JP4878597B2 - Photosensitive resin composition, printed wiring board, and semiconductor package substrate - Google Patents

Photosensitive resin composition, printed wiring board, and semiconductor package substrate Download PDF

Info

Publication number
JP4878597B2
JP4878597B2 JP2007513044A JP2007513044A JP4878597B2 JP 4878597 B2 JP4878597 B2 JP 4878597B2 JP 2007513044 A JP2007513044 A JP 2007513044A JP 2007513044 A JP2007513044 A JP 2007513044A JP 4878597 B2 JP4878597 B2 JP 4878597B2
Authority
JP
Japan
Prior art keywords
epoxy resin
group
resin
formula
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007513044A
Other languages
Japanese (ja)
Other versions
JPWO2006109890A1 (en
Inventor
達也 清田
幸浩 木内
正年 位地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Tamura Corp
Original Assignee
NEC Corp
Tamura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Tamura Corp filed Critical NEC Corp
Priority to JP2007513044A priority Critical patent/JP4878597B2/en
Publication of JPWO2006109890A1 publication Critical patent/JPWO2006109890A1/en
Application granted granted Critical
Publication of JP4878597B2 publication Critical patent/JP4878597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1494Polycondensates modified by chemical after-treatment followed by a further chemical treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4292Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof together with monocarboxylic acids
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/285Permanent coating compositions
    • H05K3/287Photosensitive compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epoxy Resins (AREA)
  • Materials For Photolithography (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Description

本発明は、紫外線露光及び希アルカリ水溶液による現像で画像形成が可能であり、ハロゲン、リン、アンチモンを含まずに、例えば「UL94 V−0」を達成する難燃性を持つ感光性樹脂組成物並びにこれを用いたプリント配線板および半導体パッケージ基板に関する。   INDUSTRIAL APPLICABILITY The present invention is capable of forming an image by ultraviolet exposure and development with a dilute alkaline aqueous solution, and does not contain halogen, phosphorus, or antimony, and has, for example, a flame retardant photosensitive resin composition that achieves “UL94 V-0”. The present invention also relates to a printed wiring board and a semiconductor package substrate using the same.

プリント配線板は、基板の上に導体回路を形成し、そのパターンのはんだ付けランドに電子部品をはんだ付けすることにより搭載するためのものであり、そのはんだ付けランドを除く導体回路部分は永久保護皮膜としてのソルダーレジスト膜で被覆される。これにより、プリント配線板に電子部品をはんだ付けする際にはんだが不必要な部分に付着するのを防止すると共に、回路導体が空気に直接曝されて酸化や湿度により腐食されるのを防止する。
これらソルダーレジスト組成物は高い難燃性(UL94 V−0)が要求されるが、難燃化の手法として、テトラブロモビスフェノールAの誘導体であるハロゲン含有熱硬化樹脂(特開2003−084429号公報)が用いられる。しかし、このようなハロゲン含有熱硬化樹脂は、焼却時に有毒なダイオキシンの発生が懸念されており、脱ハロゲン化の要求が高まっている。
また、リンを用いた難燃化手法として、赤リンのような無機リン(特開平09−258446号公報)や有機リン化合物(特開2002−121245号公報)(特開2002−040633号公報)を用いる手法がある。しかし、リン系難燃剤を使用したハロゲンフリー基板が、耐湿性に劣ることが報告されている(R.Rajoo and E.H.Wong:”Moisture Characteristics and Performance of Halogen−Free Laminates”,International Conference on Electronics Packaging(ICEP),pp 480−485,2002)。
このような背景から、ソルダーレジスト組成物に水酸化アルミニウムや水酸化マグネシウムといった金属水酸化物を用いた難燃化が検討されている(特開2002−156748号公報)。しかし、この方法ではソルダーレジスト組成物に要求される特性と難燃性を両立することが困難である。
なお、特開平11−140277号公報には、(A)分子中にビフェニル誘導体および/またはナフタレン誘導体を含むノボラック構造のフェノール樹脂を総フェノール樹脂量中に30〜100質量部含むフェノール樹脂、(B)分子中にビフェニル誘導体および/またはナフタレン誘導体を含むノボラック構造のエポキシ樹脂を総エポキシ樹脂、(C)無機充填材、(D)硬化促進剤を必須成分とする半導体封止用エポキシ樹脂組成物が開示されている。
The printed wiring board is for mounting by forming a conductor circuit on the board and soldering electronic parts to the soldering land of the pattern, and the conductor circuit part excluding the soldering land is permanently protected It is coated with a solder resist film as a film. This prevents solder from adhering to unnecessary parts when soldering electronic components to a printed wiring board, and prevents circuit conductors from being directly exposed to air and being corroded by oxidation or humidity. .
These solder resist compositions are required to have high flame retardancy (UL94 V-0), but as a flame retarding technique, a halogen-containing thermosetting resin that is a derivative of tetrabromobisphenol A (Japanese Patent Laid-Open No. 2003-084429). ) Is used. However, such halogen-containing thermosetting resins are concerned about the generation of toxic dioxins during incineration, and the demand for dehalogenation is increasing.
Further, as a flame retardant method using phosphorus, inorganic phosphorus such as red phosphorus (Japanese Patent Laid-Open No. 09-258446) or organic phosphorus compound (Japanese Patent Laid-Open No. 2002-121245) (Japanese Patent Laid-Open No. 2002-040633) There is a method using. However, it has been reported that halogen-free substrates using phosphorus-based flame retardants have poor moisture resistance (R. Rajoo and EH Wong: “Moisture Characteristics and Performance of Halogen-Free Laminates”, International Conferencing). Electronics Packaging (ICEP), pp 480-485, 2002).
From such a background, flame retardancy using a metal hydroxide such as aluminum hydroxide or magnesium hydroxide in a solder resist composition has been studied (Japanese Patent Laid-Open No. 2002-156748). However, with this method, it is difficult to achieve both the characteristics required for the solder resist composition and the flame retardancy.
In JP-A-11-140277, (A) a phenol resin containing 30 to 100 parts by mass of a novolac-structured phenol resin containing a biphenyl derivative and / or a naphthalene derivative in the molecule, (B An epoxy resin composition for semiconductor encapsulation having a novolak structure epoxy resin containing a biphenyl derivative and / or a naphthalene derivative in the molecule as a total epoxy resin, (C) an inorganic filler, and (D) a curing accelerator as essential components. It is disclosed.

しかし、いずれの従来技術においても、例えば半導体用途に要求されるような高度の難燃性を示し、かつ例えば半導体ソルダーレジスト膜に要求されるような高度の感度、タック性、現像性、耐薬品性、耐熱性、絶縁抵抗を示すような感光性樹脂組成物は提供されていない。
本発明の課題は、高度の感度、タック性、現像性、耐薬品性、耐熱性、絶縁抵抗を示し、ハロゲン系やリン系の化合物を使用しなくとも優れた難燃性を示す感光性樹脂組成物を提供することである。
また、本発明の課題は、この感光性樹脂組成物のソルダーレジスト膜の硬化膜を有する電子部品搭載前若しくは後のプリント配線板、又は半導体パッケージ基板等の電子部品搭載用構造体を提供することである。
本発明に係る感光性樹脂組成物は、
(A) (A1)および(A2)からなる群より選ばれた一種以上の活性エネルギー線硬化性樹脂、
(A1) 式(1)のエポキシ樹脂および式(2)のエポキシ樹脂からなる群より選ばれたエポキシ樹脂と不飽和モノカルボン酸との反応物と、多塩基酸および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得られる樹脂、
(A2) 式(1)のエポキシ樹脂および式(2)のエポキシ樹脂からなる群より選ばれたエポキシ樹脂と不飽和モノカルボン酸との反応物と、多塩基酸および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得られる樹脂を、更にラジカル重合性不飽和基とエポキシ基を有するグリシジル化合物と反応させて得られる樹脂、
(a) (a1)および(a2)からなる群より選ばれた一種以上の活性エネルギー線硬化性樹脂、
(a1) 式(1)のエポキシ樹脂および式(2)のエポキシ樹脂以外のエポキシ樹脂と不飽和モノカルボン酸との反応物と、多塩基酸および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得られる樹脂、
(a2) 式(1)のエポキシ樹脂および式(2)のエポキシ樹脂以外のエポキシ樹脂と不飽和モノカルボン酸との反応物と、多塩基酸および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得られる樹脂を、更にラジカル重合性不飽和基とエポキシ基を有するグリシジル化合物と反応させて得られる樹脂、
(B)光重合開始剤、
(C)反応性希釈剤、
(D) 式(1)の化合物および式(2)の化合物からなる群より選ばれたエポキシ樹脂、
(d) 式(1)の化合物および式(2)の化合物以外のエポキシ樹脂、および
(E) モリブデン化合物を含有することを特徴とする。

Figure 0004878597
(n=1以上、10以下)
Figure 0004878597
(n=1以上、10以下)
また、本発明は、前記感光性樹脂組成物を有することを特徴とする、電子部品搭載前若しくは搭載後のプリント配線板、又は、半導体パッケージ基板に係るものである。この基板は板状に限られるものではなく、フレキシブルに湾曲するシートや、球状等の異形であってよい。
本発明の感光性樹脂組成物は、活性エネルギー線に感度よく反応し、かつ希アルカリ水溶液により現像可能であって、プリント配線基板のソルダーレジスト等として使用された場合、耐熱性、密着性、絶縁性に優れ、かつ難燃性に優れた塗膜を形成することができ、プリント配線板基板のソルダーレジスト等に好適なものである。
即ち、特定の選択された芳香族骨格とグリシジル基側鎖とを有する式(1)(2)の化合物を出発点として合成して得られた活性エネルギー線硬化性樹脂(A1)(A2)を使用することによって、被膜の難燃性や耐熱性を向上させることができる。しかし、(A)の活性エネルギー線硬化性樹脂だけでは、被膜の難燃性、耐熱性は高くすることができるが、感度、特にソルダーレジストとして使用した場合に要求される感度を満足することができないことが判った。このため、例えばソルダーレジストとして要求される感度を満足するため、(a)式(1)、式(2)以外のエポキシ樹脂から合成された活性エネルギー線硬化性樹脂組成物を併用する。
しかし、(a)成分の量を、充分に高い感度を得られる程度に増加させると、被膜の難燃性は低下する傾向がある。ここで、本発明では、(D)成分のエポキシ樹脂を更に併用する。これは、分子中にフェニル基やビフェニル基を含有する特定のエポキシ樹脂であり、かつ(A)と同じ構造部分を有している。このようなエポキシ樹脂を併用することにより、着火した際に、樹脂組成物の硬化物の内部で発生する分解ガスにより被膜表面がゴム上に膨張して発泡層を生成し易くなる。
本発明者等は、このような組成物をベースとした上で、更に(E)モリブデン化合物を添加することによって、活性エネルギー線硬化型樹脂(a)に由来する感度や被膜特性を保持しつつ、活性エネルギー線硬化型樹脂(A)やエポキシ樹脂(D)から構成される硬化物を着火時に形成する発泡層を効果的に強化し、これによって高度な難燃性を発現できることを知見した。However, in any conventional technique, for example, it exhibits a high degree of flame retardancy as required for semiconductor applications, and a high degree of sensitivity, tackiness, developability, chemical resistance, for example, required for a semiconductor solder resist film. No photosensitive resin composition that exhibits heat resistance, heat resistance, and insulation resistance is provided.
The object of the present invention is a photosensitive resin which exhibits a high degree of sensitivity, tackiness, developability, chemical resistance, heat resistance, insulation resistance, and exhibits excellent flame retardancy without using a halogen-based or phosphorus-based compound. It is to provide a composition.
Another object of the present invention is to provide a printed wiring board before or after mounting an electronic component having a cured film of a solder resist film of the photosensitive resin composition, or an electronic component mounting structure such as a semiconductor package substrate. It is.
The photosensitive resin composition according to the present invention is
(A) one or more active energy ray-curable resins selected from the group consisting of (A1) and (A2),
(A1) A reaction product of an epoxy resin selected from the group consisting of the epoxy resin of formula (1) and the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, and a polybasic acid and a polybasic acid anhydride. A resin obtained by reacting a compound selected from the group;
(A2) A reaction product of an epoxy resin selected from the group consisting of the epoxy resin of formula (1) and the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, and a polybasic acid and a polybasic acid anhydride. A resin obtained by reacting a compound selected from the group with a glycidyl compound further having a radical polymerizable unsaturated group and an epoxy group,
(A) one or more active energy ray-curable resins selected from the group consisting of (a1) and (a2),
(A1) selected from the group consisting of an epoxy resin other than the epoxy resin of formula (1) and the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride A resin obtained by reacting with a compound,
(A2) selected from the group consisting of a reaction product of an epoxy resin other than the epoxy resin of formula (1) and the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride A resin obtained by further reacting a resin obtained by reacting a compound with a glycidyl compound having a radical polymerizable unsaturated group and an epoxy group,
(B) a photopolymerization initiator,
(C) a reactive diluent,
(D) an epoxy resin selected from the group consisting of a compound of formula (1) and a compound of formula (2);
(D) It contains an epoxy resin other than the compound of formula (1) and the compound of formula (2), and (E) a molybdenum compound.
Figure 0004878597
(N = 1 or more and 10 or less)
Figure 0004878597
(N = 1 or more and 10 or less)
The present invention also relates to a printed wiring board or a semiconductor package substrate before or after mounting an electronic component, characterized by having the photosensitive resin composition. The substrate is not limited to a plate shape, and may be a sheet that is flexibly curved or a deformed shape such as a spherical shape.
The photosensitive resin composition of the present invention is sensitive to active energy rays and can be developed with a dilute alkaline aqueous solution, and when used as a solder resist for printed wiring boards, it has heat resistance, adhesion, insulation. It is possible to form a coating film having excellent properties and flame retardancy, and is suitable for a solder resist of a printed wiring board substrate.
That is, the active energy ray-curable resins (A1) and (A2) obtained by synthesizing the compounds of the formulas (1) and (2) having a specific selected aromatic skeleton and glycidyl group side chain as a starting point By using it, the flame retardancy and heat resistance of the coating can be improved. However, the active energy ray-curable resin (A) alone can increase the flame retardancy and heat resistance of the coating, but it can satisfy the sensitivity, especially the sensitivity required when used as a solder resist. I found it impossible. For this reason, for example, in order to satisfy the sensitivity required as a solder resist, (a) an active energy ray-curable resin composition synthesized from an epoxy resin other than the formula (1) and the formula (2) is used in combination.
However, if the amount of the component (a) is increased to such an extent that a sufficiently high sensitivity can be obtained, the flame retardancy of the coating tends to decrease. Here, in this invention, the epoxy resin of (D) component is further used together. This is a specific epoxy resin containing a phenyl group or a biphenyl group in the molecule, and has the same structural portion as (A). By using such an epoxy resin together, when ignited, the coating surface expands on the rubber by the decomposition gas generated inside the cured product of the resin composition, and a foamed layer is easily generated.
Based on such a composition, the inventors further added (E) a molybdenum compound, while maintaining the sensitivity and film properties derived from the active energy ray-curable resin (a). The present inventors have found that a foamed layer that forms a cured product composed of an active energy ray-curable resin (A) or an epoxy resin (D) at the time of ignition is effectively strengthened, and thereby high flame retardancy can be expressed.

本発明において (A)活性エネルギー線硬化性樹脂とは、(A1)および(A2)からなる群より選ばれた一種以上の活性エネルギー線硬化性樹脂である。
(A1) 式(1)のエポキシ樹脂および式(2)のエポキシ樹脂からなる群より選ばれたエポキシ樹脂と不飽和モノカルボン酸との反応物と、多塩基酸および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得られる樹脂、
(A2) 式(1)のエポキシ樹脂および式(2)のエポキシ樹脂からなる群より選ばれたエポキシ樹脂と不飽和モノカルボン酸との反応物と、多塩基酸および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得られる樹脂を、更にラジカル重合性不飽和基とエポキシ基を有するグリシジル化合物と反応させて得られる樹脂
(A)の樹脂は、(A1)から一種または二種以上を選択してよく、(A2)から一種または二種以上を選択してよく、(A1)(A2)の両方から選択してもよい。
また、式(1)のエポキシ樹脂の一種または二種以上を上述のように反応させてよく、式(2)のエポキシ樹脂の一種または二種以上を上述のように反応させてよく、式(1)のエポキシ樹脂と式(2)のエポキシ樹脂との両方の混合物を上述のように反応させてもよい。
本発明において、式(1)、式(2)の化合物から合成した活性エネルギー線硬化性樹脂は、ビフェニル基やフェニル基といった剛直な官能基を主鎖に含む。そして、分子中にフェニル基やビフェニル基を含有する活性エネルギー線硬化樹脂が反応して架橋構造を形成しているために、着火した際に、樹脂組成物の硬化物の内部で発生する分解ガスにより表面がゴム状に膨張して発泡層を形成して熱分解による揮発物質を閉じ込める。この発泡層により、未燃焼部への熱と酸素の供給が遮断され高度な難燃性が発現する。しかも、類似の構造で、式(1)(2)の化合物から合成した樹脂を利用したときに、高い難燃性と、感度、耐熱性、現像性といった種々の特性を向上させ得ることを見いだした。
式(1)、式(2)において、nは1〜10である。nが11を超えると樹脂粘度が高くなり過ぎる。本発明の観点からは、nは7以下であることが更に好ましい。
式(1)、(2)のエポキシ樹脂は、これに対応する構造の各フェノール樹脂をグリシジルエーテル化させて得られる。
本発明においては、(A)成分に加えて、(a) (a1)および(a2)からなる群より選ばれた一種以上の活性エネルギー線硬化性樹脂を併用する。
(a1) 式(1)のエポキシ樹脂および式(2)のエポキシ樹脂以外のエポキシ樹脂と不飽和モノカルボン酸との反応物と、多塩基酸および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得られる樹脂、
(a2) 式(1)のエポキシ樹脂および式(2)のエポキシ樹脂以外のエポキシ樹脂と不飽和モノカルボン酸との反応物と、多塩基酸および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得られる樹脂を、更にラジカル重合性不飽和基とエポキシ基を有するグリシジル化合物と反応させて得られる樹脂
(A)の活性エネルギー線硬化性樹脂だけでは、被膜の難燃性、耐熱性は高くすることができるが、感度、特にソルダーレジストとして使用した場合に要求される感度を満足することができないことが判った。このため、例えばソルダーレジストとして要求される感度を満足するため、(a)式(1)、式(2)以外のエポキシ樹脂から合成された活性エネルギー線硬化性樹脂組成物を併用する。
ここで、式(1)(2)以外のエポキシ樹脂としては、分子中にエポキシ基を2個以上有する多官能エポキシ樹脂が好ましい。また、主鎖骨格中にビフェニル骨格や、ナフタレン骨格等の縮合芳香環骨格を有していないことが好ましい。
上記多官能エポキシ樹脂としては、2官能以上のエポキシ樹脂であればいずれでも使用可能であり、通常1,000以下、好ましくは100〜500のエポキシ当量のものを用いる。例えば、ビスフェノールA型、ビスフェノールF型等のビスフェノール型エポキシ樹脂、o−クレゾールノボラック等のノボラック型エポキシ樹脂、環状脂肪族多官能エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環式多官能エポキシ樹脂、ビスフェノール変性ノボラック型エポキシ樹脂等を挙げることができる。これらのエポキシ樹脂は単独で用いても良く、また2種類以上を併用しても良い。
以下、(A1)(A2)(a1)(a2)の各成分の合成について更に述べる。
(A1)は、式(1)のエポキシ樹脂および式(2)のエポキシ樹脂からなる群より選ばれたエポキシ樹脂と不飽和モノカルボン酸との反応物と、多塩基酸および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得られる。
(a1)は、式(1)のエポキシ樹脂および式(2)のエポキシ樹脂以外のエポキシ樹脂と不飽和モノカルボン酸との反応物と、多塩基酸および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得られる。このプロセスについて述べる。
まず、式(1)のエポキシ樹脂、式(2)のエポキシ樹脂、または式(1)(2)以外のエポキシ樹脂の少なくとも一部に、アクリル酸又はメタクリル酸等のラジカル重合性不飽和モノカルボン酸を反応させ、これによって生成した水酸基に多塩基酸またはその無水物を反応させる。
式(1)のエポキシ樹脂、式(2)のエポキシ樹脂、または式(1)(2)以外のエポキシ樹脂にラジカル重合性不飽和モノカルボン酸を反応させると、エポキシ基とカルボキシル基との反応によりエポキシ樹脂が開裂し、水酸基とエステル結合が生成する。使用するラジカル重合性不飽和モノカルボン酸としては特に制限はなく、例えば、(メタ)アクリル酸、クロトン酸、桂皮酸などがあるが、(メタ)アクリル酸が最も好適である。エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応方法には特に制限はなく、例えばエポキシ樹脂と(メタ)アクリル酸を適当な溶剤中で触媒とともに加熱、攪拌することにより反応させることができる。溶剤としては例えば、メチルエチルケトン、シクロヘキサノンなどのケトン類、トルエン、キシレン等の芳香族炭化水素、メタノール、エタノール、イソプロパノール、シクロヘキサノール等のアルコール類、シクロヘキサノン、メチルシクロヘキサノンなどの脂環式炭化水素類、石油エーテル、石油ナフサ等の石油系溶剤類、セロソルブ、ブチルセロソルブ等のセロソルブ類、カルビトール、ブチルカルビトール等のカルビトール類、酢酸エチル、酢酸ブチル、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート等の酢酸エステル類をあげることができる。また、触媒としては、例えばトリエチルアミン、トリブチルアミン、ジメチルベンジルアミン等のアミン類、トリフェニルホスフィン、トリフェニルホスフェート等のリン化合物類等を挙げることができる。
上記の各エポキシ樹脂とラジカル重合性不飽和モノカルボン酸の反応において、エポキシ樹脂が有するエポキシ基1当量あたりラジカル重合性不飽和モノカルボン酸を0.7〜1.0当量反応させることが好ましい。(メタ)アクリル酸を用いるときは、さらに好ましくは0.8〜1.0当量反応させる。ラジカル重合不飽和モノカルボン酸が0.7当量未満であると、後続の合成反応時にゲル化を起こすことや、樹脂の保存安定性が悪くなる懸念がある。また、ラジカル重合性不飽和モノカルボン酸が過剰であると未反応のカルボン酸が多く残存するため、硬化物の諸特性を低下させる恐れがある。エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応は、加熱状態で行うことが望ましく、その反応温度は80〜140℃であることが好ましい。反応温度が140℃を超えるとラジカル重合性不飽和モノカルボン酸が熱重合を起こしやすくなり、合成が困難になることがあり、また80℃未満では反応速度が遅くなり、実際の製造上好ましくないことがある。エポキシ樹脂とラジカル重合性不飽和モノカルボン酸の反応生成物は単離することなく、溶液のまま、次の多塩基酸類との反応に供することができる。
上記エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応生成物である不飽和モノカルボン酸化エポキシ樹脂に、多塩基酸またはその無水物を反応させる。多塩基酸またはその無水物としては、特に制限はなく、飽和、不飽和のいずれでも使用できる。このような多塩基酸としては、コハク酸、マレイン酸、アジピン酸、フタル酸、テトラヒドロフタル酸、3−メチルテトラヒドロフタル酸、4−メチルテトラヒドロフタル酸、3−エチルテトラヒドロフタル酸、4−エチルテトラヒドロフタル酸、ヘキサヒドロフタル酸、3−メチルヘキサヒドロフタル酸、4−メチルヘキサヒドロフタル酸、3−エチルヘキサヒドロフタル酸、4−エチルヘキサヒドロフタル酸、トリメリット酸、ピロメリット酸及びジグリコール酸などが挙げられ、多塩基酸無水物としてはこれらのすべての無水物が挙げられる。これらの化合物は単独でも使用でき、また2種類以上混合しても良い。多塩基酸または多塩基酸無水物は、上記の各エポキシ樹脂とラジカル重合性不飽和モノカルボン酸との反応で生成した水酸基に反応し、樹脂に遊離のカルボキシル基を持たせる。
多塩基酸またはその無水物の使用量は、各エポキシ樹脂とラジカル重合性不飽和モノカルボン酸の反応生成物が有する水酸基1モルに対し、0.2〜1.0モルであることが望ましい。露光時に高感度の樹脂膜が得られる点からは、0.3〜0.9モル、さらに好ましくは0.4〜0.9モルで反応させる。0.2モル未満であると得られた樹脂の希アルカリ水溶液に対する溶解性が低下することがあり、また1.0モルを超えると最終的に得られる硬化塗膜の諸特性を低下させることがある。多塩基酸またはその無水物は、上記の不飽和モノカルボン酸化エポキシ樹脂に添加され、脱水縮合反応され、反応時に生成した水は反応系から連続的に取り出すことが好ましいが、その反応は加熱状態で行うことが好ましく、その反応温度は70〜130℃であることが好ましい。反応温度が130℃を超えるとエポキシ樹脂に結合されたものや、未反応のラジカル重合性不飽和基が熱重合を起こしやすくなって合成が困難になることがあり、また70℃未満では反応速度が遅くなり、実際の製造上好ましくないことがある。上記の多塩基酸またはその無水物と不飽和モノカルボン酸化エポキシ樹脂との反応生成物である多塩基酸変性不飽和カルボン酸化エポキシ樹脂の酸価は60〜130mgKOH/gが好ましい。反応させる多塩基酸またはその無水物の量により、反応生成物の酸価は調整することが可能である。
本発明においては、上記の多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂を感光性樹脂として使用できる。これは活性エネルギー線硬化性樹脂(A1)(a1)に該当する。
一方、この多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂(A1)(a1)の有するカルボキシル基に、1個以上のラジカル重合性不飽和基とエポキシ基を有するグリシジル化合物を反応させることにより、ラジカル重合性不飽和基を更に導入し、さらに感光性を向上させた感光性樹脂(A2)(a2)としてもよい。この感光性を向上させた感光性樹脂は、最終のグリシジル化合物との反応によって、ラジカル重合性不飽和基が、その感光性樹脂の側鎖として結合するため、ラジカル重合性が高く、優れた感光特性を付与することができる。
1個以上のラジカル重合性不飽和基とエポキシ基を有するグリシジル化合物としては、例えば、グリシジル(メタ)アクリレート、アリルグリシジルエーテル、ペンタエリスリトールトリアクリレートモノグリシジルエーテル等が挙げられる。なお、グリシジル基は複数個有していてもよい。上記グリシジル化合物は、上記の多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂の溶液に添加して反応させるが、その樹脂に導入したカルボキシル基1モルに対し、通常0.05〜0.5モルの割合で反応させる。得られる感光性樹脂を含有する感光性樹脂組成物の感光性や、熱管理幅、絶縁特性を考慮すると、0.1〜0.5モルの割合で反応させるのがよく、反応温度は80〜120℃が好ましい。このようにして得られるグリシジル化合物付加多塩基酸変性不飽和モノカルボン酸化エポキシ樹脂からなる感光性樹脂の酸価は45〜250mgKOH/gであることが望ましい。
活性エネルギー線硬化樹脂(A)は、本発明の感光性樹脂組成物中の2〜40重量%の割合で添加することが好ましい。この添加量が2重量%より少ないと、十分な難燃性が得られにくい。この添加量が40重量%を超えると、樹脂組成物の感光性が低下し、例えばソルダーレジストとしての要求を満たすことが困難となる傾向がある。
活性エネルギー線硬化樹脂(a)は、本発明の感光性樹脂組成物中の5〜30重量%の割合で添加することが好ましい。この添加量が5重量%より少ないと、樹脂組成物の感光性が低下し、例えばソルダーレジストとしての要求を満たすことが困難となる傾向がある。この添加量が30重量%より多いと、難燃性が得られにくくなる。
光重合開始剤(B)としては、特に制限はなく、従来知られているものはいずれも使用できる。具体的には、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン−n−ブチルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、ジメチルアミノアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モルフォリノ−プロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−2−(ヒドロキシ−2−プロピル)ケトン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノ)ブタノン、ベンゾフェノン、p−フェニルベンゾフェノン、4,4’−ジエチルアミノベンゾフェノン、ジクロロベンゾフェノン、2−メチルアントラキノン、2−エチルアントラキノン、2−tert−ブチルアントラキノン、2−アミノアントラキノン、2−メチルチオキサントン、2,4−ジエチルチオキサントン等が挙げられる。これらは単独あるいは2種類以上組み合わせて用いることができる。
光重合開始剤(B)の使用量は、上記(A)成分の活性エネルギー線硬化性樹脂100質量部に対して0.5〜50質量部であり、0.5質量部未満では(A)成分の活性エネルギー線硬化性樹脂の光重合反応が不十分となり、50質量部を超えると添加量の割合に対する光重合性の効果は向上しない。
反応性希釈剤(C)としては、上記(A)成分の活性エネルギー線硬化性樹脂の光硬化をさらに十分にして、耐薬品性を付与するものであって、1分子中に少なくとも二重結合を1個以上、好適には2個以上有する化合物である。反応性希釈剤として好ましくは、常温にて液状であり、沸点が100℃以上、もしくは100℃未満で昇華しないものである。常温にて固形であると、反応性希釈剤を配合したソルダーレジスト組成物を露光する際、塗膜中で反応性希釈剤分子の移動が起こりにくく、十分な硬化深度が得られない。また、沸点や昇華点が100℃未満であるとソルダーレジスト組成物中に含まれる溶剤を乾燥する際に、同時に反応性希釈剤も蒸発してしまうためである。通常用いられる反応性希釈剤としては、1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタジエニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンタジエニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の反応性希釈剤が挙げられる。上記の反応性希釈剤は単独または複数の混合系においても使用可能である。
反応性希釈剤(C)の添加量は(A)成分の活性エネルギー線硬化性樹脂100質量部あたり、通常2〜40質量部の範囲で使用される。添加量が2質量部より少ないと、十分な光硬化が得られず、硬化塗膜の耐薬品性、耐めっき性において十分な性能が得られ難く、また、添加量が40質量部を超えるとタックが強くなり、接触型露光装置を使用した露光工程の際に露光マスクの基板の付着が生じやすくなり、目的とする硬化塗膜が得られ難くなる。
本発明において、(D)式(1)のエポキシ樹脂および式(2)のエポキシ樹脂からなる群より選ばれたエポキシ樹脂は、本発明の感光性樹脂において、その塗膜を露光し、現像した後の工程であるポストキュアによって塗膜の性能を向上させるものである。
本発明において、(D)成分のエポキシ樹脂は、ビフェニルやフェニルといった剛直な官能基を主鎖に含む。分子中にフェニル基やビフェニル基を含有するエポキシ樹脂が反応して架橋構造を形成しているために、着火した際に、樹脂組成物の硬化物の内部で発生する分解ガスにより表面がゴム上に膨張して発泡層を形成して熱分解による揮発物質を閉じ込める。この発泡層により、未燃焼部への熱と酸素の供給が遮断され高度な難燃性が発現する。(D)式(1)のエポキシ樹脂および式(2)のエポキシ樹脂からなる群より選ばれたエポキシ樹脂は前述したが、具体的には、「NC−3000」「NC−3000−H」(以上、日本化薬社製)や、「XL」・「XLC」シリーズ(特殊フェノール樹脂、ザイロック)のエポキシ化物(三井化学製)が挙げられる。
本発明のエポキシ樹脂は、上記(D)成分の他に、(d)式(1)、式(2)の化合物以外の1分子中に少なくとも2個のエポキシ基を有するエポキシ樹脂を併用できる。具体的には、フェノールノボラック型樹脂として、エピコート152、同154(以下、ジャパンエポキシレジン社製)、エピクロンN−740、同N−770(以上、大日本インキ化学工業社製)、クレゾールノボラック型エポキシ樹脂として、エピクロンN−680、同N−695(以上、大日本インキ化学工業社製)、ジシクロペンタジエン型エポキシ樹脂としてエピクロンHP−7200(大日本インキ化学工業社製)、グリシジルアミン型エポキシ樹脂としては、TEPIC−S、TEPIC−H(日産化学社製)、ビスフェノールA型エポキシ樹脂として、エピコート1001、同1002、同1003、同1004(以上、ジャパンエポキシレジン社製)、エピクロン1050、同3050(以上、大日本インキ化学工業社製)、アラルダイトAER6071、同AER6072(以上、旭チバ社製)、エポトートYD−011、同YD−012(以上、東都化成社製)、ビスフェノールF型エポキシ樹脂としてエポトートYDF−2001、同YDF−2004(以上、東都化成社製)、水添ビスフェノールA型エポキシ樹脂としてエピクロンEXA−7015(大日本インキ工業社製)、その他の骨格を有するエポキシ樹脂としてエピコートYX−4000、同1031S(ジャパンエポキシレジン社製)、エポトートYSLV−80XY(東都化成社製)が挙げられる。
上記(D)エポキシ系熱硬化樹脂は、(A)成分の活性エネルギー線硬化性樹脂100質量部に対して5〜30質量部の割合で添加することが好ましい。また、(d)エポキシ系熱硬化樹脂は、上記(A)成分の活性エネルギー線硬化性樹脂100質量部に対して5〜30質量部の割合で添加することが好ましい。また、(D)成分と(d)成分との合計量は、(A)成分の活性エネルギー線硬化性樹脂100質量部に対して20〜50質量部の割合であることが好ましい。
(D)(d)成分の添加量が前記下限値未満では、ポストキュア後のソルダーレジストとしては、十分な耐熱性、密着性、めっき耐性が得られにくい。(D)(d)成分の添加量が前記上限値を超えると、希アルカリ水溶液に溶解し難くなり、はんだ付けランド上にソルダーレジスト組成物が残存する、いわゆるスカムが発生しやすくなる。これらのエポキシ系熱硬化樹脂は単独で用いても良く、また2種類以上を併用しても良い。また、反応促進剤として、メラミン化合物、イミダゾール化合物、フェノール化合物等の公知のエポキシ樹脂硬化促進剤を併用することもできる。
本発明において、(E)モリブデン化合物とは、モリブデン元素を含む化合物であるが、モリブデン酸塩を含有する材料が好ましく、この材料を使用することで、難燃性が向上する。これは、モリブデン化合物の添加によって、本願の活性エネルギー線硬化型樹脂(A)やエポキシ樹脂(D)のように分子中にフェニル基やビフェニル基などの芳香族類を含有する樹脂から構成される硬化物が熱分解するのが、特有かつ効率的に抑制されて、前記の硬化物が着火時に形成する発泡層の表面に強固な炭化被膜が生成された結果と考える。モリブデン酸塩の具体例としては、モリブデン酸亜鉛、モリブデン酸亜鉛と珪酸マグネシウムの複合化物、モリブデン酸カルシウムおよびモリブデン酸亜鉛カルシウムが挙げられる。モリブデン化合物の添加量は、(A)成分の活性エネルギー線硬化性樹脂100質量部あたり、通常5〜40質量部の範囲で使用される。添加量が5質量部より少ないと十分な難燃性が得られず、添加量が40質量部を超えると、レベリング性やアルカリ現像性に弊害を及ぼす可能性がある。
本発明のソルダーレジスト組成物には、上記の成分のほかに、必要に応じて種々の添加剤、例えばシリカ、アルミナ、タルク、炭酸カルシウム、硫酸バリウム、水酸化マグネシウムや水酸化アルミニウム等の無機顔料、銅フタロシアニン、イソインドリン、カーボンブラック等の公知の着色顔料、消泡剤、レベリング剤等の塗料用添加剤等を含有させることができる。
上記のようにして得られたソルダーレジスト組成物は、例えば銅張積層板の銅箔をエッチングして導体回路を有する回路基板に所定の厚さで塗布し、60〜80℃の温度で15〜60分間程度加熱して溶剤を蒸発させた後、上記回路のはんだ付けランドを遮光したパターンのマスクを密着させ、その上から紫外線を照射し、このはんだ付けランドに対応する非露光領域を希アルカリ水溶液で除去することにより、塗膜が現像される。この希アルカリ水溶液としては、0.5〜5質量%の炭酸ナトリウム水溶液が一般的であるが、他のアルカリでも使用可能である。続いて140〜160℃の熱風循環式の乾燥炉で10〜60分間ポストキュアを行うことにより、目的とするソルダーレジスト皮膜を得ることができる。このようにしてソルダーレジスト膜で被覆したプリント配線板が得られ、これに電子部品が噴流はんだ付け方法やリフローはんだ付け方法により接続、搭載される。また、半導体チップを搭載した後、トランスファーモールド成形で、半導体チップを樹脂封止したり、アンダーフィル樹脂によって固定し、半導体パッケージ基板として述のはんだ付け方法によって他の基板に搭載される。本発明においては、電子部品あるいは半導体チップ搭載前のソルダーレジストを被覆したプリント配線板、このプリント配線板に電子部品あるいは半導体チップを搭載したプリント配線板およびこのプリント配線板を使用した電子機器のいずれもその対象に含む。
In the present invention, the (A) active energy ray-curable resin is one or more active energy ray-curable resins selected from the group consisting of (A1) and (A2).
(A1) A reaction product of an epoxy resin selected from the group consisting of the epoxy resin of formula (1) and the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, and a polybasic acid and a polybasic acid anhydride. A resin obtained by reacting a compound selected from the group;
(A2) A reaction product of an epoxy resin selected from the group consisting of the epoxy resin of formula (1) and the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, and a polybasic acid and a polybasic acid anhydride. A resin obtained by reacting a compound selected from the group with a glycidyl compound having a radically polymerizable unsaturated group and an epoxy group, and the resin of (A) is one kind from (A1) or Two or more types may be selected, one type or two or more types may be selected from (A2), and both (A1) and (A2) may be selected.
Also, one or more of the epoxy resins of formula (1) may be reacted as described above, one or more of the epoxy resins of formula (2) may be reacted as described above, and the formula ( A mixture of both the epoxy resin of 1) and the epoxy resin of formula (2) may be reacted as described above.
In the present invention, the active energy ray-curable resin synthesized from the compounds of the formulas (1) and (2) contains a rigid functional group such as a biphenyl group or a phenyl group in the main chain. And since the active energy ray curable resin containing phenyl group or biphenyl group in the molecule reacts to form a cross-linked structure, the decomposition gas generated inside the cured product of the resin composition when ignited As a result, the surface expands into a rubber-like shape to form a foamed layer and confine volatile substances due to thermal decomposition. By this foamed layer, the supply of heat and oxygen to the unburned part is cut off, and a high degree of flame retardancy is exhibited. Moreover, it has been found that when a resin synthesized from the compounds of the formulas (1) and (2) is used with a similar structure, various properties such as high flame retardancy and sensitivity, heat resistance and developability can be improved. It was.
In Formula (1) and Formula (2), n is 1-10. When n exceeds 11, the resin viscosity becomes too high. From the viewpoint of the present invention, n is more preferably 7 or less.
The epoxy resins of the formulas (1) and (2) are obtained by glycidyl etherification of each phenol resin having a structure corresponding thereto.
In the present invention, in addition to the component (A), one or more active energy ray-curable resins selected from the group consisting of (a) (a1) and (a2) are used in combination.
(A1) selected from the group consisting of an epoxy resin other than the epoxy resin of formula (1) and the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride A resin obtained by reacting with a compound,
(A2) selected from the group consisting of a reaction product of an epoxy resin other than the epoxy resin of formula (1) and the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride Resin obtained by further reacting a resin with a compound and a glycidyl compound having a radical polymerizable unsaturated group and an epoxy group. It has been found that although the heat resistance can be increased, the sensitivity, particularly the sensitivity required when used as a solder resist, cannot be satisfied. For this reason, for example, in order to satisfy the sensitivity required as a solder resist, (a) an active energy ray-curable resin composition synthesized from an epoxy resin other than the formula (1) and the formula (2) is used in combination.
Here, as an epoxy resin other than formulas (1) and (2), a polyfunctional epoxy resin having two or more epoxy groups in the molecule is preferable. The main chain skeleton preferably does not have a condensed aromatic ring skeleton such as a biphenyl skeleton or a naphthalene skeleton.
Any polyfunctional epoxy resin may be used as long as it is a bifunctional or higher functional epoxy resin, and one having an epoxy equivalent of usually 1,000 or less, preferably 100 to 500 is used. For example, bisphenol type epoxy resins such as bisphenol A type and bisphenol F type, novolak type epoxy resins such as o-cresol novolak, cycloaliphatic polyfunctional epoxy resins, glycidyl ester type epoxy resins, glycidyl amine type epoxy resins, heterocyclic type A polyfunctional epoxy resin, a bisphenol-modified novolac type epoxy resin, and the like can be given. These epoxy resins may be used alone or in combination of two or more.
Hereinafter, the synthesis of each component of (A1) (A2) (a1) (a2) will be further described.
(A1) is a reaction product of an epoxy resin selected from the group consisting of an epoxy resin of formula (1) and an epoxy resin of formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride It is obtained by reacting with a compound selected from the group consisting of
(A1) is selected from the group consisting of an epoxy resin other than the epoxy resin of formula (1) and the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride It is obtained by reacting with the compound obtained. This process is described.
First, at least part of the epoxy resin of formula (1), the epoxy resin of formula (2), or the epoxy resin other than formulas (1) and (2), a radically polymerizable unsaturated monocarboxylic acid such as acrylic acid or methacrylic acid An acid is reacted, and a polybasic acid or an anhydride thereof is reacted with a hydroxyl group formed thereby.
Reaction of an epoxy group and a carboxyl group by reacting an epoxy resin of formula (1), an epoxy resin of formula (2), or an epoxy resin other than formulas (1) and (2) with a radical polymerizable unsaturated monocarboxylic acid As a result, the epoxy resin is cleaved to form a hydroxyl group and an ester bond. There is no restriction | limiting in particular as radically polymerizable unsaturated monocarboxylic acid to be used, For example, (meth) acrylic acid, crotonic acid, cinnamic acid etc. are mentioned, However, (meth) acrylic acid is the most suitable. There is no particular limitation on the reaction method of the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid. For example, the epoxy resin and (meth) acrylic acid can be reacted by heating and stirring together with a catalyst in an appropriate solvent. . Examples of the solvent include ketones such as methyl ethyl ketone and cyclohexanone, aromatic hydrocarbons such as toluene and xylene, alcohols such as methanol, ethanol, isopropanol and cyclohexanol, alicyclic hydrocarbons such as cyclohexanone and methylcyclohexanone, petroleum Petroleum solvents such as ether and petroleum naphtha, cellosolves such as cellosolve and butylcellosolve, carbitols such as carbitol and butylcarbitol, ethyl acetate, butyl acetate, butylcellosolve acetate, carbitol acetate, butyl carbitol acetate, etc. Acetates can be mentioned. Examples of the catalyst include amines such as triethylamine, tributylamine and dimethylbenzylamine, and phosphorus compounds such as triphenylphosphine and triphenylphosphate.
In the reaction of each epoxy resin and the radical polymerizable unsaturated monocarboxylic acid, it is preferable to react 0.7 to 1.0 equivalent of the radical polymerizable unsaturated monocarboxylic acid per 1 equivalent of the epoxy group of the epoxy resin. When (meth) acrylic acid is used, a 0.8 to 1.0 equivalent reaction is more preferred. If the radical polymerization unsaturated monocarboxylic acid is less than 0.7 equivalent, gelation may occur during the subsequent synthesis reaction and the storage stability of the resin may be deteriorated. In addition, if the radical polymerizable unsaturated monocarboxylic acid is excessive, a large amount of unreacted carboxylic acid remains, which may deteriorate various properties of the cured product. The reaction between the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid is desirably performed in a heated state, and the reaction temperature is preferably 80 to 140 ° C. When the reaction temperature exceeds 140 ° C, the radically polymerizable unsaturated monocarboxylic acid is likely to undergo thermal polymerization and may be difficult to synthesize. Also, when the reaction temperature is less than 80 ° C, the reaction rate becomes slow, which is not preferable in actual production. Sometimes. The reaction product of the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid can be subjected to the reaction with the next polybasic acid as it is without isolation.
A polybasic acid or an anhydride thereof is reacted with the unsaturated monocarboxylic oxide epoxy resin which is a reaction product of the epoxy resin and the radically polymerizable unsaturated monocarboxylic acid. There is no restriction | limiting in particular as a polybasic acid or its anhydride, Either saturated or unsaturated can be used. Such polybasic acids include succinic acid, maleic acid, adipic acid, phthalic acid, tetrahydrophthalic acid, 3-methyltetrahydrophthalic acid, 4-methyltetrahydrophthalic acid, 3-ethyltetrahydrophthalic acid, 4-ethyltetrahydrohydro Phthalic acid, hexahydrophthalic acid, 3-methylhexahydrophthalic acid, 4-methylhexahydrophthalic acid, 3-ethylhexahydrophthalic acid, 4-ethylhexahydrophthalic acid, trimellitic acid, pyromellitic acid and diglycol An acid etc. are mentioned, and all these anhydrides are mentioned as a polybasic acid anhydride. These compounds can be used alone or in combination of two or more. The polybasic acid or polybasic acid anhydride reacts with the hydroxyl group produced by the reaction of each of the above epoxy resins and the radically polymerizable unsaturated monocarboxylic acid to give the resin a free carboxyl group.
The amount of the polybasic acid or its anhydride is preferably 0.2 to 1.0 mol with respect to 1 mol of the hydroxyl group of the reaction product of each epoxy resin and radically polymerizable unsaturated monocarboxylic acid. From the point of obtaining a highly sensitive resin film at the time of exposure, the reaction is carried out at 0.3 to 0.9 mol, more preferably 0.4 to 0.9 mol. If the amount is less than 0.2 mol, the solubility of the obtained resin in a dilute alkaline aqueous solution may decrease, and if it exceeds 1.0 mol, the properties of the cured film finally obtained may be decreased. is there. The polybasic acid or its anhydride is added to the above unsaturated monocarboxylic oxide epoxy resin and subjected to a dehydration condensation reaction. The water produced during the reaction is preferably continuously removed from the reaction system. The reaction temperature is preferably 70 to 130 ° C. When the reaction temperature exceeds 130 ° C., it may be bonded to an epoxy resin or unreacted radical polymerizable unsaturated group may easily cause thermal polymerization, making synthesis difficult. May be unfavorable in actual production. The acid value of the polybasic acid-modified unsaturated carboxylic acid epoxy resin, which is a reaction product of the polybasic acid or its anhydride and the unsaturated monocarboxylic acid epoxy resin, is preferably 60 to 130 mgKOH / g. The acid value of the reaction product can be adjusted by the amount of the polybasic acid or anhydride thereof to be reacted.
In the present invention, the above polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin can be used as a photosensitive resin. This corresponds to the active energy ray-curable resin (A1) (a1).
On the other hand, by reacting the carboxyl group of the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin (A1) (a1) with a glycidyl compound having one or more radically polymerizable unsaturated groups and an epoxy group, radicals are obtained. It is good also as photosensitive resin (A2) (a2) which introduce | transduced the polymerizable unsaturated group further and also improved photosensitivity. This photosensitive resin with improved photosensitivity has high radical polymerizability and excellent photosensitivity because the radical polymerizable unsaturated group is bonded as a side chain of the photosensitive resin by reaction with the final glycidyl compound. Properties can be imparted.
Examples of the glycidyl compound having one or more radically polymerizable unsaturated groups and an epoxy group include glycidyl (meth) acrylate, allyl glycidyl ether, pentaerythritol triacrylate monoglycidyl ether, and the like. In addition, you may have multiple glycidyl groups. The glycidyl compound is added to the polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin solution and allowed to react. Usually, 0.05 to 0.5 mol of the carboxyl group introduced into the resin. React at a rate. Considering the photosensitivity of the photosensitive resin composition containing the obtained photosensitive resin, the thermal management width, and the insulating properties, it is preferable to react at a ratio of 0.1 to 0.5 mol, and the reaction temperature is 80 to 120 ° C. is preferred. The acid value of the photosensitive resin composed of the glycidyl compound-added polybasic acid-modified unsaturated monocarboxylic oxide epoxy resin thus obtained is preferably 45 to 250 mgKOH / g.
The active energy ray curable resin (A) is preferably added in a proportion of 2 to 40% by weight in the photosensitive resin composition of the present invention. When this addition amount is less than 2% by weight, it is difficult to obtain sufficient flame retardancy. When this addition amount exceeds 40% by weight, the photosensitivity of the resin composition is lowered, and for example, it tends to be difficult to satisfy the requirements as a solder resist.
The active energy ray curable resin (a) is preferably added at a ratio of 5 to 30% by weight in the photosensitive resin composition of the present invention. When this addition amount is less than 5% by weight, the photosensitivity of the resin composition is lowered, and for example, it tends to be difficult to satisfy the requirements as a solder resist. When this addition amount is more than 30% by weight, it becomes difficult to obtain flame retardancy.
The photopolymerization initiator (B) is not particularly limited, and any conventionally known photopolymerization initiator (B) can be used. Specifically, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2- Diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholino-propan-1-one, 4 -(2-hydroxyethoxy) phenyl-2- (hydroxy-2-propyl) ketone, 2-benzyl-2-dimethylamino-1- (4-morpholino) butanone, benzophenone, p-phenylbenzophenone, 4,4'- Diethyl Examples include aminobenzophenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 2-aminoanthraquinone, 2-methylthioxanthone, and 2,4-diethylthioxanthone. These can be used alone or in combination of two or more.
The usage-amount of a photoinitiator (B) is 0.5-50 mass parts with respect to 100 mass parts of active energy ray-curable resins of the said (A) component, and if it is less than 0.5 mass part, (A) The photopolymerization reaction of the component active energy ray-curable resin becomes insufficient, and if it exceeds 50 parts by mass, the effect of photopolymerization on the ratio of the addition amount is not improved.
As the reactive diluent (C), the active energy ray-curable resin of the component (A) is further sufficiently photocured to impart chemical resistance, and at least a double bond in one molecule. Is a compound having 1 or more, preferably 2 or more. The reactive diluent is preferably a liquid at room temperature and has a boiling point of 100 ° C. or higher or less than 100 ° C. and does not sublime. When it is solid at room temperature, when the solder resist composition containing the reactive diluent is exposed, the reactive diluent molecules hardly move in the coating film, and a sufficient curing depth cannot be obtained. Further, when the boiling point or sublimation point is less than 100 ° C., the reactive diluent also evaporates at the same time when the solvent contained in the solder resist composition is dried. Commonly used reactive diluents include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate , Neopentyl glycol adipate di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentadienyl di (meth) acrylate, caprolactone modified dicyclopentadienyl di (meth) acrylate, ethylene oxide modified phosphorus Acid di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, pentaerythritol tri ( Data) acrylate, tris (acryloyloxyethyl) isocyanurate, reactive diluents, such as dipentaerythritol hexa (meth) acrylate. The reactive diluents described above can be used alone or in a mixed system.
The addition amount of the reactive diluent (C) is usually in the range of 2 to 40 parts by mass per 100 parts by mass of the active energy ray-curable resin of the component (A). When the addition amount is less than 2 parts by mass, sufficient photocuring cannot be obtained, and it is difficult to obtain sufficient performance in chemical resistance and plating resistance of the cured coating film, and when the addition amount exceeds 40 parts by mass. The tack becomes strong, and the substrate of the exposure mask is likely to be attached during the exposure process using the contact type exposure apparatus, making it difficult to obtain the desired cured coating film.
In the present invention, (D) the epoxy resin selected from the group consisting of the epoxy resin of formula (1) and the epoxy resin of formula (2) was exposed and developed in the photosensitive resin of the present invention. The performance of the coating film is improved by post-cure, which is a subsequent process.
In the present invention, the epoxy resin of component (D) contains a rigid functional group such as biphenyl or phenyl in the main chain. The epoxy resin containing a phenyl group or biphenyl group in the molecule reacts to form a cross-linked structure, so that when ignited, the surface of the resin composition on the rubber is decomposed by the decomposition gas generated inside the cured product of the resin composition. It expands to form a foam layer and traps volatile substances due to thermal decomposition. By this foamed layer, the supply of heat and oxygen to the unburned part is cut off, and a high degree of flame retardancy is exhibited. (D) Although the epoxy resin selected from the group consisting of the epoxy resin of the formula (1) and the epoxy resin of the formula (2) has been described above, specifically, “NC-3000”, “NC-3000-H” ( As mentioned above, the epoxidized product (made by Mitsui Chemicals) of "XL" and "XLC" series (special phenol resin, XYLOCK) is mentioned.
The epoxy resin of this invention can use together the epoxy resin which has at least 2 epoxy group in 1 molecule other than the compound of (d) Formula (1) and Formula (2) other than the said (D) component. Specifically, as a phenol novolak type resin, Epicoat 152, 154 (hereinafter, Japan Epoxy Resin Co., Ltd.), Epicron N-740, N-770 (above, Dainippon Ink and Chemicals), Cresol Novolac type Epoxylon N-680 and N-695 (manufactured by Dainippon Ink & Chemicals, Inc.) as an epoxy resin, Epicron HP-7200 (manufactured by Dainippon Ink & Chemicals, Inc.), a glycidylamine epoxy as a dicyclopentadiene type epoxy resin As the resin, TEPIC-S, TEPIC-H (manufactured by Nissan Chemical Co., Ltd.), and as bisphenol A type epoxy resin, Epicoat 1001, 1002, 1003, 1004 (above, manufactured by Japan Epoxy Resin Co., Ltd.), Epicron 1050, 3050 (above, manufactured by Dainippon Ink & Chemicals, Inc. , Araldite AER6071, AER6072 (Asahi Ciba), Epototo YD-011, YD-012 (Tohto Kasei), Epototo YDF-2001, YDF-2004 (Above) , Manufactured by Tohto Kasei Co., Ltd.), Epicron EXA-7015 (produced by Dainippon Ink Industries, Ltd.) as a hydrogenated bisphenol A type epoxy resin, and Epicoat YX-4000, 1031S (produced by Japan Epoxy Resin Co., Ltd.) as epoxy resins having other skeletons Epototo YSLV-80XY (manufactured by Toto Kasei Co., Ltd.).
The (D) epoxy thermosetting resin is preferably added at a ratio of 5 to 30 parts by mass with respect to 100 parts by mass of the active energy ray curable resin of the component (A). Moreover, it is preferable to add (d) epoxy type thermosetting resin in the ratio of 5-30 mass parts with respect to 100 mass parts of active energy ray-curable resins of the said (A) component. Moreover, it is preferable that the total amount of (D) component and (d) component is a ratio of 20-50 mass parts with respect to 100 mass parts of active energy ray-curable resin of (A) component.
When the addition amount of the component (D) and (d) is less than the lower limit, it is difficult to obtain sufficient heat resistance, adhesion, and plating resistance as a post-cure solder resist. When the addition amount of the component (D) and (d) exceeds the above upper limit value, it becomes difficult to dissolve in a dilute alkaline aqueous solution, and so-called scum is easily generated in which the solder resist composition remains on the soldering land. These epoxy thermosetting resins may be used alone or in combination of two or more. Moreover, well-known epoxy resin hardening accelerators, such as a melamine compound, an imidazole compound, a phenol compound, can also be used together as a reaction accelerator.
In the present invention, the (E) molybdenum compound is a compound containing a molybdenum element, but a material containing molybdate is preferable, and the use of this material improves flame retardancy. This is composed of a resin containing an aromatic compound such as a phenyl group or a biphenyl group in the molecule, such as the active energy ray-curable resin (A) or epoxy resin (D) of the present application, by adding a molybdenum compound. It is considered that the result of thermal decomposition of the cured product is a result of a specific and efficient suppression, and a strong carbonized film is formed on the surface of the foam layer formed by the cured product upon ignition. Specific examples of molybdate include zinc molybdate, a composite of zinc molybdate and magnesium silicate, calcium molybdate, and zinc calcium molybdate. The addition amount of the molybdenum compound is usually in the range of 5 to 40 parts by mass per 100 parts by mass of the active energy ray-curable resin of the component (A). When the addition amount is less than 5 parts by mass, sufficient flame retardancy cannot be obtained, and when the addition amount exceeds 40 parts by mass, the leveling property and alkali developability may be adversely affected.
In addition to the above components, the solder resist composition of the present invention may contain various additives as required, for example, inorganic pigments such as silica, alumina, talc, calcium carbonate, barium sulfate, magnesium hydroxide and aluminum hydroxide. In addition, known color pigments such as copper phthalocyanine, isoindoline, and carbon black, paint additives such as antifoaming agents and leveling agents, and the like can be contained.
The solder resist composition obtained as described above is applied to a circuit board having a conductor circuit by etching a copper foil of a copper clad laminate, for example, and applied at a predetermined thickness, and 15 to 15 at a temperature of 60 to 80 ° C. After heating for about 60 minutes to evaporate the solvent, a pattern mask that shields light from the soldering lands of the above circuit is brought into close contact, and ultraviolet rays are irradiated from above to mask the unexposed areas corresponding to the soldering lands with dilute alkali. The coating film is developed by removing with an aqueous solution. As this dilute alkali aqueous solution, a 0.5 to 5 mass% sodium carbonate aqueous solution is common, but other alkalis can also be used. Subsequently, a target solder resist film can be obtained by performing post-cure for 10 to 60 minutes in a hot-air circulating drying furnace at 140 to 160 ° C. In this way, a printed wiring board coated with a solder resist film is obtained, and electronic components are connected and mounted thereon by a jet soldering method or a reflow soldering method. Further, after mounting the semiconductor chip, the semiconductor chip is resin-sealed or fixed with an underfill resin by transfer molding, and mounted on another substrate as a semiconductor package substrate by the soldering method described above. In the present invention, any of a printed wiring board coated with a solder resist before mounting an electronic component or a semiconductor chip, a printed wiring board having an electronic component or a semiconductor chip mounted on the printed wiring board, and an electronic device using the printed wiring board. Is also included in the subject.

本発明を実施例により詳細に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。尚、以下において「部」と記述するものは、特に断りのない限り全て「質量部」を表す。
〈(A)活性エネルギー線硬化性樹脂の調製〉
〔合成例1〕
日本化薬社製、NC−3000(エポキシ当量273)273部を、カルビトールアセテート113部に加熱溶解し、アクリル酸70.5部とメチルハイドロキノン0.5部、およびトリフェニルホスフィン0.5部を加え、110〜120℃で8時間反応させる。この反応溶液の酸価が2以下となってから、無水テトラヒドロフタル酸76部と石油ナフサ113部を加え、90〜100℃で2時間反応させて、耐活性エネルギー線硬化性樹脂溶液を得た。この樹脂溶液は17.5部のカルビトールアセテートおよび17.5部の石油ナフサを含有する。
〔合成例2〕
三井化学社製、ミレックスXLC−LL(水酸基当量169)169部を、カルビトールアセテート103.7部に加熱溶解し、グリシジルメタクリレート139.2部とメチルハイドロキノン0.5部およびジメチルベンジルアミン0.5部を加え、110〜120℃で8時間反応させる。この反応溶液の酸価が2以下となってから、無水テトラヒドロフタル酸76部と石油ナフサ103.7部を加え、90〜100℃で2時間反応させて、活性エネルギー線硬化性樹脂溶液を得た。この樹脂溶液は17.5部のカルビトールアセテートおよび17.5部の石油ナフサを含有する。
〈(a)の活性エネルギー線硬化性樹脂の調製〉
〔合成例3〕
クレゾールノボラック型エポキシ樹脂である日本化薬社製、EOCN−104S(エポキシ当量220)220部を、カルビトールアセテート98.9部に加熱溶解し、アクリル酸70.5部とメチルハイドロキノン0.5部、およびトリフェニルホスフィン0.5部を加え、110〜120℃で8時間反応させる。この反応溶液の酸価が2以下となってから、無水テトラヒドロフタル酸76部と石油ナフサ98.9部を加え、90〜100℃で2時間反応させて、活性エネルギー線硬化性樹脂溶液を得た。この樹脂溶液は17.5部のカルビトールアセテートおよび17.5部の石油ナフサを含有する。
〔合成例4〕
ビスフェノールF型エポキシ樹脂である日本化薬社製、KAYARAD R−7509(エポキシ当量320)320部を、カルビトールアセテート125.8部に加熱溶解し、アクリル酸70.5部とメチルハイドロキノン0.5部、およびトリフェニルホスフィン0.5部を加え、110〜120℃で8時間反応させる。この反応溶液の酸価が2以下となってから、無水テトラヒドロフタル酸76部と石油ナフサ125.8部を加え、90〜100℃で2時間反応させて、活性エネルギー線硬化性樹脂溶液を得た。この樹脂溶液は17.5部のカルビトールアセテートおよび17.5部の石油ナフサを含有する。
[実施例1]
合成例1で得られた(A)活性エネルギー線硬化性樹脂溶液を100部に対し、合成例3で得られた(a)活性エネルギー線硬化性樹脂溶液を100部、(B)光重合開始剤としてイルガキュア907(チバ・スペシャリティケミカルズ社製の[2−メチル−1−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン)を17部、DETX−S(日本化薬社製のジエチルチオキサントン)を1部、(C)反応性希釈剤としてDPHA(日本化薬社製のジペンタエリスリトールヘキサアクリレート)23部、(D)エポキシ系硬化樹脂としてNC−3000を20部、(d)エポキシ系硬化樹脂としてエピクロンN−770(大日本インキ化学工業社製のフェノールノボラック型エポキシ硬化樹脂)を20部、(E)として、KEMGARD 911C(日本シャーウィンウィリアムズ製、モリブデン酸亜鉛と珪酸マグネシウムの化合物)を25部、消泡剤としてKS−66(信越化学工業社製)を4部、メラミンを3部、ジシアンジアミドを1部、硫酸バリウムを120部、フタロシアニンブルーを1部、カルビトールアセテートを3部加え、3本ロールミルで混練してソルダーレジスト組成物を調製した。この感光性樹脂組成物について、その組成を表1に示すとともに、UL94V燃焼性、感度、現像性、塗膜性能を後述の試験法によって試験した結果を表1、2に示す。
[実施例2]
実施例1において、合成例1で得られた(A)活性エネルギー線硬化性樹脂溶液の代わりに合成例2で得られた活性エネルギー線硬化性樹脂溶液100部を使用したこと以外は同様にして感光性樹脂組成物を調製し、実施例1と同様に試験した結果を表1、2に示す。
[実施例3]
実施例1において、(a)活性エネルギー線硬化性樹脂溶液として合成例3で得られた活性エネルギー線硬化性樹脂溶液の代わりに合成例4で得られた活性エネルギー線硬化性樹脂溶液100部を使用したこと以外は同様にして感光性樹脂組成物を調製し、実施例1と同様に試験した結果を表1、2に示す。
[実施例4]
実施例1において、(d)エポキシ系硬化樹脂としてエピクロンN−770の代わりにYX−4000(ジャパンエポキシレジン社製の2,2−(3,3’,5,5’−テトラメチル(1,1’−ビフェニル)−4,4’−ジイル)ビス(オキシメチレン))ビスオキシラン)を使用したこと以外は同様にして感光性樹脂組成物を調製し、実施例1と同様に試験した結果を表1、2に示す。
[実施例5]
実施例1において、(d)エポキシ系硬化樹脂としてエピクロンN−770の代わりにエポトートYSLV−800XY(東都化成社製)を使用したこと以外は同様にして感光性樹脂組成物を調製し、実施例1と同様に試験した結果を表1、2に示す。
[実施例6]
実施例1において、(d)エポキシ系硬化樹脂としてエピクロンN−770の代わりにエピコート807(ジャパンポキシレジン社製のビスフェノールF型エポキシ型硬化樹脂)を使用したこと以外は同様にして感光性樹脂組成物を調製し、実施例1と同様に試験した結果を表1、2に示す。
[実施例7]
実施例1において、(C)反応性希釈剤としてDPHAの代わりにカヤラッドR−684(日本化薬社製のジシクロペンタジエニルジアクリレート)23部を使用したこと以外は同様にして感光性樹脂組成物を調製し、実施例1と同様に試験した結果を表1、2に示す。
[実施例8]
実施例1において、(E)としてKEMGARD 911B(日本シャーウィンウィリアムズ製、モリブデン酸亜鉛の化合物)を使用したこと以外は同様にして感光性樹脂組成物を調製し、実施例1と同様に試験した結果を表1、2に示す。
(比較例1)
実施例1において、 (E)を含有しないこと以外は同様にして感光性樹脂組成物を調製し、実施例1と同様に試験した結果を表1、2に示す。
(比較例2)
実施例1において、(a)活性エネルギー線硬化性樹脂溶液として合成例3で得られた活性エネルギー線硬化性樹脂溶液のみを200部使用し、(A)活性エネルギー線硬化性樹脂を使用しないこと以外は同様にして感光性樹脂組成物を調製し、実施例1と同様に試験した結果を表1、2に示す。
(比較例3)
実施例1において、(a)活性エネルギー線硬化性樹脂溶液として合成例3で得られた活性エネルギー線硬化性樹脂溶液のみを200部使用し、(A)活性エネルギー線硬化性樹脂を使用せず、さらに、硫酸バリウムの代わりに水酸化マグネシウムを使用すること以外は同様にして感光性樹脂組成物を調製し、実施例1と同様に試験した結果を表1、2に示す。
(比較例4)
実施例1において、合成例1で得られた(A)活性エネルギー線硬化性樹脂溶液のみを200部使用し、(a)活性エネルギー線硬化性樹脂溶液を使用しないこと以外は同様にして感光性樹脂組成物を調製し、実施例1と同様に試験した結果を表1、2に示す。

Figure 0004878597
Figure 0004878597
[実施例9]
実施例1において、合成例1で得られた(A)活性エネルギー線硬化性樹脂溶液を173部、合成例3で得られた(a)活性エネルギー線硬化性樹脂溶液を27部としたこと以外は同様にして感光性樹脂組成物を調整し、実施例1と同様に試験した結果を表3、4に示す。
[実施例10]
実施例1において、合成例1で得られた(A)活性エネルギー線硬化性樹脂溶液を130部、合成例3で得られた(a)活性エネルギー線硬化性樹脂溶液を70部としたこと以外は同様にして感光性樹脂組成物を調整し、実施例1と同様に試験した結果を表3、4に示す。
[実施例11]
実施例1において、合成例1で得られた(A)活性エネルギー線硬化性樹脂溶液を70部、合成例3で得られた(a)活性エネルギー線硬化性樹脂溶液を125部、(d)エポキシ系硬化樹脂としてエピクロンN−770を15部としたこと以外は同様にして感光性樹脂組成物を調整し、実施例1と同様に試験した結果を表3、4に示す。
[実施例12]
実施例1において、合成例1で得られた(A)活性エネルギー線硬化性樹脂溶液を165部、合成例3で得られた(a)活性エネルギー線硬化性樹脂溶液を35部、(E)としてKEMGARD911Cを9部としたこと以外は同様にして感光性樹脂組成物を調整し、実施例1と同様に試験した結果を表3、4に示す。
Figure 0004878597
Figure 0004878597
試験方法は以下の通りである。
(1)燃焼性
日立化成社製のハロゲンフリー基板MCL−E−679FG(0.3mmt材)にスクリーン印刷法により片面30μmずつ両面塗膜を形成し、この試験片をUL94燃焼性試験に凖じて測定した。
(2)感度
バフ研磨した銅張積層版に、スクリーン印刷法により上記実施例1〜8、比較例1〜4のそれぞれの感光性樹脂組成物を20μm(乾燥後)の厚さで塗布し、80℃で20分間乾燥した後、Kodak CONTROL SCALE T−14(イーストマン・コダック社製)を塗布表面に置き、ブルーフィルター付き散乱光露光装置(TN−890B、小野測器社製)でレジスト表面上500mJ/cm照射した。その後、1%炭酸ナトリウム水溶液を用い、0.2MPaのスプレー圧で90秒間現像し、光硬化性・熱硬化性樹脂塗膜が現像されずに残存している段数を感度とした。
(3)タック性
バフ研磨した銅張積層版に、スクリーン印刷法により上記実施例1〜8、比較例1〜4のそれぞれの感光性樹脂組成物を20μm(乾燥後)の厚さで塗布し、80℃で20分間乾燥後、室温まで冷却した塗膜のべたつきを指触にて確認し、以下の基準に従い評価した。
○:塗膜のべたつきがないもの
△:塗膜のべたつきが若干あるもの
×:塗膜のべたつきが激しいもの
(4)アルカリ現像性
バフ研磨した銅張積層版に、スクリーン印刷法により上記実施例1〜8、比較例1〜4のそれぞれの感光性樹脂組成物を20μm(乾燥後)の厚さで塗布し、80℃で各々10分間隔で乾燥した後、1%炭酸ナトリウム水溶液を用い、0.2MPaのスプレー圧で90秒間で現像できる最長の乾燥時間を測定した。
(5)塗膜性能
バフ研磨した導体回路(導体厚35μm)に、スクリーン印刷法により上記実施例1〜8、比較例1〜4のそれぞれの感光性樹脂組成物を導体回路上20μm(乾燥後)の厚さで塗布し、80℃で20分間乾燥した後、導体回路に対応したパターンが描かれているマスクフィルムを塗膜表面に置き、ブルーフィルター付き散乱光露光装置(TN−890B、小野測器社製)でレジスト表面上500mJ/cm照射した。その後、1%炭酸ナトリウム水溶液を用い、0.2MPaのスプレー圧で90秒間現像した。続いてこの基板を150℃で60分間熱硬化して硬化塗膜を有するプリント配線板を作成し、塗膜性能の評価を行った。
(イ)耐酸性
(5)に上述した方法で作成した試験片を、常温の10質量%硫酸水溶液に30分間浸漬後、水洗した試験片の水分を十分拭き取った後、セロハン粘着テープ(セロハンは商品名)でピーリング試験を行い、塗膜の状態を目視により観察し、以下の基準に従い評価した。
○:まったく変化のみられないもの
△:わずかに変化が見られるもの
×:塗膜が膨潤し剥離しているもの
(ロ)耐溶剤性
(5)に上述した方法で作成した試験片を、常温のジクロロメタンに30分間浸漬後、水洗した試験片の水分を十分拭き取った後、セロハン粘着テープでピーリング試験を行い、塗膜の状態を目視により観察し、以下の基準に従い評価した。
○:まったく変化のみられないもの
△:わずかに変化が見られるもの
×:塗膜が膨潤し剥離しているもの
(ハ)耐金めっき性
(5)に上述した方法で作成した試験片に金メッキ処理を施した後、セロハン粘着テープでピーリング試験を行い、塗膜の状態を目視により観察し、以下の基準に従い評価した。
○:まったく変化のみられないもの
△:わずかに変化が見られるもの
×:塗膜が膨潤し剥離しているもの
(ニ)はんだ耐熱性
(5)に上述した方法で作成した試験片について、JIS C 6481の試験方法に従って260℃のはんだ槽に30秒浸漬後、セロハン粘着テープによるピーリング試験を1サイクルとし、計1〜3サイクルを行った後の塗膜の状態を目視により観察し、以下の基準に従い評価した。
◎:3サイクル後も塗膜に変化がないもの
○:3サイクル後に剥離が生じているもの
△:2サイクル後に剥離が生じているもの
×:1サイクル後に剥離が生じているもの
(ホ)プレッシャークッカー耐性試験
(5)に上述した方法で作成した試験片を、121℃、100%RH(相対湿度)の雰囲気下で5時間処理した後、セロハン粘着テープでピーリング試験を行い、塗膜の状態を目視により観察し、以下の基準に従い評価した。
○:まったく変化のみられないもの
△:わずかに変化が見られるもの
×:塗膜が膨潤し剥離しているもの
(ヘ)絶縁抵抗
(5)に上述した方法で、IPC−TM−650のIPC−SM−840C B−25テストクーポンのくし型電極を用い、85℃、85%RHの雰囲気下で500時間加湿したときの塗膜の絶縁抵抗値をDC(直流)50Vを印加して測定した。
上記の表1から、実施例1〜8のものは、ソルダーレジストとしての要求を十分満たしつつ、燃焼性V−0を達成している。
比較例1、2より、(A)活性エネルギー線硬化性樹脂および(E)の両方を含有していないと燃焼性V−0を達成することができない。
比較例3に示されるように、従来の難燃化技術の一つである水酸化マグネシウムを使用することにより、耐酸性、耐金めっき性の低下が顕著になり、ソルダーレジストとしての要求を満足できなくなる。
比較例4で示されるように、(a)活性エネルギー線硬化性樹脂溶液を使用しない場合は、感光性樹脂組成物の「感度」の低下が顕著になり、500mJ/cmの露光量ではソルダーレジストとしての要求を満足できなくなる。Examples The present invention will be described in detail by examples, but the present invention is not limited to these examples. In the following description, “part” means “part by mass” unless otherwise specified.
<(A) Preparation of active energy ray-curable resin>
[Synthesis Example 1]
273 parts of NC-3000 (epoxy equivalent 273) manufactured by Nippon Kayaku Co., Ltd. are heated and dissolved in 113 parts of carbitol acetate, 70.5 parts of acrylic acid, 0.5 parts of methylhydroquinone, and 0.5 parts of triphenylphosphine And react at 110-120 ° C. for 8 hours. After the acid value of this reaction solution became 2 or less, 76 parts of tetrahydrophthalic anhydride and 113 parts of petroleum naphtha were added and reacted at 90-100 ° C. for 2 hours to obtain an active energy ray curable resin solution. . The resin solution contains 17.5 parts carbitol acetate and 17.5 parts petroleum naphtha.
[Synthesis Example 2]
169 parts of Millex XLC-LL (hydroxyl equivalent 169) manufactured by Mitsui Chemicals Co., Ltd. are dissolved by heating in 103.7 parts of carbitol acetate, 139.2 parts of glycidyl methacrylate, 0.5 part of methylhydroquinone and 0.5 part of dimethylbenzylamine. Part is added and reacted at 110-120 ° C. for 8 hours. After the acid value of this reaction solution becomes 2 or less, 76 parts of tetrahydrophthalic anhydride and 103.7 parts of petroleum naphtha are added and reacted at 90-100 ° C. for 2 hours to obtain an active energy ray-curable resin solution. It was. The resin solution contains 17.5 parts carbitol acetate and 17.5 parts petroleum naphtha.
<Preparation of active energy ray-curable resin (a)>
[Synthesis Example 3]
220 parts of EOCN-104S (epoxy equivalent 220) manufactured by Nippon Kayaku Co., Ltd., which is a cresol novolac type epoxy resin, is dissolved by heating in 98.9 parts of carbitol acetate, and 70.5 parts of acrylic acid and 0.5 parts of methyl hydroquinone And 0.5 part of triphenylphosphine are added and reacted at 110-120 ° C. for 8 hours. After the acid value of this reaction solution becomes 2 or less, 76 parts of tetrahydrophthalic anhydride and 98.9 parts of petroleum naphtha are added and reacted at 90-100 ° C. for 2 hours to obtain an active energy ray-curable resin solution. It was. The resin solution contains 17.5 parts carbitol acetate and 17.5 parts petroleum naphtha.
[Synthesis Example 4]
320 parts of KAYARAD R-7509 (epoxy equivalent 320) manufactured by Nippon Kayaku Co., Ltd., which is a bisphenol F type epoxy resin, is dissolved by heating in 125.8 parts of carbitol acetate, and 70.5 parts of acrylic acid and 0.5% of methylhydroquinone And 0.5 part of triphenylphosphine are added and reacted at 110 to 120 ° C. for 8 hours. After the acid value of this reaction solution becomes 2 or less, 76 parts of tetrahydrophthalic anhydride and 125.8 parts of petroleum naphtha are added and reacted at 90-100 ° C. for 2 hours to obtain an active energy ray-curable resin solution. It was. The resin solution contains 17.5 parts carbitol acetate and 17.5 parts petroleum naphtha.
[Example 1]
100 parts of (A) active energy ray-curable resin solution obtained in Synthesis Example 1 and 100 parts of (a) active energy ray-curable resin solution obtained in Synthesis Example 3 and (B) photopolymerization start 17 parts of Irgacure 907 ([2-methyl-1- (methylthio) phenyl] -2-morpholinopropan-1-one, manufactured by Ciba Specialty Chemicals), DETX-S (diethyl, manufactured by Nippon Kayaku Co., Ltd.) 1 part of (thioxanthone), (C) 23 parts of DPHA (dipentaerythritol hexaacrylate manufactured by Nippon Kayaku Co., Ltd.) as a reactive diluent, (D) 20 parts of NC-3000 as an epoxy-based cured resin, (d) epoxy Epoxide N-770 (phenol novolac type epoxy cured resin manufactured by Dainippon Ink & Chemicals, Inc.) as 20 parts, (E) 25 parts of GARD 911C (manufactured by Sherwin Williams of Japan, compound of zinc molybdate and magnesium silicate), 4 parts of KS-66 (manufactured by Shin-Etsu Chemical Co., Ltd.) as an antifoaming agent, 3 parts of melamine, 1 part of dicyandiamide, 120 parts of barium sulfate, 1 part of phthalocyanine blue, and 3 parts of carbitol acetate were added and kneaded by a three roll mill to prepare a solder resist composition. About this photosensitive resin composition, while showing the composition in Table 1, the result of having tested UL94V flammability, sensitivity, developability, and coating-film performance by the below-mentioned test method is shown in Table 1,2.
[Example 2]
In Example 1, the same procedure as in Example 1 except that 100 parts of the active energy ray-curable resin solution obtained in Synthesis Example 2 was used instead of the active energy ray-curable resin solution obtained in Synthesis Example 1 (A). Tables 1 and 2 show the results of preparing a photosensitive resin composition and testing the same as in Example 1.
[Example 3]
In Example 1, (a) 100 parts of the active energy ray curable resin solution obtained in Synthesis Example 4 was used instead of the active energy ray curable resin solution obtained in Synthesis Example 3 as the active energy ray curable resin solution. A photosensitive resin composition was prepared in the same manner except that it was used, and the results of testing in the same manner as in Example 1 are shown in Tables 1 and 2.
[Example 4]
In Example 1, (D) YX-4000 (2,2- (3,3 ′, 5,5′-tetramethyl (1,2) manufactured by Japan Epoxy Resin Co., Ltd. was used instead of Epicron N-770 as an epoxy-based cured resin. 1′-biphenyl) -4,4′-diyl) bis (oxymethylene)) bisoxirane) was used to prepare a photosensitive resin composition in the same manner, and the results tested in the same manner as in Example 1 Shown in Tables 1 and 2.
[Example 5]
In Example 1, a photosensitive resin composition was prepared in the same manner except that (d) Epotot YSLV-800XY (manufactured by Tohto Kasei Co., Ltd.) was used as the epoxy-based cured resin instead of Epicron N-770. Tables 1 and 2 show the results of testing in the same manner as in Table 1.
[Example 6]
In Example 1, the photosensitive resin composition was similarly used except that (d) Epicoat 807 (bisphenol F type epoxy type cured resin manufactured by Japan Poxy Resin Co., Ltd.) was used instead of Epicron N-770 as the epoxy type cured resin. Tables 1 and 2 show the results of preparing products and testing the same as in Example 1.
[Example 7]
In Example 1, a photosensitive resin was used in the same manner except that (C) 23 parts of Kayrad R-684 (Nippon Kayaku dicyclopentadienyl diacrylate) was used as the reactive diluent instead of DPHA. Tables 1 and 2 show the results of preparing the composition and testing the same as in Example 1.
[Example 8]
In Example 1, a photosensitive resin composition was prepared in the same manner except that KEMGARD 911B (manufactured by Sherwin Williams of Japan, compound of zinc molybdate) was used as (E) and tested in the same manner as in Example 1. The results are shown in Tables 1 and 2.
(Comparative Example 1)
In Example 1, the photosensitive resin composition was prepared similarly except not containing (E), and the test result similar to Example 1 is shown in Tables 1 and 2.
(Comparative Example 2)
In Example 1, (a) 200 parts of the active energy ray-curable resin solution obtained in Synthesis Example 3 is used as the active energy ray-curable resin solution, and (A) the active energy ray-curable resin is not used. Tables 1 and 2 show the results obtained by preparing a photosensitive resin composition in the same manner as in Example 1 and testing the same as in Example 1.
(Comparative Example 3)
In Example 1, only 200 parts of the active energy ray-curable resin solution obtained in Synthesis Example 3 was used as the (a) active energy ray-curable resin solution, and (A) the active energy ray-curable resin was not used. Furthermore, the photosensitive resin composition was prepared in the same manner except that magnesium hydroxide was used in place of barium sulfate, and the results of testing in the same manner as in Example 1 are shown in Tables 1 and 2.
(Comparative Example 4)
In Example 1, 200 parts of only (A) the active energy ray-curable resin solution obtained in Synthesis Example 1 is used, and (a) Photosensitivity is the same except that the active energy ray-curable resin solution is not used. Tables 1 and 2 show the results of preparing a resin composition and testing the same as in Example 1.
Figure 0004878597
Figure 0004878597
[Example 9]
In Example 1, (A) Active energy ray-curable resin solution obtained in Synthesis Example 1 was 173 parts, and (a) Active energy ray-curable resin solution obtained in Synthesis Example 3 was 27 parts. Table 3 and 4 show the results of preparing a photosensitive resin composition in the same manner and testing in the same manner as in Example 1.
[Example 10]
In Example 1, except that 130 parts of (A) active energy ray-curable resin solution obtained in Synthesis Example 1 and 70 parts of (a) active energy ray-curable resin solution obtained in Synthesis Example 3 were used. Table 3 and 4 show the results of preparing a photosensitive resin composition in the same manner and testing in the same manner as in Example 1.
[Example 11]
In Example 1, 70 parts of (A) active energy ray-curable resin solution obtained in Synthesis Example 1, 125 parts of (a) active energy ray-curable resin solution obtained in Synthesis Example 3, (d) Tables 3 and 4 show the results of adjusting the photosensitive resin composition in the same manner except that 15 parts of Epicron N-770 was used as the epoxy-based cured resin, and testing the same as in Example 1.
[Example 12]
In Example 1, 165 parts of (A) active energy ray-curable resin solution obtained in Synthesis Example 1, 35 parts of (a) active energy ray-curable resin solution obtained in Synthesis Example 3, (E) Tables 3 and 4 show the results of preparing a photosensitive resin composition in the same manner except that 9 parts of KEMGARD911C was prepared and testing in the same manner as in Example 1.
Figure 0004878597
Figure 0004878597
The test method is as follows.
(1) Combustibility A halogen-free substrate MCL-E-679FG (0.3 mmt material) manufactured by Hitachi Chemical Co., Ltd. was formed on both sides by 30 μm on one side by screen printing, and this test piece was used for UL94 flammability test. Measured.
(2) Sensitivity To the buffed copper-clad laminate, the photosensitive resin compositions of Examples 1 to 8 and Comparative Examples 1 to 4 were applied at a thickness of 20 μm (after drying) by screen printing. After drying at 80 ° C. for 20 minutes, Kodak CONTROL SCALE T-14 (Eastman Kodak) is placed on the coated surface, and the resist surface with a scattered light exposure device with blue filter (TN-890B, Ono Sokki) Irradiated 500 mJ / cm 2 above. Thereafter, using a 1% aqueous sodium carbonate solution, development was performed at a spray pressure of 0.2 MPa for 90 seconds, and the number of stages in which the photocurable / thermosetting resin coating film remained without being developed was defined as sensitivity.
(3) Tackiness The photosensitive resin compositions of Examples 1 to 8 and Comparative Examples 1 to 4 were applied to a buffed copper clad laminate by a screen printing method in a thickness of 20 μm (after drying). After drying at 80 ° C. for 20 minutes, the coating film cooled to room temperature was checked for stickiness by touch and evaluated according to the following criteria.
○: No stickiness of the coating film Δ: Slightly stickiness of the coating film X: Strong stickiness of the coating film (4) Alkali developability The above examples were applied to a buffed copper-clad laminate by screen printing. 1-8, each photosensitive resin composition of Comparative Examples 1-4 was applied at a thickness of 20 μm (after drying), dried at 80 ° C. at 10 minute intervals, and then using a 1% aqueous sodium carbonate solution. The longest drying time that can be developed in 90 seconds at a spray pressure of 0.2 MPa was measured.
(5) Coating film performance Each of the photosensitive resin compositions of Examples 1 to 8 and Comparative Examples 1 to 4 above was 20 μm on the conductor circuit (after drying) by screen printing on a buffed conductor circuit (conductor thickness 35 μm). ) And dried at 80 ° C. for 20 minutes, and then a mask film on which the pattern corresponding to the conductor circuit is drawn is placed on the surface of the coating film, and a scattered light exposure device with a blue filter (TN-890B, Ono) (Made by Sokki Co., Ltd.) was irradiated with 500 mJ / cm 2 on the resist surface. Thereafter, development was performed for 90 seconds at a spray pressure of 0.2 MPa using a 1% aqueous sodium carbonate solution. Subsequently, this substrate was thermally cured at 150 ° C. for 60 minutes to prepare a printed wiring board having a cured coating film, and the coating film performance was evaluated.
(A) Acid resistance After immersing the test piece prepared by the method described in (5) above in a 10% by mass sulfuric acid aqueous solution at room temperature for 30 minutes, and sufficiently wiping off the water of the test piece washed with water, the cellophane adhesive tape (cellophane is The product name was subjected to a peeling test, and the state of the coating film was visually observed and evaluated according to the following criteria.
○: No change at all △: Slight change is observed ×: The coating film is swollen and peeled (b) Solvent resistance The test piece prepared by the method described in (5) above is used at room temperature. After immersing for 30 minutes in dichloromethane, the water of the test piece washed with water was sufficiently wiped off, and then a peeling test was performed with a cellophane adhesive tape, and the state of the coating film was visually observed and evaluated according to the following criteria.
○: No change at all △: Slight change is observed ×: The coating is swollen and peeled off (c) Gold plating resistance The test piece prepared by the method described in (5) above is gold plated After the treatment, a peeling test was performed with a cellophane adhesive tape, and the state of the coating film was visually observed and evaluated according to the following criteria.
○: No change at all △: Slight change observed ×: The coating film swells and peels off (d) Solder heat resistance (5) About the test piece prepared by the method described above in JIS According to the test method of C 6481, after being immersed in a solder bath at 260 ° C. for 30 seconds, a peeling test with a cellophane adhesive tape is defined as one cycle, and the state of the coating film after a total of 1 to 3 cycles is visually observed. Evaluation was made according to criteria.
◎: No change in coating film after 3 cycles ○: Peeling after 3 cycles Δ: Peeling after 2 cycles ×: Peeling after 1 cycle (e) Pressure Cooker resistance test After the test piece prepared by the method described in (5) above was treated at 121 ° C. and 100% RH (relative humidity) for 5 hours, a peel test was performed with a cellophane adhesive tape, and the state of the coating film Were visually observed and evaluated according to the following criteria.
○: No change at all Δ: Slight change is observed ×: The coating film is swollen and peeled (f) Insulation resistance By the method described in (5) above, the IPC of IPC-TM-650 Using a comb-type electrode of -SM-840C B-25 test coupon, the insulation resistance value of the coating film was measured by applying DC (direct current) 50 V when humidified in an atmosphere of 85 ° C. and 85% RH for 500 hours. .
From said Table 1, the thing of Examples 1-8 has achieved flammability V-0, satisfy | filling the request | requirement as a soldering resist sufficiently.
From Comparative Examples 1 and 2, if both (A) the active energy ray-curable resin and (E) are not contained, flammability V-0 cannot be achieved.
As shown in Comparative Example 3, the use of magnesium hydroxide, which is one of the conventional flame retardant technologies, significantly reduces acid resistance and gold plating resistance, and satisfies the requirements as a solder resist. become unable.
As shown in Comparative Example 4, when (a) the active energy ray-curable resin solution is not used, the “sensitivity” of the photosensitive resin composition is significantly reduced, and the solder is exposed at an exposure amount of 500 mJ / cm 2. The resist requirement cannot be satisfied.

Claims (3)

(A) (A1)および(A2)からなる群より選ばれた一種以上の活性エネルギー線硬化性樹脂、
(A1) 式(1)のエポキシ樹脂および式(2)のエポキシ樹脂からなる群より選ばれたエポキシ樹脂と不飽和モノカルボン酸との反応物と、多塩基酸および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得られる樹脂、
(A2) 式(1)のエポキシ樹脂および式(2)のエポキシ樹脂からなる群より選ばれたエポキシ樹脂と不飽和モノカルボン酸との反応物と、多塩基酸および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得られる樹脂を、更にラジカル重合性不飽和基とエポキシ基を有するグリシジル化合物と反応させて得られる樹脂、
(a) (a1)および(a2)からなる群より選ばれた一種以上の活性エネルギー線硬化性樹脂、
(a1) 式(1)のエポキシ樹脂および式(2)のエポキシ樹脂以外のエポキシ樹脂と不飽和モノカルボン酸との反応物と、多塩基酸および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得られる樹脂、
(a2) 式(1)のエポキシ樹脂および式(2)のエポキシ樹脂以外のエポキシ樹脂と不飽和モノカルボン酸との反応物と、多塩基酸および多塩基酸無水物からなる群より選ばれた化合物とを反応させて得られる樹脂を、更にラジカル重合性不飽和基とエポキシ基を有するグリシジル化合物と反応させて得られる樹脂、
(B)光重合開始剤、
(C)反応性希釈剤、
(D) 式(1)のエポキシ樹脂および式(2)のエポキシ樹脂からなる群より選ばれたエポキシ樹脂、
(d) 式(1)のエポキシ樹脂および式(2)のエポキシ樹脂以外のエポキシ樹脂、および
(E) モリブデン化合物を含有することを特徴とする、感光性樹脂組成物。
Figure 0004878597
(n=1以上、10以下)
Figure 0004878597
(n=1以上、10以下)
(A) one or more active energy ray-curable resins selected from the group consisting of (A1) and (A2),
(A1) A reaction product of an epoxy resin selected from the group consisting of the epoxy resin of formula (1) and the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, and a polybasic acid and a polybasic acid anhydride. A resin obtained by reacting a compound selected from the group;
(A2) A reaction product of an epoxy resin selected from the group consisting of the epoxy resin of formula (1) and the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, and a polybasic acid and a polybasic acid anhydride. A resin obtained by reacting a compound selected from the group with a glycidyl compound further having a radical polymerizable unsaturated group and an epoxy group,
(A) one or more active energy ray-curable resins selected from the group consisting of (a1) and (a2),
(A1) selected from the group consisting of an epoxy resin other than the epoxy resin of formula (1) and the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride A resin obtained by reacting with a compound,
(A2) selected from the group consisting of a reaction product of an epoxy resin other than the epoxy resin of formula (1) and the epoxy resin of formula (2) and an unsaturated monocarboxylic acid, a polybasic acid and a polybasic acid anhydride A resin obtained by further reacting a resin obtained by reacting a compound with a glycidyl compound having a radical polymerizable unsaturated group and an epoxy group,
(B) a photopolymerization initiator,
(C) a reactive diluent,
(D) an epoxy resin selected from the group consisting of the epoxy resin of formula (1) and the epoxy resin of formula (2);
(D) An epoxy resin other than the epoxy resin of formula (1) and the epoxy resin of formula (2), and (E) a molybdenum compound.
Figure 0004878597
(N = 1 or more and 10 or less)
Figure 0004878597
(N = 1 or more and 10 or less)
請求項1記載の感光性樹脂組成物を有することを特徴とする、電子部品搭載前または搭載後のプリント配線板。A printed wiring board before or after mounting an electronic component, comprising the photosensitive resin composition according to claim 1. 請求項1記載の感光性樹脂組成物を有することを特徴とする、電子部品搭載前または搭載後の半導体パッケージ基板。A semiconductor package substrate before or after mounting an electronic component, comprising the photosensitive resin composition according to claim 1.
JP2007513044A 2005-04-13 2006-04-12 Photosensitive resin composition, printed wiring board, and semiconductor package substrate Active JP4878597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007513044A JP4878597B2 (en) 2005-04-13 2006-04-12 Photosensitive resin composition, printed wiring board, and semiconductor package substrate

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005115279 2005-04-13
JP2005115279 2005-04-13
JP2005284203 2005-09-29
JP2005284203 2005-09-29
PCT/JP2006/308166 WO2006109890A1 (en) 2005-04-13 2006-04-12 Photosensitive resin composition, printed wiring board, and semiconductor package substrate
JP2007513044A JP4878597B2 (en) 2005-04-13 2006-04-12 Photosensitive resin composition, printed wiring board, and semiconductor package substrate

Publications (2)

Publication Number Publication Date
JPWO2006109890A1 JPWO2006109890A1 (en) 2008-11-20
JP4878597B2 true JP4878597B2 (en) 2012-02-15

Family

ID=37087146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007513044A Active JP4878597B2 (en) 2005-04-13 2006-04-12 Photosensitive resin composition, printed wiring board, and semiconductor package substrate

Country Status (4)

Country Link
JP (1) JP4878597B2 (en)
CN (1) CN101142528B (en)
TW (1) TWI392965B (en)
WO (1) WO2006109890A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4514049B2 (en) * 2005-08-01 2010-07-28 日本化薬株式会社 Photosensitive resin composition and cured product thereof
JP4986024B2 (en) * 2006-10-24 2012-07-25 日立化成工業株式会社 Photosensitive resin composition and photosensitive element
JP4586922B2 (en) * 2006-10-24 2010-11-24 日立化成工業株式会社 Photosensitive resin composition and photosensitive element using the same
DE102007001862A1 (en) * 2007-01-12 2008-07-17 Clariant International Ltd. Flame retardant resin formulation and its use
JP2008180992A (en) * 2007-01-25 2008-08-07 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive film for permanent resist, resist pattern forming method, printed wiring board and semiconductor package
JP2009014990A (en) * 2007-07-04 2009-01-22 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element using the same
JP5096814B2 (en) * 2007-07-04 2012-12-12 東京応化工業株式会社 Colored photosensitive composition
CN101784577B (en) * 2007-08-28 2015-11-25 日本化药株式会社 Reactive carbonate, the curable resin composition using this reactive carbonate and uses thereof
JP5377020B2 (en) * 2009-03-23 2013-12-25 太陽ホールディングス株式会社 Photo-curable thermosetting resin composition, dry film and cured product thereof, and printed wiring board using them
TWI491982B (en) * 2009-10-28 2015-07-11 Sumitomo Chemical Co Coloring the photosensitive resin composition
JP2011099919A (en) * 2009-11-04 2011-05-19 Mitsubishi Chemicals Corp Colored resin composition, color filter, liquid crystal display device, and organic el display
JP6181907B2 (en) 2011-11-15 2017-08-16 互応化学工業株式会社 Resin composition for carboxyl group-containing resin and solder resist
JP2015134844A (en) * 2012-05-15 2015-07-27 日本化薬株式会社 Reactive polyester compound, and active energy ray-curable resin composition using the same
JP5688116B2 (en) * 2013-05-13 2015-03-25 太陽ホールディングス株式会社 Photo-curable thermosetting resin composition, dry film and cured product thereof, and printed wiring board using them
CN106249545B (en) * 2016-08-25 2019-06-25 杭州福斯特应用材料股份有限公司 It is a kind of can selfreparing photosensitive dry film solder mask
JP6542285B2 (en) * 2017-03-30 2019-07-10 株式会社タムラ製作所 Photosensitive resin composition and printed wiring board
JP6708242B2 (en) * 2018-11-14 2020-06-10 日立化成株式会社 Resin composition for mold underfill and electronic component device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695380A (en) * 1992-09-11 1994-04-08 Daicel Chem Ind Ltd Photosetting resin composition
JPH0876379A (en) * 1994-08-31 1996-03-22 Taiyo Ink Mfg Ltd Photosetting and thermosetting resin composition
JP2000327742A (en) * 1999-05-19 2000-11-28 Taiyo Ink Mfg Ltd Photosetting/thermosetting composition
JP2002148799A (en) * 2000-11-14 2002-05-22 Mitsubishi Gas Chem Co Inc Resist composition with excellent flame resistance
JP2002356538A (en) * 2001-03-30 2002-12-13 Toray Ind Inc Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2004107584A (en) * 2002-09-20 2004-04-08 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic part device provided with element
JP2004286818A (en) * 2003-03-19 2004-10-14 Mitsubishi Gas Chem Co Inc Flame retardant resist composition having excellent heat resistance
JP2006091243A (en) * 2004-09-22 2006-04-06 Mitsubishi Gas Chem Co Inc Resin composition for resist
JP2006208853A (en) * 2005-01-28 2006-08-10 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU674017B2 (en) * 1992-09-14 1996-12-05 Yoshino Kogyosho Co., Ltd. Printed thermoplastic resin products and method for printing such products
TW290583B (en) * 1993-10-14 1996-11-11 Alpha Metals Ltd
JPH0987346A (en) * 1995-09-19 1997-03-31 Dainippon Ink & Chem Inc Energy ray curing epoxyacrylate resin composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695380A (en) * 1992-09-11 1994-04-08 Daicel Chem Ind Ltd Photosetting resin composition
JPH0876379A (en) * 1994-08-31 1996-03-22 Taiyo Ink Mfg Ltd Photosetting and thermosetting resin composition
JP2000327742A (en) * 1999-05-19 2000-11-28 Taiyo Ink Mfg Ltd Photosetting/thermosetting composition
JP2002148799A (en) * 2000-11-14 2002-05-22 Mitsubishi Gas Chem Co Inc Resist composition with excellent flame resistance
JP2002356538A (en) * 2001-03-30 2002-12-13 Toray Ind Inc Epoxy resin composition for sealing semiconductor and semiconductor device using the same
JP2004107584A (en) * 2002-09-20 2004-04-08 Hitachi Chem Co Ltd Epoxy resin molding material for encapsulation and electronic part device provided with element
JP2004286818A (en) * 2003-03-19 2004-10-14 Mitsubishi Gas Chem Co Inc Flame retardant resist composition having excellent heat resistance
JP2006091243A (en) * 2004-09-22 2006-04-06 Mitsubishi Gas Chem Co Inc Resin composition for resist
JP2006208853A (en) * 2005-01-28 2006-08-10 Hitachi Chem Co Ltd Photosensitive resin composition and photosensitive element

Also Published As

Publication number Publication date
TW200641529A (en) 2006-12-01
WO2006109890A1 (en) 2006-10-19
TWI392965B (en) 2013-04-11
CN101142528B (en) 2011-12-28
JPWO2006109890A1 (en) 2008-11-20
CN101142528A (en) 2008-03-12

Similar Documents

Publication Publication Date Title
JP4878597B2 (en) Photosensitive resin composition, printed wiring board, and semiconductor package substrate
JP3254572B2 (en) Photopolymerizable thermosetting resin composition
JPH11288091A (en) Alkali-developable photosetting-thermosetting composition and hardened coating obtained from the same
US6432613B1 (en) Photosensitive composition
JP2000355621A (en) Photosensitive resin composition and its cured item
JP4933093B2 (en) Curable composition capable of alkali development and cured product thereof
JP2002014466A (en) Photosensitive resin composition
JP2003280192A (en) Photosetting and thermosetting resin composition
JP4309246B2 (en) Photo-curing / thermosetting resin composition
JP4042198B2 (en) Photocurable resin composition and photosensitive element using the same
JP4554170B2 (en) UV curable alkali-soluble resin, UV curable resin for solder resist film and printed wiring board
JP3953852B2 (en) Photo-curing / thermosetting resin composition
JP2001048955A (en) Flame retardant type energy beam photosensitive resin, photosensitive resin composition by using the same resin, and its cured material
WO2003035766A1 (en) Photo-curable and thermosetting resin composition
JP4351463B2 (en) Active energy ray-curable alkali-soluble resin, active energy ray-curable alkali-soluble resin composition, solder resist composition, dry film, and printed wiring board
WO2021157282A1 (en) Curable composition, and dry film and cured object obtained therefrom
JP2003280189A (en) Photosetting and thermosetting resin composition
CA2253242C (en) Photopolymerizable thermosetting resin composition
JP2002234932A (en) Epoxy carboxylate compound soluble in alkali aqueous solution photosensitive resin composition using the same and its cured product
WO2000071597A1 (en) Photocuring and thermosetting composition
KR100499836B1 (en) Photopolymerizable Thermosetting Resin Composition
JP2000284477A (en) Photosensitive thermosetting resin composition and soldering resist pattern forming method using same
JP2003280191A (en) Photosetting and thermosetting resin composition
JP2002196486A (en) Photosensitive resin composition and printed circuit board
JP2004302204A (en) Photosensitive resin composition, solder resist composition and printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111128

R150 Certificate of patent or registration of utility model

Ref document number: 4878597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141209

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350