JP5026200B2 - Multi-layer foil bearing assembly - Google Patents

Multi-layer foil bearing assembly Download PDF

Info

Publication number
JP5026200B2
JP5026200B2 JP2007223480A JP2007223480A JP5026200B2 JP 5026200 B2 JP5026200 B2 JP 5026200B2 JP 2007223480 A JP2007223480 A JP 2007223480A JP 2007223480 A JP2007223480 A JP 2007223480A JP 5026200 B2 JP5026200 B2 JP 5026200B2
Authority
JP
Japan
Prior art keywords
foil
shaft
housing
bearing assembly
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007223480A
Other languages
Japanese (ja)
Other versions
JP2009057992A (en
Inventor
嗣人 中関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2007223480A priority Critical patent/JP5026200B2/en
Publication of JP2009057992A publication Critical patent/JP2009057992A/en
Application granted granted Critical
Publication of JP5026200B2 publication Critical patent/JP5026200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/12Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load
    • F16C17/18Sliding-contact bearings for exclusively rotary movement characterised by features not related to the direction of the load with floating brasses or brushing, rotatable at a reduced speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/026Sliding-contact bearings for exclusively rotary movement for radial load only with helical grooves in the bearing surface to generate hydrodynamic pressure, e.g. herringbone grooves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/106Details of distribution or circulation inside the bearings, e.g. details of the bearing surfaces to affect flow or pressure of the liquid
    • F16C33/107Grooves for generating pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C9/00Bearings for crankshafts or connecting-rods; Attachment of connecting-rods
    • F16C9/02Crankshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/22Internal combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/02Sliding-contact bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Support Of The Bearing (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Description

この発明は、エンジンのクランクシャフトやターボ機械の主軸等の支持に用いられる多層フォイル軸受組立体に関する。   The present invention relates to a multilayer foil bearing assembly used for supporting a crankshaft of an engine, a main shaft of a turbo machine, or the like.

一般に、自動車エンジンのクランクシャフトを支持する軸受には、メタル軸受が使われている。転がり軸受の使用も考えられるが、転がり軸受は、転動体と軌道輪とが点接触や線接触であるため、油膜のスクイズ効果による減衰があまり期待できない。対して、メタル軸受は、油膜の減衰が大きく、転がり軸受に比べて静粛な運転が可能である。   Generally, a metal bearing is used as a bearing for supporting a crankshaft of an automobile engine. Although the use of a rolling bearing is conceivable, the rolling bearing is not expected to be attenuated due to the squeeze effect of the oil film because the rolling element and the race are in point contact or line contact. On the other hand, the metal bearing has a large oil film attenuation and can be operated quieter than the rolling bearing.

また、ガスタービン等のターボ機械の主軸を支持する軸受にも、メタル軸受等の滑り軸受が多く使用されている。しかし、ターボ機械主軸は高速回転するため、滑り軸受であるとトルク損失が大きいことから、転がり軸受や空気フォイル軸受(例えば特許文献1)の採用が検討されている。   In addition, sliding bearings such as metal bearings are often used as bearings for supporting the main shaft of a turbomachine such as a gas turbine. However, since the turbomachine main shaft rotates at a high speed and the torque loss is large when it is a sliding bearing, the use of a rolling bearing or an air foil bearing (for example, Patent Document 1) has been studied.

高速回転する軸用の滑り軸受として、以前より、軸やハウジングに対してブッシュを流体を介して浮動状態に保持するフローティングブッシュ型の研究がなされているが、実用化には至っていない。その理由は、非特許文献1に計算結果が示されているように、フローティングブッシュ型軸受では、期待するほどの効果が得られないからである。
特開2003−262222号公報 曽田範宗著「軸受」株式会社岩波書店、1970年7月10日、p267
As a slide bearing for a shaft that rotates at high speed, a research on a floating bush type in which a bush is held in a floating state via a fluid with respect to a shaft and a housing has been studied, but has not been put into practical use. The reason is that, as the calculation result is shown in Non-Patent Document 1, the floating bush type bearing cannot provide the expected effect.
JP 2003-262222 A Nobutaka Hamada "Bearing" Iwanami Shoten Co., Ltd., July 10, 1970, p267

クランクシャフト用の軸受がメタル軸受である場合には、次の問題がある。すなわち、メタル軸受は、エンジン起動時には油膜が形成されていないため、アイドリングストップが多用されると摩耗が発生しやすく、かつ高速回転時における油膜の粘性抵抗によるトルク損失が大きいという問題である。自動車の燃費向上を図るには、このトルク損失を抑える必要がある。トルク損失を抑えるだけであれば転がり軸受にすれば良いが、転がり軸受には前記難点がある。そこで、メタル軸受に代るトルク損失の少ない滑り軸受の開発が望まれている。幸い、クランクシャフト用軸受の場合、クランクシャフトの両端に組み込むのにハウジング等を2分割にする必要がないため、メタル軸受以外の滑り軸受を導入しやすい。   When the crankshaft bearing is a metal bearing, there are the following problems. In other words, since the oil film is not formed when the engine is started, the metal bearing is prone to wear when the idling stop is frequently used, and the torque loss due to the viscous resistance of the oil film during high speed rotation is large. In order to improve the fuel efficiency of automobiles, it is necessary to suppress this torque loss. If only the torque loss is suppressed, a rolling bearing may be used, but the rolling bearing has the above-mentioned drawbacks. Therefore, development of a sliding bearing with less torque loss in place of a metal bearing is desired. Fortunately, in the case of a crankshaft bearing, it is not necessary to divide the housing into two parts for incorporation at both ends of the crankshaft, so it is easy to introduce a sliding bearing other than a metal bearing.

また、ターボ機械主軸用の軸受が転がり軸受や空気フォイル軸受である場合には、次の問題がある。すなわち、転がり軸受には、静粛性や転がり疲労寿命の問題があり、空気フォイル軸受には、起動停止時の摩耗の問題がある。   Further, when the bearing for the turbomachine main shaft is a rolling bearing or an air foil bearing, there are the following problems. That is, the rolling bearing has a problem of quietness and rolling fatigue life, and the air foil bearing has a problem of wear when starting and stopping.

この発明の目的は、静粛な運転を行うことができ、トルク損失が少なく、起動停止時の摩耗がほとんどない、エンジンのクランクシャフトやターボ機械の主軸等の支持に適した多層フォイル軸受組立体を提供することである。   An object of the present invention is to provide a multilayer foil bearing assembly suitable for supporting an engine crankshaft, a main shaft of a turbo machine, etc., capable of performing a quiet operation, having little torque loss and little wear during starting and stopping. Is to provide.

この発明にかかる多層フォイル軸受組立体は、軸と、この軸の外周面に対向する内周面を有するハウジングとの間に、それぞれ径の異なる複数の円筒状フォイルを互いに径方向にすきまを持たせて配置し、各フォイル間、最内層のフォイルと軸の外周面間、および最外層のフォイルとハウジングの内周面間に潤滑油を保持させて油膜を形成することで、前記軸が最内層のフォイルに非接触で支持され、各フォイル同士が非接触で支持され、最外層のフォイルがハウジングに非接触で支持され、前記フォイルの肉厚は0.5mm以下であり、前記フォイルの回転により前記潤滑油を各フォイル間の隙間のフォイル幅方向の中央側へ流れ込む作用を生じさせる手段を設けたことを特徴とする。 In the multilayer foil bearing assembly according to the present invention, a plurality of cylindrical foils having different diameters are provided in the radial direction between a shaft and a housing having an inner peripheral surface facing the outer peripheral surface of the shaft. And the oil film is formed between the foils, between the innermost foil and the outer peripheral surface of the shaft, and between the outermost foil and the inner peripheral surface of the housing, thereby forming an oil film. is supported in a non-contact to the inner layer of the foil, each foil to each other is supported in a non-contact, the outermost layer of the foil is supported without contact to the housing, the wall thickness of the foil Ri der less 0.5 mm, the foil Means is provided for causing the lubricating oil to flow into the center in the foil width direction of the gap between the foils by rotation .

この構成によると、軸の回転時、各フォイル間、最内層のフォイルと軸の外周面間、および最外層のフォイルとハウジングの内周面間に形成された潤滑油からなる油膜を介して滑りが生じる。各油膜の条件が同じだとすれば、滑り速度はフォイルの層数に逆比例するため、多層であるほど各層での滑り速度が小さくなる。そのため、フォイルを多層に設けることにより、油膜の粘性抵抗を低くして、軸受トルクの損失を抑えられる。   According to this configuration, when the shaft rotates, it slips between the foils, through the oil film made of lubricating oil formed between the innermost foil and the outer peripheral surface of the shaft, and between the outermost foil and the inner peripheral surface of the housing. Occurs. If the conditions of each oil film are the same, the slipping speed is inversely proportional to the number of foil layers, so the more the number of layers, the smaller the slipping speed in each layer. Therefore, by providing the foil in multiple layers, the viscous resistance of the oil film can be lowered and the loss of bearing torque can be suppressed.

前記フォイルの肉厚は0.5mm以下であり、好ましくは0.02mmないし0.1mmであるのが良い。
前記フローティングブッシュ型の滑り軸受が期待するほどの効果が得られないのは、フローティングブッシュの肉厚が厚いためであり、フォイルを肉厚0.5mm以下の薄肉とすることで、性能向上が図れる。また、フォイルを薄肉にすることで、軸受部分の径を大きくすることなく、フォイルの多層化を図れる。
The thickness of the foil is below 0.5mm or less, and even better preferably be from 0.02 mm 0.1 mm.
The reason why the floating bush type sliding bearing is not as effective as expected is because the thickness of the floating bush is large, and the performance can be improved by making the foil as thin as 0.5 mm or less. . Further, by reducing the thickness of the foil, it is possible to increase the number of foil layers without increasing the diameter of the bearing portion.

前記潤滑油を各フォイル間の隙間のフォイル幅方向の中央側へ流れ込む作用を生じさせる手段が、前記フォイルの表面に設けられた動圧溝であり、この動圧溝は、前記フォイルの幅方向中央に対し対称形状であるのが良い。
フォイルの表面に前記動圧溝が設けられていると、軸受の運転時に潤滑油がフォイルの軸方向中央側に集まり、各フォイル間、最内層のフォイルと軸の外周面間、および最外層のフォイルとハウジングの内周面間に潤滑油を十分に保持させることができる。
The means for causing the lubricating oil to flow into the center side in the foil width direction of the gap between the foils is a dynamic pressure groove provided on the surface of the foil, and the dynamic pressure groove is a width direction of the foil. It should be symmetrical with respect to the center .
When the dynamic pressure groove is provided on the surface of the foil, the lubricating oil gathers in the axial center of the foil during the operation of the bearing, and between the foils, between the innermost foil and the outer peripheral surface of the shaft, and the outermost layer. Lubricating oil can be sufficiently retained between the foil and the inner peripheral surface of the housing.

