JP2001258389A - Method for cultivating plant - Google Patents

Method for cultivating plant

Info

Publication number
JP2001258389A
JP2001258389A JP2000075227A JP2000075227A JP2001258389A JP 2001258389 A JP2001258389 A JP 2001258389A JP 2000075227 A JP2000075227 A JP 2000075227A JP 2000075227 A JP2000075227 A JP 2000075227A JP 2001258389 A JP2001258389 A JP 2001258389A
Authority
JP
Japan
Prior art keywords
light
plant
blue
flowering
flower bud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000075227A
Other languages
Japanese (ja)
Inventor
Wakayoshi Uki
若慶 雨木
Hiroyuki Watanabe
博之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000075227A priority Critical patent/JP2001258389A/en
Publication of JP2001258389A publication Critical patent/JP2001258389A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for cultivating a plant, designed to efficiently regulate flower bud formation thereof. SOLUTION: This method for cultivating a plant is characterized by that the plant in growth is irradiated with artificial light comprising blue light having the maximum value of output wavelength of 400-500 nm and a photon flux density of >=10 μ mol/m2/s.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、400〜500nmに
ピーク波長を有する青色光を用いて植物の花芽形成を促
進し、自然環境によらず効率的に植物の開花調節をする
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for promoting flower bud formation of a plant using blue light having a peak wavelength of 400 to 500 nm, and for efficiently controlling flowering of a plant regardless of a natural environment.

【0002】[0002]

【従来技術】花芽形成を調節するために温室内等で補光
する技術はこれまでに知られており、キク、イチゴなど
で実用化されてきた。この技術は、植物組織に含まれる
鎖状テトラピロール化合物であるフィトクロムの生理作
用を利用した技術であり、フィトクロムが光受容体にな
って引き起こされる花芽形成抑制作用を利用した技術で
ある。即ち、フィトクロムの吸収波長である赤色光を照
射することによって、遠赤色吸収型のフィトクロムを生
成し、それが生物活性体となって植物の花芽形成を抑制
するメカニズムを利用している。こうした技術において
は、赤色光を比較的多く含みかつ安価な白熱灯が広く利
用され、多くのキク産地やイチゴ産地の電照栽培で利用
されていた。
2. Description of the Related Art Techniques for supplementing light in a greenhouse or the like to regulate flower bud formation have been known so far, and have been put to practical use in chrysanthemums, strawberries and the like. This technique is a technique utilizing the physiological action of phytochrome which is a chain tetrapyrrole compound contained in plant tissue, and is a technique utilizing a flower bud formation inhibitory action caused by phytochrome acting as a photoreceptor. In other words, by irradiating red light, which is the absorption wavelength of phytochrome, phytochrome of far-red absorption type is generated, and the phytochrome becomes a bioactive substance and utilizes the mechanism of suppressing flower bud formation of plants. In such technology, inexpensive incandescent lamps, which contain a relatively large amount of red light and are inexpensive, have been widely used, and have been used in electric cultivation in many chrysanthemum production areas and strawberry production areas.

【0003】一方、植物の栽培に発光ダイオードを光源
として用いる方法については、各種研究がなされている
が、これについても、フィトクロムの生理作用を利用
し、赤色光の照射を行うものがメインであり、青色光照
射を行うものとしては、特開平8−37930号公報に
おいて、植物の屋内栽培時に徒長を防ぐため、青色光の
不足分を補光することが知られていた。
[0003] On the other hand, various studies have been made on a method of using a light emitting diode as a light source for cultivating a plant, and also, mainly, a method of irradiating red light by utilizing the physiological action of phytochrome is used. As a method of irradiating blue light, Japanese Patent Application Laid-Open No. 8-37930 discloses that a shortage of blue light is supplemented in order to prevent plant growth during indoor cultivation of plants.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
赤色光を用いた技術は、あくまで花芽形成に必要な他の
条件(温度、水分、栄養条件等)の全てが整った状態の
時に、電照により花芽形成を抑制することによって開花
時期を調節する方法であり、電照により積極的に花芽形
成を促進して開花調節する方法ではない。
However, the technique using the above-mentioned red light is used only when all of the other conditions (temperature, moisture, nutritional conditions, etc.) necessary for flower bud formation are in place. Is a method of controlling flowering time by suppressing flower bud formation, and is not a method of actively promoting flower bud formation by lightening and regulating flowering.

【0005】近年の花き園芸分野では、より付加価値の
高い植物を栽培することが求められており、例えば、花
芽形成を促進しもともと花数の少ない植物の花数を増や
すことや、花がつきにくい植物の開花タイミングを調節
し花数を多くさせるということは、消費意欲向上には重
要であり、このことを可能とする栽培方法の出現が、こ
の分野で広く求められていた。
In the field of flowering and horticulture in recent years, it has been demanded to cultivate higher value-added plants. For example, it is possible to promote the formation of flower buds and to increase the number of flowers originally having a small number of flowers, or to add flowers. Adjusting the flowering timing of difficult plants to increase the number of flowers is important for increasing consumer confidence, and the emergence of cultivation methods that enable this has been widely demanded in this field.

【0006】また、果菜類や果樹類及び穀物類の栽培に
おいても、花芽形成を促進して花数を増やしたり、開花
タイミングを収穫に適した時期に合わせるなどの調節
は、収穫量の増加や安定収穫のために、重要なポイント
であり、そう言った技術の確立が望まれていた。また、
上記特開平8−37930号公報では、あくまでも植物
の屋内栽培において、屋外栽培と比して、不足分の青色
光を補光しているのみであり、光量子束密度に関して
も、数μmol/m2/s程度と極弱く、花芽形成促進効果は
見出されていなかった。
[0006] Also, in the cultivation of fruits and vegetables, orchards and cereals, adjustments such as increasing the number of flowers by promoting flower bud formation, or adjusting the timing of flowering to a time suitable for harvesting, increase the amount of harvest, For stable harvesting, it is an important point, and the establishment of such a technique was desired. Also,
In the above-mentioned Japanese Patent Application Laid-Open No. 8-37930, only the insufficient blue light is supplemented in indoor cultivation of plants as compared with outdoor cultivation, and the photon flux density is also several μmol / m 2. / s, which was extremely weak, and no flower bud formation promoting effect was found.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記課題
を解決するために、照射光の波長と植物の花芽形成に関
して、鋭意検討を行った結果、特定強度以上の青色光が
植物の花芽形成を特異的に促進することを見い出し、本
発明を完成させるに至った。すなわち、本発明の要旨
は、生育中の植物に対し、出力波長が400〜500n
mに最大値を有し、かつ、光量子束密度が10μmol/m
2/s以上である青色光からなる人工光を照射することを
特徴とする植物栽培方法に存する。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have made intensive studies on the wavelength of irradiation light and the formation of flower buds of a plant. They found that they specifically promote flower bud formation, and completed the present invention. That is, the gist of the present invention is that a growing plant has an output wavelength of 400 to 500 n.
m and a photon flux density of 10 μmol / m
A plant cultivation method characterized by irradiating artificial light composed of blue light of 2 / s or more.

【0008】[0008]

【発明の実施の形態】本発明の栽培方法は、生育中の植
物に対し、特定強度の青色光を照射するものである。本
発明の青色光とは、その出力波長のピークが400〜5
00nmの青色域に含まれるものをいう。但し、出力ピ
ークが複数存在したり、スペクトルの出力パターンが不
規則かつブロードな形態を示す光源の場合、出力エネル
ギーの少なくとも50%以上が400〜500nmの青
色波長域に含まれるものは、本発明に含まれるものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The cultivation method of the present invention irradiates a growing plant with blue light of a specific intensity. The blue light of the present invention has an output wavelength peak of 400 to 5
It is included in the blue region of 00 nm. However, in the case of a light source having a plurality of output peaks or an irregular and broad spectrum output pattern, at least 50% or more of the output energy is included in the blue wavelength region of 400 to 500 nm according to the present invention. It is included in.

【0009】上記青色光におけるピーク波長のスペクト
ル幅は、効果的な花芽形成、開花促進にの観点から、半
値幅で150nm以下であることが好ましく、100n
m以下であることが特に好ましい。植物への照射光とし
ては、上記青色光の他に、根の伸長や茎の分化等別の目
的のために、必要に応じて、他のピーク波長を有する光
を照射しても良いが、600〜800nmの赤色波長域
の光は、花芽形成の阻害効果が著しいため、この波長域
に含まれる放射エネルギー量は全放射エネルギー量の3
0%以下に押さえることが好ましく、更には15%以下
に抑えることが好ましい。
The spectral width of the peak wavelength of the blue light is preferably 150 nm or less in half width, from the viewpoint of effective flower bud formation and promotion of flowering, and 100 n.
m or less is particularly preferable. As the irradiation light to the plant, in addition to the blue light, for another purpose such as root elongation or stem differentiation, if necessary, it may be irradiated with light having another peak wavelength, Since light in the red wavelength range of 600 to 800 nm has a remarkable effect of inhibiting flower bud formation, the amount of radiant energy contained in this wavelength range is 3% of the total radiant energy.
It is preferable to keep it to 0% or less, and more preferably to keep it to 15% or less.

【0010】上記青色光を照射するための光源として
は、青色波長を効率的に発光し、かつ青色光以外のエネ
ルギー放射の少ない光源が求められる。具体的には、青
色蛍光灯、青色発光ダイオード、青色レーザーダイオー
ド、青色フィルター装着ランプなどが挙げられ、好まし
くは青色蛍光灯、青色発光ダイオード及び/又は青色レ
ーザーダイオードであるが、その高い単色性や発光効率
の観点から、青色発光ダイオード及び/又は青色レーザ
ーダイオードが特に好ましい。
[0010] As a light source for irradiating the blue light, a light source that efficiently emits a blue wavelength and emits less energy than blue light is required. Specifically, a blue fluorescent lamp, a blue light-emitting diode, a blue laser diode, a blue filter-equipped lamp, and the like, preferably a blue fluorescent lamp, a blue light-emitting diode and / or a blue laser diode. From the viewpoint of luminous efficiency, a blue light emitting diode and / or a blue laser diode are particularly preferable.

【0011】本発明の実施に必要な光強度は、対象とす
る植物種や生育ステージ、使用する光源のスペクトルパ
ターン等によって変化するが、光量子束密度としての下
限は10μmol/m2/s以上、特には30μmol/m2/s以
上であり、上限は500μmol/m2/s以下、特には15
0μmol/m2/s以下であることが効率的な花芽形成、開
花促進を導く上で好ましい。
The light intensity required for carrying out the present invention varies depending on the target plant species, the growth stage, the spectral pattern of the light source used, and the like. The lower limit of the photon flux density is 10 μmol / m 2 / s or more. In particular, it is 30 μmol / m 2 / s or more, and the upper limit is 500 μmol / m 2 / s or less, particularly 15 μmol / m 2 / s.
It is preferable that the concentration be 0 μmol / m 2 / s or less in order to induce efficient flower bud formation and promotion of flowering.

【0012】植物の多くは、昼間の時間(明期時間)に
応じて花芽形成を調節する光周性(日長反応)が存在す
るが、本発明の方法を適用する植物としては、長日植物
(長日に反応して花芽形成を調節する植物)でも、短日
植物(短日に反応して花芽形成を調節する植物)でも、
中性植物(光周期に反応しない植物)でも特に限定され
ずに適用できる。具体的には、花き園芸植物、果菜類、
果樹類及び穀物類が挙げられ、例えば、ファレノプシ
ス、シンピジウム、デンドロジウムをはじめとするラン
類、サボテン類、バラ、カーネーション、ガーベラ、カ
スミソウ、ユリ、スターチス等の切り花用途の花き類、
及び、パンジー、プリムラ、ベコニア、ペチュニア、シ
クラメン等の鉢花用途の花き類;トマト、キュウリ、メ
ロン、イチゴ、ピーマン等の果菜類;ナシ、リンゴ、ブ
ドウ等の果樹類;及びトウモロコシ、コムギ等の穀物類
などにも適用可能である。特に本発明の効果を最大限に
活用するには、花芽形成が遅い植物、自然状態での花芽
形成数が少ない植物、あるいは特別に通常状態よりも多
くの実生が必要な状態になった植物を対象とすることが
考えられる。
Many plants have photoperiodism (daylength response) that regulates flower bud formation in accordance with daytime (light period), but plants to which the method of the present invention is applied include long day light. Plants (plants that regulate flower bud formation in response to long days) or short day plants (plants that regulate flower bud formation in response to short days)
Neutral plants (plants that do not respond to the photoperiod) can be applied without particular limitation. Specifically, flowering garden plants, fruits and vegetables,
Fruit trees and cereals, for example, Phalaenopsis, Sympidium, orchids including dendrodium, cacti, roses, carnations, gerberas, gypsophila, lilies, flowers and flowers for cut flowers such as starches,
And potted flowers such as pansies, primula, bekonia, petunia, cyclamen and the like; fruits and vegetables such as tomato, cucumber, melon, strawberry, and pepper; fruit trees such as pear, apple, grape; and corn, wheat and the like It is also applicable to cereals and the like. In particular, in order to make the most of the effects of the present invention, plants having a slow flower bud formation, plants having a small number of flower bud formations in a natural state, or plants in a state in which more seedlings are required than in a normal state are required. It is possible to target.

【0013】対象植物の栽培方法としては、とくに限定
されるものではなく、培土をつめたトレイやポットを用
いて発芽・育苗したものを圃場に定植し栽培する方法、
スポンジキューブ上で発芽させた後、そのまま水耕栽培
する方法、養分を含んだ寒天上で無菌的に組織培養し育
苗する方法等、植物の種類や栽培の目的に応じた栽培法
を用いることが出来る。
The cultivation method of the target plant is not particularly limited, and a method of germinating and raising seedlings using a tray or pot filled with cultivated soil in a field and cultivating them is provided.
After germination on a sponge cube, it is possible to use a cultivation method according to the type of plant and the purpose of cultivation, such as a method of hydroponics as it is, a method of aseptically culturing and raising seedlings on agar containing nutrients. I can do it.

【0014】本発明において、植物に青色光を照射する
時期としては、通常、播種後発芽し、育苗箱に移植した
後であるが、育種交配等の目的のために早期に花が必要
となる場合には本葉が出た後早い時点から、果菜類・果
樹類・穀物類・観賞用植物の場合には植物体が目的の大
きさまで育った時点以降に照射することもできる。ま
た、育苗段階にのみ青色光を照射し花芽形成をさせ、本
圃に定植してからは通常の条件で栽培する方法も採用し
得る。照射形態としては、連続照射でも、間欠照射(パ
ルス照射)でも良い。間欠照射の場合のパルス間隔は特
に限定されず、連続照射及び間欠照射の何れにおいて
も、各対象植物に対して、目的とする効果が得られるよ
う積算照射量が確保されていればよい。
In the present invention, plants are irradiated with blue light usually after germination after sowing and transplantation into a nursery box, but flowers are required early for the purpose of breeding and crossing. In this case, the irradiation can be performed from an early point after the true leaves emerge, or from the point of time when the plant has grown to a target size in the case of fruits and vegetables, fruit trees, cereals, and ornamental plants. In addition, a method of irradiating blue light only at the seedling raising stage to form flower buds, planting in this field, and then cultivating under normal conditions may be adopted. The irradiation mode may be continuous irradiation or intermittent irradiation (pulse irradiation). The pulse interval in the case of the intermittent irradiation is not particularly limited as long as the integrated irradiation amount is ensured for each target plant in each of the continuous irradiation and the intermittent irradiation so that the target effect can be obtained.

【0015】以下、実施例により、本発明を更に具体的
に説明するが、本発明はその要旨を越えない限り、以下
の実施例に限定されるものではない。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist of the present invention.

【0016】[0016]

【実施例】実施例1 エキザカム(Exacum affine) の’ドワーフミゼットブ
ルー’を用い、高輝度発光ダイオード(LED)を用い
た培養試験を行った。種子は70%エタノールと3%次
亜塩素酸ナトリウムで消毒後、0.8%寒天を含むMS
培地(pH5.6)上で無菌的に発芽させた。培養容器
は径40mmのガラス管にアルミフォイルで密閉し、オ
ートクレーブで滅菌したものを用いた。蛍光灯下で20
日培養後、本葉が展開した時点でアルミフォイル栓を通
気フィルター栓に交換した。その後、24℃のインキュ
ベーター内に移し、明暗周期16時間/8時間でLED
光を照射した。
EXAMPLES Example 1 A culture test using high-brightness light-emitting diodes (LEDs) was performed using "Dwarf Midget Blue" of Exacum affine. Seeds are disinfected with 70% ethanol and 3% sodium hypochlorite, then MS containing 0.8% agar
Germinated aseptically on medium (pH 5.6). The culture vessel used was a glass tube having a diameter of 40 mm, which was sealed with aluminum foil and sterilized with an autoclave. 20 under fluorescent light
After the day culture, when the true leaves were developed, the aluminum foil stopper was replaced with a vent filter stopper. After that, it was moved into a 24 ° C incubator, and the LED was turned on at a light / dark cycle of 16 hours / 8 hours.
Irradiated with light.

【0017】LEDは、ピーク波長がそれぞれ450、
470、525(以上、日亜化学社製)、660、68
0、730nm(以上、鹿児島松下電子社製)であり5
mm径高輝度タイプを用いた。45x45cmのアルミ
フレームを用い、5000個LED/m2の密度で設置
したLEDパネルを用いてそれぞれの波長の単色光を照
射した。各波長区毎に定電圧定電流電源装置を備え、L
EDの駆動電流を調節することにより、培養容器の設置
位置での光量を40μmol/m2/s合わせた。各試験区の
間は、お互いに光が漏れないよう黒色アクリル板で密閉
し、3ヶ月間培養した。以下、各区60本のエキザカム
のLED培養開始後第1花序が開花するまでの平均日
数、開花株率、および、培養3ヶ月間での1株あたりの
総花数の平均値を表1に示した。この結果から試験した
単色光の中で、青色光が極端に強い花芽形成促進効果を
持つことが示された。
The LED has a peak wavelength of 450,
470, 525 (all manufactured by Nichia Corporation), 660, 68
0, 730 nm (above, manufactured by Kagoshima Matsushita Electronics)
A high-brightness diameter mm type was used. Monochromatic light of each wavelength was irradiated using an LED panel provided at a density of 5000 LEDs / m 2 using an aluminum frame of 45 × 45 cm. A constant-voltage / constant-current power supply device is provided for each wavelength section.
By adjusting the drive current of the ED, the amount of light at the installation position of the culture vessel was adjusted to 40 μmol / m 2 / s. Between the test sections, the cells were sealed with a black acrylic plate so as not to leak light from each other, and cultured for 3 months. Hereinafter, Table 1 shows the average number of days until the first inflorescence blooms after the start of the LED culture of 60 exazacams in each section, the rate of flowering strains, and the average value of the total number of flowers per strain during the three months of culture. . The results showed that among the monochromatic lights tested, blue light had an extremely strong flower bud formation promoting effect.

【0018】[0018]

【表1】 表1 各LED単色光下におけるエキザカムの開花株率、第1花序の開花ま での日数および総花数 波長(nm) 色 開花株率(%) 開花日数(日) 総花数(個) 450 青 100 38.2±6.3 5.3±0.8 470 青 100 41.5±5.5 5.1±0.9 525 緑 38 73.1±3.3 1.1±0.6 660 赤 0 開花せず 0 680 赤 3 88.0±6.2 0.1±0.1 730 遠赤 0 開花せず 0 実施例2 セロシア(Celosia pulmosa) の’キャッスルピンク’
を用い、高輝度LEDを用いた培養試験を行った。種子
を実施例1と同様に消毒後、0.8%寒天を含む0.3
%ショ糖培地(pH5.8)上で無菌的に発芽させた。
培養容器は径30mmのガラス管にアルミフォイルで密
閉し、オートクレーブで滅菌したものを用いた。暗黒下
で3日間、蛍光灯下で7日培養後、24℃のインキュベ
ーター内に移し、明暗周期16時間/8時間でLED光
を照射した。
[Table 1] Table 1 Exacam flowering rate under each LED monochromatic light, number of days until flowering of the first inflorescence and total number of flowers Wavelength (nm) Color Flowering rate (%) Number of flowering days (days) Total number of flowers (pieces) ) 450 Blue 100 38.2 ± 6.3 5.3 ± 0.8 470 Blue 100 41.5 ± 5.5 5.1 ± 0.9 525 Green 38 73.1 ± 3.3 1.1 ± 0 .6 660 Red 0 No flowering 0 680 Red 388.8 ± 6.2 0.1 ± 0.1 730 Far-red 0 No flowering 0 Example 2 'Castle pink' of Celosia pulmosa
And a culture test using a high-brightness LED was performed. After disinfecting the seeds as in Example 1, 0.3 containing 0.8% agar.
Germinated aseptically on a% sucrose medium (pH 5.8).
The culture vessel used was a glass tube having a diameter of 30 mm, which was sealed with aluminum foil and sterilized with an autoclave. After culturing in the dark for 3 days and in a fluorescent lamp for 7 days, the cells were transferred into a 24 ° C. incubator and irradiated with LED light in a light / dark cycle of 16 hours / 8 hours.

【0019】実施例1と同様のLEDパネルを用い、培
養容器の設置位置での光量を30μmol/m2/sに合わ
せ、各試験区の間はお互いに光が漏れないよう黒色アク
リル板で密閉し、40日間培養した。以下に、各区50
本のセロシアのLED培養開始後、50%の株が発雷す
るまでの日数(3回の実験の平均)および、培養40日
後の発雷株率を表2に示した。この結果でも、青色光で
著しい花芽形成促進効果が認められた。
Using the same LED panel as in Example 1, the amount of light at the installation position of the culture vessel was adjusted to 30 μmol / m 2 / s, and the sections between the test sections were sealed with a black acrylic plate so that light did not leak from each other. And cultured for 40 days. Below, each ward 50
Table 2 shows the number of days until the light emission of 50% of the strains after the start of the cell culture of the cells in the cellusia (average of three experiments), and the ratio of the lightening strains after 40 days of culture. Also in this result, a remarkable flower bud formation promoting effect was recognized by blue light.

【0020】[0020]

【表2】 表2 各LED単色光下におけるセロシア第1花序の50%発雷日数および 発雷株率 波長(nm) 色 開花日数(日) 開花株率(%) 450 青 27.9±3.1 100 470 青 30.5±3.0 100 525 緑 52.3±4.1 21.1 660 赤 60.1±5.3 3.5 680 赤 59.6±5.2 2.7 730 遠赤 58.9±6.3 3.1[Table 2] Table 2 50% lightning days and lightning rate of the first inflorescence of Serusia under the monochromatic light of each LED Wavelength (nm) Color Days of flowering (days) Flowering rate (%) 450 Blue 27.9 ± 3 .1 100 470 Blue 30.5 ± 3.0 100 525 Green 52.3 ± 4.1 21.1 660 Red 60.1 ± 5.3 3.5 680 Red 59.6 ± 5.2 2.7 730 Far-infrared 58.9 ± 6.3 3.1

【0021】[0021]

【発明の効果】本発明により、花芽形成や開花を直接的
に促進する栽培方法が可能である。すなわち、植物栽培
の中で花芽形成の必要な時期にピーク波長400〜50
0nmの特定強度の青色光を照射することにより、花芽
形成を直接、特異的に促進し、開花促進、花数増加を促
すことができる。この技術は花き園芸植物での利用はも
ちろん、果菜類や果樹類、穀物類においても開花促進に
よる増収効果を期待でき、幅広い農業分野で利用が期待
できる。
According to the present invention, a cultivation method that directly promotes flower bud formation and flowering is possible. That is, the peak wavelength of 400 to 50 during flower bud formation is required during plant cultivation.
By irradiating blue light having a specific intensity of 0 nm, flower bud formation can be directly and specifically promoted, and flowering can be promoted and the number of flowers can be promoted. This technology can be expected to be used not only in flower garden plants, but also in fruits and vegetables, fruit trees, and cereals by increasing flowering by promoting flowering, and can be expected to be used in a wide range of agricultural fields.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 生育中の植物に対し、出力波長が400
〜500nmに最大値を有し、かつ、光量子束密度が1
0μmol/m2/s以上である青色光からなる人工光を照射
することを特徴とする植物栽培方法。
An output wavelength of 400 for a growing plant.
Having a maximum value of about 500 nm and a photon flux density of 1
A plant cultivation method characterized by irradiating artificial light consisting of blue light of 0 μmol / m 2 / s or more.
【請求項2】 600〜800nmの赤色波長域の光放
射エネルギー量が、全放射エネルギー量の30%以下で
ある請求項1に記載の植物栽培方法。
2. The plant cultivation method according to claim 1, wherein the amount of light radiant energy in the red wavelength range of 600 to 800 nm is 30% or less of the total radiant energy.
【請求項3】 人工光の光源が、青色蛍光灯、青色発光
ダイオード及び/または青色レーザーダイオードである
ことを特徴とする請求項1または2に記載の植物栽培方
法。
3. The plant cultivation method according to claim 1, wherein the light source of the artificial light is a blue fluorescent lamp, a blue light emitting diode and / or a blue laser diode.
【請求項4】 ピーク波長のスペクトル幅が、半値幅で
100nm以下であることを特徴とする請求項1〜3の
いずれかに記載の植物栽培方法。
4. The method for cultivating a plant according to claim 1, wherein the spectral width of the peak wavelength is 100 nm or less in half width.
JP2000075227A 2000-03-17 2000-03-17 Method for cultivating plant Pending JP2001258389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000075227A JP2001258389A (en) 2000-03-17 2000-03-17 Method for cultivating plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000075227A JP2001258389A (en) 2000-03-17 2000-03-17 Method for cultivating plant

Publications (1)

Publication Number Publication Date
JP2001258389A true JP2001258389A (en) 2001-09-25

Family

ID=18593146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000075227A Pending JP2001258389A (en) 2000-03-17 2000-03-17 Method for cultivating plant

Country Status (1)

Country Link
JP (1) JP2001258389A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006246798A (en) * 2005-03-11 2006-09-21 Asuka Morishita Plant cultivating method
JP2007252211A (en) * 2006-03-20 2007-10-04 Nara Prefecture Apparatus and method for inhibiting blooming of long-day blooming plant
JP2008142005A (en) * 2006-12-08 2008-06-26 Univ Of Tsukuba Plant cultivating method
JP2010233509A (en) * 2009-03-31 2010-10-21 National Institute Of Agrobiological Sciences Method for raising and harvesting rice plant at low cost in short period, using blue led, and selection of system suitable for the method
JP2011041539A (en) * 2009-08-24 2011-03-03 Hokuriku Electric Power Co Inc:The Method for producing long chain polyunsaturated fatty acid of liverwort
WO2011070796A1 (en) * 2009-12-11 2011-06-16 有限会社ミニョンベル Device and method for plant growth acceleration of fruits, vegetables and the like
JP2011160771A (en) * 2010-02-15 2011-08-25 Stanley Electric Co Ltd Method for raising seedling of flowering plant, and raising seedling system
JP2017509347A (en) * 2014-03-28 2017-04-06 プラントゥイ オサケ ユキチュアPlantui Oy Hydroponic indoor gardening method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006246798A (en) * 2005-03-11 2006-09-21 Asuka Morishita Plant cultivating method
JP2007252211A (en) * 2006-03-20 2007-10-04 Nara Prefecture Apparatus and method for inhibiting blooming of long-day blooming plant
JP2008142005A (en) * 2006-12-08 2008-06-26 Univ Of Tsukuba Plant cultivating method
JP2010233509A (en) * 2009-03-31 2010-10-21 National Institute Of Agrobiological Sciences Method for raising and harvesting rice plant at low cost in short period, using blue led, and selection of system suitable for the method
JP2011041539A (en) * 2009-08-24 2011-03-03 Hokuriku Electric Power Co Inc:The Method for producing long chain polyunsaturated fatty acid of liverwort
WO2011070796A1 (en) * 2009-12-11 2011-06-16 有限会社ミニョンベル Device and method for plant growth acceleration of fruits, vegetables and the like
JP2011160771A (en) * 2010-02-15 2011-08-25 Stanley Electric Co Ltd Method for raising seedling of flowering plant, and raising seedling system
JP2017509347A (en) * 2014-03-28 2017-04-06 プラントゥイ オサケ ユキチュアPlantui Oy Hydroponic indoor gardening method

Similar Documents

Publication Publication Date Title
JP6777327B2 (en) Photon modulation management system
JP2022186699A (en) Photon modulation management system
US11116143B2 (en) Method and an apparatus for stimulation of plant growth and development with near infrared and visible lights
JP6325771B2 (en) Cultivation method using plant growing lighting device and plant growing lighting device
EP2946654B1 (en) Method for cultivating fruit or vegetable
JP2022516767A (en) Light source for indoor plants
KR20170139551A (en) Method and apparatus for stimulation of plant growth and development with near infrared and visible lights
JP5102190B2 (en) Plant cultivation method
JP7051259B2 (en) Optimization of awakening light for plant growth
ES2960319T3 (en) Control of premature flowering using a high level of far red
WO2017164266A1 (en) Method for raising seedling
JP2018121589A (en) Plant seedling cultivation method using artificial light
JP2022518259A (en) Light irradiation method that promotes plant growth, plant lamps and their applications
KR101414473B1 (en) Plant cultivation system and cultivation method using upper and lower growth lamp
JP2021145605A (en) Method for high-density cultivation of plants
JP2001258389A (en) Method for cultivating plant
JP2000135031A (en) Culture of plant
Treder et al. The effects of LEDs on growth and morphogenesis of vegetable seedlings cultivated in growth chambers
WO2022102328A1 (en) Tomato plant, tomato fruit, and method for cultivating tomato plant
US20230128621A1 (en) Red and far-red light ratio during growth of basil
JP2018143203A (en) Method for controlling form of matricaria recutita l
JP4159485B2 (en) Method for inducing flower buds of cruciferous plants
JP7373852B2 (en) How to grow cherry tomato seedlings
JPH1175548A (en) Cultivation of cell grown seedling
JP2022184287A (en) Method for cultivating viola plant for edible flowers