JP4988643B2 - Lighting device for plant disease control - Google Patents

Lighting device for plant disease control Download PDF

Info

Publication number
JP4988643B2
JP4988643B2 JP2008113335A JP2008113335A JP4988643B2 JP 4988643 B2 JP4988643 B2 JP 4988643B2 JP 2008113335 A JP2008113335 A JP 2008113335A JP 2008113335 A JP2008113335 A JP 2008113335A JP 4988643 B2 JP4988643 B2 JP 4988643B2
Authority
JP
Japan
Prior art keywords
light source
plant
ultraviolet
lux
day
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008113335A
Other languages
Japanese (ja)
Other versions
JP2009261289A (en
Inventor
正紀 石渡
真 山田
兼毅 降籏
明伸 大市
隆 尾身
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008113335A priority Critical patent/JP4988643B2/en
Publication of JP2009261289A publication Critical patent/JP2009261289A/en
Application granted granted Critical
Publication of JP4988643B2 publication Critical patent/JP4988643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cultivation Of Plants (AREA)

Description

本発明は、農作物等の植物病害を防除するための植物病害防除用照明装置に関する。   The present invention relates to a plant disease control lighting device for controlling plant diseases such as agricultural crops.

従来から、主に完全閉鎖型の植物苗生産システムを対象として、B領域紫外線(UV−B)を植物苗に照射することによって培地上に発生する藻やカビの発生を抑える植物育成用照明装置が知られている(例えば、特許文献1参照)。   Conventionally, mainly for a completely closed type plant seedling production system, a plant growing lighting device that suppresses generation of algae and mold generated on a culture medium by irradiating the plant seedling with B-region ultraviolet rays (UV-B). Is known (see, for example, Patent Document 1).

植物へのUV−Bの紫外線照射は、植物病害防除に効果があるが、一日の日射量が少ない場合、植物体は、紫外線に対する抵抗性が低下して、紫外線照射による葉焼けを起こしやすくなる。
特開2003−339236号公報
Although UV-B irradiation to plants is effective for controlling plant diseases, when the amount of solar radiation per day is small, the plant body is less resistant to UV rays and is susceptible to leaf burning due to UV irradiation. Become.
JP 2003-339236 A

本発明は、上記問題を解決するものであり、紫外線照射によって植物病害を防除する植物病害防除用照明装置において、紫外線照射による葉焼けを防止することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to prevent leaf burning caused by ultraviolet irradiation in a plant disease controlling lighting apparatus that controls plant diseases by ultraviolet irradiation.

上記目的を達成するために請求項1に記載の発明は、主波長として280乃至340nm波長域の紫外放射をする人工光源と、前記人工光源を点灯制御する制御部と、380乃至780nm波長域の光強度を測定する外光センサと、を備えた植物病害防除用照明装置において、前記制御部は、前記外光センサにより測定された照度が略1000ルクス以下の場合、前記人工光源を消灯するものである。   In order to achieve the above object, an invention according to claim 1 is directed to an artificial light source that emits ultraviolet light having a wavelength range of 280 to 340 nm as a main wavelength, a control unit that controls lighting of the artificial light source, and a wavelength range of 380 to 780 nm. An illuminating device for controlling plant diseases comprising an external light sensor for measuring light intensity, wherein the control unit turns off the artificial light source when the illuminance measured by the external light sensor is approximately 1000 lux or less It is.

請求項2に記載の発明は、請求項1に記載の植物病害防除用照明装置において、400乃至700nm波長域の光を照射する補助光源をさらに備え、前記制御部は、前記外光センサにより測定された照度が略1000ルクス以下の場合、植物上の照度が略1000ルクス以上となるように前記補助光源を点灯制御するものである。   The invention described in claim 2 is the lighting device for controlling plant diseases according to claim 1, further comprising an auxiliary light source for irradiating light in a wavelength range of 400 to 700 nm, wherein the control unit is measured by the external light sensor. When the illuminance is about 1000 lux or less, the auxiliary light source is turned on so that the illuminance on the plant is about 1000 lux or more.

請求項3に記載の発明は、請求項1に記載の植物病害防除用照明装置において、280乃至315nm波長域紫外線(UV−B)の紫外放射を測定する紫外線強度計をさらに備え、前記制御部は、前記外光センサにより測定された前日の外光の積算光量が略12000ルクス・時以下の場合、前記紫外線強度計により測定される当日のUV−Bの積算照射量が0.2kJm−2day−1以上8kJm−2day−1以下となるように前記人工光源を点灯制御するものである。 The invention according to claim 3 further includes an ultraviolet intensity meter for measuring ultraviolet radiation of 280 to 315 nm wavelength range ultraviolet (UV-B) in the plant disease control lighting device according to claim 1, wherein the control unit If the integrated light quantity of the external light of the previous day measured by the external light sensor is approximately 12000 lux · hour or less, the integrated irradiation dose of UV-B on the day measured by the ultraviolet intensity meter is 0.2 kJm −2 The artificial light source is controlled to be turned on so that it is not less than day −1 and not more than 8 kJm −2 day −1 .

請求項1に記載の発明によれば、植物の紫外線に対する抵抗性が低くなる照度略1000ルクス以下では、人工光源を消灯して紫外線照射をしないので、植物の葉焼けを防止することができる。   According to the first aspect of the present invention, when the illuminance is about 1000 lux or less at which the resistance of the plant to the ultraviolet ray is low, the artificial light source is turned off and the ultraviolet ray is not irradiated, so that the leaf burn of the plant can be prevented.

請求項2に記載の発明によれば、植物上の照度が略1000ルクス以上になるように補助光源が点灯制御されるので、紫外線に対する植物の抵抗性が確保され、紫外線の照射スケジュールを遵守することができ、従って、植物病害防除の効率を向上することができる。   According to the invention described in claim 2, since the auxiliary light source is controlled so that the illuminance on the plant is approximately 1000 lux or more, the resistance of the plant to the ultraviolet rays is ensured and the ultraviolet irradiation schedule is observed. Therefore, the efficiency of plant disease control can be improved.

請求項3に記載の発明によれば、1日中雨が降り続くような極端な曇天が続いた次の日などは、紫外線(UV−B)に対する植物の抵抗性が弱まっており、葉焼け症状が発生しやすいが、人工光源を点灯制御してUV−Bの積算照射量を制御するので、植物の葉焼けを防止しつつ、植物病害防除効果を維持することができる。   According to the invention described in claim 3, on the next day, etc., when the cloudy weather continues to rain throughout the day, the resistance of the plant to ultraviolet rays (UV-B) is weakened, and leaf burn symptoms However, since the cumulative irradiation amount of UV-B is controlled by controlling the lighting of the artificial light source, the plant disease control effect can be maintained while preventing the leaf burn of the plant.

以下、本発明の一実施形態に係る植物病害防除用照明装置(以下、本照明装置という)について図1を参照して説明する。図1は、農業用温室20に設置した本照明装置10の構成を示す。本照明装置10は、主波長として280〜340nm波長域の紫外放射をする人工光源11と、人工光源11を点灯制御する制御部12と、380〜780nm波長域の外光強度(照度)を測定する外光センサ13と、400〜700nm波長域の光を照射する補助光源14と、UV−Bの紫外放射を測定する紫外線強度計15とを備える。   Hereinafter, a plant disease control lighting device (hereinafter referred to as the present lighting device) according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a configuration of the present lighting device 10 installed in an agricultural greenhouse 20. The illuminating device 10 measures an artificial light source 11 that emits ultraviolet light having a wavelength range of 280 to 340 nm as a main wavelength, a control unit 12 that controls lighting of the artificial light source 11, and an external light intensity (illuminance) in a wavelength range of 380 to 780 nm. An external light sensor 13, an auxiliary light source 14 that irradiates light in a wavelength range of 400 to 700 nm, and an ultraviolet intensity meter 15 that measures UV-B ultraviolet radiation.

人工光源11は、放射される光の中に280〜340nm波長域の光が含まれる光源であれば光源種を問わない。光源種は、例えば、蛍光灯、コンパクト蛍光灯、冷陰極蛍光灯、キセノンランプ、高輝度放電灯、発光ダイオード(LED)、有機ELなどである。人工光源11には、光源を安定的に光らせるための点灯スタータ、安定器、電源回路などのデバイスが設置される。補助光源14は、放射される光の中に400〜700nm波長域の光が含まれる光源であれば光源種は問わない。400〜700nm波長域は、葉緑素の吸収波長域であり、可視光線の波長域(約350〜800nm)に含まれる。   The artificial light source 11 may be of any light source type as long as the emitted light includes light in the wavelength range of 280 to 340 nm. Examples of the light source are a fluorescent lamp, a compact fluorescent lamp, a cold cathode fluorescent lamp, a xenon lamp, a high-intensity discharge lamp, a light emitting diode (LED), and an organic EL. The artificial light source 11 is provided with devices such as a lighting starter, a ballast, and a power circuit for stably illuminating the light source. The auxiliary light source 14 may be of any light source type as long as the emitted light includes light in the wavelength range of 400 to 700 nm. The wavelength range of 400 to 700 nm is an absorption wavelength range of chlorophyll, and is included in the wavelength range of visible light (about 350 to 800 nm).

制御部12は、例えば、人工光源11とは独立した位置に設けられたボックスに格納され、外光センサ13や人工光源11などとケーブルやワイヤレスで繋がれる。制御部12は、人工光源11又は補助光源14或いは外光センサ13又は紫外線強度計15と一体に構成してもよい。   The control unit 12 is stored in, for example, a box provided at a position independent of the artificial light source 11, and is connected to the external light sensor 13, the artificial light source 11 and the like by a cable or wirelessly. The control unit 12 may be configured integrally with the artificial light source 11, the auxiliary light source 14, the external light sensor 13, or the ultraviolet intensity meter 15.

外光センサは、一般的に人が感じる波長に合わせた分光感度を有する光量(照度)を測るものであり、光に反応して信号を送信する受光部と、その信号を伝える伝送部と、信号を受けて数値データに変換してその数値を表示する本体部とからなる。外光センサ13の受光部の分光感度は、人の目の分光感度に合わせる必要はなく、波長400〜700nmの範囲内にある植物の感じる光合成感度(単位は「μmol・m−2−1」)やその範囲内の放射照度(単位は「Wm−2」)で数値化してもよい。 An outside light sensor is a device that measures the amount of light (illuminance) having a spectral sensitivity that is generally matched to the wavelength perceived by a person, a light receiving unit that transmits a signal in response to light, The main body unit receives a signal, converts it into numerical data, and displays the numerical value. The spectral sensitivity of the light receiving portion of the external light sensor 13 does not need to match the spectral sensitivity of the human eye, and the photosynthetic sensitivity felt by plants in the wavelength range of 400 to 700 nm (unit: “μmol · m −2 S −1). )) Or irradiance within the range (the unit is “Wm −2 ”).

紫外線強度計は、一般的に100〜400nmの範囲にある波長の紫外放射(UV)を測定対象とし、100〜400nmの波長域を3つに細区分した範囲に分光感度のピークを有し、この範囲内における単位面積当りの放射エネルギー量を測定するものである。UVの波長域の細区分については、315〜400nmをUV−A、280〜315nmをUV−B、100〜280nmをUV−Cという。本発明の実証試験では、紫外線強度計15としてUV−B紫外線強度計(クリニカル・サプライ製UVR−3036/S2)を用いて測定を行った。   The ultraviolet intensity meter is generally used for measuring ultraviolet radiation (UV) having a wavelength in the range of 100 to 400 nm, and has a spectral sensitivity peak in a range obtained by subdividing the wavelength range of 100 to 400 nm into three, The amount of radiant energy per unit area within this range is measured. Regarding the subdivision of the UV wavelength region, 315 to 400 nm is referred to as UV-A, 280 to 315 nm is referred to as UV-B, and 100 to 280 nm is referred to as UV-C. In the demonstration test of the present invention, measurement was performed using a UV-B ultraviolet intensity meter (UVR-3036 / S2 manufactured by Clinical Supply) as the ultraviolet intensity meter 15.

外光センサ13と紫外線強度計15の高さは、対象となる植物の生長に応じてを上下することが望ましいが、作業の手間などを考慮して、植物の苗が定植されて、最終的に出荷されるまでの草冠面の平均的な高さに固定してもよい。   It is desirable that the height of the external light sensor 13 and the ultraviolet intensity meter 15 is raised or lowered depending on the growth of the target plant. It may be fixed to the average height of the crown surface until it is shipped.

紫外線強度計15の台数については、1つの人工光源11の照射エリアに1台の紫外線強度計15を設置し、各紫外線強度計15の受光する紫外線強度に応じて人工光源11の光出力や光照射時間を点灯制御することが望ましいが、1つの農業用ビニールハウスに少なくとも1台設置して、その栽培エリアの代表となる紫外線強度計15の値を基に点灯制御してもよい。外光センサ13の台数についても1台でも複数台でもよい。   Regarding the number of ultraviolet intensity meters 15, one ultraviolet intensity meter 15 is installed in the irradiation area of one artificial light source 11, and the light output and light of the artificial light source 11 are changed according to the ultraviolet intensity received by each ultraviolet intensity meter 15. Although it is desirable to perform lighting control of the irradiation time, at least one unit may be installed in one agricultural greenhouse, and lighting control may be performed based on the value of the ultraviolet intensity meter 15 that represents the cultivation area. The number of external light sensors 13 may be one or more.

上記のように構成された本照明装置10において、外光センサ13は、太陽光による光強度を測定する。制御部12は、外光センサ13から送られてくるリアルタイムの測定値を入力とし、測定値が閾値より大きい場合、人工光源11を点灯し、閾値以下の場合、人工光源11を消灯する制御をする。閾値については、照度の場合は、1000ルクスを閾値とするが、光合成感度を有する光合成有効光量子束密度の場合は、20μmol・m−2−1が、放射照度の場合は、4.0Wm−2が閾値となる。なお、光合成光量子束密度は、葉緑素の吸収波長域の波長での光量子が単位時間・単位面積あたりに入射する個数を示す。 In the present lighting device 10 configured as described above, the external light sensor 13 measures the light intensity of sunlight. The control unit 12 receives a real-time measurement value sent from the external light sensor 13 as input, and controls the artificial light source 11 to be turned on when the measurement value is larger than the threshold, and to turn off the artificial light source 11 when the measurement value is lower than the threshold. To do. As for the threshold value, in the case of illuminance, 1000 lux is set as the threshold value. However, in the case of a photosynthetic effective photon flux density having photosynthesis sensitivity, 20 μmol · m −2 S −1 is used, and in the case of irradiance, 4.0 Wm − 2 is a threshold value. The photosynthetic photon flux density indicates the number of light quanta incident per unit time and unit area at a wavelength in the absorption wavelength region of chlorophyll.

本照明装置10が対象とする植物は、一般的に農家が栽培している農作物全てである。具体的には、トマト、ナス、キュウリ、シシトウ、ピーマン、メロン、スイカ、イチゴなどの果菜類、レタス、キャベツ、ハクサイ、チンゲンサイ、ホウレンソウ、コマツナ、シソなどの葉栽類、ゴボウ、ダイコン、ニンジンなどの根菜類、大豆、エダマメ、ソラマメ、エンドウなどの豆類、キク、バラ、トルコギキョウ、カーネーション、ケイトウなどの花き類、その他として稲や茶などを挙げることができる。   The plants targeted by the lighting device 10 are all crops that are generally cultivated by farmers. Specifically, fruit vegetables such as tomato, eggplant, cucumber, shiitake, green pepper, melon, watermelon, strawberry, lettuce, cabbage, Chinese cabbage, chingensai, spinach, komatsuna, perilla, etc., burdock, radish, carrot, etc. Root vegetables, soybeans such as soybeans, green beans, broad beans, peas, flowers such as chrysanthemum, roses, eustoma, carnations, and peanuts, and rice and tea.

それぞれの植物は、露地栽培、ビニールハウス栽培、ガラス温室栽培のいずれでもよい。また栽培するための培地の形状としては、露地畑によく見られるような畝の形状をしても、金属や木材で作られた栽培ベンチの上に土を盛り、そこに畝を形成しても、栽培ベンチ上に鉢やプランターを置いてもよい。   Each plant may be any of outdoor cultivation, greenhouse cultivation, and glass greenhouse cultivation. As for the shape of the culture medium for cultivation, even if it is shaped like a cocoon that is often found in open-field fields, soil is placed on a cultivation bench made of metal or wood, and a cocoon is formed there. Alternatively, a pot or a planter may be placed on the cultivation bench.

紫外線照射の具体的な実施条件を説明する。対象となる植物の上方又は側方に、人工光源11を設置して、植物に対して所定の紫外線強度で光照射をする。紫外線強度は、50μW/cm以下とする。これを越える光強度の紫外放射をすると植物が葉焼け症状を起こす危険性が極端に高まるからである。本発明の実証試験では、一般的な農業用ビニールハウスの農業用温室20を用いて、農業用温室20の畝面から高さ約2mにある梁21の下側に、梁21と平行に人工光源11として蛍光灯タイプの20W器具を設置した。畝22や栽培ベンチ上にある植物の草冠面での紫外線強度は、1日当り約10kJm−2とした。 Specific implementation conditions for ultraviolet irradiation will be described. The artificial light source 11 is installed above or on the side of the target plant, and the plant is irradiated with light at a predetermined ultraviolet intensity. The ultraviolet intensity is 50 μW / cm 2 or less. This is because, when ultraviolet radiation with a light intensity exceeding this level is used, the risk of causing burnt symptoms in the plant is extremely increased. In the verification test of the present invention, an artificial greenhouse 20 of a general agricultural greenhouse is used, and an artificial parallel to the beam 21 is provided below the beam 21 at a height of about 2 m from the surface of the agricultural greenhouse 20. As the light source 11, a fluorescent lamp type 20W appliance was installed. The ultraviolet intensity at the canopy surface of the plants on the straw 22 and the cultivation bench was about 10 kJm- 2 per day.

一方、農業用温室20内に植えた植物の近傍で植物と同程度の高さに外光センサ13(外光センサ)を設置して、植物の生長点付近におけるリアルタイムの照度値を計測した。実証試験では、外光センサ13からの照度値が略1000ルクスを下回る場合には、人工光源11による280〜340nmの紫外放射を抑える試験区と、照度値が略1000ルクスを下回っても紫外放射を抑えない対照区を設けた。植物はイチゴとした。   On the other hand, the ambient light sensor 13 (external light sensor) was installed in the vicinity of the plant planted in the greenhouse 20 for agriculture, and the real-time illuminance value in the vicinity of the plant growth point was measured. In the verification test, when the illuminance value from the external light sensor 13 is less than about 1000 lux, the test section suppresses the 280-340 nm ultraviolet radiation from the artificial light source 11 and the ultraviolet radiation even if the illuminance value is less than about 1000 lux. A control plot was set up that would not hold down. The plant was a strawberry.

実証試験におけるイチゴの葉を撮影した写真を図2及び図3に示す。図2は、試験区で栽培したイチゴの葉の写真であり、葉焼け症状がない健康な葉が見られる。図3は、対照区で栽培したイチゴの葉の写真であり、葉の一部が変色し、表面に正常時より大きな凹凸が現れた状態の葉が見られる。すなわち、対照区で栽培したイチゴの葉は、280〜340nmの紫外放射による葉焼け(葉の表面に赤色素を有するアントシアニンが形成)が見られ、試験区では葉焼けが全く見られなかった。試験結果をまとめたものを表1に示す。人工光源11の点灯による植物病害防除効果と、人工光源11の消灯による葉焼けの防止が確認された。   The photograph which image | photographed the strawberry leaf in a demonstration test is shown in FIG.2 and FIG.3. FIG. 2 is a photograph of a strawberry leaf cultivated in the test area, showing healthy leaves without leaf burn symptoms. FIG. 3 is a photograph of a strawberry leaf cultivated in the control group, in which a part of the leaf is discolored and leaves with larger irregularities appearing on the surface than normal. That is, the leaves of strawberries cultivated in the control group showed leaf burning (formation of anthocyanin having a red pigment on the surface of the leaves) due to ultraviolet radiation of 280 to 340 nm, and no leaf burning was observed in the test group. Table 1 summarizes the test results. It was confirmed that the plant disease control effect by turning on the artificial light source 11 and the prevention of leaf burn by turning off the artificial light source 11 were confirmed.

このように、植物の紫外線に対する抵抗性が低くなる照度略1000ルクス以下の場合、本照明装置10は、人工光源11を消灯して紫外線照射をしないので、植物の葉焼けを防止することができる。   As described above, when the illuminance is approximately 1000 lux or less where the resistance of the plant to the ultraviolet rays is reduced, the lighting device 10 can turn off the artificial light source 11 and does not irradiate the ultraviolet rays. .

ここで、紫外線照射による植物病害防除の原理について説明する。UV−Bを植物に照射することにより、以下のような2種類の原理に基いて病害防除がなされる。   Here, the principle of plant disease control by ultraviolet irradiation will be described. By irradiating plants with UV-B, disease control is performed based on the following two principles.

植物病害防除の原理の一つは、植物自身を病気にかかり難くすることである。通常植物は、病気の基となる菌に感染すると、それに対する防御反応として、病原菌に対する誘導抵抗発現、いわゆる植物免疫システムが発動する。このシステムは、植物の一部の組織が、病原菌等による感染など外的要因(ストレス)を受けた場合、その感染部位からシグナル物質が放出され、それが植物体内を通ってまだ感染を受けていない部位まで到達し、そこで抵抗性発現に関与する遺伝子の発現を誘導するというものである。この抵抗性に関与する物質としては、病原菌の細胞壁を溶解する酵素でグルカナーゼおよびキチナーゼなどの抵抗活性を有するPR−タンパク質(Pathogensisi-Related Protein)、病原菌に対して毒性を示すファイトアレキシン(抗菌活性物質や摂食忌避活性物質)等がある。本発明の場合は、外的要因(ストレス)として、光刺激としてUV−Bを含む紫外線を植物に照射し、病害抵抗性に関与する遺伝子の発現を誘発させるものである。   One of the principles of plant disease control is to make plants difficult to get sick. Normally, when a plant is infected with a disease-causing bacterium, an induced resistance expression against a pathogenic bacterium, a so-called plant immune system, is activated as a defense reaction against the disease. In this system, when a part of the tissue of a plant is subjected to external factors (stress) such as infection by pathogenic bacteria, a signal substance is released from the infected site, and it is still infected through the plant body. It reaches a non-existing site and induces the expression of genes involved in resistance expression there. Substances involved in this resistance include PR-proteins (Pathogensisi-Related Proteins), which are enzymes that dissolve the cell walls of pathogenic bacteria and have resistance activities such as glucanase and chitinase, and phytoalexins that are toxic to pathogenic bacteria (antibacterial activity) Substances and food repellent active substances). In the case of the present invention, as an external factor (stress), a plant is irradiated with ultraviolet rays containing UV-B as a light stimulus to induce expression of a gene involved in disease resistance.

植物病害防除のもう一つの原理は、植物病害の基となる糸状菌に直接作用して菌糸の生長を抑制して病気が広がらないようにすることである。糸状菌は、例えば、うどんこ病菌、灰色カビ病菌、炭そ病菌、ベト病菌、ススカビ病菌などである。特許文献1には、UV−B強度60μW/cm以下(若い苗や光感受性の高い植物に対しては葉焼けを考慮して好ましくは50μW/cm以下)の紫外線を植物に照射してカビの発生を抑制することが記載されている。また、その後の本発明者による室内実験において、寒天培地に接種した灰色カビ病菌や炭そ病菌に、5〜50μW/cmのUV−Bを照射することによって、その後の菌糸の生長が抑えられること(恒温庫で1週間培養しても菌のコロニーの大きさに変化なし)を確認している。 Another principle of plant disease control is to prevent the disease from spreading by acting directly on the filamentous fungus that is the basis of the plant disease to suppress the growth of the mycelium. The filamentous fungi are, for example, powdery mildew fungus, gray fungus fungus, anthracnose fungus, downy mildew fungus, Suscabie fungus and the like. Patent Document 1, the ultraviolet UV-B intensity 60μW / cm 2 or less (preferably 50 W / cm 2 or less in consideration of leaf scorch for young seedlings and high light sensitive plants) irradiating the plant It is described that the generation of mold is suppressed. Further, in subsequent laboratory experiments by the present inventor, irradiation of 5 to 50 μW / cm 2 of UV-B to the gray mold or anthracnose fungi inoculated on the agar medium can suppress the subsequent growth of mycelia. (There is no change in the size of the colonies of bacteria even if they are cultured for 1 week in a thermostatic chamber).

本照明装置10の制御部12は、外光センサ13によって測定された照度が略1000ルクス以下の場合、植物上の照度が略1000ルクス以上となるように補助光源14を点灯制御する。   When the illuminance measured by the external light sensor 13 is approximately 1000 lux or less, the control unit 12 of the present lighting device 10 controls the auxiliary light source 14 so that the illuminance on the plant is approximately 1000 lux or more.

外光センサ13は、植物近傍で植物の草冠面付近にある生長点と同じ高さに設置して、太陽または補助光源14から植物が受ける照度値をリアルタイムで測定する。初期状態では、補助光源14は消灯しており、外光センサ13により、太陽光による照度が測定される。外光センサ13により測定された照度が閾値である略1000ルクス以下の場合、植物上の照度が略1000ルクス以上となるように補助光源14が点灯制御される。補助光源14によって外光センサ13により測定される照度が略1000ルクス以上になるので、紫外放射をする人工光源11は消灯しない。   The external light sensor 13 is installed at the same height as the growth point near the plant crown surface in the vicinity of the plant, and measures the illuminance value received by the plant from the sun or the auxiliary light source 14 in real time. In the initial state, the auxiliary light source 14 is turned off, and the illuminance by sunlight is measured by the external light sensor 13. When the illuminance measured by the external light sensor 13 is about 1000 lux or less, which is a threshold value, the auxiliary light source 14 is controlled to be turned on so that the illuminance on the plant is about 1000 lux or more. Since the illuminance measured by the external light sensor 13 by the auxiliary light source 14 is approximately 1000 lux or more, the artificial light source 11 that emits ultraviolet light is not turned off.

このように、太陽光すなわち外光による照度が略1000ルクス以下に下がっても、植物上の照度が略1000ルクス以上になるように補助光源14が点灯制御されるので、紫外線に対する植物の抵抗性が確保され、紫外線の照射スケジュールを遵守することができ、従って、植物病害防除の効率を向上することができる。   In this way, even if the illuminance due to sunlight, that is, external light is reduced to about 1000 lux or less, the auxiliary light source 14 is controlled to be turned on so that the illuminance on the plant is about 1000 lux or more. Can be ensured and the irradiation schedule of ultraviolet rays can be observed, and therefore the efficiency of plant disease control can be improved.

また、制御部12は、外光センサ13により測定された前日の外光の積算光量が12000ルクス・時以下の場合、紫外線強度計15により測定される当日のUV−Bの積算照射量が0.2kJm−2day−1以上8kJm−2day−1以下となるように人工光源11を点灯制御する。 In addition, when the integrated light amount of the external light of the previous day measured by the external light sensor 13 is 12000 lux · hour or less, the control unit 12 has the integrated UV-B irradiation amount measured by the ultraviolet intensity meter 15 of 0 on the day. The lighting control of the artificial light source 11 is performed so that it becomes 2 kJm −2 day −1 or more and 8 kJm −2 day −1 or less.

本照明装置10の動作手順を以下に説明する。   The operation procedure of the illumination device 10 will be described below.

手順1:植物体の上部または側部に、紫外線放射をするための人工光源11を設置する。人工光源11による紫外線放射は、植物草冠面の紫外線強度(UV−B)が50μW/cm以下になるようにする。 Procedure 1: The artificial light source 11 for emitting ultraviolet rays is installed on the upper part or the side part of the plant body. Ultraviolet radiation by the artificial light source 11 is set so that the ultraviolet intensity (UV-B) of the plant grass crown surface is 50 μW / cm 2 or less.

手順2:次に植物の種類や状態に応じて、栽培現場における対象植物の近傍に外光センサ13と紫外線強度計15を設置する。外光センサ13と紫外線強度計15は、補助光源14と人工光源11に直接又は制御部12を介して間接的に結線される。   Procedure 2: Next, according to the kind and state of a plant, the external light sensor 13 and the ultraviolet intensity meter 15 are installed in the vicinity of the target plant in the cultivation site. The external light sensor 13 and the ultraviolet intensity meter 15 are connected to the auxiliary light source 14 and the artificial light source 11 directly or indirectly via the control unit 12.

手順3:栽培を開始する際には、例えば1日当りの積算紫外線強度が10kJm−2day−1以下になるように制御部12により人工光源11を点灯制御して1日当りの照射時間を規定する。また、前日における外光の積算照射量を参照して略12000ルクス・時以下の場合は、8kJm−2day−1以下となるように点灯制御する。 Procedure 3: When starting cultivation, for example, the artificial light source 11 is controlled to be turned on by the control unit 12 so that the accumulated ultraviolet intensity per day is 10 kJm −2 day −1 or less, and the irradiation time per day is defined. . In addition, referring to the integrated irradiation amount of external light on the previous day, lighting control is performed so that it is 8 kJm −2 day −1 or less when it is approximately 12000 lux · hour or less.

手順4:日中の人工光源11の照射中、外光センサ13は、継続的に植物近傍の光強度(照度、光合成有効光量子束密度、放射照度のいずれか)をリアルタイムに測定して制御部12に測定値の信号を送る。   Procedure 4: During irradiation of the artificial light source 11 during the day, the outside light sensor 13 continuously measures the light intensity (either illuminance, photosynthetic effective photon flux density, or irradiance) in the vicinity of the plant in real time. The measurement value signal is sent to 12.

手順5:制御部12では送られてきた光強度が、本照明装置10の閾値に対して高いか低いかを常に判断する。   Procedure 5: The control unit 12 always determines whether the transmitted light intensity is higher or lower than the threshold value of the lighting device 10.

手順6:制御部12が判断した結果が、予め設定された閾値に対して低い場合は、速やかに人工光源11を消灯する信号を人工光源11に送信する。   Procedure 6: When the result determined by the control unit 12 is lower than a preset threshold value, a signal for quickly turning off the artificial light source 11 is transmitted to the artificial light source 11.

手順7:人工光源11は、制御部12から消灯する信号を受けると、すぐに人工光源11を消灯する。   Procedure 7: When artificial light source 11 receives a signal to turn off from control unit 12, artificial light source 11 is turned off immediately.

手順8:またしばらくして、外光センサ13から送られる光強度の測定値が上昇して閾値を越えた場合には、制御部12は、速やかに人工光源11を再び点灯する制御信号を人工光源11に送信する。   Procedure 8: After a while, when the measured value of the light intensity sent from the outside light sensor 13 rises and exceeds the threshold value, the control unit 12 artificially sends a control signal for quickly turning on the artificial light source 11 again. Transmit to the light source 11.

手順9:人工光源11は、制御部12から点灯する制御信号を受けると、すぐに人工光源11の再点灯を行う。   Procedure 9: When the artificial light source 11 receives a control signal to be turned on from the control unit 12, the artificial light source 11 is immediately turned on again.

手順10:制御部12はタイマ機能を有し、タイマで規定した1日の光照射時間の間は、何度でも手順4から手順9を繰り返す。   Procedure 10: The control unit 12 has a timer function, and repeats the procedure 4 to the procedure 9 as many times as possible during the one-day light irradiation time specified by the timer.

手順11:タイマがオフとなった後は、外光センサ13により測定された照度が閾値を越えても、次にタイマがオンとなるまで人工光源11の点灯は行わない。   Step 11: After the timer is turned off, even if the illuminance measured by the external light sensor 13 exceeds the threshold value, the artificial light source 11 is not turned on until the timer is turned on next time.

次に、本照明装置10の実証条件とその結果について説明する。実証条件として、試験区の紫外線照射量は、3、6、10kJm−2day−1の3条件とし、対照区では紫外線を照射しない。栽培期間は3週間とし、調査した株数は各区4株とした。 Next, verification conditions and results of the lighting device 10 will be described. As a verification condition, the ultraviolet irradiation amount in the test group is set to three conditions of 3, 6, 10 kJm −2 day −1 , and no ultraviolet light is irradiated in the control group. The cultivation period was 3 weeks, and the number of strains examined was 4 in each ward.

その結果を表2に示す。発病葉率=発病葉数/総葉数×100%とすると、紫外線照射しない場合、発病葉率が75.0%と高かったが、紫外線照射量が3kJm−2day−1の場合、発病葉率が2.0%と低く、紫外線照射量が6kJm−2day−1の場合、発病葉率が0.0%となった。 The results are shown in Table 2. When diseased leaf rate = number of diseased leaves / total number of leaves × 100%, the diseased leaf rate was as high as 75.0% when UV irradiation was not performed, but when the UV irradiation amount was 3 kJm −2 day −1 , the diseased leaf When the rate was as low as 2.0% and the UV irradiation amount was 6 kJm −2 day −1 , the diseased leaf rate was 0.0%.

前日の外光の積算光量と葉焼けの関係については、極端な曇天が続いた次の日に、紫外線照射量が10kJm−2day−1の場合、葉焼けが見られ、6kJm−2day−1の場合、葉焼けができないことが確認された。そこで、外光センサ13により測定された前日の外光の積算光量が略12000ルクス・時以下の場合、紫外線強度計15により測定される当日のUV−Bの積算照射量の最大値を8kJm−2day−1と設定した。最低値については、他の実験で5μW/cmの弱い紫外線強度で光照射しながら3時間/日未満の短い照射でも病害防除効果が確認されたことから、0.2kJm−2day−1とした。 Regarding the relationship between the accumulated amount of external light on the previous day and leaf burning, on the next day after the extreme cloudy weather, when the UV irradiation amount was 10 kJm −2 day −1 , leaf burning was observed and 6 kJm −2 day − In the case of 1 , it was confirmed that leaf burning was not possible. Therefore, when the integrated light amount of the external light of the previous day measured by the external light sensor 13 is approximately 12000 lux · hour or less, the maximum value of the integrated UV-B irradiation amount measured by the ultraviolet intensity meter 15 is 8 kJm − It was set to 2 day -1 . As for the lowest value, 0.2 kJm −2 day −1 was obtained because the disease control effect was confirmed even in a short irradiation of less than 3 hours / day while irradiating light with a weak ultraviolet intensity of 5 μW / cm 2 in other experiments. did.

このように、1日中雨が降り続くような極端な曇天が続いた次の日などは、紫外線(UV−B)に対する植物の抵抗性が弱まっており、葉焼け症状が発生しやすいが、人工光源11を点灯制御してUV−Bの積算照射量を制御するので、植物の葉焼けを防止しつつ、植物病害防除効果を維持することができる。   In this way, the day after the extreme cloudy weather that continues to rain all day, the resistance of the plant to ultraviolet rays (UV-B) is weakened, and leaf burn symptoms are likely to occur. Since the light source 11 is turned on to control the UV-B integrated irradiation amount, the plant disease control effect can be maintained while preventing the leaf burn of the plant.

なお、本照明装置10において、設置環境におけるコスト対効果などを考慮し、補助光源14を省略してもよい。この場合、紫外線の照射スケジュールを遵守することができないので、植物病害防除の効率が下がるが、装置のコスト低減を図ることができる。また、紫外線強度計15を省略してもよい。この場合、極端な曇天が続いた次の日などは、葉焼け症状が発生しやすくなるが、装置のコスト低減を図ることができる。   In the present lighting device 10, the auxiliary light source 14 may be omitted in consideration of cost effectiveness in the installation environment. In this case, since the irradiation schedule of ultraviolet rays cannot be observed, the efficiency of plant disease control is lowered, but the cost of the apparatus can be reduced. Further, the ultraviolet intensity meter 15 may be omitted. In this case, on the next day when the cloudy weather continued, leaf burn symptoms are likely to occur, but the cost of the apparatus can be reduced.

本発明は、上記の実施形態の構成に限られず、発明の要旨を変更しない範囲で種々の変形が可能である。人工光源11の紫外放射の波長域を、280〜340nmのうち280〜315nmとしてもよい。   The present invention is not limited to the configuration of the above-described embodiment, and various modifications can be made without departing from the scope of the invention. The wavelength range of the ultraviolet radiation of the artificial light source 11 may be 280 to 315 nm out of 280 to 340 nm.

本発明の一実施形態に係る植物病害防除用照明装置の外観図。The external view of the illuminating device for plant disease control which concerns on one Embodiment of this invention. 同装置の実証試験における試験区で栽培したイチゴの葉を撮影した写真。A photograph of the leaves of strawberries grown in the test area in the verification test of the device. 同試験における対照区で栽培したイチゴの葉を撮影した写真。A photograph taken of the leaves of a strawberry grown in a control plot in the same test.

符号の説明Explanation of symbols

10 植物病害防除用照明装置
11 人工光源
12 制御部
13 外光センサ
14 補助光源
15 紫外線強度計
DESCRIPTION OF SYMBOLS 10 Illumination device 11 for plant disease control Artificial light source 12 Control part 13 Ambient light sensor 14 Auxiliary light source 15 Ultraviolet intensity meter

Claims (3)

主波長として280乃至340nm波長域の紫外放射をする人工光源と、前記人工光源を点灯制御する制御部と、380乃至780nm波長域の光強度を測定する外光センサと、を備えた植物病害防除用照明装置において、
前記制御部は、前記外光センサにより測定された照度が略1000ルクス以下の場合、前記人工光源を消灯することを特徴とする植物病害防除用照明装置。
Plant disease control comprising: an artificial light source that emits ultraviolet light in the wavelength range of 280 to 340 nm as a main wavelength; a control unit that controls lighting of the artificial light source; and an external light sensor that measures light intensity in the wavelength range of 380 to 780 nm Lighting equipment for
The plant disease control lighting device, wherein the controller turns off the artificial light source when the illuminance measured by the external light sensor is approximately 1000 lux or less.
400乃至700nm波長域の光を照射する補助光源をさらに備え、
前記制御部は、前記外光センサにより測定された照度が略1000ルクス以下の場合、植物上の照度が略1000ルクス以上となるように前記補助光源を点灯制御することを特徴とする請求項1に記載の植物病害防除用照明装置。
An auxiliary light source for irradiating light in a wavelength range of 400 to 700 nm;
The said control part controls lighting of the said auxiliary light source so that the illumination intensity on a plant may be about 1000 lux or more, when the illumination intensity measured by the said external light sensor is about 1000 lux or less. A lighting device for controlling plant diseases according to 1.
280乃至315nm波長域紫外線(UV−B)の紫外放射を測定する紫外線強度計をさらに備え、
前記制御部は、前記外光センサにより測定された前日の外光の積算光量が略12000ルクス・時以下の場合、前記紫外線強度計により測定される当日のUV−Bの積算照射量が0.2kJm−2day−1以上8kJm−2day−1以下となるように前記人工光源を点灯制御することを特徴とする請求項1に記載の植物病害防除用照明装置。
An ultraviolet intensity meter for measuring ultraviolet radiation in the 280 to 315 nm wavelength region (UV-B);
When the integrated light amount of the external light of the previous day measured by the external light sensor is approximately 12000 lux · hour or less, the control unit determines that the integrated UV-B irradiation amount measured by the ultraviolet intensity meter is 0.00. The lighting device for controlling plant diseases according to claim 1, wherein the artificial light source is controlled so as to be 2 kJm −2 day −1 or more and 8 kJm −2 day −1 or less.
JP2008113335A 2008-04-24 2008-04-24 Lighting device for plant disease control Active JP4988643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008113335A JP4988643B2 (en) 2008-04-24 2008-04-24 Lighting device for plant disease control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008113335A JP4988643B2 (en) 2008-04-24 2008-04-24 Lighting device for plant disease control

Publications (2)

Publication Number Publication Date
JP2009261289A JP2009261289A (en) 2009-11-12
JP4988643B2 true JP4988643B2 (en) 2012-08-01

Family

ID=41387958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008113335A Active JP4988643B2 (en) 2008-04-24 2008-04-24 Lighting device for plant disease control

Country Status (1)

Country Link
JP (1) JP4988643B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5424993B2 (en) * 2010-06-17 2014-02-26 パナソニック株式会社 Lighting device for plant disease control
JP5652954B2 (en) * 2011-03-04 2015-01-14 パナソニックIpマネジメント株式会社 Lighting device for plant disease control
JP6097977B2 (en) * 2011-07-28 2017-03-22 国立大学法人山口大学 Method for inducing pathogen-resistant plants
KR101293139B1 (en) 2011-12-30 2013-08-12 전북대학교산학협력단 Measurement and analysis apparatus of photosynthetic photon flux distribution and illumination efficiency of artificial lighting sources for plant growth
JP6761970B2 (en) 2016-08-18 2020-09-30 パナソニックIpマネジメント株式会社 Pest control device
KR101816565B1 (en) * 2016-11-25 2018-01-09 대한민국 System for controlling the intensity of radiation in smart moving garden and method for controlling the intensity of radiation thereof
KR102513189B1 (en) * 2018-01-15 2023-03-23 강남정보기술(주) lighting device control method for fruit coloring
JP7491237B2 (en) 2021-02-17 2024-05-28 ウシオ電機株式会社 Method for inactivating bacteria or viruses

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2608668B2 (en) * 1993-01-22 1997-05-07 シーケーディ株式会社 Lighting device
JP2003339236A (en) * 2002-05-29 2003-12-02 Matsushita Electric Works Ltd Lighting device and apparatus for plant growth, and method for plant growth
JP4396389B2 (en) * 2004-05-18 2010-01-13 パナソニック電工株式会社 Lighting equipment for plant growth
JP2005328734A (en) * 2004-05-19 2005-12-02 Matsushita Electric Works Ltd Disease damage preventive lighting device
JP5010864B2 (en) * 2006-07-18 2012-08-29 パナソニック株式会社 Lighting equipment for plant growth

Also Published As

Publication number Publication date
JP2009261289A (en) 2009-11-12

Similar Documents

Publication Publication Date Title
JP4988643B2 (en) Lighting device for plant disease control
JP5047117B2 (en) Lighting system for plant disease control
US11166415B2 (en) Plant growth with radiation-based mildew and/or bacteria control
JP6817284B2 (en) Methods and devices for stimulating plant growth and growth with near-infrared and visible light
JP5652954B2 (en) Lighting device for plant disease control
JP5162740B2 (en) Lighting device for plant disease control
JP5028407B2 (en) Method for inducing plant gene and method for producing plant
US11116143B2 (en) Method and an apparatus for stimulation of plant growth and development with near infrared and visible lights
Meinen et al. Finding the optimal growth-light spectrum for greenhouse crops
CN111182786A (en) Light source for plant cultivation
ES2960319T3 (en) Control of premature flowering using a high level of far red
KR101935591B1 (en) Cultivation schale using IoT-based LED and sensor
JP5424993B2 (en) Lighting device for plant disease control
JP2013123417A (en) Illuminating device for plant growth disease control
JP4841479B2 (en) Method for acclimating faint light in plants
WO2007037023A1 (en) Method of plant cultivation
JP5297894B2 (en) Plant cover and agricultural house using the same
JP3923480B2 (en) Seedling method
CN104885819A (en) Plant growing device
JP2001258389A (en) Method for cultivating plant
CN203934411U (en) A kind of plant growing device
KR20240009595A (en) LED lighting system for Hydroponics growing equipment
CN203951930U (en) A kind of infrared rays plant growing device
CN203951983U (en) A kind of plant growing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110322

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4988643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 3