JP4915327B2 - INTERNAL COMBUSTION ENGINE DEVICE, VEHICLE EQUIPPED WITH THE SAME AND INTERNAL COMBUSTION ENGINE DEVICE ABNORMALITY DETERMINATION - Google Patents

INTERNAL COMBUSTION ENGINE DEVICE, VEHICLE EQUIPPED WITH THE SAME AND INTERNAL COMBUSTION ENGINE DEVICE ABNORMALITY DETERMINATION Download PDF

Info

Publication number
JP4915327B2
JP4915327B2 JP2007266833A JP2007266833A JP4915327B2 JP 4915327 B2 JP4915327 B2 JP 4915327B2 JP 2007266833 A JP2007266833 A JP 2007266833A JP 2007266833 A JP2007266833 A JP 2007266833A JP 4915327 B2 JP4915327 B2 JP 4915327B2
Authority
JP
Japan
Prior art keywords
flow path
exhaust gas
internal combustion
combustion engine
path switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007266833A
Other languages
Japanese (ja)
Other versions
JP2009097343A (en
Inventor
俊武 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007266833A priority Critical patent/JP4915327B2/en
Publication of JP2009097343A publication Critical patent/JP2009097343A/en
Application granted granted Critical
Publication of JP4915327B2 publication Critical patent/JP4915327B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To accurately determine existence of abnormality of a channel change over means changing over channels of an exhaust gas of an internal combustion engine. <P>SOLUTION: A hybrid automobile 20 includes: an exhaust emission control device 50 including a first exhaust gas channel directly leading an exhaust gas from an engine 22 to a three way catalyst and a second exhaust gas channel leading an exhaust gas which have passed through an HC adsorption member to the three way catalyst; a channel change over valve 59 and an actuator 60 changing over the channel of the exhaust gas from the engine 22 between the first exhaust gas passage and the second exhaust gas passage by using negative pressure, a negative pressure tank 67 accumulating negative pressure generated by rotation of the engine 22; and a hybrid ECU 40 acquiring channel change over time tpc by the channel change over valve 59, based on pressure ptk accumulated in the negative pressure tank 67 and determining existence of abnormality of the channel change over valve 59 and the like, based on exhaust gas temperature Teg1, Teg2, taking the channel change over time tpc into account. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、内燃機関装置およびこれを備える車両ならびに内燃機関装置の異常判定方法に関する。   The present invention relates to an internal combustion engine device, a vehicle including the same, and an abnormality determination method for the internal combustion engine device.

従来から、触媒コンバータの上流側に設けられたHC吸着装置を備えた内燃機関装置が知られている(例えば、特許文献1参照)。この内燃機関装置のHC吸着装置は、主通路と、当該主通路を開閉する切換弁と、主通路をバイパスするバイパス通路とを含み、バイパス通路には、排ガス中の炭化水素(HC)を吸着するHC吸着剤が配置されている。また、切換弁はダイヤフラム機構のダイヤフラムに連結されており、ダイヤフラム機構の変圧室は、負圧供給配管およびバキュームスイッチングバルブ(VSV)を介してインテークマニホルドと接続されている。これにより、VSVをオンオフ制御すれば、ダイヤフラムの変形に連動して切換弁が主通路を開閉することから、排ガスの流路を主通路とバイパス通路(HC吸着剤側)とで切り換えることが可能となる。また、この内燃機関装置では、VSVをオンした時の負圧供給配管内の圧力変化の傾向に基づいて切換弁の異常の有無が判定される。   2. Description of the Related Art Conventionally, an internal combustion engine device including an HC adsorption device provided on the upstream side of a catalytic converter is known (see, for example, Patent Document 1). The HC adsorption device of the internal combustion engine device includes a main passage, a switching valve that opens and closes the main passage, and a bypass passage that bypasses the main passage, and adsorbs hydrocarbon (HC) in the exhaust gas in the bypass passage. An HC adsorbent is arranged. The switching valve is connected to the diaphragm of the diaphragm mechanism, and the variable pressure chamber of the diaphragm mechanism is connected to the intake manifold via a negative pressure supply pipe and a vacuum switching valve (VSV). As a result, if the VSV is on / off controlled, the switching valve opens and closes the main passage in conjunction with the deformation of the diaphragm, so that the exhaust gas flow path can be switched between the main passage and the bypass passage (HC adsorbent side). It becomes. Further, in this internal combustion engine device, the presence or absence of an abnormality of the switching valve is determined based on the tendency of the pressure change in the negative pressure supply pipe when the VSV is turned on.

更に、従来から、排気通路に設けられた排気浄化装置を含む内燃機関装置として、排気通路の上流側に位置して排ガスを浄化する触媒装置と、触媒装置下流のメイン排気流路と並列に設けられたバイパス流路に配置されたHC吸着装置と、内燃機関の回転に伴って生成される負圧を利用して作動すると共にHC吸着装置の下流側において排ガスの流路をメイン排気流路とバイパス流路とで選択的に切り換える切換弁と、バイパス流路のHC吸着装置下流側から分岐されて触媒装置の上流側に至る還流流路を形成すると共に触媒装置に向かう流れのみを許容する流路開閉手段を有する還流手段と、切換弁および流路開閉手段を操作する制御手段と、HC吸着装置の下流の排気温度を検知する温度検知手段を含む故障診断装置とを備えたものが知られている(例えば、特許文献2参照)。この排気浄化装置の故障診断装置は、還流流路とバイパス流路との双方が閉路されると共に内燃機関が定常運転状態にある場合に、一時的に還流流路を閉路したままバイパス流路を開路し、かかる一時的な流路の切換の前後におけるHC吸着装置下流の排ガス温度の偏差に基づいて切換弁の良否を判定する。
特開2001−41026号公報 特開平10−159544号公報
Furthermore, conventionally, as an internal combustion engine device including an exhaust purification device provided in an exhaust passage, a catalyst device that is located upstream of the exhaust passage and purifies exhaust gas, and a main exhaust passage downstream of the catalyst device are provided in parallel. The HC adsorbing device disposed in the bypass flow path and the negative exhaust gas generated by the rotation of the internal combustion engine are operated, and the exhaust gas flow path is connected to the main exhaust flow path on the downstream side of the HC adsorbing apparatus. A switching valve that selectively switches between the bypass flow path and a flow that branches from the downstream side of the HC adsorbing device of the bypass flow path to the upstream side of the catalytic device and that allows only the flow toward the catalytic device There is known one having a reflux means having a path opening / closing means, a control means for operating a switching valve and a flow path opening / closing means, and a failure diagnosis device including a temperature detection means for detecting an exhaust temperature downstream of the HC adsorption device Is (e.g., see Patent Document 2). This exhaust gas purifying apparatus failure diagnosis device is configured such that when both the recirculation flow path and the bypass flow path are closed and the internal combustion engine is in a steady operation state, the recirculation flow path is temporarily closed. The circuit is opened, and the quality of the switching valve is determined based on the deviation of the exhaust gas temperature downstream of the HC adsorption device before and after the temporary flow path switching.
JP 2001-41026 A JP-A-10-159544

上述のような未燃焼成分としてのHCを吸着する手段を備えた内燃機関装置では、切換弁を適正に制御することにより未燃焼成分としてのHCが外部に排出されてしまうのを抑制することが可能となる。従って、内燃機関装置のエミッションの向上を図る上では、切換弁の異常の有無を精度よく判定することが重要となるが、上記従来の内燃機関装置では、切換弁の状態が誤判定されてしまうこともあり、従来の異常判定手法には精度の面でなお改善の余地がある。   In the internal combustion engine apparatus provided with the means for adsorbing HC as an unburned component as described above, it is possible to prevent HC as an unburned component from being discharged to the outside by appropriately controlling the switching valve. It becomes possible. Therefore, in order to improve the emission of the internal combustion engine device, it is important to accurately determine whether or not the switching valve is abnormal. However, in the conventional internal combustion engine device, the state of the switching valve is erroneously determined. Therefore, there is still room for improvement in terms of accuracy in the conventional abnormality determination method.

そこで、本発明の内燃機関装置およびこれを備える車両ならびに内燃機関装置の異常判定方法は、内燃機関の排ガスの流路を切り換える流路切換手段の異常の有無をより精度よく判定可能とすることを主目的とする。   Therefore, the internal combustion engine device of the present invention, the vehicle including the same, and the abnormality determination method for the internal combustion engine device make it possible to more accurately determine whether there is an abnormality in the flow path switching means that switches the flow path of the exhaust gas of the internal combustion engine. Main purpose.

本発明の内燃機関装置およびこれを備える車両ならびに内燃機関装置の異常判定方法は、上記主目的を達成するために以下の手段を採っている。   The internal combustion engine device, the vehicle including the same, and the abnormality determination method for the internal combustion engine device of the present invention employ the following means in order to achieve the main object.

本発明の内燃機関装置は、
内燃機関を含む内燃機関装置であって、
前記内燃機関からの排ガスを排ガス浄化触媒に直接導く第1の排ガス流路と、
前記排ガス中の未燃焼成分を吸着可能な未燃焼成分吸着手段を有し、該未燃焼成分吸着手段を通過した排ガスを前記排ガス浄化触媒へと導く第2の排ガス流路と、
負圧を用いて前記内燃機関からの排ガスの流路を前記第1の排ガス流路と前記第2の排ガス流路との間で切り換え可能な流路切換手段と、
前記内燃機関の吸気系に接続され、該内燃機関の回転により生成される負圧を蓄えることができる蓄圧手段と、
前記蓄圧手段から前記流路切換手段への負圧の導入を許容・解除する負圧導入解除手段と、
前記第1および第2の排ガス流路の少なくとも何れか一方で所定の物理量を検出する異常判定用センサと、
前記蓄圧手段に蓄えられた圧力を検出する圧力検出手段と、
前記圧力検出手段により検出された圧力に基づいて前記流路切換手段による流路の切換に要する時間である流路切換時間を取得する流路切換時間取得手段と、
前記推定された流路切換時間を考慮しながら、前記異常判定用センサの検出値に基づいて前記流路切換手段の異常の有無を判定する異常判定手段と、
を備えるものである。
The internal combustion engine device of the present invention is
An internal combustion engine device including an internal combustion engine,
A first exhaust gas flow path for directing exhaust gas from the internal combustion engine directly to an exhaust gas purification catalyst;
A second exhaust gas flow path having unburned component adsorbing means capable of adsorbing unburned components in the exhaust gas, and leading the exhaust gas that has passed through the unburned component adsorbing means to the exhaust gas purification catalyst;
A flow path switching means capable of switching the flow path of the exhaust gas from the internal combustion engine between the first exhaust gas flow path and the second exhaust gas flow path using negative pressure;
Pressure accumulating means connected to the intake system of the internal combustion engine and capable of accumulating negative pressure generated by rotation of the internal combustion engine;
Negative pressure introduction releasing means for allowing and releasing negative pressure from the pressure accumulating means to the flow path switching means;
An abnormality determination sensor for detecting a predetermined physical quantity in at least one of the first and second exhaust gas flow paths;
Pressure detecting means for detecting the pressure stored in the pressure accumulating means;
A flow path switching time acquisition means for acquiring a flow path switching time which is a time required for the flow path switching by the flow path switching means based on the pressure detected by the pressure detection means;
An abnormality determination unit that determines presence / absence of an abnormality of the flow path switching unit based on a detection value of the abnormality determination sensor while considering the estimated flow path switching time;
Is provided.

この内燃機関装置では、内燃機関の回転により生成される負圧を蓄圧手段を介して流路切換手段に導入することにより、内燃機関からの排ガスの流路を第1の排ガス流路と未燃焼成分吸着手段を含む第2の排ガス流路との間で切り換えることができる。また、この内燃機関装置では、内燃機関の回転により生成される負圧を吸気系に接続された蓄圧手段に蓄えておき、蓄圧手段に蓄えられた負圧を流路切換手段に導入して内燃機関からの排ガスの流路を切り換えることができる。そして、この内燃機関装置では、第1および第2の排ガス流路の少なくとも何れか一方で異常判定用センサにより検出された所定の物理量に基づいて流路切換手段の異常の有無が判定される。ここで、このように負圧を用いて内燃機関からの排ガスの流路を第1の排ガス流路と第2の排ガス流路との間で切り換える場合、流路切換手段による流路の切換にはある程度の時間が要求され、流路切換手段によって流路が切り換えられている最中には、第1および第2の排ガス流路の双方を排ガスが流通することになるので、異常判定用センサの検出値が正常時または異常発生時の特徴を示さないおそれがあり、本来正常であるにも拘わらず流路切換手段に異常が発生している等と誤判定されてしまう可能性もある。これを踏まえて、この内燃機関装置では、蓄圧手段に蓄えられた圧力に基づいて流路切換手段による流路の切換に要する時間である流路切換時間を取得すると共に、取得した流路切換時間を考慮しながら、異常判定用センサの検出値に基づいて流路切換手段の異常の有無が判定される。このように、蓄圧手段に蓄えられた圧力に基づく流路切換時間を考慮することにより、流路切換手段による流路の切換が開始されてから流路切換時間が経過するまでの間の異常判定をより適正に実行することができるので、内燃機関の排ガスの流路を切り換える流路切換手段の異常の有無をより精度よく判定することが可能となる。   In this internal combustion engine device, the negative pressure generated by the rotation of the internal combustion engine is introduced into the flow path switching means via the pressure accumulating means, so that the flow path of the exhaust gas from the internal combustion engine is uncombusted with the first exhaust gas flow path. It is possible to switch between the second exhaust gas flow path including the component adsorption means. In this internal combustion engine device, the negative pressure generated by the rotation of the internal combustion engine is stored in the pressure accumulating means connected to the intake system, and the negative pressure stored in the pressure accumulating means is introduced into the flow path switching means. The flow path of the exhaust gas from the engine can be switched. In this internal combustion engine device, the presence or absence of abnormality of the flow path switching means is determined based on a predetermined physical quantity detected by the abnormality determination sensor in at least one of the first and second exhaust gas flow paths. Here, when the flow path of the exhaust gas from the internal combustion engine is switched between the first exhaust gas flow path and the second exhaust gas flow path using the negative pressure in this way, the flow path switching means switches the flow path. Since a certain amount of time is required and the flow path is switched by the flow path switching means, the exhaust gas flows through both the first and second exhaust gas flow paths. The detected value may not show the characteristics at the time of normal or abnormal occurrence, and there is a possibility that it is erroneously determined that an abnormality has occurred in the flow path switching means although it is normally normal. Based on this, in this internal combustion engine device, the flow path switching time, which is the time required for switching the flow path by the flow path switching means, is acquired based on the pressure stored in the pressure accumulating means, and the acquired flow path switching time is acquired. The presence / absence of abnormality of the flow path switching means is determined based on the detection value of the abnormality determination sensor. In this way, by considering the flow path switching time based on the pressure stored in the pressure accumulating means, the abnormality determination between the start of the flow path switching by the flow path switching means and the passage of the flow path switching time. Therefore, it is possible to more accurately determine whether there is an abnormality in the flow path switching means that switches the flow path of the exhaust gas of the internal combustion engine.

この場合、前記異常判定用センサは、前記第1の排ガス流路で所定の物理量を検出する第1の異常判定用センサと、前記第2の排ガス流路で所定の物理量を検出する第2の異常判定用センサとを含んでもよく、前記異常判定手段は、前記取得された流路切換時間を考慮しながら、前記第1および第2の異常判定用センサの検出値に基づいて前記流路切換手段の異常の有無を判定するものであってもよい。これにより、異常判定用センサの検出値に基づく異常判定をより適正なものとすることができる。   In this case, the abnormality determination sensor includes a first abnormality determination sensor that detects a predetermined physical quantity in the first exhaust gas flow path, and a second abnormality sensor that detects a predetermined physical quantity in the second exhaust gas flow path. An abnormality determination sensor, wherein the abnormality determination means is configured to switch the flow path based on the detection values of the first and second abnormality determination sensors while considering the acquired flow path switching time. The presence or absence of abnormality of the means may be determined. Thereby, the abnormality determination based on the detection value of the abnormality determination sensor can be made more appropriate.

更に、前記異常判定手段は、前記第1の異常判定用センサの検出値と前記第2の異常判定用センサの検出値との偏差と所定の閾値とを比較することにより前記流路切換手段の異常の有無を判定するものであってもよく、前記流路切換手段による流路の切換が開始されてから前記流路切換時間が経過するまでの間と該流路切換時間が経過した後とで前記閾値が変更されてもよい。このように、流路の切換開始から流路切換時間が経過するまでの間、閾値を流路切換時間の経過後の値から変更することにより、流路の切換開始から流路切換時間が経過するまでの間も流路切換手段の異常の有無をより精度よく判定することが可能となるので、流路切換手段の異常の有無をより速やか判定することができる。   Further, the abnormality determination means compares the deviation between the detection value of the first abnormality determination sensor and the detection value of the second abnormality determination sensor with a predetermined threshold value, thereby determining the flow path switching means. It may be for determining whether there is an abnormality, and after the flow path switching time has elapsed after the flow path switching means has started, and after the flow path switching time has elapsed. The threshold value may be changed. In this way, by changing the threshold value from the value after the passage of the channel switching time until the passage of the channel switching time from the start of the channel switching, the channel switching time has elapsed from the start of the channel switching. In the meantime, since it is possible to determine the presence / absence of abnormality of the flow path switching means with higher accuracy, it is possible to more quickly determine the presence / absence of abnormality of the flow path switching means.

また、前記異常判定手段は、前記第1の異常判定用センサの検出値と前記第2の異常判定用センサの検出値との偏差と所定の閾値とを比較することにより前記流路切換手段の異常の有無を判定するものであってもよく、前記流路切換手段による流路の切換が開始されてから前記流路切換時間が経過するまでの間、前記第1の異常判定用センサの検出値と前記第2の異常判定用センサの検出値とが無効とされてもよい。   In addition, the abnormality determination unit compares the deviation between the detection value of the first abnormality determination sensor and the detection value of the second abnormality determination sensor with a predetermined threshold value, thereby determining the flow path switching unit. Detection of the first abnormality determination sensor may be performed until the flow path switching time elapses after switching of the flow path by the flow path switching means is started. The value and the detection value of the second abnormality determination sensor may be invalidated.

更に、前記流路切換時間取得手段は、前記圧力検出手段により検出された圧力と大気圧とに基づいて前記流路切換時間を取得するものであってもよい。これにより、流路切換時間をより精度よく求めることが可能となる。   Furthermore, the flow path switching time acquisition means may acquire the flow path switching time based on the pressure detected by the pressure detection means and the atmospheric pressure. As a result, the flow path switching time can be obtained more accurately.

また、前記第1および第2の異常判定用センサは、それぞれ対応した前記第1または第2の排ガス流路の排ガス温度を検出するものであってもよい。これにより、流路切換手段の異常判定に要するコストの低減化を図ることができる。   The first and second abnormality determination sensors may detect exhaust gas temperatures in the corresponding first or second exhaust gas flow paths. Thereby, the cost required for the abnormality determination of the flow path switching means can be reduced.

更に、上記内燃機関装置は、前記内燃機関を強制的に回転させるモータリングを実行可能な電動モータリング手段と、前記電動モータリング手段に電力を供給可能な蓄電手段と、前記蓄電手段の状態と前記蓄圧手段の蓄圧状態とに基づいて前記電動モータリング手段と前記負圧導入解除手段とを制御する制御手段とを更に備えてもよい。この内燃機関装置では、蓄電手段からの電力を用いて電動モータリング手段を駆動して内燃機関をモータリングすることにより、内燃機関を強制的に回転させて負圧を生成し、生成した負圧を蓄圧手段を介して流路切換手段に導入することができる。従って、この内燃機関装置では、内燃機関からの排ガスの流路を第1の排ガス流路と第2の排ガス流路との間で切り換えるのに用いられる負圧として、電動モータリング手段による内燃機関のモータリングにより発生させた負圧と蓄圧手段に蓄えられた負圧とを蓄電手段の状態や蓄圧手段の蓄圧状態に応じて使い分けることができる。これにより、負圧を良好に確保して、流路切換手段に負圧を導入し得なくなってしまうのを抑制することができるので、排ガスの流路を第1の排ガス流路と第2の排ガス流路との間でより適正に切り換えて、排ガス中の未燃焼成分が外部へと排出されてしまうことをより確実に抑制することが可能となる。   Further, the internal combustion engine device includes an electric motoring means capable of executing motoring for forcibly rotating the internal combustion engine, a power storage means capable of supplying power to the electric motoring means, and a state of the power storage means. You may further provide the control means which controls the said electric motoring means and the said negative pressure introduction cancellation | release means based on the pressure accumulation state of the said pressure accumulation means. In this internal combustion engine device, the electric motoring means is driven using the electric power from the power storage means to motor the internal combustion engine, thereby forcibly rotating the internal combustion engine to generate a negative pressure, and the generated negative pressure Can be introduced into the flow path switching means via the pressure accumulating means. Therefore, in this internal combustion engine device, the internal combustion engine by the electric motoring means is used as the negative pressure used for switching the flow path of the exhaust gas from the internal combustion engine between the first exhaust gas flow path and the second exhaust gas flow path. The negative pressure generated by the motoring and the negative pressure stored in the pressure accumulating means can be properly used according to the state of the power accumulating means and the pressure accumulating state of the pressure accumulating means. Thereby, it is possible to secure a good negative pressure and to prevent the negative pressure from being introduced into the flow path switching means, so that the exhaust gas flow path is connected to the first exhaust gas flow path and the second exhaust gas flow path. It is possible to more appropriately suppress the unburned component in the exhaust gas from being discharged to the outside by switching more appropriately between the exhaust gas flow paths.

この場合、前記制御手段は、前記内燃機関の始動前に前記蓄電手段が前記電動モータリング手段による前記モータリングを可能とする状態にあるときには、前記電動モータリング手段によるモータリングを伴って前記排ガスの流路が前記第1の排ガス流路から前記第2の排ガス流路へと切り換えられるように前記電動モータリング手段と前記負圧導入解除手段とを制御し、前記内燃機関の始動前に前記蓄電手段が前記電動モータリング手段による前記モータリングを可能とする状態にはなく、かつ前記蓄圧手段の蓄圧状態が所定条件を満たしているときには、前記電動モータリング手段によるモータリングを伴うことなく前記蓄圧手段に蓄えられた負圧のみを用いて前記排ガスの流路が前記第1の排ガス流路から前記第2の排ガス流路へと切り換えられるように前記モータリング手段と前記負圧導入解除手段とを制御するものであってもよい。   In this case, when the power storage means is in a state enabling the motoring by the electric motoring means before the internal combustion engine is started, the control means includes the exhaust gas accompanied by motoring by the electric motoring means. The electric motoring means and the negative pressure introduction release means are controlled so that the flow path is switched from the first exhaust gas flow path to the second exhaust gas flow path, and before the internal combustion engine is started, When the power storage means is not in a state enabling the motoring by the electric motoring means, and the pressure accumulation state of the pressure accumulating means satisfies a predetermined condition, the motoring by the electric motoring means is not accompanied. The exhaust gas flow path is cut from the first exhaust gas flow path to the second exhaust gas flow path using only the negative pressure stored in the pressure accumulating means. Wherein said motor ring means to be replaced may be configured to control the negative pressure introduction releasing means.

また、前記制御手段は、前記内燃機関の始動前に前記蓄電手段が前記電動モータリング手段による前記モータリングを可能とする状態にあるときには、前記取得された流路切換時間だけ前記モータリングが実行されるように前記電動モータリング手段を制御するものであってもよい。   Further, the control means executes the motoring for the acquired flow path switching time when the power storage means is in a state enabling the motoring by the electric motoring means before starting the internal combustion engine. As described above, the electric motoring means may be controlled.

本発明の車両は、上記何れかの内燃機関装置と、前記駆動軸に接続された駆動輪とを備えるものである。この車両は、上述の何れかの態様の内燃機関装置を備えるものであるから、本発明の内燃機関装置が奏する効果と同様の効果を奏する。   A vehicle according to the present invention includes any one of the internal combustion engine devices and drive wheels connected to the drive shaft. Since this vehicle includes the internal combustion engine device according to any one of the above-described aspects, the vehicle has the same effect as that produced by the internal combustion engine device of the present invention.

本発明による内燃機関装置の異常判定方法は、内燃機関と、該内燃機関からの排ガスを排ガス浄化触媒に直接導く第1の排ガス流路と、前記排ガス中の未燃焼成分を吸着可能な未燃焼成分吸着手段を有し、該未燃焼成分吸着手段を通過した排ガスを前記排ガス浄化触媒へと導く第2の排ガス流路と、負圧を用いて前記内燃機関からの排ガスの流路を前記第1の排ガス流路と前記第2の排ガス流路との間で切り換え可能な流路切換手段と、前記内燃機関の吸気系に接続され、該内燃機関の回転により生成される負圧を蓄えることができる蓄圧手段と、前記蓄圧手段から前記流路切換手段への負圧の導入を許容・解除する負圧導入解除手段とを備えた内燃機関装置の異常判定方法であって、
(a)前記蓄圧手段に蓄えられた圧力に基づいて前記流路切換手段による流路の切換に要する時間である流路切換時間を取得するステップと、
(b)ステップ(a)にて取得された流路切換時間を考慮しながら、前記第1および第2の排ガス流路の少なくとも何れか一方で検出された所定の物理量に基づいて前記流路切換手段の異常の有無を判定するステップと、
を含むものである。
An abnormality determination method for an internal combustion engine device according to the present invention includes an internal combustion engine, a first exhaust gas passage that directly guides exhaust gas from the internal combustion engine to an exhaust gas purification catalyst, and unburned that can adsorb unburned components in the exhaust gas. A second exhaust gas flow path having component adsorbing means for guiding the exhaust gas that has passed through the unburned component adsorbing means to the exhaust gas purification catalyst; and a flow path for exhaust gas from the internal combustion engine using negative pressure. A flow path switching means switchable between one exhaust gas flow path and the second exhaust gas flow path, and a negative pressure generated by rotation of the internal combustion engine, connected to the intake system of the internal combustion engine; An internal combustion engine apparatus abnormality determination method comprising: a pressure accumulating means capable of performing a negative pressure introduction releasing means for permitting / releasing the introduction of a negative pressure from the pressure accumulating means to the flow path switching means,
(A) obtaining a flow path switching time which is a time required for switching the flow path by the flow path switching means based on the pressure stored in the pressure accumulation means;
(B) The flow path switching is performed based on a predetermined physical quantity detected in at least one of the first and second exhaust gas flow paths in consideration of the flow path switching time acquired in step (a). Determining whether there is an abnormality in the means;
Is included.

この方法のように、蓄圧手段に蓄えられた圧力に基づく流路切換時間を考慮すれば、流路切換手段による流路の切換が開始されてから流路切換時間が経過するまでの間の異常判定をより適正に実行することができるので、内燃機関の排ガスの流路を切り換える流路切換手段の異常の有無をより精度よく判定することが可能となる。   If the flow path switching time based on the pressure stored in the pressure accumulating means is taken into account as in this method, an abnormality from the start of the flow path switching by the flow path switching means until the flow path switching time elapses. Since the determination can be performed more appropriately, it is possible to more accurately determine whether there is an abnormality in the flow path switching means that switches the flow path of the exhaust gas of the internal combustion engine.

次に、本発明を実施するための最良の形態を実施例を用いて説明する。   Next, the best mode for carrying out the present invention will be described using examples.

図1は、本発明の一実施例に係る内燃機関装置を備えたハイブリッド自動車20の概略構成図であり、図2は、ハイブリッド自動車20に搭載されたエンジン22の概略構成図である。実施例のハイブリッド自動車20は、図示するように、エンジン22を含む内燃機関装置21と、エンジン22の出力軸であるクランクシャフト26に図示しないダンパを介して接続された3軸式の動力分配統合機構30と、動力分配統合機構30に接続された発電可能なモータMG1と、動力分配統合機構30に接続されたモータMG2と、ハイブリッド自動車20の全体をコントロールするハイブリッド用電子制御ユニット(以下、「ハイブリッドECU」という)40とを備える。   FIG. 1 is a schematic configuration diagram of a hybrid vehicle 20 including an internal combustion engine device according to an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of an engine 22 mounted on the hybrid vehicle 20. As shown in the figure, the hybrid vehicle 20 of the embodiment includes an internal combustion engine device 21 including an engine 22 and a three-shaft power distribution integration connected to a crankshaft 26 that is an output shaft of the engine 22 via a damper (not shown). A hybrid electronic control unit (hereinafter referred to as “the hybrid vehicle 20”) that controls the mechanism 30, the motor MG1 capable of generating electricity connected to the power distribution and integration mechanism 30, the motor MG2 connected to the power distribution and integration mechanism 30, and the hybrid vehicle 20. Hybrid ECU ”40).

内燃機関装置21を構成するエンジン22は、例えばガソリンまたは軽油等の炭化水素系の燃料により動力を出力可能な内燃機関として構成されている。このエンジン22では、図2からわかるように、エアクリーナ122により清浄された空気がスロットルバルブ124を介して吸気ポートに取り入れられ、吸入空気には燃料噴射弁126からガソリン等の燃料が噴射される。こうして得られる空気と燃料との混合気は、吸気バルブ128を介して燃焼室に吸入されると共に点火プラグ130による電気火花によって爆発燃焼させられる。そして、混合気の爆発燃焼に伴うピストン132の往復運動は、クランクシャフト26の回転運動へと変換される。燃焼室からの排ガスは、一酸化炭素(CO)や炭化水素(HC)、窒素酸化物(NOx)といった有害成分を浄化する排ガス浄化装置50を介して外部へと排出される。   The engine 22 that constitutes the internal combustion engine device 21 is configured as an internal combustion engine that can output power using a hydrocarbon-based fuel such as gasoline or light oil. In the engine 22, as can be seen from FIG. 2, the air purified by the air cleaner 122 is taken into the intake port via the throttle valve 124, and fuel such as gasoline is injected from the fuel injection valve 126 into the intake air. The air / fuel mixture thus obtained is sucked into the combustion chamber via the intake valve 128 and explosively burned by electric sparks from the spark plug 130. Then, the reciprocating motion of the piston 132 accompanying the explosion combustion of the air-fuel mixture is converted into the rotational motion of the crankshaft 26. Exhaust gas from the combustion chamber is discharged to the outside through an exhaust gas purification device 50 that purifies harmful components such as carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx).

このようなエンジン22は、エンジン用電子制御ユニット(以下「エンジンECU」という)24により制御される。エンジンECU24は、CPU24aを中心としたマイクロプロセッサとして構成されており、CPU24aの他に処理プログラムを記憶するROM24bや、データを一時的に記憶するRAM24c、図示しない入出力ポートおよび通信ポート等を備える。そして、エンジンECU24には、エンジン22の状態等を検出する各種センサからの信号が図示しない入力ポートを介して入力される。例えば、エンジンECU24には、クランクシャフト26の回転位置を検出するクランクポジションセンサ140からのクランクポジションや、エンジン22の冷却水の温度を検出する水温センサ142からの冷却水温、燃焼室へ吸排気を行なう吸気バルブ128や排気バルブを開閉するカムシャフトの回転位置を検出するカムポジションセンサ144からのカムポジション、スロットルバルブ124のポジションを検出するスロットルバルブポジションセンサ146からのスロットルポジション、吸気管に取り付けられたエアフローメータ148からのからの吸入空気量、吸気管に取り付けられた温度センサ149からの吸気温度、空燃比センサ135aからの空燃比AF、酸素センサ135bからの酸素信号等が入力ポートを介して入力される。また、エンジンECU24からは、エンジン22を作動させるための種々の制御信号が出力される。例えば、エンジンECU24からは、燃料噴射弁126への駆動信号や、スロットルバルブ124のポジションを調節するスロットルモータ136への駆動信号、イグナイタと一体化されたイグニッションコイル138への制御信号、吸気バルブ128の開閉タイミングの変更可能な可変バルブタイミング機構150への制御信号等が出力ポートを介して出力される。なお、エンジンECU24は、ハイブリッドECU40と通信しており、ハイブリッドECU40からの制御信号によりエンジン22を運転制御すると共に必要に応じてエンジン22の運転状態に関するデータをハイブリッドECU40に送信する。   Such an engine 22 is controlled by an engine electronic control unit (hereinafter referred to as “engine ECU”) 24. The engine ECU 24 is configured as a microprocessor centered on the CPU 24a, and includes a ROM 24b that stores a processing program, a RAM 24c that temporarily stores data, an input / output port and a communication port (not shown), and the like in addition to the CPU 24a. Then, signals from various sensors that detect the state of the engine 22 and the like are input to the engine ECU 24 via an input port (not shown). For example, the engine ECU 24 receives the crank position from the crank position sensor 140 that detects the rotational position of the crankshaft 26, the cooling water temperature from the water temperature sensor 142 that detects the temperature of the cooling water of the engine 22, and intake and exhaust to the combustion chamber. A cam position from a cam position sensor 144 that detects the rotational position of a camshaft that opens and closes an intake valve 128 and an exhaust valve to perform, a throttle position from a throttle valve position sensor 146 that detects the position of a throttle valve 124, and an intake pipe. The amount of intake air from the air flow meter 148, the intake air temperature from the temperature sensor 149 attached to the intake pipe, the air-fuel ratio AF from the air-fuel ratio sensor 135a, the oxygen signal from the oxygen sensor 135b, etc. are input via the input port. input It is. The engine ECU 24 outputs various control signals for operating the engine 22. For example, the engine ECU 24 sends a drive signal to the fuel injection valve 126, a drive signal to the throttle motor 136 that adjusts the position of the throttle valve 124, a control signal to the ignition coil 138 integrated with the igniter, and the intake valve 128. A control signal or the like to the variable valve timing mechanism 150 whose opening / closing timing can be changed is output via the output port. The engine ECU 24 is in communication with the hybrid ECU 40 and controls the operation of the engine 22 by a control signal from the hybrid ECU 40 and transmits data related to the operating state of the engine 22 to the hybrid ECU 40 as necessary.

