JP2000008837A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JP2000008837A
JP2000008837A JP10183009A JP18300998A JP2000008837A JP 2000008837 A JP2000008837 A JP 2000008837A JP 10183009 A JP10183009 A JP 10183009A JP 18300998 A JP18300998 A JP 18300998A JP 2000008837 A JP2000008837 A JP 2000008837A
Authority
JP
Japan
Prior art keywords
internal combustion
temperature
combustion engine
amount
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10183009A
Other languages
Japanese (ja)
Inventor
Akihide Takami
明秀 高見
Hideji Iwakuni
秀治 岩国
Makoto Kyogoku
誠 京極
Keiji Yamada
啓司 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP10183009A priority Critical patent/JP2000008837A/en
Publication of JP2000008837A publication Critical patent/JP2000008837A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure the adsorption quantity of hydrocarbon by an adsorbing material even when an engine is on and off with high frequency by detecting the adsorption amount of hydrocarbon by an adsorbing material when an internal combustion engine is stopped, and heating the adsorbing material to a hydrocarbon releasing temperature when it is judged that the adsorbing amount is above a specific amount. SOLUTION: An HC adsorbing material 13 having an adsorption temperature zone for adsorbing HC (hydrocarbon) as one of the harmful component in an exhaust gas and a releasing temperature zone for releasing the same, and a three-way catalytic converter 14 are mounted in an exhaust gas path 12 in an engine 1 of a hybrid car. On this occasion, the adsorption amount of HC is estimated on the basis of the engine water temperature, the catalyst temperature, the engine stop period, the total intake air amount and the elapsed time after the start of engine by a general control (ECU) 100. When it is judged that the adsorption amount is above a predetermined amount as the result of the estimation, the adsorbed HC is released, and the operation of the engine 1 is extended until the three-way catalytic converter 14 reaches an active temperature.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、内燃機関の排気ガ
ス浄化装置に関する。
The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine.

【0002】[0002]

【従来の技術】自動車用の内燃機関では、排気ガス浄化
装置として三元触媒が用いられている。この三元触媒
は、排気ガス中のHC、COを酸化すると共に、NOx
を還元して排気ガスを浄化する。ところが、三元触媒に
よりHCを浄化するには、約150°C以上の活性化温
度に達していることが必要であり、特に冷間始動後のH
Cは浄化されずに排気されてしまう。
2. Description of the Related Art In an internal combustion engine for an automobile, a three-way catalyst is used as an exhaust gas purifying device. This three-way catalyst oxidizes HC and CO in the exhaust gas and NOx
To purify the exhaust gas. However, in order to purify HC with a three-way catalyst, it is necessary to reach an activation temperature of about 150 ° C. or more, and particularly, it is necessary to obtain H after cold start.
C is exhausted without being purified.

【0003】このため、特開平8−121232号公報
に開示のように、三元触媒の上流側の排気通路にHCを
吸着するためのゼオライト吸着材を配設し、低温時(例
えば、150℃程度以下)には吸着材によりHCを吸着
させ、高温になると吸着したHCを放出させて三元触媒
で浄化するものが提案されている。
For this reason, as disclosed in Japanese Patent Application Laid-Open No. Hei 8-112232, a zeolite adsorbent for adsorbing HC is provided in an exhaust passage on the upstream side of a three-way catalyst, and is used at a low temperature (for example, 150 ° C.). And the like, a method in which HC is adsorbed by an adsorbent, and the adsorbed HC is released at a high temperature and purified by a three-way catalyst is proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、バッテ
リの電力により駆動力を発生する電動機と内燃機関によ
り駆動力を発生するエンジンを併用して走行するハブリ
ッド自動車では、バッテリの蓄電残量や走行負荷に応じ
てエンジンが自動で頻繁にオン/オフされるため、触媒
が活性化温度に達し難かったり、一旦達してもエンジン
停止により低温に戻ってしまったりしてHCの浄化が十
分に行なえないことがある。
However, in a hybrid vehicle that runs using both an electric motor that generates a driving force by the electric power of a battery and an engine that generates a driving force by an internal combustion engine, the remaining charge of the battery and the running load are reduced. Because the engine is automatically turned on and off automatically in response, the catalyst may not reach the activation temperature, or even once it reaches the activation temperature, it may return to a low temperature due to the stop of the engine, resulting in insufficient HC purification. is there.

【0005】また、三元触媒の上流側に吸着材を配置し
ても、HCの放出温度に達する前にエンジンが停止され
てしまうと、エンジンの再始動時に吸着できる容量が低
下してしまうためHCが十分に吸着されずに排気されて
しまうことがある。
[0005] Even if an adsorbent is arranged upstream of the three-way catalyst, if the engine is stopped before the HC release temperature is reached, the capacity that can be adsorbed when the engine is restarted decreases. HC may be exhausted without being sufficiently adsorbed.

【0006】本発明は、上述の課題に鑑みてなされ、そ
の目的は、エンジンのオン/オフ頻度が高い場合でも吸
着材による吸着量を確保でき、HCの排出量を抑制でき
る内燃機関の排気ガス浄化装置を提供することである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object the purpose of ensuring the amount of adsorption by an adsorbent even when the engine is frequently turned on / off, and suppressing exhaust gas of an internal combustion engine. It is to provide a purification device.

【0007】[0007]

【課題を解決するための手段】上記課題を解決し、目的
を達成するために、本発明の内燃機関の排気ガス浄化装
置は、以下の構成を備える。即ち、内燃機関の排気通路
に配置され、排気ガス中の炭化水素を吸着する吸着温度
域と、この吸着した炭化水素を放出する放出温度域とを
有する吸着材を備える内燃機関の排気ガス浄化装置であ
って、内燃機関を停止する際に、前記吸着材による炭化
水素の吸着量を検出する検出手段と、前記吸着量が所定
量以上か否かを判定する判定手段と、前記判定手段によ
り前記吸着量が所定量以上と判定された場合、前記吸着
材を前記放出温度域に移行するまで昇温させる昇温手段
とを具備する。
Means for Solving the Problems To solve the above problems and achieve the object, an exhaust gas purifying apparatus for an internal combustion engine according to the present invention has the following arrangement. That is, an exhaust gas purifying apparatus for an internal combustion engine including an adsorbent disposed in an exhaust passage of the internal combustion engine and having an adsorption temperature range for adsorbing hydrocarbons in exhaust gas and a release temperature range for releasing the adsorbed hydrocarbons. When stopping the internal combustion engine, detecting means for detecting the amount of adsorption of hydrocarbons by the adsorbent, determining means for determining whether the amount of adsorption is greater than or equal to a predetermined amount, and said determining means When the amount of adsorption is determined to be equal to or more than a predetermined amount, a temperature raising means is provided for raising the temperature of the adsorbent until the temperature shifts to the release temperature range.

【0008】また、好ましくは、前記判定手段は、前記
内燃機関が冷間始動後で、且つ始動後から停止直前まで
の前記吸着材温度が前記吸着温度以下ならば、前記吸着
量が所定量以上と判定する。
Preferably, if the internal combustion engine has a cold start and the adsorbent temperature from the start to immediately before the stop is equal to or lower than the adsorption temperature, the adsorbed amount is equal to or larger than a predetermined amount. Is determined.

【0009】また、好ましくは、前記判定手段は、前記
内燃機関の停止期間が所定期間以上で、且つ始動後から
停止直前までの前記吸着材温度が吸着温度以下ならば、
前記吸着量が所定量以上と判定する。
[0009] Preferably, the judging means comprises: if the stop period of the internal combustion engine is longer than a predetermined period, and if the temperature of the adsorbent from the start to immediately before the stop is lower than the adsorption temperature,
It is determined that the amount of adsorption is equal to or more than a predetermined amount.

【0010】また、好ましくは、前記判定手段は、前記
内燃機関の始動後から所定時間以上経過し及び/又は前
記内燃機関の吸入空気量が所定量以上となり、且つ始動
後から停止直前までの前記吸着材温度が吸着温度以下な
らば、前記吸着量が所定量以上と判定する。
[0010] Preferably, the determination means determines that the predetermined time or more has elapsed since the start of the internal combustion engine and / or the amount of intake air of the internal combustion engine has become a predetermined amount or more and that the internal combustion engine has been running from the start to immediately before the stop. If the temperature of the adsorbent is equal to or lower than the adsorption temperature, it is determined that the amount of adsorption is equal to or higher than a predetermined amount.

【0011】また、好ましくは、前記昇温手段は、前記
吸着材に吸着された炭化水素が放出されるまで前記内燃
機関の運転を延長する。
Preferably, the temperature raising means extends the operation of the internal combustion engine until the hydrocarbon adsorbed by the adsorbent is released.

【0012】また、好ましくは、前記内燃機関の運転延
長時間は、前記内燃機関に関する温度パラメータに応じ
て補正される。
Preferably, the extended operation time of the internal combustion engine is corrected in accordance with a temperature parameter relating to the internal combustion engine.

【0013】また、好ましくは、前記排気通路における
前記吸着材の下流側には三元触媒が配置されている。
Preferably, a three-way catalyst is disposed downstream of the adsorbent in the exhaust passage.

【0014】また、好ましくは、前記内燃機関は、バッ
テリの電力により駆動力を発生する電動機と内燃機関に
より駆動力を発生するエンジンを併用して走行するハブ
リッド自動車に搭載される。
Preferably, the internal combustion engine is mounted on a hybrid vehicle that runs using both an electric motor that generates driving power by battery power and an engine that generates driving power by the internal combustion engine.

【0015】[0015]

【発明の効果】以上のように、請求項1に記載の発明に
よれば、内燃機関を停止する際に、吸着材による炭化水
素の吸着量を検出し、吸着量が所定量以上と判定された
場合、吸着材を放出温度域に移行するまで昇温させるこ
とにより、エンジンのオン/オフ頻度が高い場合でも吸
着材による吸着量を確保でき、HCの排出量を抑制でき
る。
As described above, according to the first aspect of the present invention, when the internal combustion engine is stopped, the amount of adsorption of hydrocarbons by the adsorbent is detected, and it is determined that the amount of adsorption is equal to or more than the predetermined amount. In this case, by increasing the temperature of the adsorbent until the temperature shifts to the emission temperature range, the amount of adsorption by the adsorbent can be ensured even when the engine is frequently turned on / off, and the amount of HC emission can be suppressed.

【0016】また、請求項2に記載の発明によれば、内
燃機関が冷間始動後で、且つ始動後から停止直前までの
吸着材温度が吸着材に吸着されているHCを十分放出し
ていない吸着温度以下ならば、吸着量が所定量以上と判
定することにより、吸着材の吸着量を内燃機関のエンジ
ン水温等から確実に推定できる。
According to the second aspect of the present invention, the temperature of the adsorbent after the cold start of the internal combustion engine and during the period from the start to immediately before the stop is sufficient to release HC adsorbed by the adsorbent. If the adsorption temperature is equal to or lower than the predetermined adsorption temperature, the adsorption amount is determined to be equal to or higher than the predetermined amount, whereby the adsorption amount of the adsorbent can be reliably estimated from the engine water temperature of the internal combustion engine.

【0017】また、請求項3に記載の発明によれば、内
燃機関の停止期間が所定期間以上で、且つ始動後から停
止直前までの吸着材温度が吸着温度以下ならば、吸着量
が所定量以上と判定することにより、吸着材の吸着量を
内燃機関の停止期間から確実に推定できる。
According to the third aspect of the present invention, if the stop period of the internal combustion engine is equal to or longer than the predetermined period and the temperature of the adsorbent from the start to immediately before the stop is equal to or lower than the adsorption temperature, the adsorption amount is equal to the predetermined amount. By judging as described above, the adsorption amount of the adsorbent can be reliably estimated from the stop period of the internal combustion engine.

【0018】また、請求項4に記載の発明によれば、内
燃機関の始動後から所定時間以上経過し及び/又は内燃
機関の吸入空気量が所定量以上となり、且つ始動後から
停止直前までの吸着材温度が吸着温度以下ならば、吸着
量が所定量以上と判定することにより、吸着材の吸着量
を内燃機関の始動後からの経過時間及び/又は吸入空気
量から確実に推定でき、吸着量が十分大きくなった時に
昇温手段により昇温させるため、昇温手段が頻繁に作動
するのを防止できる。
Further, according to the invention described in claim 4, a predetermined time or more has elapsed since the start of the internal combustion engine and / or the amount of intake air of the internal combustion engine has become a predetermined amount or more, and the time between the start and the time immediately before the stop is reached. If the temperature of the adsorbent is equal to or lower than the adsorption temperature, the adsorbed amount of the adsorbent can be reliably estimated from the elapsed time and / or the amount of intake air from the start of the internal combustion engine by determining that the adsorbed amount is equal to or larger than the predetermined amount. Since the temperature is raised by the temperature raising means when the amount becomes sufficiently large, it is possible to prevent the temperature raising means from frequently operating.

【0019】また、請求項5に記載の発明によれば、吸
着材に吸着された炭化水素が放出されるまで内燃機関の
運転を延長することにより、HC放出による再始動時の
HC吸着量の確保と、触媒の活性化によるHCの浄化を
確実に行うことができる。
According to the fifth aspect of the present invention, the operation of the internal combustion engine is extended until the hydrocarbon adsorbed on the adsorbent is released, so that the amount of adsorbed HC at the time of restart due to the release of HC is reduced. As a result, it is possible to reliably perform HC purification by activating the catalyst.

【0020】また、請求項6に記載の発明によれば、内
燃機関の運転延長時間は、内燃機関に関する温度パラメ
ータに応じて補正されることにより、エンジン停止直前
での吸着量に応じてエンジンの運転延長時間を設定でき
る。
According to the present invention, the extended operation time of the internal combustion engine is corrected in accordance with the temperature parameter relating to the internal combustion engine, so that the engine can be operated in accordance with the adsorption amount immediately before the engine is stopped. Operation extension time can be set.

【0021】また、請求項7に記載の発明によれば、排
気通路における吸着材の下流側には三元触媒が配置され
ていることにより、吸着材から放出されたHCを十分に
浄化できる。
According to the seventh aspect of the present invention, since the three-way catalyst is disposed downstream of the adsorbent in the exhaust passage, HC released from the adsorbent can be sufficiently purified.

【0022】また、請求項8に記載の発明によれば、内
燃機関はハブリッド自動車に搭載されることにより、エ
ンジンのオン/オフ頻度が高いハイブリッド自動車に対
して吸着材による吸着量を確保でき、HCの排出量を抑
制できる。
According to the eighth aspect of the present invention, the internal combustion engine is mounted on a hybrid vehicle, so that the adsorbing amount of the adsorbent can be secured for a hybrid vehicle having a high engine on / off frequency. HC emission can be suppressed.

【0023】[0023]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて添付図面を参照して詳細に説明する。 [ハイブリッド自動車の機械的構成]図1は、本実施形
態のハイブリッド自動車の機械的構成を示すブロック図
である。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. [Mechanical Configuration of Hybrid Vehicle] FIG. 1 is a block diagram showing the mechanical configuration of the hybrid vehicle of the present embodiment.

【0024】図1に示すように、本実施形態のハイブリ
ッド自動車は、駆動力を発生するためのパワーユニット
として、バッテリ3から供給される電力により駆動され
るモータ2とガソリン等の液体燃料の爆発力により駆動
されるエンジン1とを併用して走行し、後述する車両の
走行状態に応じて、モータ2のみによる走行、エンジン
のみによる走行、或いはモータ2とエンジン1の双方に
よる走行とが実現される。
As shown in FIG. 1, the hybrid vehicle of this embodiment has a motor 2 driven by electric power supplied from a battery 3 and an explosive power of liquid fuel such as gasoline as a power unit for generating driving power. The vehicle travels in combination with the engine 1 driven by the motor 2 and, depending on the traveling state of the vehicle described later, traveling by the motor 2 only, traveling by the engine only, or traveling by both the motor 2 and the engine 1 is realized. .

【0025】エンジン1はトルクコンバータ5を介して
クラッチ6の締結により自動変速機7に駆動力を伝達す
る。自動変速機7は、エンジン1から入力された駆動力
を走行状態に応じて(或いは運転者の操作により)所定
のトルク及び回転数に変換して、ギヤトレイン11及び
差動機構8を介して駆動輪9、10に伝達する。また、
エンジン1はバッテリ3を充電するために発電機4を駆
動する。
The engine 1 transmits a driving force to the automatic transmission 7 by engaging the clutch 6 via the torque converter 5. The automatic transmission 7 converts the driving force input from the engine 1 into a predetermined torque and rotation speed according to a traveling state (or by a driver's operation), and converts the driving force through a gear train 11 and a differential mechanism 8. The power is transmitted to the driving wheels 9 and 10. Also,
The engine 1 drives a generator 4 to charge the battery 3.

【0026】エンジン1の排気ガス通路12には、排気
ガス中の有害成分の1つであるHC(炭化水素)を吸着
する吸着温度域と、この吸着したHCを放出する放出温
度域とを有するHC吸着材13と、三元触媒14とが配
設されている。吸着温度域は外気温〜150℃程度であ
り(図16の点Cb参照)、放出温度域は約100℃以
上である(図16の点Ca参照)。
The exhaust gas passage 12 of the engine 1 has an adsorption temperature range for adsorbing HC (hydrocarbon), which is one of the harmful components in the exhaust gas, and a discharge temperature range for releasing the adsorbed HC. An HC adsorbent 13 and a three-way catalyst 14 are provided. The adsorption temperature range is from outside air temperature to about 150 ° C. (see point Cb in FIG. 16), and the release temperature range is about 100 ° C. or higher (see point Ca in FIG. 16).

【0027】三元触媒14は、排気通路12における吸
着材13の下流側に配置されている。尚、三元触媒14
は、リーンNOX触媒やNOX吸着材を含むものでも良
い。
The three-way catalyst 14 is disposed downstream of the adsorbent 13 in the exhaust passage 12. The three-way catalyst 14
May include a lean NOx catalyst or a NOx adsorbent.

【0028】吸着材13は吸着温度Cb以下では吸着材
によりHCを吸着させ、放出温度以上Ca以上になると
吸着したHCを放出させて、放出温度Ca以上になれば
三元触媒14も活性化状態になっているので下流側の排
気ガス通路に配置された三元触媒14により浄化する。
The adsorbent 13 adsorbs HC by the adsorbent at a temperature lower than the adsorption temperature Cb, releases the adsorbed HC at a temperature higher than the release temperature and higher than Ca, and activates the three-way catalyst 14 at a temperature higher than the release temperature Ca. Therefore, the exhaust gas is purified by the three-way catalyst 14 disposed in the exhaust gas passage on the downstream side.

【0029】HC吸着材は、例えば、Y型或いはβ型ゼ
オライトとパラジウム(Pd)の担体からなる。
The HC adsorbent comprises, for example, a Y-type or β-type zeolite and a palladium (Pd) carrier.

【0030】三元触媒は、例えば、アルミナと白金(P
t)とロジウム(Rh)、パラジウム(Pd)の担体から
なる。リーンNOX触媒は、例えば、MFI型ゼオライ
トと白金(Pt)とロジウム(Rh)の担体やゼオライト
と白金(Pt)とバリウム(Ba)の担体からなる。
The three-way catalyst is, for example, alumina and platinum (P
t) and a carrier of rhodium (Rh) and palladium (Pd). The lean NOx catalyst comprises, for example, a carrier of MFI zeolite, platinum (Pt) and rhodium (Rh) or a carrier of zeolite, platinum (Pt) and barium (Ba).

【0031】モータ2はバッテリ3から供給される電力
により駆動され、ギアトレイン11を介して駆動輪9、
10に駆動力を伝達する。
The motor 2 is driven by the electric power supplied from the battery 3, and drives the driving wheels 9,
10 to transmit the driving force.

【0032】エンジン1は例えば高燃費型のバルブの閉
弁タイミングを遅延させるタイプのものが搭載され、モ
ータ2は例えばIPM同期式モータであり、バッテリ3
は例えばニッケル水素電池が搭載される。
The engine 1 is mounted, for example, of a type that delays the closing timing of a fuel-efficient valve, the motor 2 is, for example, an IPM synchronous motor, and the battery 3
For example, a nickel-metal hydride battery is mounted.

【0033】統括制御ECU100はCPU、ROM、
RAM、インバータ等からなり、エンジン1の点火時期
や燃料噴射量等をコントロールすると共に、モータ2の
出力トルクや回転数等をコントロールする。また、統括
制御ECU100は、エンジン1の作動時に発電機4に
て発電された電力を、モータ2に供給したり、バッテリ
3に充電させるように制御する。
The general control ECU 100 includes a CPU, a ROM,
It comprises a RAM, an inverter, and the like, and controls the ignition timing and the fuel injection amount of the engine 1 and the output torque and the rotation speed of the motor 2. Further, the overall control ECU 100 controls the electric power generated by the generator 4 when the engine 1 operates to supply the electric power to the motor 2 and charge the battery 3.

【0034】次に、図2〜7を参照して本実施形態のハ
イブリッド自動車の走行状態に応じた駆動力の伝達形態
について説明する。 [発進&低速走行時]図2に示すように、発進、低速或
いは中速走行時には、エンジン&モータ制御ECU10
0はモータ2のみを駆動させ、このモータ2による駆動
力をギアトレイン11を介して駆動輪9、10に伝達す
る。また、発進後の低速走行時もモータ2による走行と
なる。 [加速時]図3に示すように、加速時には、エンジン&
モータ制御ECU100はエンジン1とモータ2の双方
を駆動させ、エンジン1とモータ2による駆動力を併せ
て駆動輪9、10に伝達する。 [定常走行時]図4に示すように、高車速での定常走行
時には、エンジン&モータ制御ECU100は、エンジ
ン1のみを駆動させ、エンジン1からギアトレイン11
を介して駆動輪9、10に駆動力を伝達する。定常走行
時とは、エンジン回転数が2000〜3000rpm程
度の最も燃費効率の良い領域での走行である。 [減速時]図5に示すように、減速時には、クラッチ6
を解放して、駆動輪9、10の駆動力がギアトレイン1
1を介してモータ2に回生され、モータ2が駆動源とな
ってバッテリ3が充電されると共に、空調装置50のコ
ンプレッサ用モータ51に回生された電力が供給され
る。 [定常走行時&充電時]図6に示すように、定常走行&
充電時には、クラッチ6を締結して、エンジン1からギ
アトレイン11を介して駆動輪9、10に駆動力が伝達
されると共に、エンジン1は発電機4を駆動してバッテ
リ3を充電する。 [充電時]図7に示すように、充電時には、クラッチ6
を解放してエンジン1から自動変速機7に駆動力が伝達
されないようにし、エンジン1は発電機4を駆動してバ
ッテリ3を充電する。 [ハイブリッド自動車の電気的構成]図8は、本実施形
態のハイブリッド電気自動車の電気的構成を示すブロッ
ク図である。
Next, referring to FIGS. 2 to 7, a description will be given of a transmission form of the driving force according to the running state of the hybrid vehicle of the present embodiment. [Starting & Low Speed Running] As shown in FIG. 2, during starting, low speed or medium speed running, the engine & motor control ECU 10
0 drives only the motor 2 and transmits the driving force from the motor 2 to the driving wheels 9 and 10 via the gear train 11. In addition, the vehicle is driven by the motor 2 even at the time of low-speed running after the vehicle starts. [At the time of acceleration] As shown in FIG.
The motor control ECU 100 drives both the engine 1 and the motor 2 and transmits the driving force of the engine 1 and the motor 2 to the driving wheels 9 and 10 together. [During Steady Traveling] As shown in FIG. 4, during steady running at a high vehicle speed, the engine & motor control ECU 100 drives only the engine 1 and shifts from the engine 1 to the gear train 11.
The driving force is transmitted to the driving wheels 9 and 10 via the. The term “steady running” refers to running in the most fuel-efficient area where the engine speed is about 2000 to 3000 rpm. [During deceleration] As shown in FIG.
And the driving force of the driving wheels 9 and 10 is reduced to the gear train 1
The battery 2 is recharged by the motor 2 as a drive source through the motor 1, and the regenerated power is supplied to the compressor motor 51 of the air conditioner 50. [During steady running & charging] As shown in FIG.
At the time of charging, the clutch 6 is engaged, the driving force is transmitted from the engine 1 to the driving wheels 9 and 10 via the gear train 11, and the engine 1 drives the generator 4 to charge the battery 3. [At the time of charging] As shown in FIG.
Is released to prevent the driving force from being transmitted from the engine 1 to the automatic transmission 7, and the engine 1 drives the generator 4 to charge the battery 3. [Electrical Configuration of Hybrid Vehicle] FIG. 8 is a block diagram showing the electrical configuration of the hybrid electric vehicle of the present embodiment.

【0035】図8に示すように、統括制御ECU100
には、車速を検出する車速センサ101からの信号、エ
ンジン1の回転数を検出するエンジン回転数センサ10
2からの信号、エンジン1に供給される電圧センサ10
3からの信号、エンジン1のスロットルバルブの開度を
検出するスロットル開度センサ104からの信号、ガソ
リン残量センサ105からの信号、バッテリ3の蓄電残
量を検出する蓄電残量センサ106からの信号、セレク
トレバーによるシフトレンジを検出するシフトレンジセ
ンサ107からの信号、運転者によるアクセルペダルの
踏込量を検出するためのペダル踏込量センサ108から
の信号、エンジン1の冷却水温を検出する水温センサ1
09からの信号、排気ガス中の酸素量を検出する空燃費
(O2)センサ110からの信号、外気温を検出する外
気温センサ111からの信号、その他、自動変速機4の
作動油温度を検出する油温センサからの信号等を入力し
てエンジン1のオン、オフ制御や点火時期や燃料噴射量
の制御等を行うと共に、モータ2への電力供給量の制御
等を行うようになっている。 [エンジン制御]次に、本実施形態のハイブリッド自動
車のエンジン制御について説明する。
As shown in FIG. 8, the general control ECU 100
Includes a signal from a vehicle speed sensor 101 for detecting a vehicle speed, and an engine speed sensor 10 for detecting a speed of the engine 1.
2, voltage sensor 10 supplied to engine 1
3, a signal from a throttle opening sensor 104 for detecting the opening of a throttle valve of the engine 1, a signal from a gasoline remaining amount sensor 105, and a signal from a remaining amount sensor 106 for detecting the remaining amount of the battery 3. A signal, a signal from a shift range sensor 107 for detecting a shift range by a select lever, a signal from a pedal depression amount sensor 108 for detecting a depression amount of an accelerator pedal by a driver, and a water temperature sensor for detecting a cooling water temperature of the engine 1. 1
09, a signal from an air-fuel consumption (O2) sensor 110 for detecting the amount of oxygen in the exhaust gas, a signal from an outside air temperature sensor 111 for detecting the outside air temperature, and the temperature of the hydraulic oil of the automatic transmission 4 A signal from an oil temperature sensor is input to control on / off of the engine 1, control of ignition timing and fuel injection amount, and control of electric power supply to the motor 2. . [Engine Control] Next, the engine control of the hybrid vehicle of the present embodiment will be described.

【0036】図9は、本実施形態のハイブリッド自動車
のエンジン制御を示すフローチャートである。図10〜
図12は触媒温度Ccatの推定検出に用いる係数マップ
である。図13〜図15はエンジンの運転継続時間Tを
設定するための定数マップである。
FIG. 9 is a flowchart showing the engine control of the hybrid vehicle according to the present embodiment. Figure 10
FIG. 12 is a coefficient map used for estimating and detecting the catalyst temperature Ccat. 13 to 15 are constant maps for setting the engine operation continuation time T.

【0037】図9に示すように、統括制御ECU100
によりエンジンが始動されると、ステップS2では、統
括制御ECU100は、水温センサ109の検出信号か
らエンジン水温Ce、スロットル開度センサ104の検
出信号からエンジン始動後から現在までの総吸入空気量
ΣQ、空燃比センサ110の検出信号から空燃比A/
F、外気温センサ111の検出信号から外気温Coutを
入力する。
As shown in FIG. 9, the overall control ECU 100
In step S2, the general control ECU 100 determines the engine water temperature Ce from the detection signal of the water temperature sensor 109 and the total intake air amount ΣQ from the start of the engine to the present time from the detection signal of the throttle opening sensor 104 in step S2. From the detection signal of the air-fuel ratio sensor 110, the air-fuel ratio A /
F. Input the outside air temperature Cout from the detection signal of the outside air temperature sensor 111.

【0038】ステップS4では、ステップS2で入力し
た各センサの検出信号から触媒温度Ccatを推定検出す
る。この触媒温度Ccatは下記の式1により推定演算さ
れる。即ち、 Ccat=CQ×KA/F×Kout・・・(1) ここで、CQは総吸入空気量ΣQから決定される触媒温
度の基本値CQ、KA/Fは空燃比A/Fから決定される補
正係数(図11参照)、Koutは外気温Coutから決定さ
れる補正係数(図12参照)である。
In step S4, the catalyst temperature Ccat is estimated and detected from the detection signals of the sensors input in step S2. The catalyst temperature Ccat is estimated and calculated by the following equation (1). That is, Ccat = CQ × KA / F × Kout (1) Here, CQ is a basic value CQ of the catalyst temperature determined from the total intake air amount ΣQ, and KA / F is determined from the air-fuel ratio A / F. Kout is a correction coefficient (see FIG. 12) determined from the outside air temperature Cout.

【0039】ステップS6では、走行状態やバッテリの
蓄電残量等に基づいて燃料噴射量や点火時期やスロット
ル弁開度を設定してエンジン制御を実行する。
In step S6, the engine control is executed by setting the fuel injection amount, the ignition timing, and the throttle valve opening based on the running state, the remaining charge of the battery, and the like.

【0040】ステップS8では、統括制御ECU100
は、エンジン停止条件が成立したか否かを判定する。こ
のエンジン停止条件は、走行状態や走行状態やバッテリ
の蓄電残量等に基づき決定される。ステップS8でエン
ジン停止停止条件が成立したならば(ステップS8でY
ES)ステップS10に進み、条件が不成立ならば(ス
テップS8でNO)ステップS2にリターンする。
In step S8, the general control ECU 100
Determines whether the engine stop condition is satisfied. The engine stop condition is determined based on the running state, the running state, the remaining power of the battery, and the like. If the engine stop condition is satisfied in step S8 (Y in step S8)
ES) Proceed to step S10, and if the condition is not satisfied (NO in step S8), return to step S2.

【0041】ステップS10では、統括制御ECU10
0は、エンジン水温Ceに基づいて冷間始動時か否かを
判定する。具体的には、エンジン水温Ceが所定温度閾
値C0以上か否かを判定する。ステップS10でエンジ
ン水温Ceが所定温度閾値C0以下ならば(ステップS1
0でNO)ステップS12に進み、所定温度閾値CO以
上ならば(ステップS10でYES)ステップS26に
進む。
In step S10, the overall control ECU 10
0 determines whether or not the engine is in a cold start based on the engine coolant temperature Ce. Specifically, it is determined whether the engine coolant temperature Ce is equal to or higher than a predetermined temperature threshold value C0. If the engine coolant temperature Ce is equal to or lower than the predetermined temperature threshold value C0 in step S10 (step S1).
If NO, the process proceeds to step S12. If the temperature is equal to or higher than the predetermined temperature threshold value CO (YES in step S10), the process proceeds to step S26.

【0042】ステップS12では、ステップS4で推定
検出された触媒温度Ccatが所定温度閾値C1以上か否か
を判定する。ステップS12で触媒温度Ccatが所定閾
値C1以下ならば(ステップS12でNO)吸着材に吸
着されたHCは放出されたと判定してステップS14に
進み、所定温度閾値C1以上ならば(ステップS12で
YES)ステップS26に進む。このステップS12で
の触媒温度Ccatは、吸着材13と三元触媒14との近
接した配置関係から吸着材13の温度と推定でき、判定
結果は吸着材温度として用いられる。尚、直接吸着材温
度を推定してもよい。
In step S12, it is determined whether or not the catalyst temperature Ccat estimated and detected in step S4 is equal to or higher than a predetermined temperature threshold C1. If the catalyst temperature Ccat is equal to or lower than the predetermined threshold C1 in step S12 (NO in step S12), it is determined that the HC adsorbed by the adsorbent has been released, and the process proceeds to step S14. If the HC is equal to or higher than the predetermined temperature threshold C1 (YES in step S12). ) Proceed to step S26. The catalyst temperature Ccat in step S12 can be estimated as the temperature of the adsorbent 13 from the close arrangement relationship between the adsorbent 13 and the three-way catalyst 14, and the determination result is used as the adsorbent temperature. Note that the temperature of the adsorbent may be directly estimated.

【0043】ステップS14では、統括制御ECU10
0は、今回の始動前のエンジン1の停止期間Toffが所
定時間閾値T2以上か否かを判定する。ステップS14
でエンジン1の停止期間Toffが所定時間閾値T2以上な
らば冷間始動時であると判定して(ステップS14でY
ES)ステップS16に進み、所定時間閾値T2以下な
らば(ステップS14でNO)ステップS26に進む。
In step S14, the overall control ECU 10
0 determines whether or not the stop period Toff of the engine 1 before the current start is equal to or longer than a predetermined time threshold T2. Step S14
If the stop period Toff of the engine 1 is equal to or longer than the predetermined time threshold T2, it is determined that the engine 1 is in the cold start state (Y in step S14).
ES) The process proceeds to step S16, and if it is equal to or less than the predetermined time threshold T2 (NO in step S14), the process proceeds to step S26.

【0044】ステップS16では、統括制御ECU10
0は、今回の始動時からの総吸入空気量ΣQが所定閾値
Q1以上か否かを判定する。ステップS16で総吸入空
気量ΣQが所定閾値Q1以上ならば(ステップS16で
YES)ステップS18に進み、所定閾値Q1以下なら
ば(ステップS16でNO)ステップS26に進む。
In step S16, the overall control ECU 10
0 determines whether or not the total intake air amount か ら Q from the time of the current start is equal to or greater than a predetermined threshold value Q1. If the total intake air amount ΣQ is equal to or more than the predetermined threshold value Q1 in step S16 (YES in step S16), the process proceeds to step S18, and if the total intake air amount ΣQ is equal to or less than the predetermined threshold value Q1 (NO in step S16), the process proceeds to step S26.

【0045】ステップS18では、統括制御ECU10
0は、今回のエンジン始動後からの経過時間Tonが所定
時間閾値T3以上か否かを判定する。ステップS18で
経過期間Tonが所定時間閾値T3以上ならば(ステップ
S18でYES)ステップS20に進み、所定時間閾値
T3以下ならば(ステップS18でNO)ステップS2
6に進む。ステップS16、S18により、HC吸着材
の吸着量が大きい時のみエンジンの運転が延長されるた
め、無駄なエンジンの運転を防止でき、燃費が向上す
る。
In step S18, the general control ECU 10
0 determines whether or not the elapsed time Ton since the current start of the engine is equal to or greater than a predetermined time threshold T3. If the elapsed period Ton is equal to or longer than the predetermined time threshold T3 in step S18 (YES in step S18), the process proceeds to step S20, and if the elapsed time Ton is equal to or shorter than the predetermined time threshold T3 (NO in step S18), step S2
Proceed to 6. In steps S16 and S18, the operation of the engine is extended only when the amount of adsorption of the HC adsorbent is large, so that useless operation of the engine can be prevented, and fuel efficiency is improved.

【0046】ステップS20では、ステップS2で入力
した各センサの検出信号からエンジンの運転延長時間T
Oを設定する。この運転延長時間TOは下記の式2により
設定される。即ち、 TO=Tbase+Tcat+TQ+Tout・・・(2) ここで、Tbaseはエンジンの運転延長時間の基準値、T
catは触媒温度Ccatから決定される加算値(図13参
照)、TQは総吸入空気量ΣQから決定される加算値
(図14参照)、Toutは外気温Coutから決定される加
算値(図15参照)である。
In step S20, the engine operation extended time T is calculated based on the detection signals of the sensors input in step S2.
Set O. The extended operation time TO is set by the following equation (2). That is, TO = Tbase + Tcat + TQ + Tout (2) where Tbase is a reference value of the extended operation time of the engine, T
cat is an addition value determined from the catalyst temperature Ccat (see FIG. 13), TQ is an addition value determined from the total intake air amount ΣQ (see FIG. 14), and Tout is an addition value determined from the outside air temperature Cout (FIG. 15). See).

【0047】ステップS22では、タイマオンしてエン
ジン運転時間Tの計測を開始する。ステップS24で
は、統括制御ECU100は、エンジン運転時間Tがス
テップS20で設定された運転延長時間T0以上か否か
を判定する。ステップS24でエンジン運転時間Tがス
テップS20で設定された運転延長時間T0以上ならば
(ステップS24でYES)ステップS26に進み、運
転延長時間T0以下ならば(ステップS24でNO)ス
テップS28に進む。
In step S22, the timer is turned on and measurement of the engine operating time T is started. In step S24, the overall control ECU 100 determines whether the engine operation time T is equal to or longer than the operation extension time T0 set in step S20. If the engine operation time T is equal to or longer than the extended operation time T0 set in step S20 in step S24 (YES in step S24), the process proceeds to step S26, and if the engine operation time T is equal to or less than the extended operation time T0 (NO in step S24), the process proceeds to step S28.

【0048】ステップS26では、統括制御ECU10
0はエンジンを停止する。
In step S26, the overall control ECU 10
0 turns off the engine.

【0049】ステップS28では、エンジン始動条件が
成立したか否かを判定する。このエンジン始動条件は、
走行状態や走行状態やバッテリの蓄電残量等に基づき決
定される。ステップS28でエンジン始動停止条件が成
立したならば(ステップS28でYES)ステップS2
にリターンし、条件が不成立ならば(ステップS28で
NO)ステップS22にリターンして運転延長時間T0
を計測する。
In step S28, it is determined whether an engine start condition has been satisfied. This engine start condition is
It is determined based on the running state, the running state, the remaining power of the battery, and the like. If the engine start / stop condition is satisfied in step S28 (YES in step S28), step S2
If the condition is not satisfied (NO in step S28), the process returns to step S22 to extend the operation extension time T0.
Is measured.

【0050】上記ステップS10〜S18で判定される
各値Ce、Ccat、Toff、ΣQ、Tonは、エンジン停止
直前の吸着材13による吸着量の大小をこれらパラメー
タから間接的に判定するために用いられている。従っ
て、各ステップの全パラメータを判定しなくとも良い場
合もあり、その場合には各ステップの中から必要なステ
ップを選択し、各ステップをいかなる組み合わせや前後
関係にしても構わない。
The values Ce, Ccat, Toff, ΔQ, and Ton determined in steps S10 to S18 are used to indirectly determine the magnitude of the amount of adsorption by the adsorbent 13 immediately before the engine is stopped from these parameters. ing. Therefore, in some cases, it is not necessary to determine all the parameters of each step. In such a case, a necessary step is selected from each step, and each step may be in any combination or context.

【0051】以上のように、本実施形態によれば、エン
ジン停止条件が成立した場合に、ステップS10〜S1
8で吸着材13によるHCの吸着量を各パラメータC
e、Ccat、Toff、ΣQ、Tonから推定し、吸着量が所
定量以上と判定された場合にはステップS20において
吸着したHCを放出し、三元触媒が活性化温度に達する
までエンジンの運転を延長するので、吸着材のHC吸着
量を確保できると共に、HCを確実に浄化できる。
As described above, according to this embodiment, when the engine stop condition is satisfied, steps S10 to S1 are performed.
In step 8, the amount of HC adsorbed by the adsorbent 13 is set for each parameter C.
Estimated from e, Ccat, Toff, ΣQ, and Ton. If it is determined that the adsorption amount is equal to or more than the predetermined amount, the adsorbed HC is released in step S20, and the operation of the engine is continued until the three-way catalyst reaches the activation temperature. Since the length is extended, the amount of HC adsorbed by the adsorbent can be secured, and HC can be reliably purified.

【0052】尚、本発明は、その趣旨を逸脱しない範囲
で上記実施形態を修正又は変形したものに適用可能であ
る。
It should be noted that the present invention can be applied to a modification or modification of the above-described embodiment without departing from the gist thereof.

【0053】例えば、昇温手段としてHC吸着材を電熱
装置等により昇温させるものを使用してもよい。但し、
この場合には電熱装置を別途設置する必要がある。
For example, a means for raising the temperature of the HC adsorbent by an electric heater or the like may be used as the temperature raising means. However,
In this case, it is necessary to separately install an electric heating device.

【0054】本実施形態ではハイブリッド自動車につい
て説明したが、本実施形態のエンジン制御は通常の内燃
機関だけを搭載する自動車にも適用できることは言うま
でもない。この場合には、自動車にはターボタイマ等の
エンジンを自動停止する装置やその他のエンジン停止制
御を行うプログラムが搭載されている。
Although the present embodiment has been described for a hybrid vehicle, it goes without saying that the engine control of the present embodiment can be applied to a vehicle equipped with only a normal internal combustion engine. In this case, the vehicle is equipped with a device for automatically stopping the engine, such as a turbo timer, and other programs for performing engine stop control.

【0055】[0055]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施形態のハイブリッド自動車の機械的構成
を示すブロック図である。
FIG. 1 is a block diagram illustrating a mechanical configuration of a hybrid vehicle according to an embodiment.

【図2】本実施形態のハイブリッド自動車の発進&低速
走行時の駆動力の伝達形態を説明する図である。
FIG. 2 is a diagram illustrating a transmission form of driving force when the hybrid vehicle according to the embodiment starts and runs at a low speed.

【図3】本実施形態のハイブリッド自動車の加速時の駆
動力の伝達形態を説明する図である。
FIG. 3 is a diagram illustrating a form of transmission of driving force during acceleration of the hybrid vehicle according to the embodiment.

【図4】本実施形態のハイブリッド自動車の定常走行時
の駆動力の伝達形態を説明する図である。
FIG. 4 is a diagram illustrating a transmission form of driving force during steady running of the hybrid vehicle according to the present embodiment.

【図5】本実施形態のハイブリッド自動車の減速時の駆
動力の伝達形態を説明する図である。
FIG. 5 is a diagram illustrating a transmission form of a driving force during deceleration of the hybrid vehicle according to the embodiment.

【図6】本実施形態のハイブリッド自動車の定常走行&
充電時の駆動力の伝達形態を説明する図である。
FIG. 6 is a diagram showing the steady running of the hybrid vehicle according to the embodiment;
It is a figure explaining the transmission form of the driving force at the time of charge.

【図7】本実施形態のハイブリッド自動車の充電時の駆
動力の伝達形態を説明する図である。
FIG. 7 is a diagram illustrating a driving force transmission mode during charging of the hybrid vehicle according to the embodiment.

【図8】本実施形態のハイブリッド自動車の電気的構成
を示すブロック図である。
FIG. 8 is a block diagram showing an electrical configuration of the hybrid vehicle according to the embodiment.

【図9】本実施形態のハイブリッド自動車のエンジン制
御を示すフローチャートである。
FIG. 9 is a flowchart illustrating engine control of the hybrid vehicle according to the present embodiment.

【図10】触媒温度Ccatの推定検出に用いる温度基準
値CQと総吸入空気量ΣQとの関係を示すマップであ
る。
FIG. 10 is a map showing a relationship between a temperature reference value CQ used for estimation detection of a catalyst temperature Ccat and a total intake air amount ΔQ.

【図11】触媒温度Ccatの推定検出に用いる空燃比に
関する補正係数KA/Fと空燃比A/Fとの関係を示すマ
ップである。
FIG. 11 is a map showing a relationship between a correction coefficient KA / F and an air-fuel ratio A / F relating to an air-fuel ratio used for estimation detection of a catalyst temperature Ccat.

【図12】触媒温度Ccatの推定検出に用いる外気温に
関する補正係数Koutと外気温Coutとの関係を示すマッ
プである。
FIG. 12 is a map showing a relationship between a correction coefficient Kout relating to an outside air temperature used for estimation detection of a catalyst temperature Ccat and an outside air temperature Cout.

【図13】エンジンの運転継続時間Tを設定するために
加算される触媒温度に関する加算値Tcatと触媒温度Cca
tとの関係を示すマップである。
FIG. 13 shows an additional value Tcat and a catalyst temperature Cca relating to the catalyst temperature which are added to set the operation continuation time T of the engine.
6 is a map showing a relationship with t.

【図14】エンジンの運転継続時間Tを設定するために
加算される総吸入空気量に関する加算値TQと総吸入空
気量ΣQとの関係を示すマップである。
FIG. 14 is a map showing a relationship between an added value TQ related to a total intake air amount added to set an engine operation continuation time T and a total intake air amount ΣQ.

【図15】エンジンの運転継続時間Tを設定するために
加算される外気温度に関する加算値Toutと外気温度out
との関係を示すマップである。
FIG. 15 shows an additional value Tout relating to the outside air temperature and an outside air temperature out which are added to set the operation duration time T of the engine.
It is a map showing the relationship with.

【図16】吸着材の吸着温度域と放出温度域での特性を
示す図である。
FIG. 16 is a diagram showing characteristics of an adsorbent in an adsorption temperature range and a release temperature range.

【符号の説明】[Explanation of symbols]

1 エンジン 2 モータ 3 バッテリ 4 発電機 1 engine 2 motor 3 battery 4 generator

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02B 61/00 F02B 61/00 D F02D 29/02 F02D 29/02 D (72)発明者 京極 誠 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 (72)発明者 山田 啓司 広島県安芸郡府中町新地3番1号 マツダ 株式会社内 Fターム(参考) 3G091 AA02 AA14 AB03 AB05 AB10 BA03 BA14 BA15 BA19 CA05 CA26 CB02 CB05 CB07 CB08 DA03 DB10 DB11 EA01 EA07 EA14 EA15 EA16 EA26 EA28 EA30 EA33 EA34 EA39 EA40 FA02 FA04 FB02 FC07 GB01W GB05W GB06W GB07W GB07Y GB09Y GB10W HA07 HA20 3G093 AA01 AA05 AA07 AA16 BA20 CA01 CA03 CA04 DA05 DA06 DA07 DB01 DB05 DB09 DB11 DB19 DB23 DB26 EA01 EA05 EA13 EA15 EB01 EB08 EC02 FA10 Continuation of the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) F02B 61/00 F02B 61/00 D F02D 29/02 F02D 29/02 D (72) Inventor Makoto Kyogoku Fuchu, Aki-gun, Hiroshima Prefecture Machida Co., Ltd. 3-1 Machida Co., Ltd. (72) Inventor Keiji Yamada 3-1 Fukumachi-cho, Funaka-cho, Aki-gun, Hiroshima F-term (reference) 3G091 AA02 AA14 AB03 AB05 AB10 BA03 BA14 BA15 BA19 CA05 CA26 CB02 CB05 CB07 CB08 DA03 DB10 DB11 EA01 EA07 EA14 EA15 EA16 EA26 EA28 EA30 EA33 EA34 EA39 EA40 FA02 FA04 FB02 FC07 GB01W GB05W GB06W GB07W GB07Y GB09Y GB10W HA07 HA20 3G093 DB01 DA05 DA07 DA07 EA01 EA05 EA13 EA15 EB01 EB08 EC02 FA10

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気通路に配置され、排気ガ
ス中の炭化水素を吸着する吸着温度域と、この吸着した
炭化水素を放出する放出温度域とを有する吸着材を備え
る内燃機関の排気ガス浄化装置であって、 内燃機関を停止する際に、前記吸着材による炭化水素の
吸着量を検出する検出手段と、 前記吸着量が所定量以上か否かを判定する判定手段と、 前記判定手段により前記吸着量が所定量以上と判定され
た場合、前記吸着材を前記放出温度域に移行するまで昇
温させる昇温手段とを具備することを特徴とする内燃機
関の排気ガス浄化装置。
1. An exhaust system for an internal combustion engine, comprising an adsorbent disposed in an exhaust passage of the internal combustion engine and having an adsorption temperature range for adsorbing hydrocarbons in exhaust gas and a release temperature range for releasing the adsorbed hydrocarbons. A gas purifying device, wherein when the internal combustion engine is stopped, detecting means for detecting the amount of adsorption of hydrocarbons by the adsorbent; determining means for determining whether the amount of adsorption is equal to or more than a predetermined amount; An exhaust gas purifying apparatus for an internal combustion engine, comprising: a temperature raising means for raising the temperature of the adsorbent until the temperature of the adsorbent shifts to the release temperature range when the adsorption amount is determined to be equal to or greater than a predetermined amount.
【請求項2】 前記判定手段は、前記内燃機関が冷間始
動後で、且つ始動後から停止直前までの前記吸着材温度
が前記吸着温度以下ならば、前記吸着量が所定量以上と
判定することを特徴とする請求項1に記載の内燃機関の
排気ガス浄化装置。
2. The method according to claim 1, wherein the determining unit determines that the amount of adsorption is equal to or greater than a predetermined amount if the temperature of the adsorbent after the cold start of the internal combustion engine and during a period from immediately after start to immediately before stop is equal to or lower than the adsorption temperature. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein:
【請求項3】 前記判定手段は、前記内燃機関の停止期
間が所定期間以上で、且つ始動後から停止直前までの前
記吸着材温度が吸着温度以下ならば、前記吸着量が所定
量以上と判定することを特徴とする請求項1又は2に記
載の内燃機関の排気ガス浄化装置。
3. The method according to claim 1, wherein the determining unit determines that the amount of adsorption is equal to or more than a predetermined amount if the stop period of the internal combustion engine is equal to or more than a predetermined period and the temperature of the adsorbent from start to immediately before stop is equal to or lower than the adsorption temperature. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1 or 2, wherein:
【請求項4】 前記判定手段は、前記内燃機関の始動後
から所定時間以上経過し及び/又は前記内燃機関の吸入
空気量が所定量以上となり、且つ始動後から停止直前ま
での前記吸着材温度が吸着温度以下ならば、前記吸着量
が所定量以上と判定することを特徴とする請求項1乃至
3のいずれか1項に記載の内燃機関の排気ガス浄化装
置。
4. The method according to claim 1, wherein the determining means determines whether the adsorbent temperature has elapsed from the start of the internal combustion engine for at least a predetermined time and / or the amount of intake air of the internal combustion engine has reached a predetermined amount or more, and from the start to immediately before the stop. The exhaust gas purifying apparatus for an internal combustion engine according to any one of claims 1 to 3, wherein if the temperature is equal to or lower than the adsorption temperature, the amount of adsorption is determined to be equal to or higher than a predetermined amount.
【請求項5】 前記昇温手段は、前記吸着材に吸着され
た炭化水素が放出されるまで前記内燃機関の運転を延長
することを特徴とする請求項1乃至4のいずれか1項に
記載の内燃機関の排気ガス浄化装置。
5. The apparatus according to claim 1, wherein the temperature raising means extends the operation of the internal combustion engine until the hydrocarbon adsorbed on the adsorbent is released. Exhaust gas purification device for internal combustion engines.
【請求項6】 前記内燃機関の運転延長時間は、前記内
燃機関に関する温度パラメータに応じて補正されること
を特徴とする請求項5に記載の内燃機関の排気ガス浄化
装置。
6. The exhaust gas purifying apparatus for an internal combustion engine according to claim 5, wherein the extended operation time of the internal combustion engine is corrected according to a temperature parameter relating to the internal combustion engine.
【請求項7】 前記排気通路における前記吸着材の下流
側には三元触媒が配置されていることを特徴とする請求
項1乃至6のいずれか1項に記載の内燃機関の排気ガス
浄化装置。
7. The exhaust gas purifying apparatus for an internal combustion engine according to claim 1, wherein a three-way catalyst is disposed downstream of the adsorbent in the exhaust passage. .
【請求項8】 前記内燃機関は、バッテリの電力により
駆動力を発生する電動機と内燃機関により駆動力を発生
するエンジンを併用して走行するハブリッド自動車に搭
載されることを特徴とする請求項1乃至7のいずれか1
項に記載の内燃機関の排気ガス浄化装置。
8. The hybrid vehicle according to claim 1, wherein the internal combustion engine is mounted on a hybrid vehicle that runs using both an electric motor that generates driving power by battery power and an engine that generates driving power by the internal combustion engine. Any one of to 7
An exhaust gas purifying apparatus for an internal combustion engine according to claim 1.
JP10183009A 1998-06-29 1998-06-29 Exhaust emission control device for internal combustion engine Pending JP2000008837A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10183009A JP2000008837A (en) 1998-06-29 1998-06-29 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10183009A JP2000008837A (en) 1998-06-29 1998-06-29 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2000008837A true JP2000008837A (en) 2000-01-11

Family

ID=16128151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10183009A Pending JP2000008837A (en) 1998-06-29 1998-06-29 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2000008837A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047926A (en) * 2000-07-31 2002-02-15 Toyota Motor Corp Engine exhaust device for vehicle
WO2002042625A1 (en) * 2000-11-27 2002-05-30 Hitachi, Ltd. Exhaust emission control device of internal combustion engine and control device for car
JP2002285881A (en) * 2001-01-16 2002-10-03 Toyota Motor Corp Hc emission reducing operation method for vehicle
JP2003079002A (en) * 2001-08-30 2003-03-14 Toyota Motor Corp Structure of power train for vehicle
JP2003343253A (en) * 2002-05-28 2003-12-03 Mitsubishi Motors Corp Exhaust gas purifying device for hybrid vehicle
JP2004124827A (en) * 2002-10-02 2004-04-22 Toyota Motor Corp Power output device and hybrid type power output device, and control method thereof, and hybrid vehicle
JP2008144645A (en) * 2006-12-08 2008-06-26 Mazda Motor Corp Exhaust emission control device
JP2009001207A (en) * 2007-06-22 2009-01-08 Toyota Motor Corp Exhaust emission control device for hybrid vehicle
KR100931090B1 (en) * 2007-12-07 2009-12-10 현대자동차주식회사 How to prevent deterioration of vehicle SCR
JP2012086679A (en) * 2010-10-20 2012-05-10 Nissan Motor Co Ltd Control device of hybrid vehicle
JP2013199175A (en) * 2012-03-23 2013-10-03 Toyota Motor Corp Hybrid vehicle
JP2017025860A (en) * 2015-07-27 2017-02-02 本田技研工業株式会社 Exhaust emission control device for vehicle
JP2018103934A (en) * 2016-12-28 2018-07-05 三菱自動車工業株式会社 Exhaust emission control device
WO2021003990A1 (en) * 2019-07-11 2021-01-14 宿州市鑫尧健康科技有限公司 Hybrid power device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047926A (en) * 2000-07-31 2002-02-15 Toyota Motor Corp Engine exhaust device for vehicle
WO2002042625A1 (en) * 2000-11-27 2002-05-30 Hitachi, Ltd. Exhaust emission control device of internal combustion engine and control device for car
JP2002285881A (en) * 2001-01-16 2002-10-03 Toyota Motor Corp Hc emission reducing operation method for vehicle
US6615578B2 (en) * 2001-01-16 2003-09-09 Toyota Jidosha Kabushiki Kaisha HC-discharge suppressing device for vehicle and operational method of suppressing discharge of HC
JP2003079002A (en) * 2001-08-30 2003-03-14 Toyota Motor Corp Structure of power train for vehicle
JP2003343253A (en) * 2002-05-28 2003-12-03 Mitsubishi Motors Corp Exhaust gas purifying device for hybrid vehicle
JP2004124827A (en) * 2002-10-02 2004-04-22 Toyota Motor Corp Power output device and hybrid type power output device, and control method thereof, and hybrid vehicle
JP2008144645A (en) * 2006-12-08 2008-06-26 Mazda Motor Corp Exhaust emission control device
JP2009001207A (en) * 2007-06-22 2009-01-08 Toyota Motor Corp Exhaust emission control device for hybrid vehicle
KR100931090B1 (en) * 2007-12-07 2009-12-10 현대자동차주식회사 How to prevent deterioration of vehicle SCR
JP2012086679A (en) * 2010-10-20 2012-05-10 Nissan Motor Co Ltd Control device of hybrid vehicle
JP2013199175A (en) * 2012-03-23 2013-10-03 Toyota Motor Corp Hybrid vehicle
JP2017025860A (en) * 2015-07-27 2017-02-02 本田技研工業株式会社 Exhaust emission control device for vehicle
JP2018103934A (en) * 2016-12-28 2018-07-05 三菱自動車工業株式会社 Exhaust emission control device
WO2021003990A1 (en) * 2019-07-11 2021-01-14 宿州市鑫尧健康科技有限公司 Hybrid power device

Similar Documents

Publication Publication Date Title
US6327852B1 (en) Exhaust gas emission control apparatus of hybrid vehicle
US8209970B2 (en) Hybrid cold start strategy using electrically heated catalyst
EP2036793B1 (en) Control method and device for hybrid motor
US7404289B2 (en) Vehicular control device
US7694510B2 (en) Motor control apparatus for a hybrid vehicle
US6321530B1 (en) Exhaust gas purifier and method of purifying exhaust gas for a hybrid vehicle
US7395659B2 (en) Hybrid vehicle and method for operating a hybrid vehicle
US6520160B2 (en) Internal combustion engine control unit for, and method of controlling a hybrid vehicle
JP2010058746A (en) Control device and control method of hybrid vehicle
JP2006283722A (en) Automobile and its control method
EP2799677B1 (en) Exhaust control apparatus for internal combustion engine
JP2000008837A (en) Exhaust emission control device for internal combustion engine
JP3376902B2 (en) Internal combustion engine control device for hybrid vehicle
CN114763757A (en) Control device and control method for hybrid vehicle
CN114728236A (en) System and method for operating a passive nitrogen oxide adsorber in an exhaust aftertreatment system
JP2009092001A (en) Control device for internal combustion engine, control method, program for materializing method, and record medium recording program
JP4063311B1 (en) Control device for hybrid vehicle
JP2007198295A (en) Car and its control method
JP2008189267A (en) Hybrid vehicle and its control method
JP3470681B2 (en) Internal combustion engine control device for hybrid vehicle
JP3894198B2 (en) Control device for hybrid vehicle
JP4001094B2 (en) Control device for hybrid vehicle
JP2007309208A (en) Device for estimating catalyst temperature and vehicle including same
JP4013654B2 (en) Exhaust gas purification device for hybrid vehicle
EP4005888B1 (en) Control method of hybrid vehicle and control device of hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20050222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080530

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081003