前記フォイルは、前記ハウジングの内周面両端部と干渉させずに内周面中央部の内径側に装入できる程度に変形可能な弾性を有するのが好ましい。
フォイルを自らの弾性を利用してハウジングの内周面中央部の内径側に装入することができれば、軸受の組立が容易になる。
It is preferable that the foil has elasticity that can be deformed to such an extent that it can be inserted into the inner diameter side of the central portion of the inner peripheral surface without causing interference with both ends of the inner peripheral surface of the housing.
If the foil can be inserted into the inner diameter side of the central portion of the inner peripheral surface of the housing using its own elasticity, the assembly of the bearing becomes easy.

前記軸の前記ハウジング内周面中央部に対向する箇所は、軸の他の部分よりも径が大きくしても良い。
この場合は、軸の回転に伴うポンピング作用により、軸の外周面と、ハウジングの内周面中央部と、ハウジングの内周面段面部とに囲まれた空間内に潤滑油が送り込まれるため、前記空間内の潤滑油貯留量を十分に確保することができる。
The portion of the shaft that faces the central portion of the inner peripheral surface of the housing may have a larger diameter than other portions of the shaft.
In this case, because of the pumping action accompanying the rotation of the shaft, the lubricating oil is sent into the space surrounded by the outer peripheral surface of the shaft, the central portion of the inner peripheral surface of the housing, and the stepped surface portion of the inner peripheral surface of the housing. A sufficient amount of lubricating oil can be secured in the space.

また、前記ハウジングに、前記軸の外周面と、前記ハウジングの内周面中央部と、前記ハウジングの内周面段面部とに囲まれた空間内に潤滑油を供給する潤滑油供給孔を設けても良い。
この場合は、潤滑油供給孔から前記空間内に潤滑油を強制的に供給することで、前記空間内の潤滑油貯留量を十分に確保することができる。
The housing is provided with a lubricating oil supply hole for supplying lubricating oil into a space surrounded by the outer peripheral surface of the shaft, the central portion of the inner peripheral surface of the housing, and the stepped surface portion of the inner peripheral surface of the housing. May be.
In this case, a sufficient amount of lubricating oil can be secured in the space by forcibly supplying the lubricating oil into the space from the lubricating oil supply hole.

この発明のフォイル軸受は、上記作用が得られるため、エンジンのクランクシャフトまたはターボ機械の主軸の支持用に好適に使用することができる。   The foil bearing of the present invention can be suitably used for supporting a crankshaft of an engine or a main shaft of a turbomachine because the above-described action is obtained.

この発明の多層フォイル軸受組立体は、軸と、この軸の外周面に対向する内周面を有するハウジングとの間に、それぞれ径の異なる複数の円筒状フォイルを互いに径方向にすきまを持たせて配置し、各フォイル間、最内層のフォイルと軸の外周面間、および最外層のフォイルとハウジングの内周面間に潤滑油を保持させて油膜を形成することで、前記軸が最内層のフォイルに非接触で支持され、各フォイル同士が非接触で支持され、最外層のフォイルがハウジングに非接触で支持され、前記フォイルの肉厚は0.5mm以下であり、前記フォイルの回転により前記潤滑油を各フォイル間の隙間のフォイル幅方向の中央側へ流れ込む作用を生じさせる手段を設けたため、静粛な運転を行うことができ、トルク損失が少なく、起動停止時の摩耗がほとんどない。そのため、エンジンのクランクシャフトやターボ機械の主軸等の支持に適する。
In the multilayer foil bearing assembly according to the present invention, a plurality of cylindrical foils having different diameters are provided with a radial gap between a shaft and a housing having an inner peripheral surface facing the outer peripheral surface of the shaft. And forming an oil film between the foils, between the innermost foil and the outer peripheral surface of the shaft, and between the outermost foil and the inner peripheral surface of the housing, thereby forming an oil film, so that the shaft becomes the innermost layer. is supported in a non-contact manner of the foil, each foil to each other is supported in a non-contact, the outermost layer of the foil is supported without contact to the housing, the wall thickness of the foil Ri der below 0.5 mm, the rotation of the foil due to the provision of a means for creating an action flowing the lubricating oil toward the center of the foil width of the gap between the foil makes it possible to perform a quiet operation, small torque loss, start and stop time of wear ho No etc. does. Therefore, it is suitable for supporting the crankshaft of an engine, the main shaft of a turbo machine and the like.

この発明の第1の実施形態を図1ないし図5と共に説明する。図1はこの実施形態の多層フォイル軸受組立体の断面図を示す。この多層フォイル軸受組立体1は、ハウジング2に対して軸3を回転自在に支持するものであり、多層フォイル軸受部4として、それぞれ径の異なる複数の円筒状フォイル5〜9を有する。この実施形態ではフォイル数は5個である。各フォイル5〜9は、ハウジング2の内周と軸3の外周間に、互いに径方向にすきまを持たせて配置してある。各フォイル5〜9間、最内層のフォイル5と軸3の外周面3a間、および最外層のフォイル9とハウジング2の内周面2a間はそれぞれ油膜形成すきま10とされ、各油膜形成すきま10に潤滑油が保持されている。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a cross-sectional view of the multilayer foil bearing assembly of this embodiment. This multilayer foil bearing assembly 1 supports the shaft 3 rotatably with respect to the housing 2, and has a plurality of cylindrical foils 5 to 9 having different diameters as the multilayer foil bearing portion 4. In this embodiment, the number of foils is five. Each of the foils 5 to 9 is disposed between the inner periphery of the housing 2 and the outer periphery of the shaft 3 with a gap in the radial direction. Between each foil 5-9, between the innermost foil 5 and the outer peripheral surface 3a of the shaft 3, and between the outermost foil 9 and the inner peripheral surface 2a of the housing 2, oil film forming gaps 10 are formed. Lubricating oil is retained.

フォイル5〜9は、肉厚0.5mmを超えない薄肉の金属板で、容易に変形し、かつ元の形状に復元可能な弾性を有するものとされている。フォイル5〜9の肉厚は、好ましくは0.02mm〜0.1mmである。フォイル5〜9の材質としては、降伏応力が高いことが要求され、例えば焼入れによる加工硬化で降伏応力を向上させた炭素鋼や、りん青銅等の降伏応力の高い材料が適している。また、耐摩耗性の樹脂コーティングを施したものや、ダイヤモンドライクカーボン(DLC)を代表とする硬質皮膜を形成したものも好適に使用できる。さらに、各フォイル5〜9が同一の金属材料である必要はなく、異種金属のフォイルを交互に配置してもよい。   The foils 5 to 9 are thin metal plates that do not exceed 0.5 mm in thickness, and are easily deformed and have elasticity that can be restored to their original shapes. The thickness of the foils 5 to 9 is preferably 0.02 mm to 0.1 mm. As the material of the foils 5 to 9, high yield stress is required. For example, carbon steel whose yield stress is improved by work hardening by quenching, or a material with high yield stress such as phosphor bronze is suitable. In addition, those having a wear-resistant resin coating and those having a hard film typified by diamond-like carbon (DLC) can be suitably used. Furthermore, the foils 5 to 9 do not have to be made of the same metal material, and foils of different metals may be alternately arranged.

図2および図3に示すように、フォイル5〜9の表面には、多数の動圧溝13が平行に設けられている。動圧溝13は、左右一対の傾斜溝13L,13Rからなる。左右の傾斜13L,13Rは、それぞれフォイル5における回転方向に対して角度αを有する。図3はフォイル5の動圧溝13を例示している。この動圧溝13は、軸3の回転に伴い、左右一対の傾斜溝13L,13Rによって潤滑油が中央にポンプインされることによって、前記油膜形成すきま10に潤滑油を保持させ、油膜圧力を発生させる作用をする。動圧溝13の幅、深さ、角度α等の各種設計値は、動圧軸受の設計をもとに容易に計算できる。   As shown in FIGS. 2 and 3, a large number of dynamic pressure grooves 13 are provided in parallel on the surfaces of the foils 5 to 9. The dynamic pressure groove 13 includes a pair of left and right inclined grooves 13L and 13R. The left and right inclinations 13 </ b> L and 13 </ b> R have an angle α with respect to the rotation direction of the foil 5. FIG. 3 illustrates the dynamic pressure groove 13 of the foil 5. As the shaft 3 rotates, the dynamic pressure groove 13 causes the oil film forming gap 10 to hold the lubricating oil by pumping the lubricating oil into the center by the pair of left and right inclined grooves 13L and 13R, and the oil film pressure is increased. Acts to generate. Various design values such as the width, depth, and angle α of the hydrodynamic groove 13 can be easily calculated based on the design of the hydrodynamic bearing.

この実施形態では、動圧溝13が等間隔で配置され、かつ動圧溝13の幅と動圧溝13間の背部の幅とが同一とされているが、動圧溝13は不等間隔で配置しても良い。
また、軸3の回転方向が一方向である場合は、図3のように、動圧溝13は、一対の傾斜溝13L,13Rからなるのが最も性能が良い。しかしながら、逆に組込まれた場合は、その性能を発揮することができない。そのため、図4に示すように、それぞれが左右一対の傾斜溝13L,13Rからなる正回転用動圧溝形成部14Aおよび逆回転用動圧溝形成部14Bを、フォイル5〜9の表面における軸方向または幅方向に交互に並べて設けるのが好ましい。
In this embodiment, the dynamic pressure grooves 13 are arranged at equal intervals, and the width of the dynamic pressure grooves 13 and the width of the back portion between the dynamic pressure grooves 13 are the same. You may arrange with.
When the rotation direction of the shaft 3 is one direction, as shown in FIG. 3, the dynamic pressure groove 13 is best composed of a pair of inclined grooves 13L and 13R. However, when it is incorporated in reverse, its performance cannot be exhibited. Therefore, as shown in FIG. 4, the forward rotation dynamic pressure groove forming portion 14A and the reverse rotation dynamic pressure groove forming portion 14B, each consisting of a pair of left and right inclined grooves 13L and 13R, are arranged on the surfaces of the foils 5-9. It is preferable to provide them alternately in the direction or the width direction.

フォイル5〜9の製作には、深絞り加工等の塑性加工が適している。深絞り加工によれば、ミクロンオーダーの高精度の加工が可能である。前述したように、フォイル5〜9は肉厚0.5mm以下と薄いため、切削加工は適用できない。できたとしても高コストになる。塑性加工以外のフォイル製作方法としては、低溶融合金で作られた円筒状の型の表面にフォイル材料である金属で必要厚さのメッキを行い、後で型を溶融除去する方法も利用できる。前記円筒状の型の材料として、低溶融合金の代わりに油脂を用いてもよい。また、出来上がったフォイルをローリング圧延して、径を微調整することも可能である。前記動圧溝13は、例えば、上記各方法でフォイル5〜9の外形を製作した後、塑性加工により形成する。   For the production of the foils 5 to 9, plastic working such as deep drawing is suitable. Deep drawing enables high-precision machining on the order of microns. As described above, since the foils 5 to 9 are as thin as 0.5 mm or less, cutting is not applicable. Even if it can, it will be expensive. As a foil manufacturing method other than plastic working, a method of plating a required thickness with a metal as a foil material on the surface of a cylindrical mold made of a low melting alloy and then melting and removing the mold can be used. As the cylindrical mold material, fats and oils may be used instead of the low melting alloy. It is also possible to finely adjust the diameter by rolling the finished foil. The dynamic pressure groove 13 is formed, for example, by plastic working after the outer shapes of the foils 5 to 9 are manufactured by the above methods.

この多層フォイル軸受組立体1の組立に際しては、ハウジング2に各フォイル5〜9を組み込んだ後、最内層のフォイル5の内周に軸3を挿通する。ハウジング2にフォイル5〜9を組み込むに当たり、図5に実線で示すように、フォイル5〜9の持つ弾性を利用してフォイル5〜9を変形させ、ハウジング2の鍔部2bをくぐらせて鍔部2bの軸方向内側に組み込む。つまり、各フォイル5〜9は、ハウジング2の内周面両端部2abと干渉させずに内周面中央部2aaの内径側に装入できる程度に変形可能な弾性を有するものとされている。同図に鎖線で示すように、組み込まれた後、フォイル5〜9は元の形状に自然に復元する。なお、図5では最外層のフォイル9を示している。   In assembling the multilayer foil bearing assembly 1, the foils 5 to 9 are assembled in the housing 2, and then the shaft 3 is inserted into the inner periphery of the innermost foil 5. When assembling the foils 5 to 9 in the housing 2, as shown by the solid line in FIG. 5, the foils 5 to 9 are deformed by utilizing the elasticity of the foils 5 to 9, and the flange 2b of the housing 2 is passed through. It is incorporated inside the portion 2b in the axial direction. That is, each of the foils 5 to 9 has elasticity that can be deformed to such an extent that it can be inserted into the inner diameter side of the inner peripheral surface central portion 2aa without interfering with both end portions 2ab of the inner peripheral surface of the housing 2. As shown by the chain line in the figure, after being incorporated, the foils 5 to 9 are naturally restored to the original shape. FIG. 5 shows the outermost foil 9.

この構成の多層フォイル軸受組立体1によれば、各油膜形成すきま10に潤滑油が保持されて油膜を形成しているため、軸3が最内層のフォイル5に非接触で支持され、最内層のフォイル5はその外側のフォイル6に非接触で支持されるというように、複数層のフォイル5〜9を介して軸3がハウジング2に支持される。軸3の回転時に生じる軸3の滑り速度は、フォイル5〜9の層数に比例して低下する。トルク損失は滑り速度に比例する。したがって、フォイル5〜9を多層化することによって、油膜の粘性抵抗を低くして、低トルク化が実現できる。また、各油膜形成すきま10のすきま量が同一ならば、フォイル5〜9の層数に比例して増加する。このため、軸3の軸心周りに重量の不釣合いがあっても、振動が抑えられる。   According to the multilayer foil bearing assembly 1 of this configuration, since the lubricating oil is held in each oil film forming gap 10 to form an oil film, the shaft 3 is supported by the innermost foil 5 in a non-contact manner, and the innermost layer is formed. The shaft 5 is supported by the housing 2 via the multiple layers of foils 5 to 9 such that the foil 5 is supported in a non-contact manner by the outer foil 6. The sliding speed of the shaft 3 that occurs during the rotation of the shaft 3 decreases in proportion to the number of layers of the foils 5 to 9. Torque loss is proportional to sliding speed. Therefore, by making the foils 5 to 9 multilayer, the viscous resistance of the oil film can be lowered and the torque can be reduced. Moreover, if the clearance amount of each oil film formation clearance 10 is the same, it will increase in proportion to the number of layers of foil 5-9. For this reason, even if there is a weight imbalance around the axis of the shaft 3, vibration is suppressed.

各フォイル5〜9の表面に動圧溝13L,13Rが設けられているため、軸3の回転時に、油膜形成すきま10に潤滑油を十分保持することができ、非接触支持を可能にする油膜圧力が発生させられる。また、軸外周面3aのフォイル収容空間11を構成する部分が他よりも大径の大径部3aaとなり、この大径部3aaと通常径部3abとの間の部分がテーパ部3acとなっているため、軸3が回転することにより、テーパ部3acのポンピング作用により、図1に矢印で示すように、潤滑油流入路12を通ってフォイル収容空間11に潤滑油が流入する。このため、フォイル収容空間11内に十分な量の潤滑油を確保することができる。   Since the dynamic pressure grooves 13L and 13R are provided on the surfaces of the foils 5 to 9, the oil film can sufficiently hold the lubricating oil in the oil film forming gap 10 when the shaft 3 is rotated, and enables an oil-free support. Pressure is generated. Moreover, the part which comprises the foil accommodating space 11 of the shaft outer peripheral surface 3a becomes a large diameter part 3aa having a larger diameter than the others, and the part between the large diameter part 3aa and the normal diameter part 3ab becomes a tapered part 3ac. Therefore, as the shaft 3 rotates, the lubricating oil flows into the foil housing space 11 through the lubricating oil inflow passage 12 as shown by the arrow in FIG. 1 due to the pumping action of the tapered portion 3ac. For this reason, a sufficient amount of lubricating oil can be secured in the foil accommodating space 11.

フォイル5〜9は薄肉であるため、フォイルを多層化しても、多層フォイル軸受部4の径方向寸法が大きくならない。このため、多層フォイル軸受組立体1の小型化が可能である。また、フォイル5〜9は、深絞り加工により低コストで製作することができる。このため、多層フォイル軸受組立体1の低廉化が可能である。   Since the foils 5 to 9 are thin, the radial dimension of the multilayer foil bearing portion 4 does not increase even if the foil is multilayered. For this reason, the multilayer foil bearing assembly 1 can be miniaturized. Further, the foils 5 to 9 can be manufactured at a low cost by deep drawing. For this reason, the multilayer foil bearing assembly 1 can be reduced in price.

次に、図6に示す第2の実施形態について説明する。この第2の実施形態は、軸方向幅が広い多層フォイル軸受組立体1への対応例である。軸方向幅が広いと、各油膜形成すきま10の軸方向中央部で潤滑油が不足がちとなる。そこで、この多層フォイル軸受組立体1では、各フォイル5〜9の軸方向中央部に、内周側と外周側とを連通する連通孔15を設けてある。この実施形態では円周方向の互いに等間隔に位置する2箇所に連通孔15が設けられているが、連通孔15の個数は2個に限らない。さらに、ハウジング2の軸方向中央部に潤滑油供給孔16が設けられており、図示しない潤滑油供給装置から送られてくる潤滑油が、前記潤滑油供給孔16より、フォイル収容空間11内に供給される。潤滑油供給孔16の内径側端に連なるハウジング2の内周面には、潤滑油供給孔16から供給される潤滑油を、フォイル収容空間11内において周方向に導く円周溝17が形成されている。
この第2の実施形態では、第1の実施形態と異なり、軸3が全域にわたって等径とされている。また、ハウジング2の内周面2aにおける両端部2abと段面部2ac間に傾斜面部が設けられていない。他は、第1の実施形態と同じである。
Next, a second embodiment shown in FIG. 6 will be described. This 2nd Embodiment is an example corresponding to the multilayer foil bearing assembly 1 with a wide axial direction width | variety. When the axial width is wide, the lubricating oil tends to be insufficient at the axial central portion of each oil film forming gap 10. Therefore, in this multilayer foil bearing assembly 1, a communication hole 15 is provided in the central portion in the axial direction of each of the foils 5 to 9 to communicate the inner peripheral side and the outer peripheral side. In this embodiment, the communication holes 15 are provided at two positions located at equal intervals in the circumferential direction, but the number of the communication holes 15 is not limited to two. Furthermore, a lubricating oil supply hole 16 is provided in the central portion of the housing 2 in the axial direction, and lubricating oil sent from a lubricating oil supply device (not shown) is introduced into the foil accommodating space 11 from the lubricating oil supply hole 16. Supplied. A circumferential groove 17 that guides the lubricating oil supplied from the lubricating oil supply hole 16 in the circumferential direction in the foil housing space 11 is formed on the inner peripheral surface of the housing 2 connected to the inner diameter side end of the lubricating oil supply hole 16. ing.
In the second embodiment, unlike the first embodiment, the shaft 3 has the same diameter over the entire area. Further, the inclined surface portion is not provided between the both end portions 2ab and the step surface portion 2ac on the inner peripheral surface 2a of the housing 2. Others are the same as the first embodiment.

上記第2の実施形態の構成とすると、潤滑油供給孔16から強制的にフォイル収容空間11内に潤滑油が供給され、その潤滑油が円周溝17を通って最外層のフォイル9の連通孔15から、最外層のフォイル9とその内側のフォイル8間の油膜形成すきま10の軸方向中央部に供給される。同様にして、順に内側の油膜形成すきま10の軸方向中央部に潤滑油が供給される。このため、各油膜形成すきま10における軸方向中央部での潤滑油不足を解消できる。   With the configuration of the second embodiment, the lubricating oil is forcibly supplied into the foil housing space 11 from the lubricating oil supply hole 16, and the lubricating oil passes through the circumferential groove 17 to communicate with the outermost foil 9. From the hole 15, the oil film forming gap 10 between the outermost foil 9 and the inner foil 8 is supplied to the central portion in the axial direction. Similarly, lubricating oil is sequentially supplied to the axially central portion of the inner oil film forming gap 10. For this reason, the lack of lubricating oil at the axially central portion of each oil film forming gap 10 can be resolved.

この発明の多層フォイル軸受組立体1の使用例を示す。図7は、第1の実施形態の多層フォイル軸受組立体1を、エンジンのクランクシャフト20の両端を支持する軸受に適用した例を示す。クランクシャフト20は、回転中心軸21と、バランスウェイト22と、クランクピン23とで構成され、回転中心軸21の両端部が多層フォイル軸受組立体1により回転自在に支持されている。この場合、回転中心軸21が多層フォイル軸受組立体1における軸3にあたる。クランクピン23は、コンロッド24の一方の端部24aに軸受25により回転自在に支持されている。この軸受25にも多層フォイル軸受組立体1を適用してよい。   The usage example of the multilayer foil bearing assembly 1 of this invention is shown. FIG. 7 shows an example in which the multilayer foil bearing assembly 1 of the first embodiment is applied to a bearing that supports both ends of the crankshaft 20 of the engine. The crankshaft 20 includes a rotation center shaft 21, a balance weight 22, and a crank pin 23, and both end portions of the rotation center shaft 21 are rotatably supported by the multilayer foil bearing assembly 1. In this case, the rotation center shaft 21 corresponds to the shaft 3 in the multilayer foil bearing assembly 1. The crank pin 23 is rotatably supported by a bearing 25 at one end 24 a of the connecting rod 24. The multi-layer foil bearing assembly 1 may be applied to the bearing 25 as well.

図8は、第2の実施形態の多層フォイル軸受組立体1を、ターボ機械の一種であるマイクロガスタービンの主軸31を支持する軸受に適用した例を示す。マイクロガスタービンは、空気圧縮機32により空気を圧縮し、この圧縮した空気を用いて燃焼器33により燃料を燃焼させ、それによって生じた高温・高圧の燃焼ガスでタービン34の動翼を回すことによって、発電機35で電力を得る。得られた電力はインバータ36を介して出力される。また、空気圧縮機32から燃焼器33へ送られる圧縮空気の熱、およびタービン34を出た燃焼ガスの熱が熱回収装置37により回収されて、水を温水にする。   FIG. 8 shows an example in which the multilayer foil bearing assembly 1 of the second embodiment is applied to a bearing that supports a main shaft 31 of a micro gas turbine that is a kind of turbomachine. In the micro gas turbine, air is compressed by an air compressor 32, fuel is combusted by a combustor 33 using the compressed air, and the moving blades of the turbine 34 are rotated by high-temperature and high-pressure combustion gas generated thereby. Thus, electric power is obtained by the generator 35. The obtained electric power is output via the inverter 36. Further, the heat of the compressed air sent from the air compressor 32 to the combustor 33 and the heat of the combustion gas exiting the turbine 34 are recovered by the heat recovery device 37 to make the water warm.

主軸31は、空気圧縮機32とタービン34の各タービン翼車を両端に取付けた軸であり、軸方向の複数箇所(この実施形態では2箇所)で、多層フォイル軸受組立体1によりハウジング38に回転自在に支持されている。この場合、主軸33が多層フォイル軸受組立体1における軸3にあたり、ハウジング38が多層フォイル軸受組立体1におけるハウジング2にあたる。   The main shaft 31 is a shaft in which the turbine impellers of the air compressor 32 and the turbine 34 are attached to both ends. The main shaft 31 is attached to the housing 38 by the multilayer foil bearing assembly 1 at a plurality of axial positions (two in this embodiment). It is supported rotatably. In this case, the main shaft 33 corresponds to the shaft 3 in the multilayer foil bearing assembly 1, and the housing 38 corresponds to the housing 2 in the multilayer foil bearing assembly 1.

この発明の多層フォイル軸受組立体1は、上記したように、エンジンのクランクシャフト20の両端を支持する軸受部や、マイクロガスタービン等のターボ機械の主軸31を支持する軸受部に適するが、それ以外の軸受部にも適用することができる。   As described above, the multilayer foil bearing assembly 1 of the present invention is suitable for a bearing portion that supports both ends of the crankshaft 20 of the engine and a bearing portion that supports the main shaft 31 of a turbo machine such as a micro gas turbine. It can be applied to other bearings.

この発明の第1の実施形態にかかる多層フォイル軸受組立体の断面図である。It is sectional drawing of the multilayer foil bearing assembly concerning 1st Embodiment of this invention. 図1の部分拡大図である。It is the elements on larger scale of FIG. フォイル表面の展開図である。It is a development view of the foil surface. 異なるフォイル表面の展開図である。It is an expanded view of the surface of a different foil. フォイルの組込方法を示す説明図である。It is explanatory drawing which shows the incorporating method of foil. この発明の第2の実施形態にかかる多層フォイル軸受組立体の断面図である。It is sectional drawing of the multilayer foil bearing assembly concerning 2nd Embodiment of this invention. 第1の実施形態の多層フォイル軸受組立体を組み込んだエンジンのクランクシャフトの一部断面図である。It is a partial cross section figure of the crankshaft of the engine incorporating the multilayer foil bearing assembly of a 1st embodiment. 第2の実施形態の多層フォイル軸受組立体を組み込んだターボ機械の断面図である。It is sectional drawing of the turbomachine incorporating the multilayer foil bearing assembly of 2nd Embodiment.

符号の説明Explanation of symbols

1…多層フォイル軸受組立体
2…ハウジング
2a…ハウジング内周面
3…軸
3a…軸外周面
5〜9…フォイル
10…油膜形成すきま
13…動圧溝
20…クランクシャフト
21…回転中心軸
31…主軸
38…ハウジング
DESCRIPTION OF SYMBOLS 1 ... Multi-layer foil bearing assembly 2 ... Housing 2a ... Housing inner peripheral surface 3 ... Shaft 3a ... Shaft outer peripheral surface 5-9 ... Foil 10 ... Oil film formation clearance 13 ... Dynamic pressure groove 20 ... Crank shaft 21 ... Rotation center shaft 31 ... Main shaft 38 ... housing

Claims (3)

軸と、この軸の外周面に対向する内周面を有するハウジングとの間に、それぞれ径の異なる複数の円筒状フォイルを互いに径方向にすきまを持たせて配置し、各フォイル間、最内層のフォイルと軸の外周面間、および最外層のフォイルとハウジングの内周面間に潤滑油を保持させて油膜を形成することで、前記軸が最内層のフォイルに非接触で支持され、各フォイル同士が非接触で支持され、最外層のフォイルがハウジングに非接触で支持され、前記フォイルの肉厚は0.5mm以下であり、前記フォイルの回転により前記潤滑油を各フォイル間の隙間のフォイル幅方向の中央側へ流れ込む作用を生じさせる手段を設けたことを特徴とする多層フォイル軸受組立体。 A plurality of cylindrical foils having different diameters are arranged between the shaft and a housing having an inner peripheral surface opposite to the outer peripheral surface of the shaft, with a gap in the radial direction between each foil. By forming an oil film between the outer foil of the shaft and the outer peripheral surface of the shaft and between the outermost foil and the inner peripheral surface of the housing to form an oil film, the shaft is supported in a non-contact manner by the innermost foil. foil each other is supported in a non-contact, the outermost layer of the foil is supported without contact to the housing, the wall thickness of the foil Ri der below 0.5 mm, gaps between the foils the lubricating oil by the rotation of the foil A multilayer foil bearing assembly comprising means for causing an action of flowing toward the center in the foil width direction . 請求項1において、前記潤滑油を各フォイル間の隙間のフォイル幅方向の中央側へ流れ込む作用を生じさせる手段が、前記フォイルの表面に設けられた動圧溝であり、この動圧溝は、前記フォイルの幅方向中央に対し対称形状である多層フォイル軸受組立体。 In claim 1, the means for causing the lubricating oil to flow into the center side in the foil width direction of the gap between the foils is a dynamic pressure groove provided on the surface of the foil, A multilayer foil bearing assembly having a symmetrical shape with respect to the center in the width direction of the foil. 請求項1または請求項2において、エンジンのクランクシャフトまたはターボ機械の主軸の支持に用いられるものとした多層フォイル軸受組立体。   3. The multilayer foil bearing assembly according to claim 1, wherein the multilayer foil bearing assembly is used for supporting a crankshaft of an engine or a main shaft of a turbomachine.
JP2007223480A 2007-08-30 2007-08-30 Multi-layer foil bearing assembly Expired - Fee Related JP5026200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007223480A JP5026200B2 (en) 2007-08-30 2007-08-30 Multi-layer foil bearing assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007223480A JP5026200B2 (en) 2007-08-30 2007-08-30 Multi-layer foil bearing assembly

Publications (2)

Publication Number Publication Date
JP2009057992A JP2009057992A (en) 2009-03-19
JP5026200B2 true JP5026200B2 (en) 2012-09-12

Family

ID=40553921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223480A Expired - Fee Related JP5026200B2 (en) 2007-08-30 2007-08-30 Multi-layer foil bearing assembly

Country Status (1)

Country Link
JP (1) JP5026200B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5094897B2 (en) * 2010-03-08 2012-12-12 本田技研工業株式会社 Electric centrifugal compressor
JP2016223562A (en) 2015-06-01 2016-12-28 大豊工業株式会社 Bearing for internal combustion engine, and manufacturing method of bearing for internal combustion engine
GB201512494D0 (en) 2015-07-17 2015-08-19 Rolls Royce Plc And Rolls Royce Deutschland Ltd & Co Kg Gas turbine engine
NO340504B1 (en) * 2015-09-18 2017-05-02 Ltj As Piston machine
KR102097347B1 (en) * 2019-07-16 2020-04-06 주식회사 뉴로스 Air foil journal bearing

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60136615A (en) * 1983-12-23 1985-07-20 Ishikawajima Harima Heavy Ind Co Ltd Fluid bearing construction
JPS6268020U (en) * 1985-10-18 1987-04-28
JPH0532653Y2 (en) * 1986-12-02 1993-08-20
JPS6429533U (en) * 1987-08-18 1989-02-22
JP4502548B2 (en) * 2001-06-12 2010-07-14 本田技研工業株式会社 Foil type hydrodynamic bearing

Also Published As

Publication number Publication date
JP2009057992A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
JP5080814B2 (en) Gas turbine engine assembly, differential squeeze oil film damper bearing assembly, and gas turbine engine
KR101277463B1 (en) Multi-thickness film layer bearing cartridge and housing
JP5026200B2 (en) Multi-layer foil bearing assembly
US7735833B2 (en) Double padded finger seal
JP5535976B2 (en) Turbocharger and floating bush manufacturing method
JP5080044B2 (en) Sacrificial inner shroud liner for gas turbine engines
WO2015033835A1 (en) Foil bearing unit
US8764377B2 (en) Thrust bearing, especially for a turbocharger
JP5766562B2 (en) Thrust foil bearing
JP6591179B2 (en) Foil bearing
JP2015007463A (en) Tilting pad bearing
EP3048342B1 (en) Improved radial coverage piston ring groove arrangement
JP4708221B2 (en) Cylindrical roller bearing for wind power generator
JP2011153668A (en) Bearing device
JP2009167872A (en) Turbocharger
JP2014503759A (en) Bearing with integrated seal
JP2013047551A (en) Semi-float bearing and method of manufacturing the same
JP2013053645A (en) Thrust foil bearing
JP4994356B2 (en) Split type slide bearing and split type slide bearing device for crankshaft of internal combustion engine
JP2013047555A (en) Foil bearing
JP2013019517A (en) Sliding bearing
JP5089572B2 (en) Split type slide bearing and split type slide bearing device for crankshaft of internal combustion engine
CN111503135A (en) Sliding bearing with an additively manufactured structure
JP4442461B2 (en) Liquid lubricated foil type hydrodynamic bearing
JP5317376B2 (en) Bearing device for supporting a crankshaft of an internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110922

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120620

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees