflection condition described above. It is sufficient to set within the range of the focal length (upper limit) guided to the light receiving surface 2a of the light receiving element 2. However, the focal length (upper limit) at which the reflected light from the reflecting surface 3 a is guided to the light receiving surface 2 a of the light receiving element 2 is the size of the light receiving surface 2 a of the light receiving element 2 and the arrangement relationship between the light receiving element 2 and the prism body 3. It is prescribed by. Therefore, even if the condensing lens 3 is rotationally asymmetric with respect to the central axis N of the light beam in this way, the same effect as that of the first embodiment described above can be obtained.

尚、レンズ面の曲面(曲率)を部分的に変えた集光レンズ1を、例えば図3(a)に示すようにレンズの中心側領域1aを焦点距離の短いレンズとし、その周辺側領域1bを焦点距離の長いレンズとした複合型レンズとして実現しても良い。この場合には、レンズ自体の向き(回転)を配慮することなく、単に集光レンズ1の中心軸を前記光束の中心軸Nからずらして設けるだけで光電センサに容易に組み込むことができる。   For example, as shown in FIG. 3A, the condensing lens 1 in which the curved surface (curvature) of the lens surface is partially changed has the lens center side region 1a as a lens having a short focal length, and its peripheral region 1b. May be realized as a compound lens having a long focal length. In this case, without considering the direction (rotation) of the lens itself, it can be easily incorporated into the photoelectric sensor simply by shifting the central axis of the condenser lens 1 from the central axis N of the light beam.

また前記集光レンズ3の焦点距離を長く設定した周辺側領域1bを通った光が前述した全反射条件を満たす角度でプリズム体3の反射面に3aに入射する場合には、集光レンズ1の中心軸Mと光束の中心軸Nとを一致させても前記集光レンズ1を通った光をより多く前記プリズム体3の反射面3aにて全反射させて前記受光素子2の受光面2aに導くことができる。従ってこの場合には、単に集光レンズ1の中心軸を前記光束の中心軸Nに一致させて装着するだけで良いので、その構成の大幅な簡素化を図り、またその製作手順の簡素化を図ることが可能となる。   Further, when the light passing through the peripheral region 1b in which the focal length of the condenser lens 3 is set long is incident on the reflecting surface of the prism body 3 at an angle satisfying the total reflection condition described above, the condenser lens 1 is used. Even if the central axis M of the light beam and the central axis N of the light beam coincide with each other, more light passing through the condenser lens 1 is totally reflected by the reflecting surface 3a of the prism body 3, and the light receiving surface 2a of the light receiving element 2 Can lead to. Accordingly, in this case, it is only necessary to mount the condensing lens 1 so that the central axis of the condenser lens 1 coincides with the central axis N of the light beam, so that the configuration can be greatly simplified and the manufacturing procedure can be simplified. It becomes possible to plan.

また集光レンズ1の一部、具体的にはレンズの下半分側の領域を部分的に、例えば図3(b)に示すようにその主体部1cの屈折率n1よりも小さい屈折率n2(<n1)を有するように製作することも可能である。この場合には、レンズ面の曲率に変化がなくても、上記屈折率n2のレンズ部分1dの焦点距離が前記主体部1cよりも長くなるので、光束の中心軸Nに対して回転非対称化することが可能となる。   Further, a part of the condenser lens 1, specifically, a region on the lower half side of the lens, for example, a refractive index n2 (which is smaller than the refractive index n1 of the main portion 1c as shown in FIG. 3B). It is also possible to manufacture so as to have <n1). In this case, even if there is no change in the curvature of the lens surface, the focal length of the lens portion 1d having the refractive index n2 is longer than that of the main portion 1c. It becomes possible.

尚、本発明は上述した実施形態に限定されるものではない。ここではプリズム体3として45度の直角プリズムを用いた場合を例に説明したが、その反射面3aと前記光束の中心軸Nとのなす角度は特に限定されない。また第1の実施形態に示した手法と第2の実施形態に示した手法とを併用してプリズム体3の反射面3aにおける全反射条件を設定することも勿論可能であり、その光学的設計に際しては、集光レンズ1およびプリズム体3の屈折率や、その配置等を配慮して行うことは言うまでもない。   The present invention is not limited to the embodiment described above. Here, the case where a 45-degree right-angle prism is used as the prism body 3 has been described as an example, but the angle formed between the reflecting surface 3a and the central axis N of the light beam is not particularly limited. It is of course possible to set the total reflection condition on the reflecting surface 3a of the prism body 3 by using the method shown in the first embodiment and the method shown in the second embodiment in combination, and its optical design. In doing so, it goes without saying that the refractive index of the condensing lens 1 and the prism body 3 and the arrangement thereof are taken into consideration.

また図4(a)に示すように集光レンズ1と反射体をなすプリズム体3とを一体成形して、その光学系を形成しても良く、図4(b)に示すようにプリズム体3にて反射された光を光ファイバ4を介して受光素子2の受光面に導くことも可能である。更に図4(c)に示すようにプリズム体4と受光素子2との間に受光レンズ5を設けることも勿論可能である。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   Further, as shown in FIG. 4 (a), the condensing lens 1 and the prism body 3 forming the reflector may be integrally formed to form the optical system. The prism body as shown in FIG. 4 (b). It is also possible to guide the light reflected by 3 to the light receiving surface of the light receiving element 2 through the optical fiber 4. Furthermore, it is of course possible to provide a light receiving lens 5 between the prism body 4 and the light receiving element 2 as shown in FIG. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

1 集光レンズ
2 受光素子
3 プリズム体
3a 反射面
DESCRIPTION OF SYMBOLS 1 Condensing lens 2 Light receiving element 3 Prism body 3a Reflecting surface

Claims (7)

外部からの光を集光する集光レンズと、この集光レンズの光軸と交差する向きに受光面を向けて設けられた受光素子と、前記集光レンズにて集光された光を反射して前記受光素子の受光面に導くプリズム体とを具備し、
前記集光レンズにて集光された光束が前記プリズム体の反射面に対してその臨界角以上の角度で入射するように、前記集光レンズを前記光束の中心軸に対して光学的に回転非対称化し、若しくはレンズ中心部よりもレンズ周辺部の焦点距離を長く設定したことを特徴とする光学センサ。
A condensing lens that condenses light from the outside, a light receiving element provided with a light receiving surface facing the optical axis of the condensing lens, and reflecting the light collected by the condensing lens And a prism body that leads to the light receiving surface of the light receiving element,
The condensing lens is optically rotated with respect to the central axis of the light beam so that the light beam collected by the condensing lens is incident on the reflecting surface of the prism body at an angle greater than the critical angle. An optical sensor characterized in that it is asymmetrical or the focal length of the lens periphery is set longer than the center of the lens.
前記光束の中心軸に対する前記集光レンズの回転非対称化、若しくは焦点距離の設定は、前記集光レンズの中心軸を前記光束の中心軸からずらして配置したものである請求項1に記載の光学センサ。   2. The optical according to claim 1, wherein the rotational asymmetry of the condensing lens with respect to the central axis of the light beam or the setting of the focal length is arranged by shifting the central axis of the condensing lens from the central axis of the light beam. Sensor. 前記光束の中心軸に対する前記集光レンズの回転非対称化、若しくは焦点距離の設定は、前記集光レンズのレンズ面における曲率を部分的に大きくし、当該レンズ部分での焦点距離を延ばして実現されるものである請求項1に記載の光学センサ。   The rotational asymmetry of the condenser lens with respect to the central axis of the light beam or the setting of the focal length is realized by partially increasing the curvature of the lens surface of the condenser lens and extending the focal length at the lens portion. The optical sensor according to claim 1. 前記光束の中心軸に対する前記集光レンズの回転非対称化、若しくは焦点距離の設定は、前記集光レンズの屈折率を部分的に小さくし、当該レンズ部分での焦点距離を延ばして実現されるものである請求項1に記載の光学センサ。   The rotational asymmetry of the condenser lens with respect to the central axis of the light beam or the setting of the focal length is realized by partially reducing the refractive index of the condenser lens and extending the focal length at the lens portion. The optical sensor according to claim 1. 前記プリズム体は、互いに直交する2つの面の一方を前記集光レンズに対峙する入射面、他方の面を前記受光素子の受光面に対峙する射出面とし、上記2つの面に対して所定の角度をなす傾斜面を反射面とした直角プリズムである請求項1に記載の光学センサ。   The prism body has one of two surfaces orthogonal to each other as an incident surface facing the condenser lens, and the other surface as an exit surface facing the light receiving surface of the light receiving element. 2. The optical sensor according to claim 1, wherein the optical sensor is a right-angle prism having an inclined surface forming an angle as a reflecting surface. 前記集光レンズおよび前記プリズム体は、これらを一体に成形したものを含む請求項1〜3のいずれかに記載の光学センサ。   The optical sensor according to any one of claims 1 to 3, wherein the condensing lens and the prism body include those integrally molded. 前記受光素子は、その受光面に光を導く受光レンズまたは光ファイバを備えたものを含む請求項1〜4いずれかに記載の光学センサ。   The optical sensor according to claim 1, wherein the light receiving element includes a light receiving lens or an optical fiber that guides light to the light receiving surface.
JP2009067570A 2009-03-19 2009-03-19 Optical sensor Expired - Fee Related JP5563230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009067570A JP5563230B2 (en) 2009-03-19 2009-03-19 Optical sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009067570A JP5563230B2 (en) 2009-03-19 2009-03-19 Optical sensor

Publications (2)

Publication Number Publication Date
JP2010217142A true JP2010217142A (en) 2010-09-30
JP5563230B2 JP5563230B2 (en) 2014-07-30

Family

ID=42976138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009067570A Expired - Fee Related JP5563230B2 (en) 2009-03-19 2009-03-19 Optical sensor

Country Status (1)

Country Link
JP (1) JP5563230B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206458A (en) * 2013-04-12 2014-10-30 パナソニック デバイスSunx株式会社 Reflection type photoelectric sensor
CN105629256A (en) * 2014-11-04 2016-06-01 南京德朔实业有限公司 Laser rangefinder
CN111947774A (en) * 2020-08-21 2020-11-17 深圳市汇顶科技股份有限公司 Screen down environment optical sensor assembly and electronic equipment

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390866A (en) * 1986-10-03 1988-04-21 Nec Corp Semiconductor photodetector device
JP2002109653A (en) * 2000-09-29 2002-04-12 Matsushita Electric Works Ltd Photoelectric type smoke detector
JP2004317912A (en) * 2003-04-18 2004-11-11 Internatl Business Mach Corp <Ibm> Optical link module, optical coupling method, information processing device including the same module, signal transferring method, prism, and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390866A (en) * 1986-10-03 1988-04-21 Nec Corp Semiconductor photodetector device
JP2002109653A (en) * 2000-09-29 2002-04-12 Matsushita Electric Works Ltd Photoelectric type smoke detector
JP2004317912A (en) * 2003-04-18 2004-11-11 Internatl Business Mach Corp <Ibm> Optical link module, optical coupling method, information processing device including the same module, signal transferring method, prism, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206458A (en) * 2013-04-12 2014-10-30 パナソニック デバイスSunx株式会社 Reflection type photoelectric sensor
CN105629256A (en) * 2014-11-04 2016-06-01 南京德朔实业有限公司 Laser rangefinder
CN111947774A (en) * 2020-08-21 2020-11-17 深圳市汇顶科技股份有限公司 Screen down environment optical sensor assembly and electronic equipment

Also Published As

Publication number Publication date
JP5563230B2 (en) 2014-07-30

Similar Documents

Publication Publication Date Title
JP5053531B2 (en) Fresnel lens
JP5608048B2 (en) Lighting lens
JP2006235139A (en) Optical system for focusing two wavelengths
JP2000298244A (en) Lighting system and photographing device using the same
JP2008008678A (en) Optical receiver and radar system equipped with the same
JP2011248312A (en) Optical element and optical device having the same
JP2006292728A (en) Photoelectric encoder
KR100550409B1 (en) Light source unit and projection type display device using thereof
JP5563230B2 (en) Optical sensor
JP5452245B2 (en) Lightwave distance measuring device
US20080138091A1 (en) Optical element, optical module holder including optical element, optical module, and optical connector
US20180267327A1 (en) Reticle having an illumination device
KR102620473B1 (en) light receiving module
EP3153905A2 (en) Image-forming optical component and optical system of surveying instrument
JP2009099345A (en) Reflection type photoelectric sensor
JP4713908B2 (en) Lens system and photoelectric encoder using the same
JP5390422B2 (en) Optical element module
JP2005024617A (en) Optical transmitter
JP4068835B2 (en) Optical transceiver
JP6798262B2 (en) Optical unit and ranging sensor
JP2006301586A (en) Lighting system
TW201913154A (en) Prism and optical module
WO2023062987A1 (en) Lens with lens barrel and light source device
JP5007604B2 (en) Optical scanning device
WO2015045481A1 (en) Optical unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140612

R150 Certificate of patent or registration of utility model

Ref document number: 5563230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees