JP4848349B2 - Imaging apparatus and solid-state imaging device driving method - Google Patents

Imaging apparatus and solid-state imaging device driving method Download PDF

Info

Publication number
JP4848349B2
JP4848349B2 JP2007302739A JP2007302739A JP4848349B2 JP 4848349 B2 JP4848349 B2 JP 4848349B2 JP 2007302739 A JP2007302739 A JP 2007302739A JP 2007302739 A JP2007302739 A JP 2007302739A JP 4848349 B2 JP4848349 B2 JP 4848349B2
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
element group
transfer path
charge transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007302739A
Other languages
Japanese (ja)
Other versions
JP2009130574A (en
Inventor
和也 小田
和田  哲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2007302739A priority Critical patent/JP4848349B2/en
Publication of JP2009130574A publication Critical patent/JP2009130574A/en
Application granted granted Critical
Publication of JP4848349B2 publication Critical patent/JP4848349B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Color Television Image Signal Generators (AREA)

Description

本発明は、多数の光電変換素子を備え、前記多数の光電変換素子で発生した電荷を電荷転送路に読み出して転送し、転送した電荷に応じた信号を出力する電荷転送型の固体撮像素子と、前記固体撮像素子を駆動する駆動手段とを備える撮像装置に関する。   The present invention includes a charge transfer type solid-state imaging device that includes a large number of photoelectric conversion elements, reads out and transfers charges generated by the large number of photoelectric conversion elements to a charge transfer path, and outputs a signal corresponding to the transferred charges. The present invention also relates to an imaging apparatus including a driving unit that drives the solid-state imaging element.

従来、赤色(R)の光を透過するRカラーフィルタが受光面上方に設けられた光電変換素子と、緑色(G)の光を透過するGカラーフィルタが受光面上方に設けられた光電変換素子と、青色(B)の光を透過するBカラーフィルタが受光面上方に設けられた光電変換素子と、光の輝度成分と相関のある分光特性を持つ輝度フィルタが受光面上方に設けられた光電変換素子とを二次元状に配列した固体撮像素子が提案されている(例えば特許文献1〜3参照)。   Conventionally, a photoelectric conversion element in which an R color filter that transmits red (R) light is provided above the light receiving surface, and a photoelectric conversion element in which a G color filter that transmits green (G) light is provided above the light receiving surface A photoelectric conversion element in which a B color filter that transmits blue (B) light is provided above the light receiving surface, and a photoelectric conversion element in which a luminance filter having spectral characteristics correlated with the luminance component of the light is provided above the light receiving surface. A solid-state imaging device in which conversion elements are two-dimensionally arranged has been proposed (see, for example, Patent Documents 1 to 3).

特開平11−355790号公報JP-A-11-355790 特開2007−258686号公報JP 2007-258686 A 特開2003−318375号公報JP 2003-318375 A

特許文献1〜3に開示されている固体撮像素子では、例えば、1フィールド目で、カラーフィルタが受光面上方に設けられた光電変換素子からカラー成分の電荷を読み出し、2フィールド目で、輝度フィルタが受光面上方に設けられた光電変換素子から輝度成分の電荷を読み出し、それぞれのフィールドで得られた撮像信号を処理することで、高画質の画像データを生成することが可能である。   In the solid-state imaging device disclosed in Patent Literatures 1 to 3, for example, in the first field, the color component charge is read from the photoelectric conversion device provided with the color filter above the light receiving surface, and the luminance filter is used in the second field. Can read out the luminance component charge from the photoelectric conversion element provided above the light receiving surface and process the image pickup signal obtained in each field, thereby generating high-quality image data.

本発明は、上記特許文献1〜3に挙げられるように、2フィールドで全ての電荷を読み出し可能な固体撮像素子であって、片方のフィールドだけでもカラー画像データを生成することが可能な構成を持つ固体撮像素子の新しい駆動方法を提案するものである。   The present invention is a solid-state imaging device capable of reading out all charges in two fields as described in Patent Documents 1 to 3, and has a configuration capable of generating color image data in only one field. A new driving method for a solid-state imaging device is proposed.

本発明の撮像装置は、多数の光電変換素子を備え、前記多数の光電変換素子で発生した電荷を電荷転送路に読み出して転送し、転送した電荷に応じた信号を出力する電荷転送型の固体撮像素子を備える撮像装置であって、前記多数の光電変換素子が、第一の光電変換素子群と第二の光電変換素子群とからなり、前記第一の光電変換素子群が、カラー画像データを生成するのに必要な色成分の光を検出する光電変換素子で構成されており、前記第一の光電変換素子群から前記電荷を読み出して該電荷に応じた信号を出力させる第一の駆動と、前記第二の光電変換素子群から前記電荷を読み出して該電荷に応じた信号を出力させる第二の駆動とを分けて行う2フィールド駆動を行う際、前記第一の駆動と前記第二の駆動のいずれかにおいて、前記電荷転送路に読み出した電荷のうち、隣接する同色成分の電荷同士を該電荷転送路上で混合して転送する駆動を行う駆動手段を備える。   An image pickup apparatus according to the present invention includes a large number of photoelectric conversion elements, reads out and transfers charges generated by the large number of photoelectric conversion elements to a charge transfer path, and outputs a signal corresponding to the transferred charges. An imaging apparatus including an imaging element, wherein the plurality of photoelectric conversion elements include a first photoelectric conversion element group and a second photoelectric conversion element group, and the first photoelectric conversion element group includes color image data. A first driving unit configured to read out the electric charge from the first photoelectric conversion element group and output a signal corresponding to the electric charge. And the second driving for separately performing the second driving for reading the charge from the second photoelectric conversion element group and outputting a signal corresponding to the charge, the first driving and the second driving In any of the driving Of the charges read to the charge transferring path, a drive means for driving to transfer the mixed charges of adjacent same-color component in the charge transfer path.

本発明の撮像装置は、前記第二の光電変換素子群が、輝度成分と相関のある輝度フィルタが受光面上方に設けられた輝度検出用光電変換素子のみで構成されている。   In the imaging device of the present invention, the second photoelectric conversion element group is configured only by a luminance detection photoelectric conversion element in which a luminance filter having a correlation with a luminance component is provided above the light receiving surface.

本発明の撮像装置は、前記駆動手段が、前記2フィールド駆動を行う際、前記第二の駆動において、前記電荷転送路に読み出した電荷のうち、隣接する同色成分の電荷同士を該電荷転送路上で混合して転送する。   In the imaging apparatus according to the aspect of the invention, when the driving unit performs the two-field driving, in the second driving, among the charges read to the charge transfer path, adjacent charges of the same color component are placed on the charge transfer path. Transfer with mixing.

本発明の撮像装置は、前記多数の光電変換素子が半導体基板上に正方格子状に配列されており、前記第一の光電変換素子群と前記第二の光電変換素子群とが市松状に配置されている。   In the imaging apparatus of the present invention, the plurality of photoelectric conversion elements are arranged in a square lattice pattern on a semiconductor substrate, and the first photoelectric conversion element group and the second photoelectric conversion element group are arranged in a checkered pattern. Has been.

本発明の撮像装置は、前記第一の光電変換素子群に含まれる光電変換素子と前記第二の光電変換素子群に含まれる光電変換素子とが、それぞれ半導体基板上の行方向とこれに直交する列方向に正方格子状に配列されており、前記第一の光電変換素子群と前記第二の光電変換素子群とが、各光電変換素子の配列ピッチの1/2前記行方向及び前記列方向にずれて配置されている。   In the imaging device of the present invention, the photoelectric conversion elements included in the first photoelectric conversion element group and the photoelectric conversion elements included in the second photoelectric conversion element group are orthogonal to the row direction on the semiconductor substrate, respectively. The first photoelectric conversion element group and the second photoelectric conversion element group are ½ of the arrangement pitch of each photoelectric conversion element in the row direction and the column. They are displaced in the direction.

本発明の撮像装置は、前記第二の光電変換素子群が、カラー画像データを生成するのに必要な色成分の光を検出する光電変換素子で構成されており、前記第一の光電変換素子群に含まれる光電変換素子と前記第二の光電変換素子群に含まれる光電変換素子とが、それぞれ半導体基板上の行方向とこれに直交する列方向に正方格子状に配列されており、前記第一の光電変換素子群を構成する光電変換素子の上方に設けられるカラーフィルタの配列と、前記第一の光電変換素子群を構成する光電変換素子の上方に設けられるカラーフィルタの配列とが、それぞれ同じであり、前記第一の光電変換素子群と前記第二の光電変換素子群とが、各光電変換素子の配列ピッチの1/2前記行方向及び前記列方向にずれて配置されている。   In the imaging apparatus of the present invention, the second photoelectric conversion element group includes a photoelectric conversion element that detects light of a color component necessary for generating color image data, and the first photoelectric conversion element The photoelectric conversion elements included in the group and the photoelectric conversion elements included in the second photoelectric conversion element group are respectively arranged in a square lattice pattern in a row direction on the semiconductor substrate and in a column direction perpendicular thereto. An arrangement of color filters provided above the photoelectric conversion elements constituting the first photoelectric conversion element group and an arrangement of color filters provided above the photoelectric conversion elements constituting the first photoelectric conversion element group, Each is the same, and the first photoelectric conversion element group and the second photoelectric conversion element group are arranged to be shifted in the row direction and the column direction by 1/2 of the arrangement pitch of the photoelectric conversion elements. .

本発明の撮像装置は、前記固体撮像素子の電荷転送路が、垂直電荷転送路と水平電荷転送路からなり、前記固体撮像素子が、前記垂直電荷転送路と前記水平電荷転送路との間に設けられた、前記垂直電荷転送路を転送されてきた電荷を一時的に蓄積する電荷蓄積部と、前記電荷蓄積部に電圧を印加する電極とを備え、前記第一の光電変換素子群からの電荷が読み出される前記垂直電荷転送路と前記水平電荷転送路との間にある前記電荷蓄積部上方の前記電極と、前記第二の光電変換素子群からの電荷が読み出される前記垂直電荷転送路と前記水平電荷転送路との間にある前記電荷蓄積部上方の前記電極とには、それぞれ独立に電圧が印加可能であり、前記第一の光電変換素子群と前記第二の光電変換素子群とのいずれかのみから信号を読み出す駆動を行う際、前記信号を読み出す必要のない光電変換素子群から電荷が読み出される前記垂直電荷転送路からの前記電荷を前記水平電荷転送路に転送しないように前記電極の電圧を制御する制御手段を備える。   In the image pickup apparatus of the present invention, the charge transfer path of the solid-state image sensor includes a vertical charge transfer path and a horizontal charge transfer path, and the solid-state image sensor is interposed between the vertical charge transfer path and the horizontal charge transfer path. A charge storage unit that temporarily stores charges transferred through the vertical charge transfer path, and an electrode that applies a voltage to the charge storage unit; The electrode above the charge storage section between the vertical charge transfer path from which charges are read and the horizontal charge transfer path, and the vertical charge transfer path from which charges from the second photoelectric conversion element group are read. A voltage can be independently applied to each of the electrodes above the charge storage unit between the horizontal charge transfer paths, and the first photoelectric conversion element group and the second photoelectric conversion element group, Read signal from only one of Control means for controlling the voltage of the electrode so as not to transfer the charge from the vertical charge transfer path from which charges are read out from the photoelectric conversion element group which does not need to read the signal when driving. Is provided.

本発明の撮像装置は、前記第一の光電変換素子群を構成する光電変換素子の上方に設けられるカラーフィルタ配列がベイヤー配列となっている。   In the image pickup apparatus of the present invention, the color filter array provided above the photoelectric conversion elements constituting the first photoelectric conversion element group is a Bayer array.

本発明の固体撮像素子の駆動方法は、多数の光電変換素子を備え、前記多数の光電変換素子で発生した電荷を電荷転送路に読み出して転送し、転送した電荷に応じた信号を出力する電荷転送型の固体撮像素子を駆動する方法であって、前記多数の光電変換素子が、第一の光電変換素子群と第二の光電変換素子群とからなり、前記第一の光電変換素子群が、カラー画像データを生成するのに必要な色成分の光を検出する光電変換素子で構成されており、前記第一の光電変換素子群から前記電荷を読み出して該電荷に応じた信号を出力させる第一の駆動と、前記第二の光電変換素子群から前記電荷を読み出して該電荷に応じた信号を出力させる第二の駆動とを分けて行う2フィールド駆動を行う際、前記第一の駆動と前記第二の駆動のいずれかにおいて、前記電荷転送路に読み出した電荷のうち、隣接する同色成分の電荷同士を該電荷転送路上で混合して転送する。   The solid-state imaging device driving method of the present invention includes a large number of photoelectric conversion elements, and charges generated by the large number of photoelectric conversion elements are read and transferred to a charge transfer path, and a signal corresponding to the transferred charges is output. A method of driving a transfer-type solid-state imaging device, wherein the plurality of photoelectric conversion elements are composed of a first photoelectric conversion element group and a second photoelectric conversion element group, and the first photoelectric conversion element group is And a photoelectric conversion element that detects light of a color component necessary for generating color image data, and reads out the charge from the first photoelectric conversion element group and outputs a signal corresponding to the charge. When performing the two-field drive separately performing the first drive and the second drive for reading out the charge from the second photoelectric conversion element group and outputting a signal corresponding to the charge, the first drive And one of the second drives There are, of charges read to the charge transfer path, and transfers the mixed charges of adjacent same-color component in the charge transfer path.

本発明の固体撮像素子の駆動方法は、前記第二の光電変換素子群が、輝度成分と相関のある輝度フィルタが受光面上方に設けられた輝度検出用光電変換素子のみで構成されている。   In the solid-state imaging device driving method according to the present invention, the second photoelectric conversion element group includes only a luminance detection photoelectric conversion element in which a luminance filter having a correlation with a luminance component is provided above the light receiving surface.

本発明の固体撮像素子の駆動方法は、前記2フィールド駆動を行う際、前記第二の駆動において、前記電荷転送路に読み出した電荷のうち、隣接する同色成分の電荷同士を該電荷転送路上で混合して転送する。   In the driving method of the solid-state imaging device according to the present invention, when performing the two-field driving, in the second driving, among the charges read to the charge transfer path, adjacent charges of the same color component are transferred on the charge transfer path. Mix and transfer.

本発明の固体撮像素子の駆動方法は、前記多数の光電変換素子が半導体基板上に正方格子状に配列されており、前記第一の光電変換素子群と前記第二の光電変換素子群とが市松状に配置されている。   In the method for driving a solid-state imaging device according to the present invention, the plurality of photoelectric conversion elements are arranged in a square lattice pattern on a semiconductor substrate, and the first photoelectric conversion element group and the second photoelectric conversion element group include: It is arranged in a checkered pattern.

本発明の固体撮像素子の駆動方法は、前記第一の光電変換素子群に含まれる光電変換素子と前記第二の光電変換素子群に含まれる光電変換素子とが、それぞれ半導体基板上の行方向とこれに直交する列方向に正方格子状に配列されており、前記第一の光電変換素子群と前記第二の光電変換素子群とが、各光電変換素子の配列ピッチの1/2前記行方向及び前記列方向にずれて配置されている。   According to the solid-state imaging device driving method of the present invention, the photoelectric conversion elements included in the first photoelectric conversion element group and the photoelectric conversion elements included in the second photoelectric conversion element group are each in the row direction on the semiconductor substrate. And the first photoelectric conversion element group and the second photoelectric conversion element group are ½ the row of the arrangement pitch of the photoelectric conversion elements. It is shifted in the direction and the column direction.

本発明の固体撮像素子の駆動方法は、前記第二の光電変換素子群が、カラー画像データを生成するのに必要な色成分の光を検出する光電変換素子で構成されており、前記第一の光電変換素子群に含まれる光電変換素子と前記第二の光電変換素子群に含まれる光電変換素子とが、それぞれ半導体基板上の行方向とこれに直交する列方向に正方格子状に配列されており、前記第一の光電変換素子群を構成する光電変換素子の上方に設けられるカラーフィルタの配列と、前記第一の光電変換素子群を構成する光電変換素子の上方に設けられるカラーフィルタの配列とが、それぞれ同じであり、前記第一の光電変換素子群と前記第二の光電変換素子群とが、各光電変換素子の配列ピッチの1/2前記行方向及び前記列方向にずれて配置されている。   In the solid-state imaging device driving method of the present invention, the second photoelectric conversion element group includes a photoelectric conversion element that detects light of a color component necessary for generating color image data. The photoelectric conversion elements included in the photoelectric conversion element group and the photoelectric conversion elements included in the second photoelectric conversion element group are respectively arranged in a square lattice pattern in the row direction on the semiconductor substrate and in the column direction orthogonal thereto. An arrangement of color filters provided above the photoelectric conversion elements constituting the first photoelectric conversion element group, and a color filter provided above the photoelectric conversion elements constituting the first photoelectric conversion element group. And the first photoelectric conversion element group and the second photoelectric conversion element group are shifted in the row direction and the column direction by a half of the arrangement pitch of the photoelectric conversion elements. Has been placed.

本発明の固体撮像素子の駆動方法は、前記固体撮像素子の電荷転送路が、垂直電荷転送路と水平電荷転送路からなり、前記固体撮像素子が、前記垂直電荷転送路と前記水平電荷転送路との間に設けられた、前記垂直電荷転送路を転送されてきた電荷を一時的に蓄積する電荷蓄積部と、前記電荷蓄積部に電圧を印加する電極とを備え、前記第一の光電変換素子群からの電荷が読み出される前記垂直電荷転送路と前記水平電荷転送路との間にある前記電荷蓄積部上方の前記電極と、前記第二の光電変換素子群からの電荷が読み出される前記垂直電荷転送路と前記水平電荷転送路との間にある前記電荷蓄積部上方の前記電極とには、それぞれ独立に電圧が印加可能であり、前記第一の光電変換素子群と前記第二の光電変換素子群とのいずれかのみから信号を読み出す駆動を実行する際、前記信号を読み出す必要のない光電変換素子群から電荷が読み出される前記垂直電荷転送路からの前記電荷を前記水平電荷転送路に転送しないように前記電極の電圧を制御する。   In the solid-state image sensor driving method according to the present invention, the charge transfer path of the solid-state image sensor includes a vertical charge transfer path and a horizontal charge transfer path, and the solid-state image sensor includes the vertical charge transfer path and the horizontal charge transfer path. A charge storage unit that temporarily stores the charge transferred through the vertical charge transfer path, and an electrode that applies a voltage to the charge storage unit, the first photoelectric conversion The electrode above the charge storage section between the vertical charge transfer path from which charges from the element group are read and the horizontal charge transfer path, and the vertical from which charges from the second photoelectric conversion element group are read. A voltage can be independently applied to the electrode above the charge storage portion between the charge transfer path and the horizontal charge transfer path, and the first photoelectric conversion element group and the second photoelectric transfer element can be applied. Only one of the conversion elements When performing driving to read out the signal, the voltage of the electrode is set so as not to transfer the charge from the vertical charge transfer path from which charges are read from the photoelectric conversion element group that does not need to read out the signal to the horizontal charge transfer path. Control.

本発明の固体撮像素子の駆動方法は、前記第一の光電変換素子群を構成する光電変換素子の上方に設けられるカラーフィルタ配列がベイヤー配列となっている。   In the solid-state imaging device driving method of the present invention, the color filter array provided above the photoelectric conversion elements constituting the first photoelectric conversion element group is a Bayer array.

本発明によれば、2フィールドで全ての電荷を読み出し可能な固体撮像素子であって、片方のフィールドだけでもカラー画像データを生成することが可能な構成を持つ固体撮像素子の新しい駆動方法を提供することができる。   According to the present invention, there is provided a new driving method for a solid-state imaging device that can read out all charges in two fields and has a configuration capable of generating color image data in only one field. can do.

以下、本発明の実施形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第一実施形態)
図1は、本発明の第一実施形態を説明するための撮像装置の一例であるデジタルカメラの概略構成を示す図である。
図示するデジタルカメラの撮像系は、撮影レンズ1と、CCD型の固体撮像素子5と、この両者の間に設けられた絞り2と、赤外線カットフィルタ3と、光学ローパスフィルタ4とを備える。
(First embodiment)
FIG. 1 is a diagram showing a schematic configuration of a digital camera which is an example of an imaging apparatus for explaining a first embodiment of the present invention.
The imaging system of the digital camera shown in the figure includes a photographic lens 1, a CCD type solid-state imaging device 5, a diaphragm 2 provided therebetween, an infrared cut filter 3, and an optical low-pass filter 4.

デジタルカメラの電気制御系全体を統括制御するシステム制御部11は、フラッシュ発光部12及び受光部13を制御し、レンズ駆動部8を制御して撮影レンズ1の位置をフォーカス位置に調整したりズーム調整を行ったりし、絞り駆動部9を介し絞り2の開口量を制御して露光量調整を行う。   A system control unit 11 that performs overall control of the electrical control system of the digital camera controls the flash light emitting unit 12 and the light receiving unit 13 and controls the lens driving unit 8 to adjust the position of the photographing lens 1 to the focus position and zoom. The exposure amount is adjusted by adjusting the aperture amount of the aperture 2 via the aperture drive unit 9.

又、システム制御部11は、撮像素子駆動部10を介して固体撮像素子5を駆動し、撮影レンズ1を通して撮像した被写体画像を色信号として出力させる。システム制御部11には、操作部14を通してユーザからの指示信号が入力される。   Further, the system control unit 11 drives the solid-state imaging device 5 via the imaging device driving unit 10 and outputs a subject image captured through the photographing lens 1 as a color signal. An instruction signal from the user is input to the system control unit 11 through the operation unit 14.

デジタルカメラの電気制御系は、更に、固体撮像素子5の出力に接続された相関二重サンプリング処理等のアナログ信号処理を行うアナログ信号処理部6と、このアナログ信号処理部6から出力されたRGBの色信号をデジタル信号に変換するA/D変換回路7とを備え、これらはシステム制御部11によって制御される。   The electric control system of the digital camera further includes an analog signal processing unit 6 that performs analog signal processing such as correlated double sampling processing connected to the output of the solid-state imaging device 5, and RGB output from the analog signal processing unit 6. And an A / D conversion circuit 7 for converting the color signals into digital signals, which are controlled by the system control unit 11.

更に、このデジタルカメラの電気制御系は、メインメモリ16と、メインメモリ16に接続されたメモリ制御部15と、補間演算やガンマ補正演算,RGB/YC変換処理等を行って画像データを生成するデジタル信号処理部17と、デジタル信号処理部17で生成された画像データをJPEG形式に圧縮したり圧縮画像データを伸張したりする圧縮伸張処理部18と、測光データを積算しデジタル信号処理部17が行うホワイトバランス補正のゲインを求める積算部19と、着脱自在の記録媒体21が接続される外部メモリ制御部20と、カメラ背面等に搭載された液晶表示部23が接続される表示制御部22とを備え、これらは、制御バス24及びデータバス25によって相互に接続され、システム制御部11からの指令によって制御される。   Furthermore, the electric control system of this digital camera generates image data by performing main memory 16, memory control unit 15 connected to main memory 16, interpolation calculation, gamma correction calculation, RGB / YC conversion processing, and the like. A digital signal processing unit 17, a compression / decompression processing unit 18 that compresses image data generated by the digital signal processing unit 17 into a JPEG format or decompresses compressed image data, and a digital signal processing unit 17 that integrates photometric data. The integration unit 19 for obtaining the gain of white balance correction performed by the camera, the external memory control unit 20 to which the removable recording medium 21 is connected, and the display control unit 22 to which the liquid crystal display unit 23 mounted on the back of the camera is connected. These are connected to each other by a control bus 24 and a data bus 25, and are controlled by commands from the system control unit 11. That.

図2は、図1に示す固体撮像素子5の一構成例を示した平面模式図である。
固体撮像素子5は、半導体基板50上の行方向Xとこれに直交するY方向とに正方格子状に配列されたR光を検出する光電変換素子51R(図中に“R”の文字を付してある)、G光を検出する光電変換素子51G(図中に“G”の文字を付してある)、B光を検出する光電変換素子51B(図中に“B”の文字を付してある)からなるRGB光電変換素子群と、半導体基板50上の行方向Xとこれに直交するY方向とに正方格子状に配列された光の輝度成分を検出する光電変換素子51W(図中に“W”の文字を付してある)からなるW光電変換素子群とを備え、これらが、それぞれの光電変換素子配列ピッチの略1/2だけ、行方向X及び列方向Yにずれた位置に配置されている。尚、RGB光電変換素子群の各光電変換素子とW光電変換素子群の各光電変換素子の配列ピッチは同じである。
FIG. 2 is a schematic plan view showing a configuration example of the solid-state imaging device 5 shown in FIG.
The solid-state imaging device 5 is a photoelectric conversion element 51R (indicated by the letter “R” in the figure) that detects R light arranged in a square lattice pattern in the row direction X on the semiconductor substrate 50 and the Y direction perpendicular thereto. Photoelectric conversion element 51G for detecting G light (characterized with “G” in the figure), photoelectric conversion element 51B for detecting B light (characterized with “B” in the figure) And a photoelectric conversion element 51W that detects luminance components of light arranged in a square lattice pattern in the row direction X on the semiconductor substrate 50 and in the Y direction perpendicular thereto. W photoelectric conversion element group consisting of “W” inside, and these are shifted in the row direction X and the column direction Y by about ½ of the respective photoelectric conversion element arrangement pitch. It is arranged at the position. The arrangement pitch of each photoelectric conversion element of the RGB photoelectric conversion element group and each photoelectric conversion element of the W photoelectric conversion element group is the same.

RGB光電変換素子群の各光電変換素子の上方にはカラーフィルタが設けられており、このカラーフィルタの配列はベイヤー配列となっている。   A color filter is provided above each photoelectric conversion element of the RGB photoelectric conversion element group, and the arrangement of the color filters is a Bayer array.

W光電変換素子群の各光電変換素子の上方には、光の輝度情報と相関のある分光特性を持ったフィルタすなわち輝度フィルタが設けられている。この輝度フィルタは、NDフィルタや、透明フィルタ、白色フィルタ、グレーのフィルタ等が該当するが、光電変換素子の受光面上方に何も設けずに光が直接該受光面に入射する構成も、輝度フィルタを設けたということができる。   Above each photoelectric conversion element of the W photoelectric conversion element group, a filter having a spectral characteristic correlated with the luminance information of light, that is, a luminance filter is provided. This luminance filter corresponds to an ND filter, a transparent filter, a white filter, a gray filter, or the like, but the configuration in which light is directly incident on the light receiving surface without providing anything above the light receiving surface of the photoelectric conversion element is also possible. It can be said that a filter is provided.

RGB光電変換素子群の各光電変換素子と、W光電変換素子群の各光電変換素子とは、それぞれ同一構造となっている。   Each photoelectric conversion element in the RGB photoelectric conversion element group and each photoelectric conversion element in the W photoelectric conversion element group have the same structure.

RGB光電変換素子群の各光電変換素子の配列は、列方向Yに並ぶ光電変換素子51Gと光電変換素子51Rとからなる光電変換素子列であるGR光電変換素子列と、列方向Yに並ぶ光電変換素子51Bと光電変換素子51Gとからなる光電変換素子列であるBG光電変換素子列とを、行方向Xに交互に配列したものと言うことができる。又、RGB光電変換素子群の各光電変換素子の配列は、行方向Xに並ぶ光電変換素子51Gと光電変換素子51Bとからなる光電変換素子行であるGB光電変換素子行と、行方向Xに並ぶ光電変換素子51Rと光電変換素子51Gとからなる光電変換素子行であるRG光電変換素子行とを、列方向Yに交互に配列したものと言うこともできる。   The arrangement of each photoelectric conversion element of the RGB photoelectric conversion element group is such that a GR photoelectric conversion element array, which is a photoelectric conversion element array composed of a photoelectric conversion element 51G and a photoelectric conversion element 51R aligned in the column direction Y, and a photoelectric array in the column direction Y. It can be said that BG photoelectric conversion element arrays, which are photoelectric conversion element arrays including conversion elements 51B and 51G, are alternately arranged in the row direction X. In addition, the arrangement of the photoelectric conversion elements of the RGB photoelectric conversion element group is such that the photoelectric conversion element rows, which are photoelectric conversion element rows 51G and photoelectric conversion elements 51B arranged in the row direction X, are arranged in the row direction X. It can also be said that RG photoelectric conversion element rows, which are photoelectric conversion element rows composed of the aligned photoelectric conversion elements 51R and 51G, are alternately arranged in the column direction Y.

W光電変換素子群の各光電変換素子の配列は、列方向Yに並ぶ光電変換素子51Wからなる光電変換素子列であるW光電変換素子列を行方向Xに複数配列したものと言うことができる。又、W光電変換素子群の各光電変換素子の配列は、行方向Xに並ぶ光電変換素子51WからなるW光電変換素子行を、列方向Yに複数配列したものと言うこともできる。   The arrangement of each photoelectric conversion element of the W photoelectric conversion element group can be said to be a plurality of W photoelectric conversion element arrays in the row direction X, which are photoelectric conversion element arrays composed of photoelectric conversion elements 51W arranged in the column direction Y. . In addition, the arrangement of the photoelectric conversion elements of the W photoelectric conversion element group can be said to be a plurality of W photoelectric conversion element rows formed of the photoelectric conversion elements 51W arranged in the row direction X in the column direction Y.

各光電変換素子列の右側部には、各光電変換素子列に対応させて、各光電変換素子列を構成する光電変換素子に蓄積された電荷を列方向Yに転送するための垂直電荷転送路54(図2では一部のみ図示してある)が形成されている。垂直電荷転送路54は、例えば、n型シリコン基板上に形成されたpウェル層内に注入されたn型不純物によって形成されている。   On the right side of each photoelectric conversion element array, a vertical charge transfer path for transferring charges accumulated in the photoelectric conversion elements constituting each photoelectric conversion element array in the column direction Y corresponding to each photoelectric conversion element array 54 (only part of which is shown in FIG. 2) is formed. The vertical charge transfer path 54 is formed by, for example, n-type impurities injected into a p-well layer formed on an n-type silicon substrate.

垂直電荷転送路54上方には、垂直電荷転送路54に読み出された電荷の転送を制御するための8相の転送パルスが撮像素子駆動部10によって印加される転送電極V1〜V8が形成されている。   Above the vertical charge transfer path 54, transfer electrodes V <b> 1 to V <b> 8 are formed to which an eight-phase transfer pulse for controlling transfer of charges read out to the vertical charge transfer path 54 is applied by the image sensor driving unit 10. ing.

転送電極V1〜V8は、それぞれ、各光電変換素子行の間を、これらを構成する光電変換素子を避けるように行方向Xに蛇行して配設されている。   The transfer electrodes V1 to V8 are arranged so as to meander between the photoelectric conversion element rows in the row direction X so as to avoid the photoelectric conversion elements constituting them.

各光電変換素子と、それに対応する垂直電荷転送路54との間には、各光電変換素子で発生した電荷を、該垂直電荷転送路54に読み出すための電荷読出し部55が設けられている。電荷読出し部55は、例えば、n型シリコン基板上に形成されたpウェル層の一部分によって形成されている。電荷読出し部55は、各光電変換素子に対して同一の方向(図中の斜め右下方向)に設けられている。   Between each photoelectric conversion element and the vertical charge transfer path 54 corresponding to the photoelectric conversion element, a charge reading unit 55 for reading the charge generated in each photoelectric conversion element to the vertical charge transfer path 54 is provided. The charge readout unit 55 is formed by a part of a p-well layer formed on an n-type silicon substrate, for example. The charge readout unit 55 is provided in the same direction (in the diagonally lower right direction in the drawing) with respect to each photoelectric conversion element.

光電変換素子51Wに対応する電荷読出し部55上方には転送電極V2又はV6が形成されており、ここに読み出しパルスを印加することで、光電変換素子51Wで発生して蓄積された電荷を、該光電変換素子51Wの右側部にある垂直電荷転送路54に読み出すことができる。   A transfer electrode V2 or V6 is formed above the charge reading unit 55 corresponding to the photoelectric conversion element 51W, and the charge generated and accumulated in the photoelectric conversion element 51W is applied to the transfer electrode V2 or V6 by applying a read pulse thereto. Data can be read out to the vertical charge transfer path 54 on the right side of the photoelectric conversion element 51W.

GB光電変換素子行の各光電変換素子に対応する電荷読出し部55上方には転送電極V4が形成されており、ここに読み出しパルスを印加することで、GB光電変換素子行の各光電変換素子で発生して蓄積された電荷を、各光電変換素子の右側部にある垂直電荷転送路54に読み出すことができる。   A transfer electrode V4 is formed above the charge reading unit 55 corresponding to each photoelectric conversion element in the GB photoelectric conversion element row. By applying a read pulse to the transfer electrode V4, the transfer electrode V4 is applied to each photoelectric conversion element in the GB photoelectric conversion element row. The generated and accumulated charges can be read out to the vertical charge transfer path 54 on the right side of each photoelectric conversion element.

RG光電変換素子行の各光電変換素子に対応する電荷読出し部55上方には転送電極V8が形成されており、ここに読み出しパルスを印加することで、RG光電変換素子行の各光電変換素子で発生して蓄積された電荷を、各光電変換素子の右側部にある垂直電荷転送路54に読み出すことができる。   A transfer electrode V8 is formed above the charge reading unit 55 corresponding to each photoelectric conversion element in the RG photoelectric conversion element row. By applying a read pulse to the transfer electrode V8, the transfer electrode V8 is applied to each photoelectric conversion element in the RG photoelectric conversion element row. The generated and accumulated charges can be read out to the vertical charge transfer path 54 on the right side of each photoelectric conversion element.

垂直電荷転送路54には、垂直電荷転送路54を転送されてきた電荷を行方向Xに転送するための水平電荷転送路57が接続され、水平電荷転送路57には、水平電荷転送路57を転送されてきた電荷を電圧信号に変換して出力する出力アンプ58が接続されている。   A horizontal charge transfer path 57 for transferring the charges transferred through the vertical charge transfer path 54 in the row direction X is connected to the vertical charge transfer path 54. The horizontal charge transfer path 57 is connected to the horizontal charge transfer path 57. Is connected to an output amplifier 58 that converts the charge transferred to a voltage signal and outputs the voltage signal.

撮像素子駆動部10は、RGB光電変換素子群から電荷を読み出し、該電荷に応じた信号を出力させる第一の駆動と、W光電変換素子群から電荷を読み出し、該電荷に応じた信号を出力させる第二の駆動とを分けて行う2フィールド駆動を行う。この2フィールド駆動には、第二の駆動において、垂直電荷転送路54に読み出した電荷のうち隣接する電荷同士を該垂直電荷転送路54上で混合して転送する混合駆動と、第二の駆動において、垂直電荷転送路54に読み出した電荷のうち隣接する電荷同士を該垂直電荷転送路54上で混合しないで転送する通常駆動との2種類が含まれる。   The image sensor driving unit 10 reads out electric charges from the RGB photoelectric conversion element group, outputs a signal corresponding to the electric charges, reads out electric charges from the W photoelectric conversion element group, and outputs a signal corresponding to the electric charges. Two-field driving is performed separately from the second driving. In the two-field drive, in the second drive, the mixed drive that mixes and transfers adjacent charges among the charges read to the vertical charge transfer path 54 on the vertical charge transfer path 54, and the second drive. In FIG. 2, there are two types of normal driving in which adjacent charges among the charges read out to the vertical charge transfer path 54 are transferred on the vertical charge transfer path 54 without being mixed.

以下、混合駆動時の動作を説明する。
露光期間が終了すると、撮像素子駆動部10は、転送電極V4,V8に読み出しパルスを印加して、RGB光電変換素子群の各光電変換素子で発生した電荷を、該各光電変換素子に対応する垂直電荷転送路54に読み出す。そして、該電荷を水平電荷転送路57まで転送し、該電荷を水平電荷転送路57で出力アンプ58まで転送し、ここから該電荷に応じた信号を出力させる。
Hereinafter, the operation during mixed driving will be described.
When the exposure period ends, the image sensor driving unit 10 applies a readout pulse to the transfer electrodes V4 and V8, and the charges generated in the photoelectric conversion elements of the RGB photoelectric conversion element group correspond to the photoelectric conversion elements. Read to the vertical charge transfer path 54. Then, the charge is transferred to the horizontal charge transfer path 57, the charge is transferred to the output amplifier 58 through the horizontal charge transfer path 57, and a signal corresponding to the charge is output therefrom.

次に、撮像素子駆動部10は、転送電極V2,V6に読み出しパルスを印加して、W光電変換素子群の各光電変換素子で発生した電荷を、該各光電変換素子に対応する垂直電荷転送路54に読み出す。次に、撮像素子駆動部10は、垂直電荷転送路54に読み出した電荷のうち、隣接する2つの電荷を垂直電荷転送路54上で混合してから、混合後の電荷を水平電荷転送路57まで転送し、該電荷を水平電荷転送路57で出力アンプ58まで転送し、ここから該電荷に応じた信号を出力させる。   Next, the imaging element driving unit 10 applies a read pulse to the transfer electrodes V2 and V6, and transfers the charges generated in each photoelectric conversion element of the W photoelectric conversion element group to the vertical charge transfer corresponding to each photoelectric conversion element. Read to path 54. Next, the image sensor driving unit 10 mixes two adjacent charges out of the charges read out to the vertical charge transfer path 54 on the vertical charge transfer path 54, and then mixes the mixed charges into the horizontal charge transfer path 57. The charge is transferred to the output amplifier 58 through the horizontal charge transfer path 57, and a signal corresponding to the charge is output therefrom.

このような駆動を行った場合、固体撮像素子5からは、図2中のRGB光電変換素子群を構成する光電変換素子の総数と同じ数のカラー信号と、図2中のW光電変換素子群を構成する光電変換素子の総数の半分の輝度信号とが得られる。   When such driving is performed, the solid-state imaging device 5 gives the same number of color signals as the total number of photoelectric conversion elements constituting the RGB photoelectric conversion element group in FIG. 2 and the W photoelectric conversion element group in FIG. And a luminance signal that is half the total number of photoelectric conversion elements constituting the.

そこで、デジタル信号処理部17が、カラー信号を1/2に間引いて輝度信号と同じ数にした後、カラー信号のある位置に、その位置にない色のカラー信号と輝度信号を、周囲のカラー信号及び輝度信号を用いて補間し、輝度信号のある位置に、その位置にないカラー信号を、周囲のカラー信号を用いて補間する信号処理を行うことで、固体撮像素子5の全光電変換素子数の半分の数の画素データからなるカラー画像データを生成することができる。   Therefore, after the digital signal processing unit 17 halves the color signal to make it the same number as the luminance signal, the color signal and luminance signal of the color that does not exist at the position where the color signal is present are changed to the surrounding color. All the photoelectric conversion elements of the solid-state imaging device 5 are subjected to signal processing that interpolates using a signal and a luminance signal, and interpolates a color signal that is not at that position using a surrounding color signal at a position where the luminance signal exists. Color image data composed of half the number of pixel data can be generated.

このような画素数の画像データは、例えば、通常駆動を行って得られたカラー信号と輝度信号をそれぞれ1/2に間引いた撮像信号からも生成することができる。混合駆動を行うことの利点は、輝度信号を間引いて総数を1/2にするのではなく、混合して1/2にしているために、輝度信号のレベルを上げることができ、より解像感の高い画像を生成することができることにある。   Image data having such a number of pixels can also be generated from, for example, an imaging signal obtained by thinning a color signal and a luminance signal obtained by performing normal driving by half. The advantage of mixed driving is that the luminance signal level can be increased because the luminance signal is increased to 1/2 because the luminance signal is not decimated and the total number is halved. It is to be able to generate an image with a high feeling.

このように、混合駆動を行った場合に生成されるカラー画像データは画素数が少なくなるため、撮像素子駆動部10は、ユーザから設定された解像度によって、上述した混合駆動を行うのか、通常駆動を行うのかを選択することで、撮影条件に応じた最適な駆動を実施することができる。又、上記混合駆動は、通常駆動と比べると、2フィールド目の駆動時間を短縮することができる。このため、連写モード等のように高速駆動が求められる場合には、混合駆動を選択して実行するといったことも可能となる。又、駆動時間を短縮することができるため、消費電力の低減も図ることができる。   As described above, since the number of pixels of the color image data generated when mixing driving is performed is smaller, the image sensor driving unit 10 performs the above-described mixing driving or normal driving depending on the resolution set by the user. By selecting whether or not to perform the optimum driving according to the photographing conditions can be performed. Further, the mixed drive can shorten the drive time of the second field compared to the normal drive. For this reason, when high-speed driving is required, such as in continuous shooting mode, it is possible to select and execute mixed driving. Further, since the driving time can be shortened, power consumption can be reduced.

尚、以上の説明では、混合駆動において、RGB光電変換素子群から信号を出力させる際に、RGB光電変換素子群を構成する全ての光電変換素子からカラー信号を出力させ、その後の信号処理でカラー信号の数を1/2にするものとしている。しかし、これに限らず、RGB光電変換素子群から信号を出力させる際に、電荷を1/2に間引いて読み出す間引き駆動を行うようにしても良い。この場合には、更なる高速駆動が可能となる。   In the above description, when signals are output from the RGB photoelectric conversion element group in the mixed drive, color signals are output from all the photoelectric conversion elements constituting the RGB photoelectric conversion element group, and color is processed by subsequent signal processing. The number of signals is halved. However, the present invention is not limited to this, and when signals are output from the RGB photoelectric conversion element group, thinning driving may be performed in which charges are thinned out and read. In this case, further high speed driving is possible.

又、間引き駆動を行う場合には、カラー信号の間引き数に応じて、輝度信号の混合数を変えることが好ましい。例えばカラー信号を1/4に間引いて出力させる駆動を行った場合には、垂直電荷転送路54に読み出された輝度成分の電荷のうち、隣接する4つの電荷を混合して転送するようにすれば良い。このように、カラー信号の間引き数に応じて輝度成分の電荷の混合数を変えることで、駆動を早めながら解像感を向上させることができるようになる。   When thinning driving is performed, it is preferable to change the number of luminance signals mixed according to the thinning number of color signals. For example, when driving to thin out the color signal to ¼ and output it, the adjacent four charges out of the luminance component charges read out to the vertical charge transfer path 54 are mixed and transferred. Just do it. Thus, by changing the number of luminance component charges according to the number of thinned out color signals, the sense of resolution can be improved while driving faster.

又、以上の説明では、混合駆動において、W光電変換素子群から読み出した電荷を垂直電荷転送路54で混合するものとしているが、W光電変換素子群から読み出した電荷ではなく、RGB光電変換素子群から読み出した電荷のうちの隣接する同色成分の電荷同士を垂直電荷転送路54で混合して転送するようにしても良い。この場合には、カラー信号の総数と同じになるように輝度信号を間引いてからカラー画像データを生成したり、カラー成分の電荷の混合数に応じて、W光電変換素子群から電荷を間引いて読み出すようにしたりすれば良い。   In the above description, the charge read from the W photoelectric conversion element group is mixed by the vertical charge transfer path 54 in the mixed drive. However, instead of the charge read from the W photoelectric conversion element group, the RGB photoelectric conversion element is used. Of the charges read from the group, adjacent charges of the same color component may be mixed and transferred by the vertical charge transfer path 54. In this case, color image data is generated after thinning the luminance signal so as to be the same as the total number of color signals, or charge is thinned out from the W photoelectric conversion element group according to the number of mixed color component charges. You may make it read.

又、以上の説明では、RGB光電変換素子群を構成する光電変換素子の上方に設けられるカラーフィルタが原色フィルタの例を示した。しかし、このカラーフィルタは、RGB光電変換素子群から得られる信号のみでカラー画像データを生成することができるようなフィルタであれば良く、例えば補色フィルタを用いても構わない。   In the above description, an example in which the color filter provided above the photoelectric conversion elements constituting the RGB photoelectric conversion element group is a primary color filter is shown. However, this color filter may be any filter that can generate color image data only from signals obtained from the RGB photoelectric conversion element group. For example, a complementary color filter may be used.

(第二実施形態)
第一実施形態で説明した混合駆動は、図2に示した構成の固体撮像素子に限らず、カラー画像データを生成するのに必要な色成分の光を検出する光電変換素子からなる光電変換素子群と、それとは別の光電変換素子群とを備え、これら光電変換素子群からの信号を別々に読み出すことが可能な固体撮像素子であれば適用することができる。本実施形態では、このような固体撮像素子として図2に示した構成以外の構成例について説明する。
(Second embodiment)
The mixing drive described in the first embodiment is not limited to the solid-state imaging device having the configuration shown in FIG. 2, but is a photoelectric conversion device including a photoelectric conversion device that detects light of a color component necessary for generating color image data. Any solid-state imaging device can be applied as long as it includes a group and a photoelectric conversion element group different from the group and can read signals from these photoelectric conversion element groups separately. In the present embodiment, a configuration example other than the configuration shown in FIG. 2 will be described as such a solid-state imaging device.

図3は、本発明の第二実施形態の撮像装置に搭載される固体撮像素子の一構成例を示した平面模式図である。図3において図2に示した構成と同様の構成には同一符号を付してある。
図3に示す固体撮像素子5は、図2に示した固体撮像素子5のW光電変換素子群を構成する光電変換素子51W上方に設けるフィルタを、ベイヤー配列であるカラーフィルタとしたものである。以下、このカラーフィルタが上方に設けられた光電変換素子からなる光電変換素子群をrgb光電変換素子群という。
FIG. 3 is a schematic plan view showing a configuration example of a solid-state imaging device mounted on the imaging device according to the second embodiment of the present invention. In FIG. 3, the same components as those shown in FIG.
The solid-state image pickup device 5 shown in FIG. 3 is a color filter having a Bayer arrangement as a filter provided above the photoelectric conversion devices 51W constituting the W photoelectric conversion device group of the solid-state image pickup device 5 shown in FIG. Hereinafter, a photoelectric conversion element group including photoelectric conversion elements provided with the color filter above is referred to as an rgb photoelectric conversion element group.

図3に示すように、rgb光電変換素子群は、Rカラーフィルタが上方に設けられた光電変換素子51rと、Gカラーフィルタが上方に設けられた光電変換素子51gと、Bカラーフィルタが上方に設けられた光電変換素子51bとを含む。   As shown in FIG. 3, the rgb photoelectric conversion element group includes a photoelectric conversion element 51r provided with an R color filter above, a photoelectric conversion element 51g provided with a G color filter above, and a B color filter upward. And a provided photoelectric conversion element 51b.

RGB光電変換素子群の各光電変換素子と、rgb光電変換素子群の各光電変換素子は、それぞれ検出感度が異なり、例えばRGB光電変換素子群の各光電変換素子の検出感度の方が低くなっている。光電変換素子の検出感度を変化させるには、光電変換素子の受光面の面積を変化させてもよいし、光電変換素子上方に設けたマイクロレンズによって、集光面積を変化させてもよいし、2つの光電変換素子の各々で露光時間を変えても良い。これらの方法は公知であるため、説明を省略する。   Each photoelectric conversion element in the RGB photoelectric conversion element group and each photoelectric conversion element in the rgb photoelectric conversion element group have different detection sensitivities. For example, the detection sensitivity of each photoelectric conversion element in the RGB photoelectric conversion element group is lower. Yes. To change the detection sensitivity of the photoelectric conversion element, the area of the light receiving surface of the photoelectric conversion element may be changed, or the light collection area may be changed by a microlens provided above the photoelectric conversion element, The exposure time may be changed for each of the two photoelectric conversion elements. Since these methods are publicly known, description thereof is omitted.

尚、図3に示した光電変換素子配列については、特開2004−055786号公報にも詳細が開示されているので、これを参照されたい。   The details of the photoelectric conversion element array shown in FIG. 3 are also disclosed in Japanese Patent Application Laid-Open No. 2004-055586, so please refer to this.

以下、混合駆動時の動作を説明する。
露光期間が終了すると、撮像素子駆動部10は、転送電極V4,V8に読み出しパルスを印加して、RGB光電変換素子群の各光電変換素子で発生した電荷を、該各光電変換素子に対応する垂直電荷転送路54に読み出す。そして、該電荷を水平電荷転送路57まで転送し、該電荷を水平電荷転送路57で出力アンプ58まで転送し、ここから該電荷に応じた信号を出力させる。
Hereinafter, the operation during mixed driving will be described.
When the exposure period ends, the image sensor driving unit 10 applies a readout pulse to the transfer electrodes V4 and V8, and the charges generated in the photoelectric conversion elements of the RGB photoelectric conversion element group correspond to the photoelectric conversion elements. Read to the vertical charge transfer path 54. Then, the charge is transferred to the horizontal charge transfer path 57, the charge is transferred to the output amplifier 58 through the horizontal charge transfer path 57, and a signal corresponding to the charge is output therefrom.

次に、撮像素子駆動部10は、転送電極V2,V6に読み出しパルスを印加して、rgb光電変換素子群の各光電変換素子で発生した電荷を、該各光電変換素子に対応する垂直電荷転送路54に読み出す。次に、撮像素子駆動部10は、垂直電荷転送路54に読み出した電荷のうち、同色成分の隣接する2つの電荷を垂直電荷転送路54上で混合してから、混合後の電荷を水平電荷転送路57まで転送し、該電荷を水平電荷転送路57で出力アンプ58まで転送し、ここから該電荷に応じた信号を出力させる。   Next, the image sensor driving unit 10 applies a read pulse to the transfer electrodes V2 and V6, and transfers the charge generated in each photoelectric conversion element of the rgb photoelectric conversion element group to the vertical charge transfer corresponding to each photoelectric conversion element. Read to path 54. Next, the image sensor driving unit 10 mixes two adjacent charges of the same color component on the vertical charge transfer path 54 out of the charges read out to the vertical charge transfer path 54, and then converts the mixed charge into a horizontal charge. The charge is transferred to the transfer path 57, the charge is transferred to the output amplifier 58 through the horizontal charge transfer path 57, and a signal corresponding to the charge is output therefrom.

このような駆動を行った場合、固体撮像素子5からは、図3中のRGB光電変換素子群を構成する光電変換素子の総数と同じ数のカラー信号と、図3中のrgb光電変換素子群を構成する光電変換素子の総数の半分のカラー信号とが得られる。   When such driving is performed, the solid-state imaging device 5 gives the same number of color signals as the total number of photoelectric conversion elements constituting the RGB photoelectric conversion element group in FIG. 3, and the rgb photoelectric conversion element group in FIG. As a result, a color signal that is half the total number of photoelectric conversion elements constituting the signal is obtained.

そこで、デジタル信号処理部17が、RGB光電変換素子群から得られたカラー信号(RGBカラー信号という)を1/2に間引いて、rgb光電変換素子群から得られたカラー信号(rgbカラー信号という)と同じ数にした後、RGBカラー信号とrgbカラー信号の近接同色画素同士の信号を合成してダイナミックレンジを拡大する処理を行い、合成して得られたカラー信号を用いてカラー信号を補間する信号処理を行うことで、固体撮像素子5の全光電変換素子数の1/4の数の画素データからなるカラー画像データを生成することができる。   Therefore, the digital signal processing unit 17 thins out a color signal (referred to as RGB color signal) obtained from the RGB photoelectric conversion element group to ½, and a color signal (referred to as rgb color signal) obtained from the rgb photoelectric conversion element group. ), The RGB color signal and the rgb color signal adjacent to the same color pixels are combined to expand the dynamic range, and the color signal is interpolated using the combined color signal. By performing the signal processing to be performed, it is possible to generate color image data including pixel data that is ¼ of the total number of photoelectric conversion elements of the solid-state imaging element 5.

以上のように、W光電変換素子群をrgb光電変換素子群に変更した構成であっても、第一実施形態で述べた混合駆動を適用することができ、高速駆動、高解像感、広ダイナミックレンジ、低消費電力を実現するデジタルカメラを提供することができる。   As described above, even with the configuration in which the W photoelectric conversion element group is changed to the rgb photoelectric conversion element group, the mixed driving described in the first embodiment can be applied, and high speed driving, high resolution, wide A digital camera that achieves a dynamic range and low power consumption can be provided.

尚、以上の説明では、rgb光電変換素子群を構成する光電変換素子の上方に設けられるカラーフィルタが原色フィルタの例を示した。しかし、このカラーフィルタは、rgb光電変換素子群から得られる信号のみでカラー画像データを生成することができるようなフィルタであれば良く、例えば補色フィルタを用いても構わない。   In the above description, the color filter provided above the photoelectric conversion elements constituting the rgb photoelectric conversion element group is an example of a primary color filter. However, this color filter only needs to be a filter that can generate color image data using only signals obtained from the rgb photoelectric conversion element group. For example, a complementary color filter may be used.

又、以上の説明では、RGB光電変換素子群からの電荷は混合せずに転送し、rgb光電変換素子群からの電荷を混合して転送するようにしているが、これは逆であっても良い。   In the above description, the charges from the RGB photoelectric conversion element group are transferred without being mixed, and the charges from the rgb photoelectric conversion element group are mixed and transferred. good.

(第三実施形態)
本実施形態では、カラー画像データを生成するのに必要な色成分の光を検出する光電変換素子からなる光電変換素子群と、それとは別の光電変換素子群とを備え、これら光電変換素子群からの信号を別々に読み出すことが可能な固体撮像素子のもう1つの構成例を説明する。
(Third embodiment)
In the present embodiment, a photoelectric conversion element group composed of photoelectric conversion elements that detect light of a color component necessary for generating color image data and a photoelectric conversion element group different from the photoelectric conversion element group are provided. Another configuration example of the solid-state imaging device capable of separately reading the signals from will be described.

図4は、本発明の第三実施形態の撮像装置に搭載される固体撮像素子の一構成例を示した平面模式図である。尚、図4では、光電変換素子の配列のみを示してある。
図4に示す固体撮像素子は、Rカラーフィルタが上方に設けられた光電変換素子61Rと、Gカラーフィルタが上方に設けられた光電変換素子61Gと、Bカラーフィルタが上方に設けられた光電変換素子61Bと、輝度フィルタが上方に設けられた光電変換素子61Wとが半導体基板上の水平方向とこれに直交する垂直方向に正方格子状に配列されたものとなっている。光電変換素子61R,61G,61Bと、光電変換素子61Wとは市松状に配置されている。
FIG. 4 is a schematic plan view showing a configuration example of a solid-state imaging device mounted on the imaging apparatus according to the third embodiment of the present invention. FIG. 4 shows only the arrangement of the photoelectric conversion elements.
The solid-state imaging device shown in FIG. 4 includes a photoelectric conversion element 61R provided with an R color filter above, a photoelectric conversion element 61G provided with a G color filter above, and a photoelectric conversion provided with a B color filter above. The element 61B and the photoelectric conversion element 61W having a luminance filter provided thereon are arranged in a square lattice pattern in the horizontal direction on the semiconductor substrate and in the vertical direction perpendicular thereto. The photoelectric conversion elements 61R, 61G, 61B and the photoelectric conversion element 61W are arranged in a checkered pattern.

図4には図示していないが、図4の垂直方向に並ぶ光電変換素子からなる光電変換素子列の右隣には、この光電変換素子列の各光電変換素子で発生した電荷を垂直方向に転送する垂直電荷転送路が設けられ、該垂直電荷転送路の終端には、該垂直電荷転送路を転送されてきた電荷を水平方向に転送する水平電荷転送路が設けられ、該水平電荷転送路の終端には、該水平電荷転送路を転送されてきた電荷に応じた信号を出力する出力アンプが設けられている。   Although not shown in FIG. 4, on the right side of the photoelectric conversion element array composed of photoelectric conversion elements arranged in the vertical direction in FIG. 4, charges generated in the photoelectric conversion elements of this photoelectric conversion element array are vertically aligned. A vertical charge transfer path for transferring is provided, and at the end of the vertical charge transfer path, a horizontal charge transfer path for transferring the charges transferred through the vertical charge transfer path in the horizontal direction is provided. Is provided with an output amplifier that outputs a signal corresponding to the charge transferred through the horizontal charge transfer path.

図4に示す固体撮像素子は、光電変換素子61R,61G,61Bからの電荷の読み出しと、光電変換素子61Wからの電荷の読み出しとを独立に行うことができるように、各光電変換素子から垂直電荷転送路に電荷を読み出すための電荷読み出し領域が形成されている。   The solid-state imaging device shown in FIG. 4 is perpendicular to each photoelectric conversion element so that reading of charges from the photoelectric conversion elements 61R, 61G, and 61B and reading of charges from the photoelectric conversion element 61W can be performed independently. A charge reading region for reading charges is formed in the charge transfer path.

尚、図4に示した固体撮像素子の詳細については、特開2003−318375号公報に記載されているので、これを参照されたい。   The details of the solid-state imaging device shown in FIG. 4 are described in Japanese Patent Application Laid-Open No. 2003-318375, so please refer to this.

このような構成の固体撮像素子であっても、上述した混合駆動を適用することができる。即ち、第1フィールドで光電変換素子61R,61G,61Bから電荷を読み出して転送し、第2フィールドで光電変換素子61Wから電荷を読み出して転送するものとし、どちらかのフィールドにおいて、隣接する同色成分の電荷同士を垂直電荷転送路上で混合して転送するようにすれば良い。   Even in the solid-state imaging device having such a configuration, the above-described mixed driving can be applied. That is, the charge is read from the photoelectric conversion elements 61R, 61G, 61B in the first field and transferred, and the charge is read from the photoelectric conversion element 61W in the second field and transferred. These charges may be mixed and transferred on the vertical charge transfer path.

(第四実施形態)
第一実施形態や第二実施形態で説明した構成の固体撮像素子では、RGB光電変換素子群に対応する垂直電荷転送路と、W光電変換素子群(又はrgb光電変換素子群)に対応する垂直電荷転送路とが別になっている。このため、一方の光電変換素子群から電荷を読み出して転送しているときには、他方の光電変換素子群に対応する垂直電荷転送路には電荷が存在しないことになる。しかし、該垂直電荷転送路の駆動は他の垂直電荷転送路と同様に行われるため、水平電荷転送路57には該垂直電荷転送路から暗電流成分等のノイズ電荷が転送されてしまう。つまり、水平電荷転送路57に1ライン分の電荷が転送された状態では、その電荷の並びが、信号電荷とノイズ電荷の繰り返しとなる。この状態で電荷が水平方向に転送されると、信号電荷にノイズ電荷が漏れこんでしまい、SN比が劣化してしまう。そこで、本実施形態では、このようなノイズ電荷の漏れこみを防止するための固体撮像素子の構成について説明する。
(Fourth embodiment)
In the solid-state imaging device having the configuration described in the first embodiment or the second embodiment, the vertical charge transfer path corresponding to the RGB photoelectric conversion element group and the vertical corresponding to the W photoelectric conversion element group (or rgb photoelectric conversion element group). Separate from the charge transfer path. For this reason, when charges are read out from one photoelectric conversion element group and transferred, no charge exists in the vertical charge transfer path corresponding to the other photoelectric conversion element group. However, since the vertical charge transfer path is driven in the same manner as other vertical charge transfer paths, noise charges such as dark current components are transferred to the horizontal charge transfer path 57 from the vertical charge transfer path. That is, in a state where charges for one line are transferred to the horizontal charge transfer path 57, the arrangement of the charges is a repetition of signal charges and noise charges. If the charge is transferred in the horizontal direction in this state, the noise charge leaks into the signal charge and the SN ratio is deteriorated. Therefore, in the present embodiment, a configuration of a solid-state imaging device for preventing such noise charge leakage will be described.

図5は、本発明の第四実施形態の撮像装置に搭載される固体撮像素子の構成例を示す平面模式図である。図5において図2と同様の構成には同一符号を付してある。
図5に示す固体撮像素子5は、図2に示す固体撮像素子5の垂直電荷転送路54と水平電荷転送路57との間に、電荷を一時的に蓄積するための電荷蓄積部60を設け、RGB光電変換素子群の各光電変換素子に対応する垂直電荷転送路54に接続された電荷蓄積部60上方に、この電荷蓄積部60のポテンシャルを制御するための電極59aを設け、W光電変換素子群の各光電変換素子に対応する垂直電荷転送路54に接続された電荷蓄積部60上方に、この電荷蓄積部60のポテンシャルを制御するための電極59bを設けた構成となっている。
FIG. 5 is a schematic plan view illustrating a configuration example of a solid-state imaging device mounted on the imaging device according to the fourth embodiment of the present invention. In FIG. 5, the same components as those in FIG.
The solid-state imaging device 5 illustrated in FIG. 5 includes a charge storage unit 60 for temporarily storing charges between the vertical charge transfer path 54 and the horizontal charge transfer path 57 of the solid-state image sensor 5 illustrated in FIG. An electrode 59a for controlling the potential of the charge storage section 60 is provided above the charge storage section 60 connected to the vertical charge transfer path 54 corresponding to each photoelectric conversion element of the RGB photoelectric conversion element group, and W photoelectric conversion is performed. An electrode 59b for controlling the potential of the charge storage unit 60 is provided above the charge storage unit 60 connected to the vertical charge transfer path 54 corresponding to each photoelectric conversion element of the element group.

電極59aには制御パルスφLM2が印加され、電極59bには制御パルスφLM1が印加されるようになっている。   A control pulse φLM2 is applied to the electrode 59a, and a control pulse φLM1 is applied to the electrode 59b.

以下、混合駆動時の動作を説明する。
露光期間が終了すると、撮像素子駆動部10は、転送電極V4,V8に読み出しパルスを印加して、RGB光電変換素子群の各光電変換素子で発生した電荷を、該各光電変換素子に対応する垂直電荷転送路54に読み出す。そして、該電荷を電荷蓄積部60を介して水平電荷転送路57まで転送し、該電荷を水平電荷転送路57で出力アンプ58まで転送し、ここから該電荷に応じた信号を出力させる。電荷蓄積部60に蓄積された電荷は、制御パルスφLM1,φLM2をローレベルにすることで水平電荷転送路57に転送することができる。
尚、電荷を水平電荷転送路57に転送する際、撮像素子駆動部10は、制御パルスφLM1をハイレベルに維持し、制御パルスφLM2だけをローレベルとハイレベルに切り替えることで、電極59a下方の電荷蓄積部60に蓄積されたカラー成分の電荷を水平電荷転送路57に転送しつつ、電極59b下方の電荷蓄積部60に蓄積されたノイズ電荷を水平電荷転送路57に転送しないように制御する。
Hereinafter, the operation during mixed driving will be described.
When the exposure period ends, the image sensor driving unit 10 applies a readout pulse to the transfer electrodes V4 and V8, and the charges generated in the photoelectric conversion elements of the RGB photoelectric conversion element group correspond to the photoelectric conversion elements. Read to the vertical charge transfer path 54. Then, the charge is transferred to the horizontal charge transfer path 57 via the charge storage section 60, the charge is transferred to the output amplifier 58 through the horizontal charge transfer path 57, and a signal corresponding to the charge is output therefrom. The charges accumulated in the charge accumulation unit 60 can be transferred to the horizontal charge transfer path 57 by setting the control pulses φLM1 and φLM2 to the low level.
When transferring the charge to the horizontal charge transfer path 57, the image sensor driving unit 10 maintains the control pulse φLM1 at the high level and switches only the control pulse φLM2 between the low level and the high level, thereby lowering the electrode 59a. Control is performed so that noise charges accumulated in the charge accumulation unit 60 below the electrode 59 b are not transferred to the horizontal charge transfer path 57 while transferring the color component charges accumulated in the charge accumulation unit 60 to the horizontal charge transfer path 57. .

次に、撮像素子駆動部10は、転送電極V2,V6に読み出しパルスを印加して、W光電変換素子群の各光電変換素子で発生した電荷を、該各光電変換素子に対応する垂直電荷転送路54に読み出す。次に、撮像素子駆動部10は、垂直電荷転送路54に読み出した電荷のうち、隣接する2つの電荷を垂直電荷転送路54上で混合してから、混合後の電荷を、電荷蓄積部60を介して水平電荷転送路57まで転送し、該電荷を水平電荷転送路57で出力アンプ58まで転送し、ここから該電荷に応じた信号を出力させる。
尚、電荷を水平電荷転送路57に転送する際、撮像素子駆動部10は、制御パルスφLM2をハイレベルに維持し、制御パルスφLM1だけをローレベルとハイレベルに切り替えることで、電極59b下方の電荷蓄積部60に蓄積された輝度成分の電荷を水平電荷転送路57に転送しつつ、電極59a下方の電荷蓄積部60に蓄積されたノイズ電荷を水平電荷転送路57に転送しないように制御する。
Next, the imaging element driving unit 10 applies a read pulse to the transfer electrodes V2 and V6, and transfers the charges generated in each photoelectric conversion element of the W photoelectric conversion element group to the vertical charge transfer corresponding to each photoelectric conversion element. Read to path 54. Next, the imaging element driving unit 10 mixes two adjacent charges on the vertical charge transfer path 54 out of the charges read out to the vertical charge transfer path 54, and then converts the mixed charge into the charge storage unit 60. Then, the charge is transferred to the horizontal charge transfer path 57, the charge is transferred to the output amplifier 58 through the horizontal charge transfer path 57, and a signal corresponding to the charge is output therefrom.
When transferring the charge to the horizontal charge transfer path 57, the image sensor driving unit 10 maintains the control pulse φLM2 at the high level and switches only the control pulse φLM1 between the low level and the high level, thereby lowering the electrode 59b. Control is performed so that noise charges accumulated in the charge accumulation unit 60 below the electrode 59a are not transferred to the horizontal charge transfer path 57 while transferring the luminance component charges accumulated in the charge accumulation unit 60 to the horizontal charge transfer path 57. .

このような駆動を採用することで、水平電荷転送路57上にノイズ電荷が転送されなくなるため、RGB光電変換素子群から得られた信号のSN比と、W光電変換素子群から得られた信号のSN比とが劣化してしまうのを防ぐことができる。   By adopting such driving, noise charges are not transferred onto the horizontal charge transfer path 57, so the signal-to-noise ratio of signals obtained from the RGB photoelectric conversion element group and the signal obtained from the W photoelectric conversion element group It is possible to prevent the SN ratio from deteriorating.

尚、図5に示したW光電変換素子群をrgb光電変換素子群に変更した構成でも、同様に、SN比の劣化を防止することができる。   In addition, even in the configuration in which the W photoelectric conversion element group illustrated in FIG. 5 is changed to the rgb photoelectric conversion element group, it is possible to prevent the SN ratio from being deteriorated.

本発明の第一実施形態を説明するための撮像装置の一例であるデジタルカメラの概略構成を示す図The figure which shows schematic structure of the digital camera which is an example of the imaging device for demonstrating 1st embodiment of this invention. 図1に示す固体撮像素子の一構成例を示した平面模式図FIG. 1 is a schematic plan view showing a configuration example of the solid-state imaging device shown in FIG. 本発明の第二実施形態の撮像装置に搭載される固体撮像素子の一構成例を示した平面模式図The plane schematic diagram which showed one structural example of the solid-state image sensor mounted in the imaging device of 2nd embodiment of this invention. 本発明の第三実施形態の撮像装置に搭載される固体撮像素子の一構成例を示した平面模式図The plane schematic diagram which showed one structural example of the solid-state image sensor mounted in the imaging device of 3rd embodiment of this invention. 本発明の第四実施形態の撮像装置に搭載される固体撮像素子の構成例を示す平面模式図The plane schematic diagram which shows the structural example of the solid-state image sensor mounted in the imaging device of 4th embodiment of this invention.

符号の説明Explanation of symbols

5 固体撮像素子
50 半導体基板
51R,51G,51B,51W 光電変換素子
55 電荷読出し部
54 垂直電荷転送路
57 水平電荷転送路
58 出力アンプ
V1〜V8 転送電極
5 Solid-State Image Sensor 50 Semiconductor Substrate 51R, 51G, 51B, 51W Photoelectric Conversion Element 55 Charge Reading Unit 54 Vertical Charge Transfer Path 57 Horizontal Charge Transfer Path 58 Output Amplifiers V1-V8 Transfer Electrode

Claims (16)

多数の光電変換素子を備え、前記多数の光電変換素子で発生した電荷を電荷転送路に読み出して転送し、転送した電荷に応じた信号を出力する電荷転送型の固体撮像素子を備える撮像装置であって、
前記多数の光電変換素子が、第一の光電変換素子群と第二の光電変換素子群とからなり、
前記第一の光電変換素子群が、カラー画像データを生成するのに必要な色成分の光を検出する光電変換素子で構成されており、
前記第一の光電変換素子群から前記電荷を読み出して該電荷に応じた信号を出力させる第一の駆動と、前記第二の光電変換素子群から前記電荷を読み出して該電荷に応じた信号を出力させる第二の駆動とを分けて行う2フィールド駆動を行う際、前記第一の駆動と前記第二の駆動のいずれかにおいて、前記電荷転送路に読み出した電荷のうち、隣接する同色成分の電荷同士を該電荷転送路上で混合して転送する駆動を行う駆動手段を備える撮像装置。
An image pickup apparatus comprising a large number of photoelectric conversion elements, a charge transfer type solid-state image pickup element that reads and transfers charges generated by the large number of photoelectric conversion elements to a charge transfer path, and outputs a signal corresponding to the transferred charges. There,
The multiple photoelectric conversion elements are composed of a first photoelectric conversion element group and a second photoelectric conversion element group,
The first photoelectric conversion element group is composed of photoelectric conversion elements that detect light of a color component necessary for generating color image data;
A first drive that reads the charge from the first photoelectric conversion element group and outputs a signal corresponding to the charge; and a signal that reads the charge from the second photoelectric conversion element group and outputs the signal according to the charge. When performing the two-field drive that is performed separately from the second drive to be output, in either the first drive or the second drive, out of the charges read to the charge transfer path, the adjacent same color component An imaging apparatus including a driving unit that performs driving to mix and transfer charges on the charge transfer path.
請求項1記載の撮像装置であって、
前記第二の光電変換素子群が、輝度成分と相関のある輝度フィルタが受光面上方に設けられた輝度検出用光電変換素子のみで構成されている撮像装置。
The imaging apparatus according to claim 1,
An imaging apparatus in which the second photoelectric conversion element group is configured only by a luminance detection photoelectric conversion element in which a luminance filter having a correlation with a luminance component is provided above the light receiving surface.
請求項2記載の撮像装置であって、
前記駆動手段が、前記2フィールド駆動を行う際、前記第二の駆動において、前記電荷転送路に読み出した電荷のうち、隣接する同色成分の電荷同士を該電荷転送路上で混合して転送する撮像装置。
The imaging apparatus according to claim 2,
In the second driving, when the driving unit performs the two-field driving, among the charges read to the charge transfer path, adjacent charges of the same color component are mixed and transferred on the charge transfer path. apparatus.
請求項2又は3記載の撮像装置であって、
前記多数の光電変換素子が半導体基板上に正方格子状に配列されており、
前記第一の光電変換素子群と前記第二の光電変換素子群とが市松状に配置されている撮像装置。
The imaging device according to claim 2 or 3,
The plurality of photoelectric conversion elements are arranged in a square lattice pattern on a semiconductor substrate,
An imaging apparatus in which the first photoelectric conversion element group and the second photoelectric conversion element group are arranged in a checkered pattern.
請求項2又は3記載の撮像装置であって、
前記第一の光電変換素子群に含まれる光電変換素子と前記第二の光電変換素子群に含まれる光電変換素子とが、それぞれ半導体基板上の行方向とこれに直交する列方向に正方格子状に配列されており、
前記第一の光電変換素子群と前記第二の光電変換素子群とが、各光電変換素子の配列ピッチの1/2前記行方向及び前記列方向にずれて配置されている撮像装置。
The imaging device according to claim 2 or 3,
The photoelectric conversion elements included in the first photoelectric conversion element group and the photoelectric conversion elements included in the second photoelectric conversion element group are each in the form of a square lattice in the row direction on the semiconductor substrate and in the column direction perpendicular thereto. Are arranged in
An imaging apparatus in which the first photoelectric conversion element group and the second photoelectric conversion element group are arranged so as to be shifted in the row direction and the column direction by a half of the arrangement pitch of the photoelectric conversion elements.
請求項1記載の撮像装置であって、
前記第二の光電変換素子群が、カラー画像データを生成するのに必要な色成分の光を検出する光電変換素子で構成されており、
前記第一の光電変換素子群に含まれる光電変換素子と前記第二の光電変換素子群に含まれる光電変換素子とが、それぞれ半導体基板上の行方向とこれに直交する列方向に正方格子状に配列されており、
前記第一の光電変換素子群を構成する光電変換素子の上方に設けられるカラーフィルタの配列と、前記第一の光電変換素子群を構成する光電変換素子の上方に設けられるカラーフィルタの配列とが、それぞれ同じであり、
前記第一の光電変換素子群と前記第二の光電変換素子群とが、各光電変換素子の配列ピッチの1/2前記行方向及び前記列方向にずれて配置されている撮像装置。
The imaging apparatus according to claim 1,
The second photoelectric conversion element group is composed of photoelectric conversion elements that detect light of a color component necessary for generating color image data,
The photoelectric conversion elements included in the first photoelectric conversion element group and the photoelectric conversion elements included in the second photoelectric conversion element group are each in the form of a square lattice in the row direction on the semiconductor substrate and in the column direction perpendicular thereto. Are arranged in
An arrangement of color filters provided above the photoelectric conversion elements constituting the first photoelectric conversion element group and an arrangement of color filters provided above the photoelectric conversion elements constituting the first photoelectric conversion element group Are the same,
An imaging apparatus in which the first photoelectric conversion element group and the second photoelectric conversion element group are arranged so as to be shifted in the row direction and the column direction by a half of the arrangement pitch of the photoelectric conversion elements.
請求項5又は6記載の撮像装置であって、
前記固体撮像素子の電荷転送路が、垂直電荷転送路と水平電荷転送路からなり、
前記固体撮像素子が、前記垂直電荷転送路と前記水平電荷転送路との間に設けられた、前記垂直電荷転送路を転送されてきた電荷を一時的に蓄積する電荷蓄積部と、前記電荷蓄積部に電圧を印加する電極とを備え、
前記第一の光電変換素子群からの電荷が読み出される前記垂直電荷転送路と前記水平電荷転送路との間にある前記電荷蓄積部上方の前記電極と、前記第二の光電変換素子群からの電荷が読み出される前記垂直電荷転送路と前記水平電荷転送路との間にある前記電荷蓄積部上方の前記電極とには、それぞれ独立に電圧が印加可能であり、
前記第一の光電変換素子群と前記第二の光電変換素子群とのいずれかのみから信号を読み出す駆動を行う際、前記信号を読み出す必要のない光電変換素子群から電荷が読み出される前記垂直電荷転送路からの前記電荷を前記水平電荷転送路に転送しないように前記電極の電圧を制御する制御手段を備える撮像装置。
The imaging device according to claim 5 or 6,
The charge transfer path of the solid-state imaging device consists of a vertical charge transfer path and a horizontal charge transfer path,
The solid-state imaging device is provided between the vertical charge transfer path and the horizontal charge transfer path, and temporarily stores the charge transferred through the vertical charge transfer path, and the charge storage An electrode for applying a voltage to the part,
The electrode above the charge storage portion between the vertical charge transfer path and the horizontal charge transfer path from which charges from the first photoelectric conversion element group are read, and from the second photoelectric conversion element group A voltage can be applied independently to each of the electrodes above the charge storage section between the vertical charge transfer path from which charges are read and the horizontal charge transfer path,
The vertical charge from which charges are read from a photoelectric conversion element group that does not need to read the signal when driving to read a signal from only one of the first photoelectric conversion element group and the second photoelectric conversion element group An imaging apparatus comprising control means for controlling the voltage of the electrode so as not to transfer the charge from the transfer path to the horizontal charge transfer path.
請求項1〜7のいずれか1項記載の撮像装置であって、
前記第一の光電変換素子群を構成する光電変換素子の上方に設けられるカラーフィルタ配列がベイヤー配列となっている撮像装置。
The imaging device according to any one of claims 1 to 7,
An imaging apparatus in which a color filter array provided above the photoelectric conversion elements constituting the first photoelectric conversion element group is a Bayer array.
多数の光電変換素子を備え、前記多数の光電変換素子で発生した電荷を電荷転送路に読み出して転送し、転送した電荷に応じた信号を出力する電荷転送型の固体撮像素子を駆動する方法であって、
前記多数の光電変換素子が、第一の光電変換素子群と第二の光電変換素子群とからなり、
前記第一の光電変換素子群が、カラー画像データを生成するのに必要な色成分の光を検出する光電変換素子で構成されており、
前記第一の光電変換素子群から前記電荷を読み出して該電荷に応じた信号を出力させる第一の駆動と、前記第二の光電変換素子群から前記電荷を読み出して該電荷に応じた信号を出力させる第二の駆動とを分けて行う2フィールド駆動を行う際、前記第一の駆動と前記第二の駆動のいずれかにおいて、前記電荷転送路に読み出した電荷のうち、隣接する同色成分の電荷同士を該電荷転送路上で混合して転送する固体撮像素子の駆動方法。
A method of driving a charge transfer type solid-state imaging device comprising a large number of photoelectric conversion elements, reading out and transferring charges generated by the large number of photoelectric conversion elements to a charge transfer path, and outputting a signal corresponding to the transferred charges. There,
The multiple photoelectric conversion elements are composed of a first photoelectric conversion element group and a second photoelectric conversion element group,
The first photoelectric conversion element group is composed of photoelectric conversion elements that detect light of a color component necessary for generating color image data;
A first drive that reads the charge from the first photoelectric conversion element group and outputs a signal corresponding to the charge; and a signal that reads the charge from the second photoelectric conversion element group and outputs the signal according to the charge. When performing the two-field drive that is performed separately from the second drive to be output, in either the first drive or the second drive, out of the charges read to the charge transfer path, the adjacent same color component A method for driving a solid-state imaging device, wherein charges are mixed and transferred on the charge transfer path.
請求項9記載の固体撮像素子の駆動方法であって、
前記第二の光電変換素子群が、輝度成分と相関のある輝度フィルタが受光面上方に設けられた輝度検出用光電変換素子のみで構成されている固体撮像素子の駆動方法。
A method for driving a solid-state imaging device according to claim 9,
A method for driving a solid-state imaging device, wherein the second photoelectric conversion element group is configured only by a luminance detection photoelectric conversion element in which a luminance filter having a correlation with a luminance component is provided above the light receiving surface.
請求項10記載の固体撮像素子の駆動方法であって、
前記2フィールド駆動を行う際、前記第二の駆動において、前記電荷転送路に読み出した電荷のうち、隣接する同色成分の電荷同士を該電荷転送路上で混合して転送する固体撮像素子の駆動方法。
A method for driving a solid-state imaging device according to claim 10,
When performing the two-field driving, in the second driving, the solid-state imaging device driving method for mixing and transferring adjacent charges of the same color component among the charges read out to the charge transfer path on the charge transfer path .
請求項10又は11記載の固体撮像素子の駆動方法であって、
前記多数の光電変換素子が半導体基板上に正方格子状に配列されており、
前記第一の光電変換素子群と前記第二の光電変換素子群とが市松状に配置されている固体撮像素子の駆動方法。
A method for driving a solid-state imaging device according to claim 10 or 11,
The plurality of photoelectric conversion elements are arranged in a square lattice pattern on a semiconductor substrate,
A method for driving a solid-state imaging device, wherein the first photoelectric conversion element group and the second photoelectric conversion element group are arranged in a checkered pattern.
請求項10又は11記載の固体撮像素子の駆動方法であって、
前記第一の光電変換素子群に含まれる光電変換素子と前記第二の光電変換素子群に含まれる光電変換素子とが、それぞれ半導体基板上の行方向とこれに直交する列方向に正方格子状に配列されており、
前記第一の光電変換素子群と前記第二の光電変換素子群とが、各光電変換素子の配列ピッチの1/2前記行方向及び前記列方向にずれて配置されている固体撮像素子の駆動方法。
A method for driving a solid-state imaging device according to claim 10 or 11,
The photoelectric conversion elements included in the first photoelectric conversion element group and the photoelectric conversion elements included in the second photoelectric conversion element group are each in the form of a square lattice in the row direction on the semiconductor substrate and in the column direction perpendicular thereto. Are arranged in
Driving of a solid-state imaging device in which the first photoelectric conversion element group and the second photoelectric conversion element group are arranged to be shifted in the row direction and the column direction by 1/2 of the arrangement pitch of the photoelectric conversion elements Method.
請求項9記載の固体撮像素子の駆動方法であって、
前記第二の光電変換素子群が、カラー画像データを生成するのに必要な色成分の光を検出する光電変換素子で構成されており、
前記第一の光電変換素子群に含まれる光電変換素子と前記第二の光電変換素子群に含まれる光電変換素子とが、それぞれ半導体基板上の行方向とこれに直交する列方向に正方格子状に配列されており、
前記第一の光電変換素子群を構成する光電変換素子の上方に設けられるカラーフィルタの配列と、前記第一の光電変換素子群を構成する光電変換素子の上方に設けられるカラーフィルタの配列とが、それぞれ同じであり、
前記第一の光電変換素子群と前記第二の光電変換素子群とが、各光電変換素子の配列ピッチの1/2前記行方向及び前記列方向にずれて配置されている固体撮像素子の駆動方法。
A method for driving a solid-state imaging device according to claim 9,
The second photoelectric conversion element group is composed of photoelectric conversion elements that detect light of a color component necessary for generating color image data,
The photoelectric conversion elements included in the first photoelectric conversion element group and the photoelectric conversion elements included in the second photoelectric conversion element group are each in the form of a square lattice in the row direction on the semiconductor substrate and in the column direction perpendicular thereto. Are arranged in
An arrangement of color filters provided above the photoelectric conversion elements constituting the first photoelectric conversion element group and an arrangement of color filters provided above the photoelectric conversion elements constituting the first photoelectric conversion element group Are the same,
Driving of a solid-state imaging device in which the first photoelectric conversion element group and the second photoelectric conversion element group are arranged to be shifted in the row direction and the column direction by 1/2 of the arrangement pitch of the photoelectric conversion elements Method.
請求項13又は14記載の固体撮像素子の駆動方法であって、
前記固体撮像素子の電荷転送路が、垂直電荷転送路と水平電荷転送路からなり、
前記固体撮像素子が、前記垂直電荷転送路と前記水平電荷転送路との間に設けられた、前記垂直電荷転送路を転送されてきた電荷を一時的に蓄積する電荷蓄積部と、前記電荷蓄積部に電圧を印加する電極とを備え、
前記第一の光電変換素子群からの電荷が読み出される前記垂直電荷転送路と前記水平電荷転送路との間にある前記電荷蓄積部上方の前記電極と、前記第二の光電変換素子群からの電荷が読み出される前記垂直電荷転送路と前記水平電荷転送路との間にある前記電荷蓄積部上方の前記電極とには、それぞれ独立に電圧が印加可能であり、
前記第一の光電変換素子群と前記第二の光電変換素子群とのいずれかのみから信号を読み出す駆動を実行する際、前記信号を読み出す必要のない光電変換素子群から電荷が読み出される前記垂直電荷転送路からの前記電荷を前記水平電荷転送路に転送しないように前記電極の電圧を制御する固体撮像素子の駆動方法。
The solid-state imaging device driving method according to claim 13 or 14,
The charge transfer path of the solid-state imaging device consists of a vertical charge transfer path and a horizontal charge transfer path,
The solid-state imaging device is provided between the vertical charge transfer path and the horizontal charge transfer path, and temporarily stores the charge transferred through the vertical charge transfer path, and the charge storage An electrode for applying a voltage to the part,
The electrode above the charge storage portion between the vertical charge transfer path and the horizontal charge transfer path from which charges from the first photoelectric conversion element group are read, and from the second photoelectric conversion element group A voltage can be applied independently to each of the electrodes above the charge storage section between the vertical charge transfer path from which charges are read and the horizontal charge transfer path,
When the drive for reading a signal from only one of the first photoelectric conversion element group and the second photoelectric conversion element group is executed, the charge is read from the photoelectric conversion element group that does not need to read the signal. A method for driving a solid-state imaging device, wherein the voltage of the electrode is controlled so that the charge from the charge transfer path is not transferred to the horizontal charge transfer path.
請求項9〜15のいずれか1項記載の固体撮像素子の駆動方法であって、
前記第一の光電変換素子群を構成する光電変換素子の上方に設けられるカラーフィルタ配列がベイヤー配列となっている固体撮像素子の駆動方法。
It is a drive method of the solid-state image sensing device according to any one of claims 9 to 15,
A method for driving a solid-state imaging device, wherein a color filter array provided above the photoelectric conversion elements constituting the first photoelectric conversion element group is a Bayer array.
JP2007302739A 2007-11-22 2007-11-22 Imaging apparatus and solid-state imaging device driving method Expired - Fee Related JP4848349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007302739A JP4848349B2 (en) 2007-11-22 2007-11-22 Imaging apparatus and solid-state imaging device driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007302739A JP4848349B2 (en) 2007-11-22 2007-11-22 Imaging apparatus and solid-state imaging device driving method