図3は、エンジン22の排ガスを浄化する排ガス浄化装置50の概略構成図である。同図に示すように、排ガス浄化装置50は、筒状のケース52と、ケース52の内部に同軸に配置された筒状の仕切部材54と、ケース52の内壁面と仕切部材54の外壁面とにより画成される環状の空間に配置されたHC吸着部材56と、ケース52の下流側(図中右側)に設けられた三元触媒(排ガス浄化触媒)58とを含む。仕切部材54は、ケース52よりも小径に形成されており、その内部には、エンジン22の排ガスを三元触媒58に直接導く第1の排ガス流路が画成される。また、HC吸着部材56は、例えばゼオライトといった低温下で排ガス中の未燃焼成分である炭化水素(HCガス)を吸着すると共に高温下で吸着したHCガスを脱離させるHC吸着剤を保持している。そして、ケース52と仕切部材54とは、両者の間に配置されたHC吸着部材56を通過した排ガスを三元触媒58へと導く第2の排ガス流路を画成する。なお、実施例において、三元触媒58は、白金(Pt)やパラジウム(Pd)等の酸化触媒とロジウム(Rh)等の還元触媒とセリア(CeO2)等の助触媒等により構成されており、高温で活性化して酸化触媒の作用により排気に含まれるCOやHCを水(H2O)や二酸化炭素(CO2)に浄化し、還元触媒の作用により排気に含まれるNOxを窒素(N2)や酸素(O2)等に浄化する。 FIG. 3 is a schematic configuration diagram of an exhaust gas purification device 50 that purifies the exhaust gas of the engine 22. As shown in the figure, the exhaust gas purifying device 50 includes a cylindrical case 52, a cylindrical partition member 54 disposed coaxially inside the case 52, an inner wall surface of the case 52, and an outer wall surface of the partition member 54. And an HC adsorbing member 56 disposed in an annular space defined by and a three-way catalyst (exhaust gas purification catalyst) 58 provided on the downstream side (right side in the figure) of the case 52. The partition member 54 is formed to have a smaller diameter than the case 52, and a first exhaust gas flow path that guides the exhaust gas of the engine 22 directly to the three-way catalyst 58 is defined therein. The HC adsorbing member 56 holds an HC adsorbent that adsorbs hydrocarbon (HC gas), which is an unburned component in exhaust gas, at a low temperature, such as zeolite, and desorbs the HC gas adsorbed at a high temperature. Yes. The case 52 and the partition member 54 define a second exhaust gas flow path that guides the exhaust gas that has passed through the HC adsorption member 56 disposed therebetween to the three-way catalyst 58. In the embodiment, the three-way catalyst 58 is composed of an oxidation catalyst such as platinum (Pt) or palladium (Pd), a reduction catalyst such as rhodium (Rh), and a promoter such as ceria (CeO 2 ). , Activated at a high temperature, purifies CO and HC contained in the exhaust gas by the action of an oxidation catalyst into water (H 2 O) and carbon dioxide (CO 2 ), and reduced NOx contained in the exhaust gas by nitrogen (N 2 ) Purify to oxygen (O 2 ).

上述のように構成される排ガス浄化装置50には、仕切部材54の開口部54aに取り付けられると共にアクチュエータ60により駆動されて当該開口部54aを開閉する流路切換弁59が設けられている。アクチュエータ60により流路切換弁59を開弁すれば、仕切部材54の内部(第1の排ガス流路)がエンジン22からの排ガスの主たる流路となり、エンジン22の燃焼室から排ガス浄化装置50に導入された排ガスの大半がHC吸着部材56を通過することなく三元触媒58へと直接に導かれる。また、アクチュエータ60により流路切換弁59を閉弁すれば、ケース52の内壁面と仕切部材54の外壁面とにより画成される環状の空間(第2の排ガス流路)がエンジン22からの排ガスの主たる流路となり、エンジン22の燃焼室から排ガス浄化装置50に導入された排ガスのほぼすべてがHC吸着部材56を通過した後、三元触媒58へと導かれる。更に、排ガス浄化装置50には、仕切部材54の内部かつ流路切換弁59よりも下流側の排ガスの温度を検出する第1温度センサ71が設けられると共に、ケース52の内壁面と仕切部材54の外壁面との間かつ流路切換弁59よりも下流側の排ガスの温度を検出する第2温度センサ72が設けられている。   The exhaust gas purification apparatus 50 configured as described above is provided with a flow path switching valve 59 that is attached to the opening 54a of the partition member 54 and is driven by the actuator 60 to open and close the opening 54a. If the flow path switching valve 59 is opened by the actuator 60, the inside of the partition member 54 (first exhaust gas flow path) becomes the main flow path of the exhaust gas from the engine 22, and the combustion chamber of the engine 22 transfers to the exhaust gas purification device 50. Most of the introduced exhaust gas is directly led to the three-way catalyst 58 without passing through the HC adsorbing member 56. When the flow path switching valve 59 is closed by the actuator 60, an annular space (second exhaust gas flow path) defined by the inner wall surface of the case 52 and the outer wall surface of the partition member 54 is removed from the engine 22. The exhaust gas becomes a main flow path, and almost all of the exhaust gas introduced into the exhaust gas purification device 50 from the combustion chamber of the engine 22 passes through the HC adsorbing member 56 and is then guided to the three-way catalyst 58. Further, the exhaust gas purification device 50 is provided with a first temperature sensor 71 that detects the temperature of the exhaust gas inside the partition member 54 and downstream of the flow path switching valve 59, and the inner wall surface of the case 52 and the partition member 54. A second temperature sensor 72 is provided for detecting the temperature of the exhaust gas between the outer wall surface and the downstream side of the flow path switching valve 59.

流路切換弁59のアクチュエータ60は、図2および図3に示すように、アクチュエータケース61内に収容されたダイヤフラム62と、ダイヤフラム62に接続された作動ロッド63と、アクチュエータケース61内でダイヤフラム62を作動ロッド63側に付勢するスプリング64と、作動ロッド63と流路切換弁59とを連結するリンク機構65とを含む。リンク機構65は、図3に示すように、作動ロッド63と流路切換弁59の回転軸とを接続するリンク65aと、流路切換弁59を開弁状態に位置決めするためのストッパ65bとを有し、作動ロッド63の直線運動を回転運動に変換して流路切換弁59を開閉するように構成されている。また、アクチュエータケース61の内部は、ダイヤフラム62により、作動ロッド63側の大気圧室とスプリング64側の変圧室とに区分されている。この場合、アクチュエータケース61内の大気圧室は、外部と連通されており、その内部の圧力は常時大気圧に保たれる。これに対して、アクチュエータケース61内の変圧室は、バキュームスイッチングバルブ(以下「VSV」という)66、負圧タンク67、逆止弁68および負圧導入管125aを介してエンジン22の吸気管(サージタンク)125に接続されている。VSV66は、例えば電磁弁として構成されており、オフ状態にあるときには、図示しない大気開放口とアクチュエータケース61の変圧室とを連通させ、当該変圧室内の圧力を大気圧に保つ。また、VSV66は、オン状態にあると、上記大気開放口とアクチュエータケース61の変圧室との連通を解除すると共に当該変圧室を負圧タンク67、逆止弁68および負圧導入管125aを介してエンジン22の吸気管125と連通させる。   As shown in FIGS. 2 and 3, the actuator 60 of the flow path switching valve 59 includes a diaphragm 62 housed in the actuator case 61, an operating rod 63 connected to the diaphragm 62, and a diaphragm 62 in the actuator case 61. And a link mechanism 65 that connects the operation rod 63 and the flow path switching valve 59. As shown in FIG. 3, the link mechanism 65 includes a link 65 a that connects the operating rod 63 and the rotating shaft of the flow path switching valve 59, and a stopper 65 b that positions the flow path switching valve 59 in the open state. And is configured to open and close the flow path switching valve 59 by converting the linear motion of the operating rod 63 into a rotational motion. In addition, the inside of the actuator case 61 is divided by a diaphragm 62 into an atmospheric pressure chamber on the operating rod 63 side and a variable pressure chamber on the spring 64 side. In this case, the atmospheric pressure chamber in the actuator case 61 communicates with the outside, and the internal pressure is always kept at atmospheric pressure. On the other hand, the variable pressure chamber in the actuator case 61 has an intake pipe (for the engine 22) via a vacuum switching valve (hereinafter referred to as “VSV”) 66, a negative pressure tank 67, a check valve 68, and a negative pressure introduction pipe 125a. Surge tank) 125. The VSV 66 is configured as, for example, an electromagnetic valve, and when in an off state, the atmosphere opening port (not shown) and the variable pressure chamber of the actuator case 61 are communicated to keep the pressure in the variable pressure chamber at atmospheric pressure. Further, when the VSV 66 is in the ON state, the communication between the atmosphere opening port and the variable pressure chamber of the actuator case 61 is released, and the variable pressure chamber is connected to the negative pressure tank 67, the check valve 68 and the negative pressure introduction pipe 125a. To communicate with the intake pipe 125 of the engine 22.

これにより、VSV66をオンし、負圧導入管125a等からアクチュエータケース61の変圧室に例えばクランクシャフト26の回転に伴って生成される負圧を導入して内圧を低下させれば、ダイヤフラム62がスプリング64の付勢力に抗して作動ロッド63をアクチュエータケース61内に引き込むように撓むことになる。実施例では、このようにVSV66がオンされ、アクチュエータケース61の変圧室に負圧が導入されてダイヤフラム62が撓んだときに、流路切換弁59が仕切部材54の開口部54aを閉鎖する。また、VSV66をオフし、当該変圧室の内圧が大気圧に保たれるようにすれば、変圧室と大気圧室との差圧が無くなることから、スプリング64の付勢力によりダイヤフラム62が元の撓んでいない状態へと戻り、作動ロッド63が変圧室に負圧を導入した場合とは逆方向に移動することになる。実施例では、このようにVSV66がオフされ、アクチュエータケース61の変圧室に大気圧が導入されてダイヤフラム62の撓みが無くなったときに、流路切換弁59が仕切部材54の開口部54aを開放する。このように、実施例では、アクチュエータケース61の変圧室内の圧力を変化させることにより、作動ロッド63の直線運動をリンク機構65により回転運動へと変換して流路切換弁59を開閉させ、エンジン22からの排ガスの主たる流路を切り換えることができる。なお、VSV66は、通常オフされ、エンジン22からの排ガスの主たる流路は、基本的に仕切部材54の内部に画成される第1の排ガス流路となる。また、負圧タンク67は、所定の容積をもった密閉容器であり、負圧導入管125aを介して負圧タンク67内の空気を吸引して内圧を低下させることにより、当該負圧タンク67内に負圧を蓄えることが可能となる。この負圧タンク67には、その内部の圧力(負圧)を検出する負圧センサ69が設けられている。そして、逆止弁68は、負圧タンク67から負圧導入管125aへの空気の流通を許容すると共に、負圧導入管125aから負圧タンク67への空気の流通を規制する。   Accordingly, if the VSV 66 is turned on and a negative pressure generated by, for example, rotation of the crankshaft 26 is introduced into the variable pressure chamber of the actuator case 61 from the negative pressure introduction pipe 125a or the like to reduce the internal pressure, the diaphragm 62 is The actuating rod 63 is bent so as to be pulled into the actuator case 61 against the urging force of the spring 64. In the embodiment, when the VSV 66 is turned on in this way and negative pressure is introduced into the variable pressure chamber of the actuator case 61 and the diaphragm 62 is bent, the flow path switching valve 59 closes the opening 54 a of the partition member 54. . Also, if the VSV 66 is turned off and the internal pressure of the variable pressure chamber is maintained at atmospheric pressure, the differential pressure between the variable pressure chamber and the atmospheric pressure chamber is eliminated. Returning to the unbent state, the operating rod 63 moves in the opposite direction to the case where negative pressure is introduced into the variable pressure chamber. In the embodiment, when the VSV 66 is turned off and the atmospheric pressure is introduced into the variable pressure chamber of the actuator case 61 and the diaphragm 62 is not bent, the flow path switching valve 59 opens the opening 54 a of the partition member 54. To do. As described above, in the embodiment, by changing the pressure in the variable pressure chamber of the actuator case 61, the linear motion of the operating rod 63 is converted into rotational motion by the link mechanism 65, and the flow path switching valve 59 is opened and closed. The main flow path of the exhaust gas from 22 can be switched. The VSV 66 is normally turned off, and the main flow path of the exhaust gas from the engine 22 is basically a first exhaust gas flow path defined inside the partition member 54. The negative pressure tank 67 is a sealed container having a predetermined volume, and the negative pressure tank 67 is sucked through the negative pressure introduction pipe 125a to reduce the internal pressure. It is possible to store negative pressure inside. The negative pressure tank 67 is provided with a negative pressure sensor 69 for detecting the internal pressure (negative pressure). The check valve 68 allows air to flow from the negative pressure tank 67 to the negative pressure introduction pipe 125 a and restricts air flow from the negative pressure introduction pipe 125 a to the negative pressure tank 67.

動力分配統合機構30は、例えば外歯歯車のサンギヤ30aと、このサンギヤ30aと同心円上に配置された内歯歯車のリングギヤ30bと、サンギヤ30aに噛合すると共にリングギヤ30bに噛合する複数のピニオンギヤ30cと、複数のピニオンギヤ30cを自転かつ公転自在に保持するキャリア30dとを備え、サンギヤ30aとリングギヤ30bとキャリア30dとを回転要素として差動作用を行なう遊星歯車機構として構成されている。この場合、動力分配統合機構30のキャリア30dにはエンジン22のクランクシャフトが、サンギヤ30aにはモータMG1が、リングギヤ30bには回転可能な車軸としてのリングギヤ軸27を介してモータMG2がそれぞれ接続されている。動力分配統合機構30は、モータMG1が発電機として機能するときにはキャリア30dから入力されるエンジン22からの動力をサンギヤ30a側とリングギヤ30b側とにそのギヤ比に応じて分配し、モータMG1が電動機として機能するときにはキャリア30dから入力されるエンジン22からの動力とサンギヤ30aから入力されるモータMG1からの動力を統合してリングギヤ30b側に出力する。そして、リングギヤ30bに出力された動力は、リングギヤ軸27やデファレンシャルギヤ28を介して駆動輪としての車輪29a,29bに出力される。   The power distribution and integration mechanism 30 includes, for example, an external gear sun gear 30a, an internal gear ring gear 30b disposed concentrically with the sun gear 30a, a plurality of pinion gears 30c that mesh with the sun gear 30a and mesh with the ring gear 30b. A planetary gear mechanism is provided that includes a carrier 30d that holds a plurality of pinion gears 30c so as to rotate and revolve, and that performs differential action using the sun gear 30a, the ring gear 30b, and the carrier 30d as rotating elements. In this case, the crankshaft of the engine 22 is connected to the carrier 30d of the power distribution and integration mechanism 30, the motor MG1 is connected to the sun gear 30a, and the motor MG2 is connected to the ring gear 30b via a ring gear shaft 27 as a rotatable axle. ing. The power distribution and integration mechanism 30 distributes the power from the engine 22 input from the carrier 30d to the sun gear 30a side and the ring gear 30b side according to the gear ratio when the motor MG1 functions as a generator, and the motor MG1 is an electric motor. , The power from the engine 22 input from the carrier 30d and the power from the motor MG1 input from the sun gear 30a are integrated and output to the ring gear 30b side. The power output to the ring gear 30b is output to wheels 29a and 29b as drive wheels via the ring gear shaft 27 and the differential gear 28.

モータMG1,MG2は、電動機として機能すると共に発電機としても機能することができる周知の同期発電電動機として構成されている。モータMG1,MG2は、インバータ32,34を介してバッテリ36と電力をやり取りし、モータ用電子制御ユニット(以下「モータECU」という)35により駆動制御される。モータECU35には、モータMG1,MG2を駆動制御するために必要な信号、例えばモータMG1,MG2の回転子の回転位置を検出する図示しない回転位置検出センサからの信号や、図示しない電流センサにより検出されるモータMG1,MG2に印加される相電流等が入力される。また、モータECU35からは、インバータ32,34へのスイッチング制御信号が出力される。更に、モータECU35は、ハイブリッドECU40と通信しており、ハイブリッドECU40からの制御信号によってモータMG1,MG2を駆動制御すると共に必要に応じてモータMG1,MG2の運転状態に関するデータをハイブリッドECU40に送信する。   The motors MG1 and MG2 are configured as well-known synchronous generator motors that can function as a motor as well as a generator. Motors MG1 and MG2 exchange electric power with battery 36 via inverters 32 and 34, and are driven and controlled by a motor electronic control unit (hereinafter referred to as "motor ECU") 35. The motor ECU 35 detects a signal necessary for driving and controlling the motors MG1 and MG2, for example, a signal from a rotational position detection sensor (not shown) that detects the rotational position of the rotor of the motors MG1 and MG2, or a current sensor (not shown). The phase currents applied to the motors MG1 and MG2 are input. Further, the motor ECU 35 outputs a switching control signal to the inverters 32 and 34. Further, the motor ECU 35 is in communication with the hybrid ECU 40, drives the motors MG1 and MG2 with a control signal from the hybrid ECU 40, and transmits data related to the operating state of the motors MG1 and MG2 to the hybrid ECU 40 as necessary.

バッテリ36は、バッテリ用電子制御ユニット(以下、「バッテリECU」という)37によって管理されている。バッテリECU37には、バッテリ36を管理するのに必要な信号、例えば、バッテリ36の端子間に設置された図示しない電圧センサからの端子間電圧、バッテリ36の出力端子に接続された電力ラインに取り付けられた電流センサからの充放電電流、バッテリ36に取り付けられた図示しない温度センサからの電池温度等が入力されている。バッテリECU37は、必要に応じてバッテリ36の状態に関するデータを通信によりハイブリッドECU40等に出力する。更に、バッテリECU37は、バッテリ36を管理するために、電流センサにより検出された充放電電流の積算値に基づいて残容量SOCを算出したり、当該残容量SOCに基づいてバッテリ36の充放電要求パワーPb*を算出したり、残容量SOCと電池温度Tbとに基づいてバッテリ36の充電に許容される電力である充電許容電力としての入力制限Winとバッテリ36の放電に許容される電力である放電許容電力としての出力制限Woutとを算出したりする。なお、バッテリ36の入出力制限Win,Woutは、バッテリ温度Tbに基づいて入出力制限Win,Woutの基本値を設定すると共に、バッテリ36の残容量(SOC)に基づいて出力制限用補正係数と入力制限用補正係数とを設定し、設定した入出力制限Win,Woutの基本値に補正係数を乗じることにより設定可能である。   The battery 36 is managed by a battery electronic control unit (hereinafter referred to as “battery ECU”) 37. The battery ECU 37 is attached to a signal necessary for managing the battery 36, for example, a voltage between terminals from a voltage sensor (not shown) installed between the terminals of the battery 36, and a power line connected to the output terminal of the battery 36. The charging / discharging current from the current sensor, the battery temperature from a temperature sensor (not shown) attached to the battery 36, and the like are input. The battery ECU 37 outputs data related to the state of the battery 36 to the hybrid ECU 40 or the like by communication as necessary. Further, in order to manage the battery 36, the battery ECU 37 calculates the remaining capacity SOC based on the integrated value of the charging / discharging current detected by the current sensor, or requests charging / discharging of the battery 36 based on the remaining capacity SOC. The power Pb * is calculated, the input limit Win as the charge allowable power that is the power allowed for charging the battery 36 based on the remaining capacity SOC and the battery temperature Tb, and the power allowed for discharging the battery 36. The output limit Wout as discharge allowable power is calculated. The input / output limits Win and Wout of the battery 36 set the basic values of the input / output limits Win and Wout based on the battery temperature Tb, and the output limiting correction coefficient based on the remaining capacity (SOC) of the battery 36. It can be set by setting a correction coefficient for input restriction and multiplying the basic value of the set input / output restrictions Win and Wout by the correction coefficient.

ハイブリッドECU40は、CPU40aを中心としたマイクロプロセッサとして構成されており、CPUの他に、処理プログラムを記憶するROM40bや、データを一時的に記憶するRAM40c、計時指令に応じて計時処理を実行するタイマ40d、図示しないカウンタ、入出力ポートおよび通信ポート等を備える。このハイブリッドECU40には、シフトレバー41の操作位置を検出するシフトポジションセンサ42からのシフトポジションや、アクセルペダル43の踏み込み量を検出するアクセルペダルポジションセンサ44からのアクセル開度、ブレーキペダル45の踏み込み量を検出するブレーキペダルポジションセンサ46からのブレーキ開度、車速センサ47からの車速、大気圧センサ48からの大気圧Patm、負圧センサ69からの負圧タンク67に蓄えられている圧力Ptk、第1温度センサ71からの排ガス温度Teg1、第2温度センサ72からの排ガス温度Teg2等が入力ポートを介して入力される。また、ハイブリッドECU40からは、VSV66への駆動信号が出力ポートを介して出力される。そして、ハイブリッドECU40は、上述のようにエンジンECU24やモータECU35等と各種制御信号やデータのやりとりを行なう。   The hybrid ECU 40 is configured as a microprocessor centered on the CPU 40a, and in addition to the CPU, a ROM 40b that stores a processing program, a RAM 40c that temporarily stores data, and a timer that executes a timing process according to a timing command. 40d, provided with a counter, an input / output port, a communication port, etc. (not shown). The hybrid ECU 40 includes a shift position from a shift position sensor 42 that detects an operation position of the shift lever 41, an accelerator opening from an accelerator pedal position sensor 44 that detects an amount of depression of an accelerator pedal 43, and depression of a brake pedal 45. Brake opening from the brake pedal position sensor 46 for detecting the amount, vehicle speed from the vehicle speed sensor 47, atmospheric pressure Patm from the atmospheric pressure sensor 48, pressure Ptk stored in the negative pressure tank 67 from the negative pressure sensor 69, The exhaust gas temperature Teg1 from the first temperature sensor 71, the exhaust gas temperature Teg2 from the second temperature sensor 72, and the like are input via the input port. In addition, a drive signal to the VSV 66 is output from the hybrid ECU 40 via an output port. The hybrid ECU 40 exchanges various control signals and data with the engine ECU 24, the motor ECU 35, and the like as described above.

上述のように構成された実施例のハイブリッド自動車20は、運転者によるアクセルペダル43の踏み込み量に対応したアクセル開度と車速とに基づいて駆動軸に出力すべき要求トルクを計算し、この要求トルクに基づく要求動力が駆動軸としてのリングギヤ軸27に出力されるようにエンジン22とモータMG1とモータMG2とが制御される。エンジン22とモータMG1とモータMG2の運転制御モードとしては、要求動力に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にエンジン22から出力される動力のすべてが動力分配統合機構30とモータMG1とモータMG2とによってトルク変換されてリングギヤ軸27に出力されるようモータMG1およびモータMG2を駆動制御するトルク変換運転モードや、要求動力とバッテリ36の充放電に必要な電力との和に見合う動力がエンジン22から出力されるようにエンジン22を運転制御すると共にバッテリ36の充放電を伴ってエンジン22から出力される動力の全部またはその一部が動力分配統合機構30とモータMG1とモータMG2とによるトルク変換を伴って要求動力がリングギヤ軸27に出力されるようモータMG1およびモータMG2を駆動制御する充放電運転モード、エンジン22の運転を停止してモータMG2から要求動力に見合う動力をリングギヤ軸27に出力するように運転制御するモータ運転モード等がある。   The hybrid vehicle 20 of the embodiment configured as described above calculates the required torque to be output to the drive shaft based on the accelerator opening and the vehicle speed corresponding to the depression amount of the accelerator pedal 43 by the driver. The engine 22, the motor MG1, and the motor MG2 are controlled so that the required power based on the torque is output to the ring gear shaft 27 as the drive shaft. As the operation control mode of the engine 22, the motor MG1, and the motor MG2, the engine 22 is operated and controlled so that power corresponding to the required power is output from the engine 22, and all of the power output from the engine 22 is a power distribution integration mechanism. 30, the torque conversion operation mode for driving and controlling the motor MG 1 and the motor MG 2 so that the torque is converted by the motor MG 1 and the motor MG 2 and output to the ring gear shaft 27, The operation of the engine 22 is controlled so that power corresponding to the sum is output from the engine 22, and all or part of the power output from the engine 22 with charge / discharge of the battery 36 is combined with the power distribution and integration mechanism 30 and the motor MG1. And the required power is ring gear with torque conversion by motor MG2 A charge / discharge operation mode in which the motor MG1 and the motor MG2 are drive-controlled so that the motor MG1 and the motor MG2 are output to the motor 27. There are modes.

また、実施例のハイブリッド自動車20では、トルク変換運転モードや充放電運転モードのもとで所定条件が成立した場合、エンジン22を自動的に停止・始動させる間欠運転が実行される。実施例では、例えばエンジン22の冷却水温が第1の所定温度(例えば、55℃〜65℃)以上であり、バッテリ36の残容量(SOC)が管理領域内にあり、かつアクセルペダル43の踏み込み量に応じて設定される車両要求パワーが第1の所定値(例えば、2kW〜10kW)未満になるとエンジン22の自動停止条件が成立し、エンジン22が自動停止されてトルク変換運転モードまたは充放電運転モードからモータ運転モードへと移行する。また、モータ運転モードのもとでエンジン22の冷却水温が第1の所定温度よりも小さな第2の所定温度(例えば、45〜55℃)未満であるときや、アクセルペダル43の踏み込みに応じて設定される車両要求パワーが第1の所定値より大きな第2の所定値(例えば、4〜15kW)以上となったとき,バッテリ36の残容量(SOC)が管理領域を下回ったときにエンジン22の自動始動条件が成立し、停止されているエンジン22が再始動される。   Further, in the hybrid vehicle 20 of the embodiment, when a predetermined condition is satisfied under the torque conversion operation mode or the charge / discharge operation mode, intermittent operation for automatically stopping and starting the engine 22 is executed. In the embodiment, for example, the cooling water temperature of the engine 22 is equal to or higher than a first predetermined temperature (for example, 55 ° C. to 65 ° C.), the remaining capacity (SOC) of the battery 36 is within the management region, and the accelerator pedal 43 is depressed. When the required vehicle power set in accordance with the amount becomes less than a first predetermined value (for example, 2 kW to 10 kW), the automatic stop condition of the engine 22 is established, and the engine 22 is automatically stopped and the torque conversion operation mode or charge / discharge Transition from operation mode to motor operation mode. Further, when the coolant temperature of the engine 22 is lower than the second predetermined temperature (for example, 45 to 55 ° C.) lower than the first predetermined temperature under the motor operation mode, or in response to the depression of the accelerator pedal 43. When the required vehicle power to be set is greater than or equal to a second predetermined value (for example, 4 to 15 kW) that is larger than the first predetermined value, the engine 22 when the remaining capacity (SOC) of the battery 36 falls below the management area. This automatic start condition is satisfied, and the stopped engine 22 is restarted.

そして、実施例のハイブリッド自動車20では、車両の走行を開始すべく図示しないスタートスイッチ(イグニッションスイッチ)がオンされたときに、エンジン22の冷却水温が例えば上記第2の所定温度未満である場合、エンジン22が始動されて暖機運転が実行される。そして、このような暖機運転(エンジン22の冷間始動)が実行される場合には、流路切換弁59により排ガス浄化装置50の仕切部材54の開口部54aが閉鎖されてケース52の内壁面と仕切部材54の外壁面とにより画成される環状の空間(第2の排ガス流路)がエンジン22からの排ガスの主たる流路となるように、エンジン22の始動に先立って上述のVSV66がオンされる。これにより、エンジン22が始動されると、燃焼室から排ガス浄化装置50に導入される排ガスはHC吸着部材56を通過した後に三元触媒58に送られることになり、エンジン始動時(特に冷間始動時)に生じがちな未燃焼成分としてのHCがHC吸着部材56により吸着される。これにより、三元触媒58が充分に活性化されていなくても、HCが外部へと排出されてしまうことをより確実に抑制することが可能となる。   Then, in the hybrid vehicle 20 of the embodiment, when a start switch (ignition switch) (not shown) is turned on to start running of the vehicle, the cooling water temperature of the engine 22 is, for example, less than the second predetermined temperature, The engine 22 is started and warm-up operation is executed. When such a warm-up operation (cold start of the engine 22) is executed, the opening 54a of the partition member 54 of the exhaust gas purifying device 50 is closed by the flow path switching valve 59, and the inside of the case 52 Prior to the start of the engine 22, the VSV 66 described above is such that an annular space (second exhaust gas flow path) defined by the wall surface and the outer wall surface of the partition member 54 becomes the main flow path of the exhaust gas from the engine 22. Is turned on. Thus, when the engine 22 is started, the exhaust gas introduced into the exhaust gas purification device 50 from the combustion chamber is sent to the three-way catalyst 58 after passing through the HC adsorbing member 56, and at the time of engine start (particularly cold) HC as an unburned component that tends to occur at the time of starting) is adsorbed by the HC adsorbing member 56. As a result, even if the three-way catalyst 58 is not sufficiently activated, it is possible to more reliably prevent HC from being discharged to the outside.

次に、実施例のハイブリッド自動車20において、エンジン22の始動に先立って流路切換弁59により排ガスの主たる流路を切り換える手順について具体的に説明する。図4は、実施例のハイブリッドECU40により実行されるエンジン始動前制御ルーチンの一例を示すフローチャートである。このルーチンは、運転者によりハイブリッド自動車20のスタートスイッチがオンされたときに水温センサ142により検出される冷却水温が上記第2の所定温度未満である場合にハイブリッドECU40により実行される。   Next, in the hybrid vehicle 20 of the embodiment, a procedure for switching the main flow path of the exhaust gas by the flow path switching valve 59 before starting the engine 22 will be specifically described. FIG. 4 is a flowchart illustrating an example of a pre-engine start control routine executed by the hybrid ECU 40 according to the embodiment. This routine is executed by the hybrid ECU 40 when the coolant temperature detected by the water temperature sensor 142 when the start switch of the hybrid vehicle 20 is turned on by the driver is lower than the second predetermined temperature.

本ルーチンの実行開始に際して、ハイブリッドECU40のCPU40aは、バッテリECU37からのバッテリ36の残容量SOCや出力制限Wout、大気圧センサ48からの圧力Patm、負圧センサ69からの圧力Ptkといった制御に必要なデータを入力する(ステップS100)。次いで、バッテリ36の残容量SOCが所定の閾値SOCref以上であるか否かを判定し(ステップS110)、残容量SOCが閾値SOCref以上であれば、更にバッテリ36の出力制限Woutが所定の閾値Wref以上であるか否かを判定する(ステップS120)。なお、閾値SOCrefや閾値Wrefの値は、バッテリ36の性能やハイブリッド自動車20の使用環境、モータMG2の特性等を考慮した実験・解析を経て定められる。出力制限Woutが閾値Wref以上である場合には、バッテリ36がモータMG2によりエンジン22のクランクシャフト26を強制的に回転させるモータリングの実行を可能とする状態にあると判断され、この場合には、モータMG2によるモータリングを伴って流路切換弁59を開状態から閉状態へと移行させるのに要する流路切換時間tpcを推定する(ステップS130)。すなわち、実施例では、バッテリ36から充分な電力を出力し得る状態にある場合、モータMG2によりエンジン22をモータリングして吸気管125内に負圧を形成すると共にモータリングにより生成された負圧をアクチュエータ60の変圧室に導入することにより流路切換弁59を閉鎖し、エンジン22の燃焼室から排ガス浄化装置50に導入された排ガスのほぼすべてがHC吸着部材56を通過した後、三元触媒58へと導かれるようにするのである。実施例では、例えばエンジン22のアイドル時と同程度の一定回転数でモータリングを実行するとした場合の大気圧Patmと負圧タンク67に蓄えられている圧力Ptkと流路切換時間tpcとの関係が予め定められて第1流路切換時間推定用マップとしてROM40bに記憶されており、流路切換時間tpcとしては、ステップS100にて入力された大気圧Patmおよび圧力Ptkに対応したものが当該マップから導出される。また、かかる第1流路切換時間推定用マップは、できるだけ速やかに流路切換弁59を開状態から閉状態へと移行させると共にモータリングに伴うモータMG2の電力消費が必要最小限となるように、基本的に大気圧Patmから負圧タンク67に蓄えられている圧力Ptkを減じた値である圧力差が大きいほど流路切換時間tpcを短くするものとして作成される。   At the start of execution of this routine, the CPU 40a of the hybrid ECU 40 is necessary for control such as the remaining capacity SOC and output limit Wout of the battery 36 from the battery ECU 37, the pressure Patm from the atmospheric pressure sensor 48, and the pressure Ptk from the negative pressure sensor 69. Data is input (step S100). Next, it is determined whether or not the remaining capacity SOC of the battery 36 is equal to or greater than a predetermined threshold SOCref (step S110). If the remaining capacity SOC is equal to or greater than the threshold SOCref, the output limit Wout of the battery 36 is further set to a predetermined threshold Wref. It is determined whether or not this is the case (step S120). Note that the values of the threshold SOCref and the threshold Wref are determined through experiments and analyzes that take into account the performance of the battery 36, the usage environment of the hybrid vehicle 20, the characteristics of the motor MG2, and the like. When the output limit Wout is greater than or equal to the threshold value Wref, it is determined that the battery 36 is in a state that enables execution of motoring that forcibly rotates the crankshaft 26 of the engine 22 by the motor MG2. Then, the flow path switching time tpc required to shift the flow path switching valve 59 from the open state to the closed state with motoring by the motor MG2 is estimated (step S130). That is, in the embodiment, when sufficient power can be output from the battery 36, the motor MG2 motorizes the engine 22 to form a negative pressure in the intake pipe 125 and the negative pressure generated by the motoring. Is introduced into the variable pressure chamber of the actuator 60 to close the flow path switching valve 59, and after almost all of the exhaust gas introduced from the combustion chamber of the engine 22 into the exhaust gas purification device 50 passes through the HC adsorption member 56, the three way It is guided to the catalyst 58. In the embodiment, for example, the relationship between the atmospheric pressure Patm, the pressure Ptk stored in the negative pressure tank 67, and the flow path switching time tpc when the motoring is executed at a constant rotational speed similar to that when the engine 22 is idle. Is stored in the ROM 40b as a first flow path switching time estimation map, and the flow path switching time tpc corresponds to the atmospheric pressure Patm and the pressure Ptk input in step S100. Is derived from In addition, the first flow path switching time estimation map shifts the flow path switching valve 59 from the open state to the closed state as quickly as possible and minimizes the power consumption of the motor MG2 accompanying motoring. Basically, the flow path switching time tpc is shortened as the pressure difference, which is a value obtained by subtracting the pressure Ptk stored in the negative pressure tank 67 from the atmospheric pressure Patm, increases.

こうして流路切換時間tpcを設定したならば、VSV66をオンした上で(ステップS140)、モータMG2の駆動指令をモータECU35に送信すると共にタイマ40dをオンする(ステップS150)。ステップS150では、モータMG2の駆動指令として、例えばモータリングによりエンジン22をアイドル時と同程度の回転数で回転させるためのトルク指令がモータECU35に送信され、モータMG2の駆動指令を受け取ったモータECU35は、当該駆動指令に従ってモータMG2が駆動されるようにインバータ34のスイッチング素子のスイッチング制御を行なう。そして、タイマ40dにより計時される経過時間tとステップS130にて設定された流路切換時間tpcとを比較して、モータリングの開始から流路切換時間tpcが経過したか否かを判定し(ステップS160)、モータリングの開始から流路切換時間tpcが経過した時点でモータMG2の停止指令をモータECU35に送信すると共にタイマ40dをオフする(ステップS170)。これにより、流路切換弁59により仕切部材54の開口部54aが閉鎖されることになり、エンジン22の燃焼室から排ガス浄化装置50に導入される排ガスをHC吸着部材56を介して三元触媒58へと送り込むことが可能となるので、エンジン始動フラグをオンして(ステップS180)、本ルーチンを終了させる。こうしてエンジン始動フラグがオンされると、その後、ハイブリッドECU40により図示しないエンジン始動時駆動制御ルーチンが実行される。かかるエンジン始動時駆動制御ルーチンは、モータMG1によりエンジン22をクランキングしながらエンジン22を始動させると共に、エンジン22のクランキングに伴ってリングギヤ軸27に作用するトルクをキャンセルしつつ必要に応じて要求トルクに基づくトルクがリングギヤ軸27に出力されるようにモータMG2を駆動制御する処理である。このようにエンジン22が始動されると、所定条件が成立するまでエンジン22の暖機運転が実行され、暖機運転により三元触媒58が充分に活性化されたとみなされる時点でVSV66がオフされる。これにより、エンジン22の始動から暖機運転の実行中に燃焼室から排出される未燃焼成分としてのHCはHC吸着部材56により吸着・保持される。また、VSV66がオフされると、燃焼室からの排ガスの大半は仕切部材54の内部(第1の排ガス流路)を介して三元触媒58へと導かれることになるが、排ガスの一部は、HC吸着部材56側(第2の排ガス流路)にも導かれ、HC吸着部材56の温度も次第に上昇する。そして、この温度上昇に伴って吸着されていたHCがHC吸着部材56から脱離して三元触媒58へと導かれ、活性化した三元触媒58にて浄化処理されることになる。   If the flow path switching time tpc is set in this way, the VSV 66 is turned on (step S140), a drive command for the motor MG2 is transmitted to the motor ECU 35, and the timer 40d is turned on (step S150). In step S150, as a drive command for the motor MG2, for example, a torque command for rotating the engine 22 at the same rotational speed as when idling is transmitted to the motor ECU 35 by motoring, and the motor ECU 35 that has received the drive command for the motor MG2 Performs switching control of the switching element of the inverter 34 so that the motor MG2 is driven in accordance with the drive command. Then, the elapsed time t counted by the timer 40d is compared with the flow path switching time tpc set in step S130 to determine whether or not the flow path switching time tpc has elapsed since the start of motoring ( Step S160) When the flow path switching time tpc has elapsed from the start of motoring, a stop command for the motor MG2 is transmitted to the motor ECU 35 and the timer 40d is turned off (step S170). Thereby, the opening 54 a of the partition member 54 is closed by the flow path switching valve 59, and the exhaust gas introduced into the exhaust gas purification device 50 from the combustion chamber of the engine 22 is passed through the HC adsorbing member 56 to the three-way catalyst. Therefore, the engine start flag is turned on (step S180), and this routine is terminated. When the engine start flag is thus turned on, an engine start time drive control routine (not shown) is thereafter executed by the hybrid ECU 40. The engine start drive control routine is requested as needed while starting the engine 22 while cranking the engine 22 by the motor MG1, and canceling the torque acting on the ring gear shaft 27 in accordance with the cranking of the engine 22. In this process, the motor MG2 is drive-controlled so that torque based on the torque is output to the ring gear shaft 27. When the engine 22 is started in this manner, the warm-up operation of the engine 22 is executed until a predetermined condition is satisfied, and the VSV 66 is turned off when it is considered that the three-way catalyst 58 is sufficiently activated by the warm-up operation. The Thus, HC as an unburned component discharged from the combustion chamber during the warm-up operation from the start of the engine 22 is adsorbed and held by the HC adsorbing member 56. When the VSV 66 is turned off, most of the exhaust gas from the combustion chamber is guided to the three-way catalyst 58 through the inside of the partition member 54 (first exhaust gas flow path). Is also led to the HC adsorbing member 56 side (second exhaust gas flow path), and the temperature of the HC adsorbing member 56 gradually increases. As the temperature rises, the adsorbed HC is desorbed from the HC adsorbing member 56 and guided to the three-way catalyst 58, and is purified by the activated three-way catalyst 58.

一方、ステップS110またはS120にて否定判断がなされた場合、すなわちバッテリ36がモータMG2によりエンジン22のクランクシャフト26を強制的に回転させるモータリングの実行を可能とする状態にはないと判断された場合には、大気圧Patmから負圧タンク67に蓄えられている圧力Ptkを減じた値である圧力差が予め定められた閾値ΔP1以上であるか否かを判定する(ステップS190)。なお、閾値ΔP1は、アクチュエータ60(ダイヤフラム62)の特性や流路切換弁59の動作特性等を考慮して定められる。ステップS190にて当該圧力差が閾値ΔP1以上であると判断された場合には、負圧タンク67内の空気の圧力Ptkが大気圧に比べて充分小さく、VSV66をオンして負圧タンク67とアクチュエータ60の変圧室とを連通すれば、大気圧Patmとの圧力差によりダイヤフラム62を撓ませて流路切換弁59を開状態から閉状態へと移行させることが可能である。このため、ステップS190にて肯定判断がなされた場合には、負圧タンク67内に蓄えられた負圧のみをアクチュエータ60の変圧室に導入することにより流路切換弁59を開状態から閉状態へと移行させるのに要する流路切換時間tpcを推定する(ステップS200)。実施例では、負圧タンク67内に蓄えられた負圧のみをアクチュエータ60の変圧室に導入する場合の大気圧Patmと負圧タンク67に蓄えられている圧力Ptkと流路切換時間tpcとの関係が予め定められて第2流路切換時間推定用マップとしてROM40bに記憶されており、流路切換時間tpcとしては、ステップS100にて入力された大気圧Patmおよび圧力Ptkに対応したものが当該マップから導出される。かかる第2流路切換時間推定用マップは、基本的に大気圧Patmから負圧タンク67に蓄えられている圧力Ptkを減じた値である圧力差が大きいほど流路切換時間tpcを短くするものとして作成される。   On the other hand, if a negative determination is made in step S110 or S120, that is, it is determined that the battery 36 is not in a state in which motoring for forcibly rotating the crankshaft 26 of the engine 22 by the motor MG2 is allowed. In this case, it is determined whether or not the pressure difference, which is a value obtained by subtracting the pressure Ptk stored in the negative pressure tank 67 from the atmospheric pressure Patm, is equal to or greater than a predetermined threshold value ΔP1 (step S190). The threshold value ΔP1 is determined in consideration of the characteristics of the actuator 60 (diaphragm 62), the operation characteristics of the flow path switching valve 59, and the like. If it is determined in step S190 that the pressure difference is greater than or equal to the threshold value ΔP1, the air pressure Ptk in the negative pressure tank 67 is sufficiently smaller than the atmospheric pressure, and the VSV 66 is turned on to turn off the negative pressure tank 67. If the variable pressure chamber of the actuator 60 is communicated, it is possible to bend the diaphragm 62 due to a pressure difference from the atmospheric pressure Patm and shift the flow path switching valve 59 from the open state to the closed state. For this reason, when an affirmative determination is made in step S190, the flow path switching valve 59 is closed from the open state by introducing only the negative pressure stored in the negative pressure tank 67 into the variable pressure chamber of the actuator 60. The flow path switching time tpc required for shifting to is estimated (step S200). In the embodiment, the atmospheric pressure Patm when only the negative pressure stored in the negative pressure tank 67 is introduced into the variable pressure chamber of the actuator 60, the pressure Ptk stored in the negative pressure tank 67, and the flow path switching time tpc. The relationship is determined in advance and stored in the ROM 40b as a second flow path switching time estimation map, and the flow path switching time tpc corresponds to the atmospheric pressure Patm and the pressure Ptk input in step S100. Derived from the map. This second flow path switching time estimation map basically shortens the flow path switching time tpc as the pressure difference, which is a value obtained by subtracting the pressure Ptk stored in the negative pressure tank 67 from the atmospheric pressure Patm, is larger. Created as

ステップS200にて流路切換時間tpcを推定したならば、VSV66をオンすると共にタイマ40dをオンし(ステップS210)、タイマ40dにより計時される経過時時間tとステップS200にて推定した流路切換時間tpcとを比較して、VSV66をオンして負圧タンク67からアクチュエータ60の変圧室に負圧を導入してから当該流路切換時間tpcが経過したか否かを判定する(ステップS220)。そして、VSV66をオンしてから流路切換時間tpcが経過した時点でタイマ40dをオフし(ステップS230)、エンジン始動フラグをオンして(ステップS180)、本ルーチンを終了させる。このように、バッテリ36がモータMG2によるモータリングの実行を可能とする状態にはない場合であっても、負圧タンク67内に充分な負圧が蓄えられていれば、負圧タンク67からアクチュエータ60の変圧室に負圧を導入して流路切換弁59により仕切部材54の開口部54aを閉鎖し、それによりエンジン22の燃焼室から排ガス浄化装置50に導入される排ガスをHC吸着部材56を介して三元触媒58へと送り込むことが可能となる。   If the flow path switching time tpc is estimated in step S200, the VSV 66 is turned on and the timer 40d is turned on (step S210). The elapsed time t counted by the timer 40d and the flow path switching estimated in step S200. The time tpc is compared, and it is determined whether or not the flow path switching time tpc has elapsed since the VSV 66 was turned on and the negative pressure was introduced from the negative pressure tank 67 into the variable pressure chamber of the actuator 60 (step S220). . Then, when the flow path switching time tpc has elapsed since the VSV 66 was turned on, the timer 40d is turned off (step S230), the engine start flag is turned on (step S180), and this routine is ended. As described above, even if the battery 36 is not in a state that allows the motor MG2 to execute motoring, if the negative pressure tank 67 stores a sufficient negative pressure, the negative pressure tank 67 A negative pressure is introduced into the variable pressure chamber of the actuator 60, and the opening 54a of the partition member 54 is closed by the flow path switching valve 59. It is possible to send the fuel to the three-way catalyst 58 through 56.

なお、ステップS190にて否定判断がなされた場合には、大気圧Patmと負圧タンク67に蓄えられている圧力Ptkとの圧力差が小さく、当該圧力差によりダイヤフラム62を撓ませて流路切換弁59を開状態から閉状態へと移行させることが困難となることから、直ちにエンジン始動フラグがオンされ(ステップS180)、本ルーチンが終了することになる。従って、ステップS190にて否定判断がなされた場合、排ガス浄化装置50の仕切部材54の開口部54aを閉鎖し、エンジン22の燃焼室から排ガス浄化装置50に導入される排ガスをHC吸着部材56を介して三元触媒58へと送り込むことができず、HCが充分に浄化されることなく外部に排出されてしまうおそれがある。このため、実施例のハイブリッド自動車20では、バッテリ36がモータMG2によるモータリングの実行を可能とする状態にはない場合であっても、できるだけ負圧タンク67に蓄えられた負圧を用いて流路切換弁59を作動させることが可能となるように、負圧タンク67に蓄えられている圧力Ptkの値に応じてエンジン22の間欠運転が禁止されたり、運転者によりスタートスイッチがオフされた後であってもエンジン22の運転(アイドル運転)が所定時間だけ続行されたりする。これにより、エンジン22の自動停止条件の成立後における運転(アイドル運転)により負圧タンク67内の空気を吸引して内圧を低下させ、それにより負圧タンク67内に充分な負圧を蓄えておくことが可能となる。また、スタートスイッチがオフされた後におけるエンジン22の運転(アイドル運転)により負圧タンク67内の空気を吸引して内圧を低下させ、それにより負圧タンク67内に充分な負圧を蓄えておくことが可能となる。   If a negative determination is made in step S190, the pressure difference between the atmospheric pressure Patm and the pressure Ptk stored in the negative pressure tank 67 is small, and the diaphragm 62 is bent by the pressure difference to switch the flow path. Since it becomes difficult to shift the valve 59 from the open state to the closed state, the engine start flag is immediately turned on (step S180), and this routine ends. Therefore, if a negative determination is made in step S190, the opening 54a of the partition member 54 of the exhaust gas purification device 50 is closed, and the exhaust gas introduced into the exhaust gas purification device 50 from the combustion chamber of the engine 22 is passed through the HC adsorption member 56. Therefore, there is a possibility that HC may not be sufficiently purified and discharged to the outside without being sufficiently purified. For this reason, in the hybrid vehicle 20 of the embodiment, even when the battery 36 is not in a state in which motoring by the motor MG2 can be performed, it is possible to flow using the negative pressure stored in the negative pressure tank 67 as much as possible. The intermittent operation of the engine 22 is prohibited according to the value of the pressure Ptk stored in the negative pressure tank 67 so that the path switching valve 59 can be operated, or the start switch is turned off by the driver. Even after that, the operation (idle operation) of the engine 22 is continued for a predetermined time. As a result, the air in the negative pressure tank 67 is sucked by the operation (idle operation) after the automatic stop condition of the engine 22 is established to reduce the internal pressure, thereby storing a sufficient negative pressure in the negative pressure tank 67. It becomes possible to leave. Further, by operating the engine 22 (idle operation) after the start switch is turned off, the air in the negative pressure tank 67 is sucked to reduce the internal pressure, thereby storing a sufficient negative pressure in the negative pressure tank 67. It becomes possible to leave.

引き続き、図5を参照しながら、上述のハイブリッド自動車20において流路切換弁59やアクチュエータ60の異常の有無を判定するための異常判定ルーチンについて説明する。図5は、実施例のハイブリッドECU40により実行される異常判定ルーチンの一例を示すフローチャートである。このルーチンは、上記エンジン始動前制御ルーチンが実行されて例えばVSV66がオンされると、ハイブリッドECU40により所定の終了条件が成立するまで(例えば暖機運転が完了するまで)所定時間おきに繰り返し実行される。本ルーチンの実行開始に際して、ハイブリッドECU40のCPU40aは、図5のステップS130やステップS200にて設定される流路切換時間tpcや、タイマ40dにより計時される経過時間t、第1および第2温度センサ71,72からの排ガス温度Teg1,Teg2といった異常判定に必要なデータを入力する(ステップS300)。すなわち、実施例では、第1および第2温度センサ71,72により検出される排ガス温度Teg1,Teg2に基づいて流路切換弁59(弁体)の開側または閉側の固着の有無や、アクチュエータ60の異常の有無が判定される。   Next, an abnormality determination routine for determining whether the flow path switching valve 59 and the actuator 60 are abnormal in the hybrid vehicle 20 described above will be described with reference to FIG. FIG. 5 is a flowchart illustrating an example of an abnormality determination routine executed by the hybrid ECU 40 according to the embodiment. This routine is repeatedly executed at predetermined intervals until a predetermined end condition is satisfied by the hybrid ECU 40 (for example, until the warm-up operation is completed) when, for example, the VSV 66 is turned on when the pre-engine start control routine is executed. The At the start of execution of this routine, the CPU 40a of the hybrid ECU 40 determines the flow path switching time tpc set in step S130 and step S200 of FIG. 5, the elapsed time t measured by the timer 40d, the first and second temperature sensors. Data necessary for abnormality determination such as exhaust gas temperatures Teg1, Teg2 from 71, 72 are input (step S300). That is, in the embodiment, whether the flow path switching valve 59 (valve element) is fixed on the open side or the closed side based on the exhaust gas temperatures Teg1, Teg2 detected by the first and second temperature sensors 71, 72, the actuator The presence / absence of 60 abnormalities is determined.

次いで、ステップS300にて入力した経過時間tが流路切換時間tpc未満であるか否かを判定する(ステップS310)。ここで、実施例のように負圧を用いて排ガスの主たる流路を切り換える場合、流路切換弁59による流路の切換にはある程度の時間が要求される。従って、流路切換弁59が開状態から閉状態に完全に移行するまでの間、仕切部材54により画成される第1の排ガス流路とケース52の内壁面と仕切部材54の外壁面とにより画成される第2の排ガス流路との双方を排ガスが流通することになり、経過時間tが流路切換時間tpc未満である場合には、異常判定に用いられる排ガス温度Teg1,Teg2が正常時または異常発生時の特徴を示さないおそれがあり、本来正常であるにも拘わらず流路切換弁59等に異常が発生している等と誤判定されてしまう可能性もある。このため、経過時間tが流路切換時間tpc未満である場合には、異常判定用の閾値ΔTが経過時間tに基づいて設定される(ステップS320)。実施例では、経過時間tと閾値ΔTとの関係が予め定められて閾値設定用マップとしてROM40bに記憶されており、流路切換時間tpcとしては、ステップS100にて入力された大気圧Patmおよび圧力Ptkに対応したものが当該マップから導出される。図6に閾値設定用マップの一例を示す。これに対して、経過時間tが流路切換時間tpc以上である場合には、閾値ΔTが予め実験・解析を経て定められた一定の値T1に設定される(ステップS330)。なお、実施例において、ステップS320にて用いられる閾値設定用マップは、基本的に経過時間tが流路切換時間tpcに近づくほど閾値ΔTを小さな値に設定するものとなり、閾値設定用マップを用いて設定される閾値ΔTは、基本的にステップS330にて用いられる値T1よりも大きな値となる。   Next, it is determined whether or not the elapsed time t input in step S300 is less than the flow path switching time tpc (step S310). Here, when the main flow path of the exhaust gas is switched using negative pressure as in the embodiment, a certain amount of time is required for switching the flow path by the flow path switching valve 59. Therefore, the first exhaust gas flow path defined by the partition member 54, the inner wall surface of the case 52, and the outer wall surface of the partition member 54 until the flow path switching valve 59 completely transitions from the open state to the closed state. If the exhaust gas flows through both the second exhaust gas flow path defined by the above and the elapsed time t is less than the flow path switching time tpc, the exhaust gas temperatures Teg1, Teg2 used for abnormality determination are There is a possibility that the characteristics at the time of normal or abnormal occurrence may not be shown, and it may be erroneously determined that an abnormality has occurred in the flow path switching valve 59 or the like despite being normal. For this reason, when the elapsed time t is less than the flow path switching time tpc, the abnormality determination threshold value ΔT is set based on the elapsed time t (step S320). In the embodiment, the relationship between the elapsed time t and the threshold value ΔT is predetermined and stored in the ROM 40b as a threshold setting map, and the atmospheric pressure Patm and the pressure input in step S100 are used as the flow path switching time tpc. The one corresponding to Ptk is derived from the map. FIG. 6 shows an example of the threshold setting map. On the other hand, when the elapsed time t is equal to or longer than the flow path switching time tpc, the threshold value ΔT is set to a predetermined value T1 determined in advance through experiments and analysis (step S330). In the embodiment, the threshold setting map used in step S320 basically sets the threshold ΔT to a smaller value as the elapsed time t approaches the flow path switching time tpc, and the threshold setting map is used. The threshold value ΔT set in this manner is basically a value larger than the value T1 used in step S330.

ステップS320またはS330にて閾値ΔTを設定したならば、第2の排ガス流路の排ガス温度Teg2から第1の排ガス流路の排ガス温度Teg1を減じた値である流路間温度差が閾値ΔT未満であるか否かを判定し(ステップS340)、流路間温度差が閾値ΔT以上であれば、流路切換弁59やアクチュエータ60が正常であるものとみなして再度ステップS300以降の処理を実行する。一方、流路間温度差が閾値ΔT未満である場合には、図示しないカウンタをインクリメントした上で(ステップS350)、当該カウンタのカウント値nが所定値N(値2以上の正の値)以上であるか否かを判定し(ステップS360)、カウント値nが所定値N未満である場合には、再度ステップS300以降の処理を実行する。そして、カウンタのカウント値nが所定値N以上である場合には、流路切換弁59やアクチュエータ60に何らかの異常が発生しているものとみなして、図示しないインストルメントパネル上の所定の表示領域に流路切換弁59等に異常が発生している旨を示す警告表示を表示させ(ステップS370)、本ルーチンを終了させる。なお、ステップS370の処理の後に本ルーチンが終了された場合には、所定の異常発生時用の処理が別途実行される。   If the threshold value ΔT is set in step S320 or S330, the temperature difference between the channels, which is a value obtained by subtracting the exhaust gas temperature Teg1 of the first exhaust gas channel from the exhaust gas temperature Teg2 of the second exhaust gas channel, is less than the threshold ΔT. (Step S340), and if the temperature difference between the flow paths is equal to or greater than the threshold value ΔT, it is considered that the flow path switching valve 59 and the actuator 60 are normal, and the processes after Step S300 are executed again. To do. On the other hand, if the temperature difference between the channels is less than the threshold value ΔT, a counter (not shown) is incremented (step S350), and the count value n of the counter is equal to or greater than a predetermined value N (a positive value greater than or equal to value 2). Or not (step S360). If the count value n is less than the predetermined value N, the processing from step S300 is executed again. When the count value n of the counter is equal to or greater than the predetermined value N, it is considered that some abnormality has occurred in the flow path switching valve 59 and the actuator 60, and a predetermined display area on an instrument panel (not shown) A warning display indicating that an abnormality has occurred in the flow path switching valve 59 or the like is displayed (step S370), and this routine is terminated. When this routine is terminated after the process of step S370, a process for when a predetermined abnormality occurs is separately executed.

以上説明したように、実施例のハイブリッド自動車20では、エンジン22の回転により生成される負圧を負圧タンク67を介してアクチュエータ60の変圧室に導入することにより、エンジン22からの排ガスの主たる流路を仕切部材54により画成される第1の排ガス流路とHC吸着部材56を含む第2の排ガス流路との間で切り換えることができる。また、ハイブリッド自動車20では、エンジン22の回転により生成される負圧を吸気管125に接続された負圧タンク67に蓄えておき、負圧タンク67に蓄えられた負圧をアクチュエータ60の変圧室に導入して排ガスの主たる流路を切り換えることもできる。そして、ハイブリッド自動車20では、第1および第2温度センサ71,72により検出される第1および第2の排ガス流路の排ガス温度Teg1,Teg2に基づいて流路切換弁59やアクチュエータ60の異常の有無が判定されるが、この際、流路切換弁59によって流路が切り換えられている最中には、第1および第2の排ガス流路の双方を排ガスが流通することを踏まえて、負圧タンク67に蓄えられた圧力Ptkに基づいて流路切換弁59による流路の切換に要する時間である流路切換時間tpcが取得されると共に(図4のステップS130またはステップS200)、かかる流路切換時間tpcを考慮しながら排ガス温度Teg1,Teg2に基づいて流路切換弁59やアクチュエータ60の異常の有無が判定される(図5)。   As described above, in the hybrid vehicle 20 of the embodiment, the negative pressure generated by the rotation of the engine 22 is introduced into the variable pressure chamber of the actuator 60 via the negative pressure tank 67, so that the main exhaust gas from the engine 22 is introduced. The flow path can be switched between the first exhaust gas flow path defined by the partition member 54 and the second exhaust gas flow path including the HC adsorption member 56. Further, in the hybrid vehicle 20, the negative pressure generated by the rotation of the engine 22 is stored in the negative pressure tank 67 connected to the intake pipe 125, and the negative pressure stored in the negative pressure tank 67 is stored in the variable pressure chamber of the actuator 60. It is also possible to switch to the main flow path of exhaust gas. In the hybrid vehicle 20, the abnormality of the flow path switching valve 59 and the actuator 60 is detected based on the exhaust gas temperatures Teg1 and Teg2 of the first and second exhaust gas channels detected by the first and second temperature sensors 71 and 72. Whether or not the exhaust gas flows through both the first and second exhaust gas flow paths while the flow path is being switched by the flow path switching valve 59 is determined. Based on the pressure Ptk stored in the pressure tank 67, the flow path switching time tpc, which is the time required for the flow path switching by the flow path switching valve 59, is acquired (step S130 or step S200 in FIG. 4), and the flow The presence or absence of abnormality in the flow path switching valve 59 and the actuator 60 is determined based on the exhaust gas temperatures Teg1, Teg2 while considering the path switching time tpc (FIG. 5).

このように、負圧タンク67に蓄えられた圧力Ptkに基づく流路切換時間tpcを考慮することにより、流路切換弁59による流路の切換が開始されてから流路切換時間tpcが経過するまで(流路の切換が完了するまで)の間の異常判定をより適正に実行することができるので、流路切換弁59やアクチュエータ60の異常の有無をより精度よく判定することが可能となる。また、圧力Ptkに基づく流路切換時間tpcを考慮しながら、第1温度センサ71により検出される第1の排ガス流路の排ガス温度Teg1と第2温度センサ72により検出される第2の排ガス流路の排ガス温度Teg2とを比較すれば、流路切換弁59やアクチュエータ60の異常判定をより適正なものとすることが可能となる。更に、第1および第2の排ガス流路において検出する異常判定用の物理量を排ガス温度とすれば、異常判定に要するコストの低減化を図ることができる。   Thus, by considering the flow path switching time tpc based on the pressure Ptk stored in the negative pressure tank 67, the flow path switching time tpc elapses after the flow path switching valve 59 starts to switch the flow path. (Until the switching of the flow path is completed) can be more appropriately executed, so that it is possible to more accurately determine whether the flow path switching valve 59 and the actuator 60 are abnormal. . Further, the exhaust gas temperature Teg1 of the first exhaust gas channel detected by the first temperature sensor 71 and the second exhaust gas flow detected by the second temperature sensor 72 are taken into consideration while considering the channel switching time tpc based on the pressure Ptk. By comparing the exhaust gas temperature Teg2 of the road, it is possible to make the abnormality determination of the flow path switching valve 59 and the actuator 60 more appropriate. Furthermore, if the physical quantity for abnormality determination detected in the first and second exhaust gas flow paths is the exhaust gas temperature, the cost required for abnormality determination can be reduced.

また、上記実施例のように、流路切換弁59による流路の切換開始から流路切換時間tpcが経過するまでの間、閾値設定用マップを用いて異常判定用の閾値ΔTを流路切換時間tpcの経過後の値T1から変更することにより(図5のステップS320)、流路の切換開始から流路切換時間tpcが経過するまでの間も流路切換弁59やアクチュエータ60の異常の有無をより精度よく判定することが可能となるので、流路切換弁59やアクチュエータ60の異常の有無をより速やか判定することができる。ただし、このように流路の切換開始から流路切換時間tpcが経過するまでの間も異常判定を実行する代わりに、流路の切換開始から流路切換時間tpcが経過するまでの間、第1温度センサ71の検出値と第2温度センサの検出値とを無効として異常判定が実行されないようにしてもよい。これにより、流路切換弁59により流路が切り換えられている最中における誤判定をなくすことができるので、流路切換弁59やアクチュエータ60の異常判定精度を向上させることが可能となる。更に、上記実施例のように、負圧タンク67に蓄えられた圧力Ptkと大気圧Patmとに基づいて流路切換時間tpcを推定することにより(図4のステップS130,S200)、流路切換時間tpcをより精度よく推定することが可能となる。更に、図4のステップS130にて流路切換時間tpcを推定するに際しては、圧力Ptkと大気圧Patmとに加えて、例えば残容量SOC等のバッテリ36の状態をも考慮してもよい。すなわち、バッテリ36の蓄電状態次第では、本来要求される流路切換時間tpcよりも長めにモータリングを実行し、負圧タンク67の圧力をより低下させておく(負圧タンク67により多くの負圧を蓄えておく)ことが可能となる。このように、圧力Ptkと大気圧Patmとに加えて、例えば残容量SOCを考慮して流路切換時間tpcを設定する場合、駆動時間設定用マップは、大気圧Patm、圧力Ptkおよび残容量SOCと流路切換時間tpcとの関係を規定すると共に、基本的に、残容量SOCが多いほど流路切換時間tpcを長くするものとして作成されればよい。また、図4のステップS130およびステップS200にて推定される流路切換時間tpcは、流路切換弁59が開状態から閉状態へと移行するまでの時間に第1および第2排ガス流路における排ガス温度が安定するまでの多少のマージン分を加算したものとされてもよい。   Further, as in the above embodiment, the threshold value ΔT for abnormality determination is switched using the threshold setting map from the start of switching the flow path by the flow path switching valve 59 until the flow path switching time tpc elapses. By changing from the value T1 after the elapse of the time tpc (step S320 in FIG. 5), the abnormality of the flow path switching valve 59 and the actuator 60 is also observed from the start of the flow path switching until the flow path switching time tpc elapses. Since it is possible to determine the presence / absence more accurately, the presence / absence of abnormality of the flow path switching valve 59 and the actuator 60 can be determined more quickly. However, instead of executing the abnormality determination from the start of the channel switching until the passage of the channel switching time tpc, the first time from the start of the channel switching until the passage of the channel switching time tpc is reached. The detection value of the first temperature sensor 71 and the detection value of the second temperature sensor may be invalidated so that the abnormality determination is not executed. As a result, it is possible to eliminate erroneous determination while the flow path is being switched by the flow path switching valve 59, so that it is possible to improve abnormality determination accuracy of the flow path switching valve 59 and the actuator 60. Further, as in the above embodiment, the flow path switching time tpc is estimated based on the pressure Ptk and the atmospheric pressure Patm stored in the negative pressure tank 67 (steps S130 and S200 in FIG. 4), thereby switching the flow path. It becomes possible to estimate the time tpc with higher accuracy. Furthermore, when estimating the flow path switching time tpc in step S130 of FIG. 4, in addition to the pressure Ptk and the atmospheric pressure Patm, for example, the state of the battery 36 such as the remaining capacity SOC may be considered. That is, depending on the state of charge of the battery 36, motoring is executed longer than the originally required flow path switching time tpc, and the pressure of the negative pressure tank 67 is further reduced (more negative pressure is applied to the negative pressure tank 67). Pressure can be stored). In this way, in addition to the pressure Ptk and the atmospheric pressure Patm, for example, when the flow path switching time tpc is set in consideration of the remaining capacity SOC, the driving time setting map includes the atmospheric pressure Patm, the pressure Ptk, and the remaining capacity SOC. And the flow path switching time tpc are defined, and basically, the flow path switching time tpc may be made longer as the remaining capacity SOC increases. Further, the flow path switching time tpc estimated in step S130 and step S200 of FIG. 4 is the time in the first and second exhaust gas flow paths during the time until the flow path switching valve 59 shifts from the open state to the closed state. A slight margin until the exhaust gas temperature is stabilized may be added.

更に、実施例のハイブリッド自動車20では、エンジン22からの排ガスの流路を仕切部材54により画成される第1の排ガス流路とHC吸着部材56を含む第2の排ガス流路との間で切り換えるのに用いられる負圧として、モータMG2によるエンジン22のモータリングにより発生させた負圧と負圧タンク67に蓄えられた負圧とをバッテリ36の状態(残容量SOCや出力制限Wout)や負圧タンク67の蓄圧状態(圧力Ptkの値)に応じて使い分けることができる。これにより、負圧を良好に確保して、アクチュエータ60の変圧室に負圧を導入し得なくなってしまうのを抑制することができるので、排ガスの流路を仕切部材54により画成される第1の排ガス流路とHC吸着部材56を含む第2の排ガス流路との間でより適正に切り換えて、排ガス中のHCが外部へと排出されてしまうことをより確実に抑制することが可能となる。すなわち、実施例のエンジン始動前制御ルーチンを実行することにより、エンジン22の始動前にバッテリ36がモータMG2によるエンジン22のモータリングを可能とする状態にあれば、当該モータリングにより負圧を良好に生成して排ガスの流路を仕切部材54により画成される第1の排ガス流路からHC吸着部材56を含む第2の排ガス流路へと速やかに切り換えることが可能となる。また、バッテリ36がモータMG2によるエンジン22のモータリングを可能とする状態にはなくても、負圧タンク67の蓄圧状態が所定条件を満たしており充分な負圧が確保されていれば(図4のステップS190)、負圧タンク67に蓄えられた負圧を用いて排ガスの流路を仕切部材54により画成される第1の排ガス流路からHC吸着部材56を含む第2の排ガス流路へと切り換えることができる。従って、ハイブリッド自動車20では、エンジン22の始動時(特に冷間始動時)に生じがちな未燃焼成分としてのHCをより確実にHC吸着部材56にて吸着してHCが外部へと排出されてしまうことをより確実に抑制することが可能となる。   Further, in the hybrid vehicle 20 of the embodiment, the exhaust gas flow path from the engine 22 is between the first exhaust gas flow path defined by the partition member 54 and the second exhaust gas flow path including the HC adsorption member 56. As the negative pressure used for switching, the negative pressure generated by the motoring of the engine 22 by the motor MG2 and the negative pressure stored in the negative pressure tank 67 are the state of the battery 36 (remaining capacity SOC and output limit Wout), The negative pressure tank 67 can be selectively used according to the pressure accumulation state (value of the pressure Ptk). As a result, it is possible to secure a good negative pressure and to prevent the negative pressure from being introduced into the variable pressure chamber of the actuator 60, so that the exhaust gas flow path is defined by the partition member 54. By switching more appropriately between the first exhaust gas flow channel and the second exhaust gas flow channel including the HC adsorbing member 56, it is possible to more reliably suppress the exhaust of HC in the exhaust gas to the outside. It becomes. That is, if the battery 36 is in a state in which the motor 22 can be motored by the motor MG2 before the engine 22 is started by executing the control routine before starting the engine according to the embodiment, the negative pressure is improved by the motoring. Thus, the exhaust gas flow path can be quickly switched from the first exhaust gas flow path defined by the partition member 54 to the second exhaust gas flow path including the HC adsorption member 56. Further, even if the battery 36 is not in a state in which the motor 22 can be motored by the motor MG2, if the pressure accumulation state of the negative pressure tank 67 satisfies a predetermined condition and a sufficient negative pressure is secured (see FIG. 4, step S190), the second exhaust gas flow including the HC adsorbing member 56 from the first exhaust gas flow path defined by the partition member 54 using the negative pressure stored in the negative pressure tank 67. You can switch to the road. Therefore, in the hybrid vehicle 20, HC as an unburned component that tends to occur when the engine 22 is started (particularly during cold start) is more reliably adsorbed by the HC adsorbing member 56 and discharged to the outside. It becomes possible to suppress that more reliably.

なお、上記実施例のハイブリッド自動車20は、モータMG2の動力をリングギヤ軸27に接続された車軸に出力するものであるが、本発明の適用対象は、これに限られるものでもない。すなわち、本発明は、図7に示す変形例としてのハイブリッド自動車120のように、モータMG2の動力をリングギヤ軸27に接続された車軸(車輪29a,29bが接続された車軸)とは異なる車軸(図7における車輪29c,29dに接続された車軸)に出力するものに適用されてもよい。また、上記実施例のハイブリッド自動車20は、エンジン22の動力を動力分配統合機構30を介して車輪29a,29bに接続される車軸としてのリングギヤ軸27に出力するものであるが、本発明の適用対象は、これに限られるものでもない。すなわち、本発明は、図8に示す変形例としてのハイブリッド自動車220のように、エンジン22のクランクシャフトに接続されたインナーロータ232と車輪29a,29bに動力を出力する車軸に接続されたアウターロータ234とを有し、エンジン22の動力の一部を車軸に伝達すると共に残余の動力を電力に変換する対ロータ電動機230を備えたものに適用されてもよい。このように、「電力動力入出力手段」は、モータMG1と動力分配統合機構30との組み合わせに限られず、内燃機関の機関軸と車軸とに接続されて電力と動力との入出力を伴って機関軸と車軸とに動力を入出力する対ロータ電動機230のような他の如何なる形式のものであっても構わない。   In addition, although the hybrid vehicle 20 of the said Example outputs the motive power of motor MG2 to the axle connected to the ring gear shaft 27, the application object of this invention is not restricted to this. That is, the present invention is different from the axle (the axle to which the wheels 29a and 29b are connected) that is connected to the ring gear shaft 27 by the power of the motor MG2 as in the hybrid vehicle 120 as a modified example shown in FIG. The present invention may be applied to the one that outputs to the wheels 29c and 29d in FIG. Further, the hybrid vehicle 20 of the above embodiment outputs the power of the engine 22 to the ring gear shaft 27 as an axle connected to the wheels 29a and 29b via the power distribution and integration mechanism 30. The subject is not limited to this. That is, the present invention provides an inner rotor 232 connected to the crankshaft of the engine 22 and an outer rotor connected to an axle that outputs power to the wheels 29a and 29b, like a hybrid vehicle 220 as a modified example shown in FIG. 234, and may be applied to a motor including a counter-rotor motor 230 that transmits a part of the power of the engine 22 to the axle and converts the remaining power into electric power. As described above, the “power power input / output means” is not limited to the combination of the motor MG1 and the power distribution and integration mechanism 30, and is connected to the engine shaft and the axle of the internal combustion engine with input and output of power and power. It may be of any other type such as a counter-rotor motor 230 that inputs and outputs power to the engine shaft and the axle.

ここで、上記実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係について説明しておく。すなわち、上記実施例では、内燃機関装置21が「内燃機関装置」に相当し、エンジン22が「内燃機関」に相当し、エンジン22からの排ガスを三元触媒58に直接導くように仕切部材54により画成される流路が「第1の排ガス流路」に相当し、ケース52と仕切部材54とにより画成されると共にHC吸着部材56が配置される空間が「第2の排ガス流路」に相当し、負圧を用いてエンジン22の排ガスの流路を第1の排ガス流路と第2の排ガス流路との間で切り換え可能な流路切換弁59およびアクチュエータ60が「流路切換手段」に相当し、エンジン22の吸気管125に接続され、エンジン22の回転により生成される負圧を蓄えることができる負圧タンク67が「蓄圧手段」に相当し、負圧タンク67からアクチュエータ60への負圧の導入を許容・解除するVSV66が「負圧導入解除手段」に相当し、第1および第2温度センサ71,72が「異常判定用センサ」に相当し、負圧センサ69が「圧力検出手段」に相当し、図5の異常判定ルーチンを実行するハイブリッドECU40が「流路切換時間取得手段」および「異常判定手段」に相当する。また、エンジン22を強制的に回転させるモータリングを実行可能なモータMG2が「電動モータリング手段」に相当し、モータMG2に電力を供給可能なバッテリ36が「蓄電手段」に相当する。   Here, the correspondence between the main elements of the above embodiment and the main elements of the invention described in the column of means for solving the problems will be described. In other words, in the above embodiment, the internal combustion engine device 21 corresponds to the “internal combustion engine device”, the engine 22 corresponds to the “internal combustion engine”, and the partition member 54 directs the exhaust gas from the engine 22 to the three-way catalyst 58. The flow path defined by is equivalent to the “first exhaust gas flow path”, and the space defined by the case 52 and the partition member 54 and in which the HC adsorbing member 56 is disposed is the “second exhaust gas flow path”. The flow path switching valve 59 and the actuator 60 that can switch the exhaust gas flow path of the engine 22 between the first exhaust gas flow path and the second exhaust gas flow path using negative pressure The negative pressure tank 67 corresponding to the “switching means” and connected to the intake pipe 125 of the engine 22 and capable of storing the negative pressure generated by the rotation of the engine 22 corresponds to the “pressure storage means”. Actuator 6 The VSV 66 that allows / cancels the introduction of negative pressure into the vacuum corresponds to “negative pressure introduction release means”, the first and second temperature sensors 71 and 72 correspond to “abnormality determination sensors”, and the negative pressure sensor 69 The hybrid ECU 40 that corresponds to “pressure detection means” and executes the abnormality determination routine of FIG. 5 corresponds to “flow path switching time acquisition means” and “abnormality determination means”. Further, the motor MG2 capable of performing motoring for forcibly rotating the engine 22 corresponds to “electric motoring means”, and the battery 36 capable of supplying electric power to the motor MG2 corresponds to “power storage means”.

なお、「内燃機関」は、ガソリンや軽油といった炭化水素系の燃料の供給を受けて動力を出力するエンジン22に限られず、水素エンジンといったような他の如何なる形式のものであっても構わない。「第1の排ガス流路」は、内燃機関からの排ガスの大半を排ガス浄化触媒に直接導くものであればよく、仕切部材54を用いた構成以外の他の如何なる形式のものであっても構わない。「第2の排ガス流路」は、HC吸着部材56のような未燃焼成分吸着手段を有し、当該未燃焼成分吸着手段を通過した排ガスを排ガス浄化触媒へと導くものであれば、ケース52と仕切部材54とを用いた構成以外の他の如何なる形式のものであっても構わない。「流路切換手段」は、負圧を用いて内燃機関からの排ガスの流路を第1の排ガス流路と第2の排ガス流路との間で切り換え可能なものであれば、流路切換弁59およびアクチュエータ60以外の他の如何なる形式のものであっても構わない。「蓄圧手段」は、内燃機関の回転により生成される負圧を蓄えることができるものであれば、負圧タンク67以外の他の如何なる形式のものであっても構わない。「負圧導入解除手段」は、蓄圧手段から流路切換手段への負圧の導入を許容・解除するものであれば、VSV66以外の他の如何なる形式のものであっても構わない。「異常判定用センサ」は、第1および第2の排ガス流路の少なくとも何れか一方で所定の物理量を検出するものであれば、排ガス温度以外の他の物理量を検出するものであってもよい。「圧力検出手段」は蓄圧手段に蓄えられた圧力を検出するものであれば、負圧センサ69以外の他の如何なる形式のものであっても構わない。「流路切換時間取得手段」は、蓄圧手段に蓄えられた圧力に基づいて流路切換時間を取得するものであれば、如何なる形式のものであっても構わない。「異常判定手段」は、流路切換時間を考慮しながら、異常判定用センサの検出値に基づいて流路切換手段の異常の有無を判定するものであれば、如何なる形式のものであっても構わない。「電動モータリング手段」や「電動機」、「発電用電動機」は、モータMG1,MG2のような同期発電電動機に限られず、誘導電動機といったような他の如何なる形式のものであっても構わない。「蓄電手段」は、バッテリ36のような二次電池に限られず、電動機と電力をやり取り可能なものであればキャパシタといったような他の如何なる形式のものであっても構わない。   The “internal combustion engine” is not limited to the engine 22 that outputs power by receiving a hydrocarbon-based fuel such as gasoline or light oil, and may be of any other type such as a hydrogen engine. The “first exhaust gas passage” may be of any type other than the configuration using the partition member 54 as long as it directly leads most of the exhaust gas from the internal combustion engine to the exhaust gas purification catalyst. Absent. If the “second exhaust gas passage” has unburned component adsorbing means such as the HC adsorbing member 56 and leads the exhaust gas that has passed through the unburned component adsorbing means to the exhaust gas purification catalyst, the case 52 Any type other than the configuration using the partition member 54 and the partition member 54 may be used. The “channel switching means” is a channel switching unit as long as the exhaust gas channel from the internal combustion engine can be switched between the first exhaust gas channel and the second exhaust gas channel using negative pressure. Any type other than the valve 59 and the actuator 60 may be used. The “pressure accumulating means” may be of any type other than the negative pressure tank 67 as long as it can accumulate the negative pressure generated by the rotation of the internal combustion engine. The “negative pressure introduction releasing means” may be of any type other than the VSV 66 as long as it allows / releases the introduction of the negative pressure from the pressure accumulating means to the flow path switching means. The “abnormality determination sensor” may detect a physical quantity other than the exhaust gas temperature as long as it detects a predetermined physical quantity in at least one of the first and second exhaust gas flow paths. . The “pressure detecting means” may be of any type other than the negative pressure sensor 69 as long as it detects the pressure stored in the pressure accumulating means. The “channel switching time acquisition unit” may be of any type as long as it acquires the channel switching time based on the pressure stored in the pressure accumulating unit. The “abnormality determination means” may be of any type as long as it determines the presence or absence of an abnormality in the flow path switching means based on the detection value of the abnormality determination sensor while considering the flow path switching time. I do not care. The “electric motoring means”, “motor”, and “generator motor” are not limited to synchronous generator motors such as motors MG1 and MG2, and may be of any other type such as an induction motor. The “storage means” is not limited to the secondary battery such as the battery 36, but may be any other type such as a capacitor as long as it can exchange electric power with the motor.

何れにしても、これら実施例の主要な要素と課題を解決するための手段の欄に記載した発明の主要な要素との対応関係は、実施例が課題を解決するための手段の欄に記載した発明を実施するための最良の形態を具体的に説明するための一例であることから、課題を解決するための手段の欄に記載した発明の要素を限定するものではない。すなわち、実施例はあくまで課題を解決するための手段の欄に記載した発明の具体的な一例に過ぎず、課題を解決するための手段の欄に記載した発明の解釈は、その欄の記載に基づいて行なわれるべきものである。   In any case, the correspondence between the main elements of the embodiments and the main elements of the invention described in the column of means for solving the problem is described in the column of means for the embodiment to solve the problem. This is an example for specifically describing the best mode for carrying out the invention, and does not limit the elements of the invention described in the column of means for solving the problem. In other words, the examples are merely specific examples of the invention described in the column of means for solving the problem, and the interpretation of the invention described in the column of means for solving the problem is described in the description of that column. Should be done on the basis.

以上、実施例を用いて本発明の実施の形態について説明したが、本発明は上記実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、様々な変更をなし得ることはいうまでもない。   The embodiments of the present invention have been described above using the embodiments. However, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention. Needless to say.

本発明は、内燃機関装置や車両の製造産業等において利用可能である。   The present invention can be used in the manufacturing industry of internal combustion engine devices and vehicles.

本発明の一実施例に係る内燃機関装置を備えたハイブリッド自動車20の概略構成図である。1 is a schematic configuration diagram of a hybrid vehicle 20 including an internal combustion engine device according to an embodiment of the present invention. ハイブリッド自動車20に搭載された内燃機関装置21の概略構成図である。1 is a schematic configuration diagram of an internal combustion engine device 21 mounted on a hybrid vehicle 20. FIG. エンジン22の排ガスを浄化する排ガス浄化装置50の概略構成図である。1 is a schematic configuration diagram of an exhaust gas purification device 50 that purifies exhaust gas of an engine 22. FIG. 実施例のハイブリッドECU40により実行されるエンジン始動前制御ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the control routine before engine starting performed by hybrid ECU40 of an Example. 実施例のハイブリッドECU40により実行される異常判定ルーチンの一例を示すフローチャートである。It is a flowchart which shows an example of the abnormality determination routine performed by hybrid ECU40 of an Example. 閾値設定用マップの一例を示す説明図である。It is explanatory drawing which shows an example of the map for threshold value setting. 変形例に係るハイブリッド自動車120の概略構成図である。It is a schematic block diagram of the hybrid vehicle 120 which concerns on a modification. 変形例に係るハイブリッド自動車220の概略構成図である。It is a schematic block diagram of the hybrid vehicle 220 which concerns on a modification.

符号の説明Explanation of symbols

20,120,220 ハイブリッド自動車、21 内燃機関装置、22 エンジン、24 エンジンECU、24a,40a CPU、24b,40b ROM、24c,40c RAM、26 クランクシャフト、27 リングギヤ軸、28 デファレンシャルギヤ、29a,29b,29c,29d 車輪、30 動力分配統合機構、30a サンギヤ、30b リングギヤ、30c ピニオンギヤ、30d キャリア、32,34 インバータ、35 モータECU、36 バッテリ、37 バッテリECU、40 ハイブリッドECU、40d タイマ、41 シフトレバー、42 シフトポジションセンサ、43 アクセルペダル、44 アクセルペダルポジションセンサ、45 ブレーキペダル、46 ブレーキペダルポジションセンサ、47 車速センサ、48 大気圧センサ、50 排ガス浄化装置、52 ケース、54 仕切部材、54a 開口部、56 HC吸着部材、58 三元触媒、59 流路切換弁、60 アクチュエータ、61 アクチュエータケース、62 ダイヤフラム、63 作動ロッド、64 スプリング、65 リンク機構、65a リンク、65b ストッパ、66 バキュームスイッチングバルブ(VSV)、67 負圧タンク、68 逆止弁、69 負圧センサ、71 第1温度センサ、72 第2温度センサ、122 エアクリーナ、124 スロットルバルブ、125 吸気管、125a 負圧導入管、126 燃料噴射弁、128 吸気バルブ、130 点火プラグ、132 ピストン、135a 空燃比センサ、135b 酸素センサ、136 スロットルモータ、138 イグニッションコイル、140 クランクポジションセンサ、142 水温センサ、144 カムポジションセンサ、146 スロットルバルブポジションセンサ、148 エアフローメータ、149 温度センサ、150 可変バルブタイミング機構、230 対ロータ電動機、232 インナーロータ、234 アウターロータ、MG1,MG2 モータ。   20, 120, 220 Hybrid vehicle, 21 Internal combustion engine device, 22 Engine, 24 Engine ECU, 24a, 40a CPU, 24b, 40b ROM, 24c, 40c RAM, 26 Crankshaft, 27 Ring gear shaft, 28 Differential gear, 29a, 29b 29c, 29d Wheel, 30 Power distribution and integration mechanism, 30a Sun gear, 30b Ring gear, 30c Pinion gear, 30d Carrier, 32, 34 Inverter, 35 Motor ECU, 36 Battery, 37 Battery ECU, 40 Hybrid ECU, 40d Timer, 41 Shift lever , 42 Shift position sensor, 43 Accelerator pedal, 44 Accelerator pedal position sensor, 45 Brake pedal, 46 Brake pedal position sensor, 47 cars Speed sensor, 48 Atmospheric pressure sensor, 50 Exhaust gas purification device, 52 Case, 54 Partition member, 54a Opening, 56 HC adsorption member, 58 Three-way catalyst, 59 Channel switching valve, 60 Actuator, 61 Actuator case, 62 Diaphragm, 63 Actuating rod, 64 Spring, 65 Link mechanism, 65a Link, 65b Stopper, 66 Vacuum switching valve (VSV), 67 Negative pressure tank, 68 Check valve, 69 Negative pressure sensor, 71 First temperature sensor, 72 Second temperature Sensor, 122 Air cleaner, 124 Throttle valve, 125 Intake pipe, 125a Negative pressure introduction pipe, 126 Fuel injection valve, 128 Intake valve, 130 Spark plug, 132 Piston, 135a Air-fuel ratio sensor, 135b Oxygen sensor, 136 Throttle motor, 1 8 Ignition coil, 140 Crank position sensor, 142 Water temperature sensor, 144 Cam position sensor, 146 Throttle valve position sensor, 148 Air flow meter, 149 Temperature sensor, 150 Variable valve timing mechanism, 230 Counter rotor motor, 232 Inner rotor, 234 Outer rotor , MG1, MG2 motors.

Claims (11)

内燃機関を含む内燃機関装置であって、
前記内燃機関からの排ガスを排ガス浄化触媒に直接導く第1の排ガス流路と、
前記排ガス中の未燃焼成分を吸着可能な未燃焼成分吸着手段を有し、該未燃焼成分吸着手段を通過した排ガスを前記排ガス浄化触媒へと導く第2の排ガス流路と、
負圧を用いて前記内燃機関からの排ガスの流路を前記第1の排ガス流路と前記第2の排ガス流路との間で切り換え可能な流路切換手段と、
前記内燃機関の吸気系に接続され、該内燃機関の回転により生成される負圧を蓄えることができる蓄圧手段と、
前記蓄圧手段から前記流路切換手段への負圧の導入を許容・解除する負圧導入解除手段と、
前記第1および第2の排ガス流路の少なくとも何れか一方で所定の物理量を検出する異常判定用センサと、
前記蓄圧手段に蓄えられた圧力を検出する圧力検出手段と、
前記圧力検出手段により検出された圧力に基づいて前記流路切換手段による流路の切換に要する時間である流路切換時間を取得する流路切換時間取得手段と、
前記取得された流路切換時間を考慮しながら、前記異常判定用センサの検出値に基づいて前記流路切換手段の異常の有無を判定する異常判定手段と、
を備える内燃機関装置。
An internal combustion engine device including an internal combustion engine,
A first exhaust gas flow path for directing exhaust gas from the internal combustion engine directly to an exhaust gas purification catalyst;
A second exhaust gas flow path having unburned component adsorbing means capable of adsorbing unburned components in the exhaust gas, and leading the exhaust gas that has passed through the unburned component adsorbing means to the exhaust gas purification catalyst;
A flow path switching means capable of switching the flow path of the exhaust gas from the internal combustion engine between the first exhaust gas flow path and the second exhaust gas flow path using negative pressure;
Pressure accumulating means connected to the intake system of the internal combustion engine and capable of accumulating negative pressure generated by rotation of the internal combustion engine;
Negative pressure introduction releasing means for allowing and releasing negative pressure from the pressure accumulating means to the flow path switching means;
An abnormality determination sensor for detecting a predetermined physical quantity in at least one of the first and second exhaust gas flow paths;
Pressure detecting means for detecting the pressure stored in the pressure accumulating means;
A flow path switching time acquisition means for acquiring a flow path switching time which is a time required for the flow path switching by the flow path switching means based on the pressure detected by the pressure detection means;
An abnormality determination unit that determines presence / absence of an abnormality of the flow path switching unit based on a detection value of the abnormality determination sensor while considering the acquired flow path switching time;
An internal combustion engine device comprising:
請求項1に記載の内燃機関装置において、
前記異常判定用センサは、前記第1の排ガス流路で所定の物理量を検出する第1の異常判定用センサと、前記第2の排ガス流路で所定の物理量を検出する第2の異常判定用センサとを含み、
前記異常判定手段は、前記取得された流路切換時間を考慮しながら、前記第1および第2の異常判定用センサの検出値に基づいて前記流路切換手段の異常の有無を判定する内燃機関装置。
The internal combustion engine device according to claim 1,
The abnormality determination sensor includes a first abnormality determination sensor that detects a predetermined physical quantity in the first exhaust gas flow path, and a second abnormality determination sensor that detects a predetermined physical quantity in the second exhaust gas flow path. Including a sensor,
The abnormality determination means determines whether or not the flow path switching means is abnormal based on detection values of the first and second abnormality determination sensors while taking into account the acquired flow path switching time. apparatus.
請求項2に記載の内燃機関装置において、
前記異常判定手段は、前記第1の異常判定用センサの検出値と前記第2の異常判定用センサの検出値との偏差と所定の閾値とを比較することにより前記流路切換手段の異常の有無を判定し、
前記流路切換手段による流路の切換が開始されてから前記流路切換時間が経過するまでの間と該流路切換時間が経過した後とで前記閾値が変更される内燃機関装置。
The internal combustion engine device according to claim 2,
The abnormality determination means compares the deviation between the detection value of the first abnormality determination sensor and the detection value of the second abnormality determination sensor with a predetermined threshold value, thereby determining the abnormality of the flow path switching means. Determine the presence or absence,
An internal combustion engine device in which the threshold value is changed between when the flow path switching unit starts and when the flow path switching time elapses and after the flow path switching time elapses.
請求項2に記載の内燃機関装置において、
前記異常判定手段は、前記第1の異常判定用センサの検出値と前記第2の異常判定用センサの検出値との偏差と所定の閾値とを比較することにより前記流路切換手段の異常の有無を判定し、
前記流路切換手段による流路の切換が開始されてから前記流路切換時間が経過するまでの間、前記第1の異常判定用センサの検出値と前記第2の異常判定用センサの検出値とが無効とされる内燃機関装置。
The internal combustion engine device according to claim 2,
The abnormality determination means compares the deviation between the detection value of the first abnormality determination sensor and the detection value of the second abnormality determination sensor with a predetermined threshold value, thereby determining the abnormality of the flow path switching means. Determine the presence or absence,
The detection value of the first abnormality determination sensor and the detection value of the second abnormality determination sensor from the start of the flow path switching by the flow path switching means to the passage of the flow path switching time. An internal combustion engine device that is invalidated.
前記流路切換時間取得手段は、前記圧力検出手段により検出された圧力と大気圧とに基づいて前記流路切換時間を取得する請求項1から4の何れか一項に記載の内燃機関装置。   5. The internal combustion engine device according to claim 1, wherein the flow path switching time acquisition unit acquires the flow path switching time based on a pressure and an atmospheric pressure detected by the pressure detection unit. 前記第1および第2の異常判定用センサは、それぞれ対応した前記第1または第2の排ガス流路の排ガス温度を検出する請求項1から5の何れか一項に記載の内燃機関装置。   The internal combustion engine device according to any one of claims 1 to 5, wherein the first and second abnormality determination sensors detect exhaust gas temperatures of the corresponding first or second exhaust gas passages. 請求項1から6の何れか一項に記載の内燃機関装置において、
前記内燃機関を強制的に回転させるモータリングを実行可能な電動モータリング手段と、
前記電動モータリング手段に電力を供給可能な蓄電手段と、
前記蓄電手段の状態と前記蓄圧手段の蓄圧状態とに基づいて前記電動モータリング手段と前記負圧導入解除手段とを制御する制御手段と、
を更に備える内燃機関装置。
The internal combustion engine device according to any one of claims 1 to 6,
Electric motoring means capable of executing motoring for forcibly rotating the internal combustion engine;
Power storage means capable of supplying electric power to the electric motoring means;
Control means for controlling the electric motoring means and the negative pressure introduction release means based on the state of the power storage means and the pressure accumulation state of the pressure accumulation means;
An internal combustion engine device further comprising:
請求項7に記載の内燃機関装置において、
前記制御手段は、前記内燃機関の始動前に前記蓄電手段が前記電動モータリング手段による前記モータリングを可能とする状態にあるときには、前記電動モータリング手段によるモータリングを伴って前記排ガスの流路が前記第1の排ガス流路から前記第2の排ガス流路へと切り換えられるように前記電動モータリング手段と前記負圧導入解除手段とを制御し、前記内燃機関の始動前に前記蓄電手段が前記電動モータリング手段による前記モータリングを可能とする状態にはなく、かつ前記蓄圧手段の蓄圧状態が所定条件を満たしているときには、前記電動モータリング手段によるモータリングを伴うことなく前記蓄圧手段に蓄えられた負圧のみを用いて前記排ガスの流路が前記第1の排ガス流路から前記第2の排ガス流路へと切り換えられるように前記モータリング手段と前記負圧導入解除手段とを制御する内燃機関装置。
The internal combustion engine device according to claim 7,
When the power storage means is in a state enabling the motoring by the electric motoring means before the internal combustion engine is started, the control means is configured to flow the exhaust gas with motoring by the electric motoring means. Controls the electric motoring means and the negative pressure introduction release means so that the first exhaust gas flow path is switched to the second exhaust gas flow path, and before the internal combustion engine is started, the power storage means When the electric motoring means is not in a state enabling the motoring and the pressure accumulation state of the pressure accumulating means satisfies a predetermined condition, the pressure accumulating means is not accompanied by motoring by the electric motoring means. The exhaust gas flow path is switched from the first exhaust gas flow path to the second exhaust gas flow path using only the stored negative pressure. Internal combustion engine system for controlling said motor ring means and said negative pressure introducing releasing means so.
請求項7または8に記載の内燃機関装置において、
前記制御手段は、前記内燃機関の始動前に前記蓄電手段が前記電動モータリング手段による前記モータリングを可能とする状態にあるときには、前記取得された流路切換時間だけ前記モータリングが実行されるように前記電動モータリング手段を制御する内燃機関装置。
The internal combustion engine device according to claim 7 or 8,
The control means executes the motoring for the acquired flow path switching time when the power storage means is in a state enabling the motoring by the electric motoring means before the internal combustion engine is started. An internal combustion engine device for controlling the electric motoring means.
請求項1から9の何れか一項に記載の内燃機関装置と、該内燃機関装置により駆動される駆動輪とを備える車両。   A vehicle comprising the internal combustion engine device according to any one of claims 1 to 9 and drive wheels driven by the internal combustion engine device. 内燃機関と、該内燃機関からの排ガスを排ガス浄化触媒に直接導く第1の排ガス流路と、前記排ガス中の未燃焼成分を吸着可能な未燃焼成分吸着手段を有し、該未燃焼成分吸着手段を通過した排ガスを前記排ガス浄化触媒へと導く第2の排ガス流路と、負圧を用いて前記内燃機関からの排ガスの流路を前記第1の排ガス流路と前記第2の排ガス流路との間で切り換え可能な流路切換手段と、前記内燃機関の吸気系に接続され、該内燃機関の回転により生成される負圧を蓄えることができる蓄圧手段と、前記蓄圧手段から前記流路切換手段への負圧の導入を許容・解除する負圧導入解除手段とを備えた内燃機関装置の異常判定方法であって、
(a)前記蓄圧手段に蓄えられた圧力に基づいて前記流路切換手段による流路の切換に要する時間である流路切換時間を取得するステップと、
(b)ステップ(a)にて取得された流路切換時間を考慮しながら、前記第1および第2の排ガス流路の少なくとも何れか一方で検出された所定の物理量に基づいて前記流路切換手段の異常の有無を判定するステップと、
を含む内燃機関装置の異常判定方法。
An internal combustion engine, a first exhaust gas flow path for directly guiding exhaust gas from the internal combustion engine to an exhaust gas purification catalyst, and an unburned component adsorption means capable of adsorbing unburned components in the exhaust gas, A second exhaust gas flow path for guiding the exhaust gas that has passed through the means to the exhaust gas purification catalyst, and a flow path for the exhaust gas from the internal combustion engine using negative pressure, the first exhaust gas flow path and the second exhaust gas flow A flow path switching means capable of switching between a passage, a pressure accumulating means connected to an intake system of the internal combustion engine and capable of storing a negative pressure generated by rotation of the internal combustion engine, and a flow from the pressure accumulation means. An internal combustion engine apparatus abnormality determination method comprising negative pressure introduction / release means for permitting / releasing introduction of negative pressure to a path switching means,
(A) obtaining a flow path switching time which is a time required for switching the flow path by the flow path switching means based on the pressure stored in the pressure accumulation means;
(B) The flow path switching is performed based on a predetermined physical quantity detected in at least one of the first and second exhaust gas flow paths in consideration of the flow path switching time acquired in step (a). Determining whether there is an abnormality in the means;
An abnormality determination method for an internal combustion engine device including:
JP2007266833A 2007-10-12 2007-10-12 INTERNAL COMBUSTION ENGINE DEVICE, VEHICLE EQUIPPED WITH THE SAME AND INTERNAL COMBUSTION ENGINE DEVICE ABNORMALITY DETERMINATION Expired - Fee Related JP4915327B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007266833A JP4915327B2 (en) 2007-10-12 2007-10-12 INTERNAL COMBUSTION ENGINE DEVICE, VEHICLE EQUIPPED WITH THE SAME AND INTERNAL COMBUSTION ENGINE DEVICE ABNORMALITY DETERMINATION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007266833A JP4915327B2 (en) 2007-10-12 2007-10-12 INTERNAL COMBUSTION ENGINE DEVICE, VEHICLE EQUIPPED WITH THE SAME AND INTERNAL COMBUSTION ENGINE DEVICE ABNORMALITY DETERMINATION

Publications (2)

Publication Number Publication Date
JP2009097343A JP2009097343A (en) 2009-05-07
JP4915327B2 true JP4915327B2 (en) 2012-04-11

Family

ID=40700597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007266833A Expired - Fee Related JP4915327B2 (en) 2007-10-12 2007-10-12 INTERNAL COMBUSTION ENGINE DEVICE, VEHICLE EQUIPPED WITH THE SAME AND INTERNAL COMBUSTION ENGINE DEVICE ABNORMALITY DETERMINATION

Country Status (1)

Country Link
JP (1) JP4915327B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5091973B2 (en) * 2010-03-31 2012-12-05 本田技研工業株式会社 Ground fault detection device and notification device
JP6413505B2 (en) * 2014-09-01 2018-10-31 三菱自動車工業株式会社 Hybrid car
JP6582409B2 (en) 2014-12-26 2019-10-02 いすゞ自動車株式会社 Exhaust purification system
JP7196715B2 (en) * 2019-03-25 2022-12-27 トヨタ自動車株式会社 Hybrid vehicle and hybrid vehicle control method
CN115463530B (en) * 2022-07-29 2023-10-13 北京京仪自动化装备技术股份有限公司 Negative pressure control method, semiconductor exhaust gas treatment apparatus, and storage medium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3739876B2 (en) * 1996-11-26 2006-01-25 株式会社デンソー Exhaust purification device
JP2000230416A (en) * 1999-02-08 2000-08-22 Honda Motor Co Ltd Failure detecting device for exhaust changeover valve in internal combustion engine
JP2005248736A (en) * 2004-03-01 2005-09-15 Fuji Heavy Ind Ltd Diagnostic system for exhaust bypass system
JP4591238B2 (en) * 2005-06-30 2010-12-01 トヨタ自動車株式会社 Exhaust gas purification system failure diagnosis device and exhaust gas purification system with failure diagnosis function
JP2007205326A (en) * 2006-02-06 2007-08-16 Toyota Motor Corp Exhaust bypass device of internal combustion engine

Also Published As

Publication number Publication date
JP2009097343A (en) 2009-05-07

Similar Documents

Publication Publication Date Title
JP4396756B2 (en) POWER OUTPUT DEVICE, VEHICLE EQUIPPED WITH THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
US10480381B2 (en) Vehicle and control method for vehicle
JP4321520B2 (en) POWER OUTPUT DEVICE, VEHICLE MOUNTING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
JP4197039B2 (en) POWER OUTPUT DEVICE, VEHICLE MOUNTING THE SAME, AND METHOD FOR CONTROLLING POWER OUTPUT DEVICE
JP4238910B2 (en) INTERNAL COMBUSTION ENGINE DEVICE, ITS CONTROL METHOD, AND VEHICLE
KR20070118638A (en) Drive system and control method of the same
JP2008238965A (en) Hybrid automobile and control method therefor
EP2799677B1 (en) Exhaust control apparatus for internal combustion engine
JP4915327B2 (en) INTERNAL COMBUSTION ENGINE DEVICE, VEHICLE EQUIPPED WITH THE SAME AND INTERNAL COMBUSTION ENGINE DEVICE ABNORMALITY DETERMINATION
JP2005273530A (en) Control device for internal combustion engine and automobile equipped therewith
JP2009274671A (en) Hybrid vehicle and its control method
JP2000008837A (en) Exhaust emission control device for internal combustion engine
WO2008072395A1 (en) Controller for hybrid vehicle
JP2008240636A (en) Vehicle and its control method
JP4321615B2 (en) INTERNAL COMBUSTION ENGINE DEVICE, ITS CONTROL METHOD, AND VEHICLE MOUNTED WITH INTERNAL COMBUSTION ENGINE DEVICE
JP5018435B2 (en) Vehicle and internal combustion engine control method
JP2009046076A (en) Automobile and control method therefor
JP2012106660A (en) Hybrid vehicle
JP4306685B2 (en) INTERNAL COMBUSTION ENGINE DEVICE, POWER OUTPUT DEVICE, INTERNAL COMBUSTION ENGINE STOP METHOD, AND INTERNAL COMBUSTION ENGINE DEVICE CONTROL METHOD
JP2020169604A (en) Control device of internal combustion engine
JP2011111951A (en) Vehicle, and method of controlling exhaust air recirculation
JP4835495B2 (en) Lighting control method for automobiles and maintenance warning lights
JP2009174501A (en) Internal combustion engine device, its controlling method, and power output device
JP2005113709A (en) Control device for hybrid vehicle
JP2008255939A (en) Internal combustion engine, abnormality judging method, and vehicle equipped with internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111227

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees