JP4981628B2 - Wastewater treatment equipment - Google Patents

Wastewater treatment equipment Download PDF

Info

Publication number
JP4981628B2
JP4981628B2 JP2007292825A JP2007292825A JP4981628B2 JP 4981628 B2 JP4981628 B2 JP 4981628B2 JP 2007292825 A JP2007292825 A JP 2007292825A JP 2007292825 A JP2007292825 A JP 2007292825A JP 4981628 B2 JP4981628 B2 JP 4981628B2
Authority
JP
Japan
Prior art keywords
reaction tank
tank
waste water
sludge
aeration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007292825A
Other languages
Japanese (ja)
Other versions
JP2009119315A (en
Inventor
田中  理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maezawa Kasei Kogyo KK
Original Assignee
Maezawa Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maezawa Kasei Kogyo KK filed Critical Maezawa Kasei Kogyo KK
Priority to JP2007292825A priority Critical patent/JP4981628B2/en
Publication of JP2009119315A publication Critical patent/JP2009119315A/en
Application granted granted Critical
Publication of JP4981628B2 publication Critical patent/JP4981628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Activated Sludge Processes (AREA)

Description

本発明は、装置全体が大掛かりになることがなく、汚泥発生率を低くでき、無酸素状態が長期間続いても硫化水素等の腐敗臭がほとんど発生しない排水処理装置に関するものである。   The present invention relates to a wastewater treatment apparatus in which the entire apparatus does not become large, the sludge generation rate can be lowered, and even when an oxygen-free state continues for a long period of time, a decaying odor such as hydrogen sulfide is hardly generated.

従来から、排水中の有機物を好気性微生物(活性汚泥)によって酸化分解して排水処理する活性汚泥法が広く利用されている。しかし、この処理過程において発生する余剰汚泥は、清掃業者によって定期的に搬出処分されるが、この余剰汚泥処分費が年々高騰しており、維持管理コストが高くなる傾向にある。また、維持管理コストの問題だけでなく、地球環境に与える影響からも、余剰汚泥が極力発生しないような排水処理装置が望まれている。   2. Description of the Related Art Conventionally, an activated sludge method in which organic matter in wastewater is oxidized and decomposed by aerobic microorganisms (activated sludge) to treat wastewater is widely used. However, surplus sludge generated in this treatment process is periodically carried out and disposed of by a cleaning company, but this surplus sludge disposal cost is rising year by year, and the maintenance cost tends to be high. In addition to the problem of maintenance costs, there is a demand for a wastewater treatment apparatus that prevents excessive sludge from being generated as much as possible from the influence on the global environment.

そこで、従来より、余剰汚泥の発生を抑えようと、汚泥の可溶化のために次亜塩素酸、オゾン、アルカリ等を利用した排水処理装置がある(例えば特許文献1〜3参照)。
特開2007−209889号公報 特開2006−314911号公報 特開2005−246346号公報
Therefore, conventionally, there is a wastewater treatment apparatus using hypochlorous acid, ozone, alkali, etc. for solubilization of sludge so as to suppress the generation of excess sludge (see, for example, Patent Documents 1 to 3).
JP 2007-209889 A JP 2006-314911 A JP 2005-246346 A

しかしながら、上記従来の排水処理装置では、例えば装置全体が大掛かりになってしまう問題や、例えば工場の長期休暇等で排水が発生しない場合に、曝気を続けていると、好気性微生物が栄養分を食い尽くして問題を起こすため、曝気を制限することがあるが、曝気量が不足した場合、嫌気性微生物の働きによって硫化水素等の腐敗臭が発生する問題もある。   However, in the above-described conventional wastewater treatment device, for example, when the aeration is continued when there is a problem that the whole device becomes large, or when wastewater is not generated due to, for example, a long-term leave of a factory, aerobic microorganisms eat nutrients. In some cases, aeration may be restricted in order to cause a problem. However, when the amount of aeration is insufficient, there is a problem that a spoiled odor such as hydrogen sulfide is generated by the action of anaerobic microorganisms.

本発明は、このような点に鑑みなされたもので、装置全体が大掛かりになることがなく、汚泥発生率を低くでき、無酸素状態が長期間続いても硫化水素等の腐敗臭がほとんど発生しない排水処理装置を提供することを目的とする。   The present invention has been made in view of such points, and the entire apparatus is not overwhelmed, the sludge generation rate can be lowered, and even when anoxic conditions continue for a long time, almost all of the decaying odors such as hydrogen sulfide are generated. An object is to provide a wastewater treatment apparatus that does not.

請求項1記載の排水処理装置は、排水が流入する調整槽と、この調整槽からの排水が流入し、腐植物質および珪酸塩が投入される第1反応槽と、この第1反応槽からの排水が流入する第2反応槽と、この第2反応槽からの排水が流入し、この流入した排水を汚泥と上澄処理水とに分離する沈殿槽と、前記調整槽内の排水、前記第1反応槽内の排水および前記第2反応槽内の排水に対して間欠曝気を行う間欠曝気手段と、前記沈殿槽内で沈殿した汚泥を前記調整槽および前記第1反応槽に返送する汚泥返送手段とを備え、前記第1反応槽内には、前記腐植物質および前記珪酸塩が入れられた投入ユニットが配設され、前記間欠曝気手段は、前記調整槽内に配置され、この調整槽内の排水に空気を間欠供給する第1曝気部と、前記第1反応槽内に配置され、この第1反応槽内の排水に空気を間欠供給する第2曝気部と、前記第1反応槽内の前記投入ユニットの下方近傍に配置され、この投入ユニット内の前記腐植物質および前記珪酸塩を攪拌する第3曝気部と、前記第2反応槽内に配置され、この第2反応槽内の排水に空気を間欠供給する第4曝気部とを有するものである。 The waste water treatment apparatus according to claim 1 is a regulating tank into which waste water flows, a first reaction tank into which waste water from the regulating tank flows and humic substances and silicates are introduced, and from the first reaction tank A second reaction tank into which wastewater flows, a precipitation tank into which wastewater from the second reaction tank flows in, and separates the inflowed wastewater into sludge and supernatant treated water; drainage in the adjustment tank; Intermittent aeration means for intermittent aeration of the waste water in one reaction tank and the waste water in the second reaction tank, and sludge return for returning sludge precipitated in the sedimentation tank to the adjustment tank and the first reaction tank A charging unit containing the humic substance and the silicate is disposed in the first reaction tank, and the intermittent aeration means is disposed in the adjustment tank. A first aeration section for intermittently supplying air to the waste water, and the first reaction tank A second aeration unit that intermittently supplies air to the waste water in the first reaction tank, and a lower vicinity of the charging unit in the first reaction tank, and the humic substances in the charging unit and the It has a 3rd aeration part which stirs a silicate, and a 4th aeration part which is arrange | positioned in the said 2nd reaction tank and supplies air intermittently to the waste_water | drain in this 2nd reaction tank .

請求項2記載の排水処理装置は、請求項1記載の排水処理装置において、調整槽に流入する排水流入量に対する汚泥返送量の割合である汚泥返送率が150%〜320%であるものである。   The waste water treatment apparatus according to claim 2 is the waste water treatment apparatus according to claim 1, wherein the sludge return rate, which is the ratio of the sludge return amount to the waste water inflow amount flowing into the adjustment tank, is 150% to 320%. .

請求項3記載の排水処理装置は、請求項1または2記載の排水処理装置において、間欠曝気手段は、少なくとも第1反応槽内の排水に対する間欠曝気と第2反応槽内の排水に対する間欠曝気とを同時に行うものである。   The waste water treatment apparatus according to claim 3 is the waste water treatment apparatus according to claim 1 or 2, wherein the intermittent aeration means includes at least intermittent aeration for the waste water in the first reaction tank and intermittent aeration for the waste water in the second reaction tank. Are performed simultaneously.

請求項4記載の排水処理装置は、請求項1ないし3のいずれか一記載の排水処理装置において、調整槽に返送される汚泥返送量と第1反応槽に返送される汚泥返送量との割合が2対8であるものである。   The wastewater treatment device according to claim 4 is the wastewater treatment device according to any one of claims 1 to 3, wherein the ratio of the sludge return amount returned to the adjustment tank and the sludge return amount returned to the first reaction tank. Is 2 to 8.

請求項1に係る発明によれば、腐植物質および珪酸塩の投入と間欠曝気手段による間欠曝気とによって腐植化反応を安定して起こすことができるため、装置全体が大掛かりになることがなく、汚泥発生率を低くでき、無酸素状態が長期間続いても硫化水素等の腐敗臭がほとんど発生しない。   According to the first aspect of the present invention, since the humification reaction can be stably caused by the input of humic substances and silicates and the intermittent aeration by the intermittent aeration means, the entire apparatus does not become large, and the sludge The rate of occurrence can be lowered, and even if anoxic conditions continue for a long time, there is almost no rot odor such as hydrogen sulfide.

請求項2に係る発明によれば、汚泥返送率が150%〜320%であるため、排水中の窒素を効果的に低減できるとともに、沈殿槽内での汚泥の沈殿性を向上できる。   According to the invention which concerns on Claim 2, since a sludge return rate is 150%-320%, while being able to reduce nitrogen in waste water effectively, the sedimentation property of the sludge in a sedimentation tank can be improved.

請求項3に係る発明によれば、間欠曝気手段は、第1反応槽内の排水に対する間欠曝気と第2反応槽内の排水に対する間欠曝気とを同時に行うため、排水流入量・濃度が変化して第1反応槽の微生物群の生態系バランスが崩れたとしても、これに対応して第2反応槽の微生物群の生態系バランスが変化し、装置全体としては生態系バランスが保たれるため、安定した排水処理を行うことができる。   According to the invention of claim 3, the intermittent aeration means simultaneously performs intermittent aeration for the wastewater in the first reaction tank and intermittent aeration for the wastewater in the second reaction tank. Therefore, even if the ecosystem balance of the microorganism group in the first reaction tank is lost, the ecosystem balance of the microorganism group in the second reaction tank changes accordingly, and the entire system balance is maintained. , Stable wastewater treatment can be performed.

請求項4に係る発明によれば、調整槽に返送される汚泥返送量と第1反応槽に返送される汚泥返送量との割合を2対8にすることで、上澄処理水中のリンを効果的に低減できる。   According to the invention which concerns on Claim 4, the ratio of the sludge return amount returned to the adjustment tank and the sludge return amount returned to the 1st reaction tank is set to 2 to 8, and phosphorus in the supernatant treated water is thereby reduced. It can be effectively reduced.

本発明の排水処理装置の一実施の形態を図面を参照して説明する。   An embodiment of the waste water treatment apparatus of the present invention will be described with reference to the drawings.

図1において、1は排水処理装置で、この排水処理装置1は、例えば食品工場等から排出される有機物等を含む有機性排水を浄化処理するものである。   In FIG. 1, 1 is a waste water treatment device, and this waste water treatment device 1 purifies organic waste water containing organic matter discharged from a food factory, for example.

排水処理装置1は、例えば食品工場等の排水設備2の排水管3からの排水(原水)が流入する調整槽5を備えている。調整槽5には、排水管3を流れてきた水質等が不安定な排水が一時的に貯留され、下流側における排水の水質等の安定化が図られる。   The wastewater treatment apparatus 1 includes a regulating tank 5 into which wastewater (raw water) from a drain pipe 3 of a drainage facility 2 such as a food factory flows, for example. In the adjustment tank 5, drainage with unstable water quality or the like flowing through the drain pipe 3 is temporarily stored, and stabilization of drainage water quality or the like on the downstream side is achieved.

また、排水処理装置1は、調整槽5の下流側に3つの槽、すなわち調整槽5からの排水が流入し腐植物質および珪酸塩が投入される第1反応槽(例えば培養反応槽)6と、この第1反応槽6からの排水が流入する第2反応槽(例えば培養促進槽)7と、この第2反応槽7からの排水が流入しこの流入した排水を沈殿分離により汚泥と上澄処理水とに分離する沈殿槽8とを備えている。   In addition, the waste water treatment apparatus 1 includes three tanks, that is, a first reaction tank (for example, a culture reaction tank) 6 into which waste water from the adjustment tank 5 flows and humic substances and silicate are introduced. A second reaction tank (for example, a culture accelerating tank) 7 into which the waste water from the first reaction tank 6 flows, and a waste water from the second reaction tank 7 flows into the sludge and supernatant by precipitation separation. A sedimentation tank 8 is provided for separation into treated water.

調整槽5と第1反応槽6とが第1接続管11にて接続され、第1反応槽6と第2反応槽7とが第2接続管12にて接続され、第2反応槽7と沈殿槽8とが第3接続管13にて接続されている。沈殿槽8には、沈殿槽8内の上澄処理水を装置外部に放流する放流管14が接続されている。   The adjustment tank 5 and the first reaction tank 6 are connected by a first connection pipe 11, the first reaction tank 6 and the second reaction tank 7 are connected by a second connection pipe 12, and the second reaction tank 7 and The settling tank 8 is connected to the third connecting pipe 13. The settling tank 8 is connected to a discharge pipe 14 for discharging the supernatant treated water in the settling tank 8 to the outside of the apparatus.

第1接続管11の途中には圧送手段である定量ポンプ(図示せず)が設けられ、この定量ポンプの作動によって調整槽5内の排水が一定量ずつ第1反応槽6に送られる。また、第2接続管12および第3接続管13はオーバーフロー管であり、第1反応槽6内の排水はオーバーフローによって第2接続管12を通って第2反応槽7内に送られ、第2反応槽7内の排水はオーバーフローによって第3接続管13を通って沈殿槽8内に送られる。   A metering pump (not shown), which is a pressure feeding means, is provided in the middle of the first connecting pipe 11, and the wastewater in the adjustment tank 5 is sent to the first reaction tank 6 by a certain amount by the operation of this metering pump. The second connection pipe 12 and the third connection pipe 13 are overflow pipes, and the waste water in the first reaction tank 6 is sent to the second reaction tank 7 through the second connection pipe 12 due to overflow. Waste water in the reaction tank 7 is sent into the precipitation tank 8 through the third connecting pipe 13 by overflow.

また、第1反応槽6内には、腐植物質および珪酸塩が入れられた投入ユニット21が配設され、この投入ユニット21は例えば第1反応槽6内の上部に浸漬配置されている。投入ユニット21は、例えば腐植物質および珪酸塩が入れられた網状袋や金網かご等である。   In addition, in the first reaction tank 6, a charging unit 21 in which humic substances and silicates are placed is disposed, and this charging unit 21 is disposed so as to be immersed in the upper part of the first reaction tank 6, for example. The charging unit 21 is, for example, a mesh bag or a wire mesh basket containing humic substances and silicate.

なお、腐植物質は、例えば陸生(森林)土壌、海底堆積物等から抽出されたもので、その構造式はタンニンやリグニンに類似した高分子有機物である。腐植物質は、糸状菌やバクテリア等によって分解され、植物の成長に必要な栄養素(アミノ酸、核酸、ビタミン、ホルモン)を作り出し、最終的にはCO2、水、NH3、硝酸塩、リン酸等の無機物に変換される。 The humic substance is extracted from, for example, terrestrial (forest) soil, seabed sediment, etc., and its structural formula is a macromolecular organic substance similar to tannin and lignin. Humic substances are decomposed by filamentous fungi, bacteria, etc. to produce nutrients (amino acids, nucleic acids, vitamins, hormones) necessary for the growth of plants, and finally, such as CO 2 , water, NH 3 , nitrates, phosphates, etc. Converted to inorganic material.

さらに、排水処理装置1は、調整槽5内の排水、第1反応槽6内の排水および第2反応槽7内の排水に対して間欠曝気を同時に行う間欠曝気手段22と、沈殿槽8内で沈殿した汚泥(活性汚泥)を上流側の調整槽5および第1反応槽6に配分返送する汚泥返送手段23とを備えている。   Further, the waste water treatment apparatus 1 includes an intermittent aeration means 22 that simultaneously performs intermittent aeration on the waste water in the adjustment tank 5, the waste water in the first reaction tank 6 and the waste water in the second reaction tank 7, And sludge returning means 23 for distributing and returning the sludge (activated sludge) deposited in step 1 to the upstream adjustment tank 5 and the first reaction tank 6.

間欠曝気手段22は、3つの曝気槽である槽5,6,7に対して同時に曝気およびその停止を行うものである。この間欠曝気手段22は、調整槽5内の下部に配置され調整槽5内の排水に空気を間欠供給する第1曝気部31と、第1反応槽6内の下部に配置され第1反応槽6内の排水に空気を間欠供給する第2曝気部32と、第1反応槽6内の投入ユニット21の下方近傍に配置され投入ユニット21内の腐植物質および珪酸塩等を攪拌する第3曝気部33と、第2反応槽7内の下部に配置され第2反応槽7内の排水に空気を間欠供給する第4曝気部34とを有している。各曝気部31,32,33,34は、例えば複数の孔が形成された散気管等である。   The intermittent aeration means 22 performs aeration and stop for the three aeration tanks 5, 6, 7 simultaneously. The intermittent aeration means 22 is arranged at the lower part in the adjustment tank 5 and is provided at the lower part in the first reaction tank 6 and the first aeration part 31 for intermittently supplying air to the waste water in the adjustment tank 5. A second aeration unit 32 for intermittently supplying air to the waste water in the tank 6 and a third aeration for stirring the humic substances, silicates, etc. in the charging unit 21 disposed near the lower part of the charging unit 21 in the first reaction tank 6. And a fourth aeration unit 34 that is disposed in the lower part of the second reaction tank 7 and intermittently supplies air to the waste water in the second reaction tank 7. Each aeration part 31, 32, 33, 34 is, for example, an air diffuser tube in which a plurality of holes are formed.

また、これら第1曝気部ないし第4曝気部31,32,33,34は、分岐配管36,37,38,39および共通配管40を介して1つのブロワ41に接続され、各分岐配管36,37,38,39の途中には分岐配管36,37,38,39を流れる空気量を調整する空気量調整用のバルブ42,43,44,45がそれぞれ設けられている。   The first to fourth aeration units 31, 32, 33, 34 are connected to one blower 41 via branch pipes 36, 37, 38, 39 and a common pipe 40, and each branch pipe 36, Valves 42, 43, 44, 45 for adjusting the air amount for adjusting the amount of air flowing through the branch pipes 36, 37, 38, 39 are provided in the middle of 37, 38, 39, respectively.

そして、間欠曝気手段22の1つのブロワ41によって、調整槽5内の排水に対する間欠曝気と、第1反応槽6内の排水に対する間欠曝気と、第2反応槽7内の排水に対する間欠曝気とが同時に行われる。すなわち、3つの槽5,6,7について曝気用のブロワ41の作動と停止のタイミングが同じで、例えば曝気用のブロワ41は15分経過する毎にオン・オフするように設定される。   And by the one blower 41 of the intermittent aeration means 22, the intermittent aeration with respect to the waste_water | drain in the adjustment tank 5, the intermittent aeration with respect to the waste_water | drain in the 1st reaction tank 6, and the intermittent aeration with respect to the waste_water | drain in the 2nd reaction tank 7 are carried out. Done at the same time. In other words, the operation and stop timings of the aeration blower 41 are the same for the three tanks 5, 6, and 7. For example, the aeration blower 41 is set to turn on and off every 15 minutes.

汚泥返送手段23は、一端側が沈殿槽8に接続されかつ他端側が調整槽5および第1反応槽6に接続された汚泥返送管51を有し、この汚泥返送管51の途中には、沈殿槽8内で沈殿した汚泥を汚泥返送管51を通して調整槽5および第1反応槽6に配分返送するポンプ52が設けられている。   The sludge return means 23 has a sludge return pipe 51 having one end connected to the settling tank 8 and the other end connected to the adjustment tank 5 and the first reaction tank 6. A pump 52 that distributes and returns sludge precipitated in the tank 8 to the adjusting tank 5 and the first reaction tank 6 through the sludge return pipe 51 is provided.

なお、ブロワ41およびポンプ52には、これらブロワ41およびポンプ52等を制御する制御手段(図示せず)が接続されている。そして、制御手段の制御に基づき、調整槽5に流入する排水流入量に対する汚泥返送量の割合である汚泥返送率が150%〜320%の範囲内のある値に設定される。また、調整槽5に返送される汚泥返送量と第1反応槽6に返送される汚泥返送量との割合は2対8に設定される。   The blower 41 and the pump 52 are connected to control means (not shown) for controlling the blower 41 and the pump 52. And based on control of a control means, the sludge return rate which is a ratio of the sludge return amount with respect to the waste water inflow amount which flows into the adjustment tank 5 is set to a certain value within the range of 150% to 320%. The ratio of the sludge return amount returned to the adjustment tank 5 and the sludge return amount returned to the first reaction tank 6 is set to 2 to 8.

次に、排水処理装置1の作用等を説明する。   Next, the operation of the waste water treatment apparatus 1 will be described.

食品工場等の排水設備2からの排水は、排水管3を通って調整槽5に流入し、調整槽5内で一時的に貯留される。   Drainage from the drainage facility 2 such as a food factory flows into the adjustment tank 5 through the drainage pipe 3 and is temporarily stored in the adjustment tank 5.

そして、調整槽5内の排水は定量ポンプの作動によって第1接続管11を通って第1反応槽6に流入し、第1反応槽6内の排水はオーバーフローによって第2接続管12を通って第2反応槽7内に流入し、第2反応槽7内の排水はオーバーフローによって第3接続管13を通って沈殿槽8内に流入する。   The waste water in the adjustment tank 5 flows into the first reaction tank 6 through the first connection pipe 11 by the operation of the metering pump, and the waste water in the first reaction tank 6 passes through the second connection pipe 12 due to overflow. The waste water in the second reaction tank 7 flows into the second reaction tank 7 and flows into the sedimentation tank 8 through the third connection pipe 13 due to overflow.

沈殿槽8内に流入した排水は、沈殿分離によって排水が汚泥と上澄処理水とに固液分離され、上澄処理水は放流管14を通って装置外部に放流され、汚泥は汚泥返送管51を通って調整槽5および第1反応槽6に返送される。   The wastewater that has flowed into the settling tank 8 is separated into solid and liquid sludge and supernatant treated water by sedimentation, and the supernatant treated water is discharged to the outside of the apparatus through the discharge pipe 14, and the sludge is returned to the sludge return pipe. It returns to the adjustment tank 5 and the 1st reaction tank 6 through 51.

そして、調整槽5、第1反応槽6および第2反応槽7では、間欠曝気手段22のブロワ41の作動により曝気が行われている好気状態下では、排水中の有機物等が活性汚泥の好気性微生物によって酸化分解され、排水が浄化処理される。   And in the adjustment tank 5, the 1st reaction tank 6, and the 2nd reaction tank 7, in the aerobic state in which aeration is performed by the action | operation of the blower 41 of the intermittent aeration means 22, the organic substance in waste_water | drain etc. are activated sludge. It is oxidatively decomposed by aerobic microorganisms and the waste water is purified.

また、第1反応槽6では、間欠曝気手段22のブロワ41の停止により一時的な嫌気状態が作り出され、腐植物質と珪酸塩との働きにより腐植化反応が発生する。この腐植化反応は、腐植物質に含まれる独立栄養細菌(通性嫌気性細菌)群が珪酸塩をエネルギーとして増殖して有機物を生成するものであり、さらにその有機物を栄養源として微生物が増殖して排水の浄化処理が進行する。   Moreover, in the 1st reaction tank 6, a temporary anaerobic state is produced by the stop of the blower 41 of the intermittent aeration means 22, and humification reaction generate | occur | produces by the effect | action of humic substance and a silicate. In this humus reaction, autotrophic bacteria (facultative anaerobic bacteria) contained in humic substances grow with silicate as energy to produce organic matter, and microorganisms grow with the organic matter as nutrient source. The wastewater purification process proceeds.

第2反応槽7からの排水は、沈殿槽8において汚泥と上澄処理水とに分離されるが、このとき、沈殿した汚泥は、嫌気状態下で保持されているため、この保持時間が長くなるほど汚泥に取り込まれているリンが排水中に多く放出され、沈殿槽8内の上澄処理水のリン濃度が上昇してしまう。   The waste water from the second reaction tank 7 is separated into sludge and supernatant treated water in the sedimentation tank 8, but at this time, the settled sludge is retained under anaerobic conditions, so this retention time is long. Indeed, a large amount of phosphorus taken into the sludge is released into the waste water, and the phosphorus concentration of the supernatant treatment water in the sedimentation tank 8 increases.

そこで、汚泥返送を繰り返すことで、リンが沈殿槽8の上澄処理水である放流水に放出されることを防いでいる。これは、汚泥返送率がリンの再溶出に大きく関係していることを意味しているが、汚泥がリンを取り込むことは沈殿槽8に至る前段階でいかに好気状態に曝されていたかが問題となる。これに対し、好気状態を強めるために、間欠曝気でのブロワ41の作動時間の割合を増やす方法も考えられるが、排水処理装置1では、排水変動に対する処理の安定性に重点を置いており、3つの槽5,6,7(少なくとも第1反応槽6および第2反応槽7)の曝気条件を統一して管理しているため、第1反応槽6の腐植物質に含まれる独立栄養細菌群が嫌気状態に曝される時間が減少し、その働きを弱めてしまう。そこで、返送汚泥を第1反応槽6だけでなく調整槽5にまで戻すことにより、好気状態と嫌気状態とのバランスを崩すことなく、好気状態に曝される時間を長くすることで汚泥がリンを取り込むことを促進できる。   Therefore, by repeating sludge return, phosphorus is prevented from being released into the discharge water that is the supernatant treatment water of the sedimentation tank 8. This means that the sludge return rate is greatly related to the re-elution of phosphorus, but the problem is how the sludge was exposed to the aerobic state before reaching the sedimentation tank 8. It becomes. On the other hand, in order to strengthen the aerobic state, a method of increasing the ratio of the operation time of the blower 41 in intermittent aeration can be considered, but the wastewater treatment apparatus 1 focuses on the stability of the treatment against fluctuations in wastewater. Since the aeration conditions of the three tanks 5, 6, and 7 (at least the first reaction tank 6 and the second reaction tank 7) are unified and managed, the autotrophic bacteria contained in the humic substance of the first reaction tank 6 The time that the group is exposed to anaerobic conditions is reduced, weakening its function. Therefore, by returning the returned sludge not only to the first reaction tank 6 but also to the adjustment tank 5, the sludge can be obtained by extending the time of exposure to the aerobic state without breaking the balance between the aerobic state and the anaerobic state. Can promote the uptake of phosphorus.

また、間欠曝気手段22のブロワ41の作動および停止のタイミングが3つの槽5,6,7で同じであるが、各槽5,6,7に対応する空気量調整用のバルブ42,43,44,45の開度の調整により、各槽5,6,7における反応に最適なDO(溶存酸素)を設定する必要がある。   The operation and stop timings of the blower 41 of the intermittent aeration means 22 are the same in the three tanks 5, 6, 7, but the air amount adjusting valves 42, 43, By adjusting the opening degree of 44 and 45, it is necessary to set DO (dissolved oxygen) optimum for the reaction in each of the tanks 5, 6, and 7.

例えば第1反応槽6のDOを第2反応槽7のDOに比べて小さい0.3〜0.7、第2反応槽7のDOを2.0程度に設定する。特に、第1反応槽6では、ブロワ41が停止している間に、少なくとも部分的にDO(溶存酸素)が0まで低下する必要がある。   For example, the DO of the first reaction tank 6 is set to 0.3 to 0.7 smaller than the DO of the second reaction tank 7, and the DO of the second reaction tank 7 is set to about 2.0. In particular, in the first reaction tank 6, DO (dissolved oxygen) needs to be reduced to 0 at least partially while the blower 41 is stopped.

このように排水処理装置1によれば、腐植物質および珪酸塩の投入と間欠曝気手段22による間欠曝気とによって腐植化反応を安定して起こすことができるため、装置全体が大掛かりになることがなく、汚泥発生率を低くでき、無酸素状態が長期間続いても硫化水素等の腐敗臭がほとんど発生しない。   Thus, according to the waste water treatment apparatus 1, since the humification reaction can be stably caused by the input of humic substances and silicate and the intermittent aeration by the intermittent aeration means 22, the entire apparatus does not become large. The sludge generation rate can be lowered, and even if the oxygen-free state continues for a long period of time, there is almost no spoilage odor such as hydrogen sulfide.

また、汚泥返送率が150%〜320%であるため、排水中の窒素を効果的に低減できるとともに、沈殿槽8内での汚泥の沈殿性を向上できる。これは汚泥返送率が低すぎるとT−N(全窒素)を十分に低減することができず、逆に汚泥返送率が高すぎると、沈殿槽8からの汚泥吸い込み力が大きすぎて、沈殿槽8の汚泥を巻き上げてしまい、上澄処理水を効率よく排出できなくなるからである。さらに汚泥返送率が高すぎると、各槽5,6,7の環境の均一化に向ってしまう、つまり各槽5,6,7の差異がなくなり、各々が果たしていた排水処理の役割が崩れて、水質がかえって悪化してしまう。   Moreover, since the sludge return rate is 150% to 320%, it is possible to effectively reduce nitrogen in the wastewater and improve the sedimentation property of the sludge in the settling tank 8. This means that if the sludge return rate is too low, TN (total nitrogen) cannot be reduced sufficiently. Conversely, if the sludge return rate is too high, the sludge suction force from the settling tank 8 is too high, and the precipitation This is because the sludge in the tank 8 is rolled up and the supernatant treated water cannot be discharged efficiently. Furthermore, if the sludge return rate is too high, the environment of each tank 5, 6, 7 will be made uniform, that is, the difference between each tank 5, 6, 7 will disappear, and the role of wastewater treatment that each played will collapse. The water quality will deteriorate.

さらに、間欠曝気手段22は、第1反応槽6内の排水に対する間欠曝気と第2反応槽7内の排水に対する間欠曝気とを同時に行うため、排水流入量・濃度が変化して第1反応槽6の微生物群の生態系バランスが崩れたとしても、これに対応して第2反応槽7の微生物群の生態系バランスが変化し、装置全体としては生態系バランスが保たれるため、安定した排水処理を行うことができる。また1つのブロワ41で各5,6,7を簡単に制御でき、製造コストを抑えることができ、維持管理も容易である。   Furthermore, the intermittent aeration means 22 performs intermittent aeration on the waste water in the first reaction tank 6 and intermittent aeration on the waste water in the second reaction tank 7 at the same time. Even if the ecological balance of the six microbial groups is lost, the ecological balance of the microbial groups in the second reaction tank 7 changes correspondingly, and the overall balance of the system is maintained. Waste water treatment can be performed. In addition, each blower 41 can easily control each of 5, 6, and 7, and the manufacturing cost can be reduced, and maintenance is easy.

また、調整槽5に返送される汚泥返送量と第1反応槽6に返送される汚泥返送量との割合を2対8にすることで、上澄処理水中のリンを効果的に低減できる。すなわち、十分な好気状態では汚泥がリンを保持した状態となり、嫌気状態が続くと汚泥がリンを放出するため、第2反応槽7での曝気時間を長くして好気状態を促進し、第1反応槽6での曝気時間を短くして嫌気状態を促進しても、上澄処理水中のリン濃度が低減する。しかし、この場合、排水設備2からの排水の濃度や量が変化したときに、装置全体のバランスが大きく崩れてしまうリスクが高い。これに対し、調整槽5に返送される汚泥返送量と第1反応槽6に返送される汚泥返送量との割合が2対8となるように汚泥返送を行えば、総内滞留時間が長くなり、好気状態を促進できるので、上記リスクを軽減でき、上澄処理水中のリンを効果的に低減できる。   Moreover, phosphorus in the supernatant treated water can be effectively reduced by setting the ratio of the amount of sludge returned to the adjustment tank 5 and the amount of sludge returned to the first reaction tank 6 to 2: 8. That is, in a sufficiently aerobic state, the sludge is in a state of holding phosphorus, and if the anaerobic state continues, the sludge releases phosphorus, so the aeration time in the second reaction tank 7 is lengthened to promote the aerobic state, Even if the aeration time in the first reaction tank 6 is shortened to promote the anaerobic state, the phosphorus concentration in the supernatant treated water is reduced. However, in this case, when the concentration or amount of waste water from the drainage facility 2 changes, there is a high risk that the balance of the entire apparatus will be greatly disrupted. On the other hand, if sludge return is performed so that the ratio of the sludge return amount returned to the adjustment tank 5 and the sludge return amount returned to the first reaction tank 6 is 2 to 8, the total residence time is long. Since the aerobic state can be promoted, the above risk can be reduced and phosphorus in the supernatant treated water can be effectively reduced.

調整槽5に返送される汚泥返送量と第1反応槽6に返送される汚泥返送量との割合を2対8にし、また曝気時間を15分、オン・オフにし、さらに沈殿槽側面に汚泥を巻上げることを予防するため汚泥返送量を320%にして、試験を行った。試験条件を表1に示す。   The ratio of the amount of sludge returned to the adjustment tank 5 and the amount of sludge returned to the first reaction tank 6 is set to 2: 8, the aeration time is 15 minutes, on / off, and the sludge on the side of the sedimentation tank In order to prevent winding up, the sludge return amount was set to 320% and the test was conducted. Table 1 shows the test conditions.

Figure 0004981628
Figure 0004981628

12月1日の調整槽5および反応槽6,7の平均MLSS=4900mg/Lから、22日経過後には、平均MLSS=6367mg/Lまで上昇した。また22日間の流入BOD平均値は1034mg/Lとなった。   The average MLSS of the adjustment tank 5 and the reaction tanks 6 and 7 on December 1 increased from 4900 mg / L to the average MLSS = 6367 mg / L after 22 days. The average inflow BOD for 22 days was 1034 mg / L.

22日間の合計BOD量を次式で表した場合
合計BOD量=日間原水流入量×22日間×BOD平均値
=1.0m3/日×22日×1034g/m3=22748gとなる。
When the total BOD amount for 22 days is expressed by the following formula Total BOD amount = Daily raw water inflow amount × 22 days × BOD average value
= A 1.0 m3 / day × 22 days × 1034g / m 3 = 22748g.

一方、22日経過後の槽内汚泥の上昇量△MLSSは槽容量を2.4m3として、(6367−4900g/m3)×2.4m3=3521gと算出できる。 On the other hand, the increase amount ΔMLSS of the sludge in the tank after 22 days can be calculated as (6367-4900 g / m 3) × 2.4 m 3 = 3521 g, assuming the tank capacity to be 2.4 m 3 .

よって、合計BOD量22748gが3521gの汚泥に転換されたことになるため、汚泥発生率は15.5%となる。   Therefore, since the total BOD amount of 22748 g is converted to 3521 g of sludge, the sludge generation rate is 15.5%.

また、MLSSが6000mg/Lまで上昇していること、水温が22→10℃に低下したこと、実施設の曝気槽内汚泥濃度を5000mg/Lとした場合、SV30=98以上となることが経験的に確かめられていることから、高MLSS時にも汚泥沈降性の維持が期待できる結果となった。この時のBOD容積負荷は、日間原水流入量×BOD平均値割/生物槽(3槽×0.8m3)=1m3/日×1034g/m3/1000/2.4m3=0.43kg/m3
調整槽分を差し引くと、2つの反応槽合計で0.65kg/m3日となった。
In addition, experience that MLSS has increased to 6000mg / L, water temperature has decreased from 22 to 10 ° C, and the sludge concentration in the aeration tank at the facility is 5000mg / L, SV30 = 98 or higher. As a result, it was possible to maintain sludge sedimentation even at high MLSS. BOD volume load at this time, day raw water inflow × BOD average split / biological tank (3 tank × 0.8 m 3) = 1 m 3 / day × 1034g / m 3 /1000/2.4m 3 = 0.43kg / m 3 When subtracting the day adjustment tank, the total of the two reaction tanks was 0.65 kg / m 3 days.

次に、表2および表3に、試験条件安定後(12月15日、22日)の採水結果を示す。また、表4および図2に、処理水におけるT−N濃度およびT−P濃度の採水結果を示す。   Next, Tables 2 and 3 show the results of water collection after the test conditions were stabilized (December 15th and 22nd). In addition, Table 4 and FIG. 2 show the water sampling results of the TN concentration and the TP concentration in the treated water.

Figure 0004981628
Figure 0004981628

Figure 0004981628
Figure 0004981628

Figure 0004981628
Figure 0004981628

試験期間中、処理水におけるT−N濃度は2.5〜3.4mg/L、T−P濃度は1.4〜6.0mg/Lであった。また、微生物槽内水温10℃未満の状態でBOD,SSだけでなく窒素除去まで効果があり、活性汚泥法に代表される好気性生物法では処理困難な水温条件でも安定した処理が継続できた。   During the test period, the TN concentration in the treated water was 2.5 to 3.4 mg / L, and the TP concentration was 1.4 to 6.0 mg / L. In addition, it was effective not only for BOD and SS but also for nitrogen removal when the water temperature in the microbial tank was less than 10 ° C, and stable treatment could be continued even under water temperature conditions that were difficult to treat with the aerobic biological method represented by the activated sludge method. .

好気性生物処理法に代表される活性汚泥法は、好気性微生物群により有機物を酸化分解して、炭酸ガス、水および余剰汚泥に転換する。処理工程ではブロワを24時間運転するため、その動力費が負担となり、省エネルギー化の問題が顕在化する。今回の試験法は、腐植物質と珪酸塩を活性汚泥中に投入することで、細菌、原生動物および後生動物群の有機物酸化ではなく、腐植合成と複合微生物群の有機物酸化を兼ね備えた手法であることが広く適用されている活性汚泥法とは異なり、ブロワを間欠運転することでその動力費も50%程度削減可能となる。   In the activated sludge method represented by the aerobic biological treatment method, organic substances are oxidatively decomposed by aerobic microorganisms and converted into carbon dioxide, water, and excess sludge. Since the blower is operated for 24 hours in the processing step, the power cost becomes a burden, and the problem of energy saving becomes obvious. This test method combines humic synthesis and organic oxidation of complex microorganisms, not organic oxidation of bacteria, protozoa and metazoans, by introducing humic substances and silicates into activated sludge. However, unlike the activated sludge method, which is widely applied, the power cost can be reduced by about 50% by intermittently operating the blower.

また、汚泥発生率も20%未満となり、活性汚泥法との比較では50〜60%程度まで発生率を抑えられる。   Moreover, the sludge generation rate is also less than 20%, and the generation rate can be suppressed to about 50 to 60% in comparison with the activated sludge method.

本発明の一実施の形態に係る排水処理装置の構成図である。It is a lineblock diagram of the waste water treatment equipment concerning one embodiment of the present invention. 処理水におけるT−N濃度およびT−P濃度の採水結果を示すグラフである。It is a graph which shows the water sampling result of TN density | concentration in treated water, and TP density | concentration.

符号の説明Explanation of symbols

1 排水処理装置
5 調整槽
6 第1反応槽
7 第2反応槽
8 沈殿槽
21 投入ユニット
22 間欠曝気手段
23 汚泥返送手段
31 第1曝気部
32 第2曝気部
33 第3曝気部
34 第4曝気部
DESCRIPTION OF SYMBOLS 1 Waste water treatment equipment 5 Adjustment tank 6 1st reaction tank 7 2nd reaction tank 8 Sedimentation tank
21 input unit
22 Intermittent aeration means
23 Sludge return means
31 1st aeration part
32 2nd aeration part
33 3rd aeration part
34 4th aeration part

Claims (4)

排水が流入する調整槽と、
この調整槽からの排水が流入し、腐植物質および珪酸塩が投入される第1反応槽と、
この第1反応槽からの排水が流入する第2反応槽と、
この第2反応槽からの排水が流入し、この流入した排水を汚泥と上澄処理水とに分離する沈殿槽と、
前記調整槽内の排水、前記第1反応槽内の排水および前記第2反応槽内の排水に対して間欠曝気を行う間欠曝気手段と、
前記沈殿槽内で沈殿した汚泥を前記調整槽および前記第1反応槽に返送する汚泥返送手段とを備え
前記第1反応槽内には、前記腐植物質および前記珪酸塩が入れられた投入ユニットが配設され、
前記間欠曝気手段は、
前記調整槽内に配置され、この調整槽内の排水に空気を間欠供給する第1曝気部と、
前記第1反応槽内に配置され、この第1反応槽内の排水に空気を間欠供給する第2曝気部と、
前記第1反応槽内の前記投入ユニットの下方近傍に配置され、この投入ユニット内の前記腐植物質および前記珪酸塩を攪拌する第3曝気部と、
前記第2反応槽内に配置され、この第2反応槽内の排水に空気を間欠供給する第4曝気部とを有する
ことを特徴とする排水処理装置。
An adjustment tank into which wastewater flows,
A first reaction tank into which waste water from the adjustment tank flows and humic substances and silicate are introduced;
A second reaction tank into which waste water from the first reaction tank flows,
Waste water from the second reaction tank flows in, and a sedimentation tank that separates the inflow waste water into sludge and supernatant treated water;
Intermittent aeration means for performing intermittent aeration on the waste water in the adjustment tank, the waste water in the first reaction tank and the waste water in the second reaction tank;
A sludge return means for returning the sludge precipitated in the settling tank to the adjustment tank and the first reaction tank ,
In the first reaction tank, a charging unit containing the humic substance and the silicate is disposed,
The intermittent aeration means includes
A first aeration unit that is arranged in the adjustment tank and intermittently supplies air to the drainage in the adjustment tank;
A second aeration unit disposed in the first reaction tank and intermittently supplying air to the waste water in the first reaction tank;
A third aeration unit disposed in the lower vicinity of the charging unit in the first reaction tank, and stirring the humic substance and the silicate in the charging unit;
A wastewater treatment apparatus comprising a fourth aeration unit that is disposed in the second reaction tank and intermittently supplies air to the wastewater in the second reaction tank .
調整槽に流入する排水流入量に対する汚泥返送量の割合である汚泥返送率が150%〜320%である
ことを特徴とする請求項1記載の排水処理装置。
The wastewater treatment apparatus according to claim 1, wherein a sludge return rate, which is a ratio of a sludge return amount to a wastewater inflow amount flowing into the adjustment tank, is 150% to 320%.
間欠曝気手段は、少なくとも第1反応槽内の排水に対する間欠曝気と第2反応槽内の排水に対する間欠曝気とを同時に行う
ことを特徴とする請求項1または2記載の排水処理装置。
The waste water treatment apparatus according to claim 1 or 2, wherein the intermittent aeration means simultaneously performs at least intermittent aeration of the waste water in the first reaction tank and intermittent aeration of the waste water in the second reaction tank.
調整槽に返送される汚泥返送量と第1反応槽に返送される汚泥返送量との割合が2対8である
ことを特徴とする請求項1ないし3のいずれか一記載の排水処理装置。
The wastewater treatment apparatus according to any one of claims 1 to 3, wherein the ratio of the amount of sludge returned to the adjustment tank and the amount of sludge returned to the first reaction tank is 2 to 8.
JP2007292825A 2007-11-12 2007-11-12 Wastewater treatment equipment Active JP4981628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292825A JP4981628B2 (en) 2007-11-12 2007-11-12 Wastewater treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292825A JP4981628B2 (en) 2007-11-12 2007-11-12 Wastewater treatment equipment

Publications (2)

Publication Number Publication Date
JP2009119315A JP2009119315A (en) 2009-06-04
JP4981628B2 true JP4981628B2 (en) 2012-07-25

Family

ID=40812086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292825A Active JP4981628B2 (en) 2007-11-12 2007-11-12 Wastewater treatment equipment

Country Status (1)

Country Link
JP (1) JP4981628B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101696072B (en) * 2009-09-21 2012-06-20 苏州科技学院 SBR process for transferring sludge

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377595A (en) * 1986-09-17 1988-04-07 Kurita Water Ind Ltd Activated sludge treating device
JPH0698354B2 (en) * 1988-11-22 1994-12-07 三山産業株式会社 Septic tank
JPH08155483A (en) * 1994-12-01 1996-06-18 Toyo Bio Reactor Kk Testing apparatus for use in wastewater treatment plant
JP2005211788A (en) * 2004-01-29 2005-08-11 Daiki Co Ltd Organic wastewater treatment apparatus

Also Published As

Publication number Publication date
JP2009119315A (en) 2009-06-04

Similar Documents

Publication Publication Date Title
US7604740B2 (en) Waste activated sludge stripping to remove internal phosphorus
Rosenwinkel et al. Deammonification in the moving‐bed process for the treatment of wastewater with high ammonia content
JP2008284427A (en) Apparatus and method for treating waste water
JP4729718B2 (en) Organic waste treatment methods
WO2008132296A2 (en) Method and equipment for processing waste water containing sulphides and ammonium
US20070251868A1 (en) Method and apparatus for nitrogen removal and treatment of digester reject water in wastewater using bioagumenation
US10556816B2 (en) Wastewater treatment apparatus
JP2011078938A (en) Waste water treatment method
JP4017657B1 (en) Treatment method of wastewater containing organic matter
KR20140063454A (en) Apparatus and method for treatment wastewater
CN111153547A (en) Sewage treatment system
JP2007050387A (en) Apparatus for treating organic waste liquor
KR100304544B1 (en) Method for removing nitrogen and phosphorus using anaerobic digestion
JP6491056B2 (en) Nitrogen removal method and nitrogen removal apparatus
JP4981628B2 (en) Wastewater treatment equipment
KR100983829B1 (en) Wastewater Treatment by Corrosion of Organics Using Methane Fermentation Tank
JP2006346572A (en) Organic substance treatment method
KR200413348Y1 (en) Removal reactor of Ammonia , phosphorous and solid in wastewater
JP4490659B2 (en) Sewage treatment system
KR101236693B1 (en) Apparatus for sewage and wastewater treatment
JP2007319835A (en) Wastewater treatment method
JPH10151490A (en) Purifying treatment of waste water
JP3851968B2 (en) Sewage treatment system using soil microorganisms
KR100673832B1 (en) Removal reactor of ammonia , phosphorous and solid in wastewater
JP2019111475A (en) Organic wastewater treatment facility, organic wastewater treatment method, and reconstruction method of organic wastewater treatment facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4981628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150