Publications (2)

Publication Number Publication Date
JP2009130574A JP2009130574A (en) 2009-06-11
JP4848349B2 true JP4848349B2 (en) 2011-12-28

Family

ID=40821071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007302739A Expired - Fee Related JP4848349B2 (en) 2007-11-22 2007-11-22 Imaging apparatus and solid-state imaging device driving method

Country Status (1)

Country Link
JP (1) JP4848349B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121724A1 (en) * 2018-12-11 2020-06-18 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic instrument

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4460751B2 (en) * 2000-11-24 2010-05-12 オリンパス株式会社 Imaging device and imaging apparatus
JP4241840B2 (en) * 2006-02-23 2009-03-18 富士フイルム株式会社 Imaging device
JP4449936B2 (en) * 2006-03-31 2010-04-14 ソニー株式会社 Imaging apparatus, camera system, and driving method thereof

Also Published As

Publication number Publication date
JP2009130574A (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP5026951B2 (en) Imaging device driving device, imaging device driving method, imaging device, and imaging device
US7944496B2 (en) Imaging apparatus and driving method for CCD type solid-state imaging device
JP4951440B2 (en) Imaging apparatus and solid-state imaging device driving method
JP4747154B2 (en) Solid-state imaging device driving method, solid-state imaging device, and imaging apparatus
JP5044673B2 (en) Solid-state imaging device and image recording device
US20060139469A1 (en) Drive method for solid-state imaging device, solid-state imaging device, and imaging apparatus
JP4448889B2 (en) Imaging device and imaging apparatus
JP2008104013A (en) Driving method of solid-state imaging element and imaging apparatus
KR20050026864A (en) Imaging device for adding signals including same color component
US8111298B2 (en) Imaging circuit and image pickup device
US8582006B2 (en) Pixel arrangement for extended dynamic range imaging
JP2009065478A (en) Driving method of solid-state image sensor, and imaging apparatus
JP2009117979A (en) Method of driving solid-state imaging device
JP4941131B2 (en) Solid-state imaging device and electronic camera
JP2007135200A (en) Imaging method, imaging device, and driver
WO2010090167A1 (en) Solid state imaging device
JP4393242B2 (en) Solid-state imaging device and driving method of solid-state imaging device
JP2009055321A (en) Imaging device and method of driving ccd solid image sensor
JP2005109993A (en) Photographing apparatus
JP4848349B2 (en) Imaging apparatus and solid-state imaging device driving method
JP2007235888A (en) Single-ccd color solid-state imaging element and imaging apparatus
JP5124549B2 (en) Moving image signal readout method and imaging apparatus for solid-state imaging device
KR20210047009A (en) Image device
JP2009303020A (en) Image capturing apparatus and defective pixel correcting method
JP4232485B2 (en) Read address control method and apparatus, semiconductor system, and imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees