JP2009303020A - Image capturing apparatus and defective pixel correcting method - Google Patents

Image capturing apparatus and defective pixel correcting method Download PDF

Info

Publication number
JP2009303020A
JP2009303020A JP2008156630A JP2008156630A JP2009303020A JP 2009303020 A JP2009303020 A JP 2009303020A JP 2008156630 A JP2008156630 A JP 2008156630A JP 2008156630 A JP2008156630 A JP 2008156630A JP 2009303020 A JP2009303020 A JP 2009303020A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
defective pixel
pixel
conversion elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008156630A
Other languages
Japanese (ja)
Inventor
Hiroki Suzuki
裕樹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2008156630A priority Critical patent/JP2009303020A/en
Publication of JP2009303020A publication Critical patent/JP2009303020A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image capturing apparatus and defective pixel correcting method capable of suppressing a processing time, that is required for correcting a defective pixel, from being prolonged. <P>SOLUTION: A plurality of photoelectric conversion elements are composed of a plurality of first photoelectric conversion elements and a plurality of second photoelectric conversion elements, and the plurality of first photoelectric conversion elements and the plurality of second photoelectric conversion elements have the same array so that photoelectric conversion elements detecting the same color component are adjacent to each other. When either the first photoelectric conversion element or the second photoelectric conversion element is a defective pixel, a pixel signal detected by any one of the other photoelectric conversion elements being proximate to the defective pixel and detecting the same color component is captured. The pixel signal is used as it is as a defective pixel signal of the defective pixel or when photodetection sensitivity of the first photoelectric conversion elements is different from that of the second photoelectric conversion elements, correction processing is performed only by multiplying a sensitivity coefficient corresponding to the photodetection sensitivity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、デジタルカメラなどの撮像装置に備えられた撮像素子の欠陥画素を補正する撮像装置及び欠陥画素補正方法に関する。   The present invention relates to an imaging apparatus and a defective pixel correction method for correcting defective pixels of an imaging device provided in an imaging apparatus such as a digital camera.

デジタルカメラなどの撮像装置は、被写体を撮像素子上に結像させてその被写体を表す画像情報を取り込む撮影を行う。撮像素子としては、CCD型撮像素子やCMOS型撮像素子などが用いられている。撮像素子には、多数の画素が配列されており、当該撮像素子は半導体基板上に多数のフォトダイオード等の光電変換素子を形成することにより製造される。撮像素子を製造する際、半導体基板に不純物が混入する等の原因により画素信号の取り込みが不能な欠陥画素が発生する場合がある。   An imaging device such as a digital camera performs imaging by forming an image of a subject on an image sensor and capturing image information representing the subject. As the image sensor, a CCD image sensor, a CMOS image sensor, or the like is used. Many pixels are arranged in the image sensor, and the image sensor is manufactured by forming a large number of photoelectric conversion elements such as photodiodes on a semiconductor substrate. When manufacturing an image sensor, a defective pixel incapable of capturing a pixel signal may be generated due to impurities mixed into a semiconductor substrate.

従来、撮像素子の欠陥画素を補正する方法としては、例えば下記特許文献に示すものがある。   Conventionally, as a method for correcting a defective pixel of an image sensor, there is a method shown in the following patent document, for example.

特許文献1には、主画素と複画素の複合からなる画素が配列された撮像素子を備えたカメラが記載され、主画素が欠陥画素であって、その周囲の画素の信号レベルが所定の輝度レベル以上の輝度を表す信号レベルであったときは、副画素で得られた画素値に基づいて欠陥画素の画素値を求め、副画素の方が欠陥画素であり主画素の方が正常な画素である場合は、主画素で得られた画素値に基づいて欠陥画素の画素値を求めることが記載されている。主画素は相対的に面積が広く、入射光に対して感度の高い画素であり、副画素は、相対的に面積が狭く、入射光に対して感度の低い画素である。   Patent Document 1 describes a camera including an imaging device in which pixels composed of a composite of a main pixel and a plurality of pixels are arranged, the main pixel is a defective pixel, and the signal level of surrounding pixels is a predetermined luminance. If the signal level represents a luminance higher than the level, the pixel value of the defective pixel is obtained based on the pixel value obtained by the sub-pixel, and the sub-pixel is the defective pixel and the main pixel is the normal pixel In this case, it is described that the pixel value of the defective pixel is obtained based on the pixel value obtained from the main pixel. The main pixel is a pixel having a relatively large area and high sensitivity to incident light, and the sub-pixel is a pixel having a relatively small area and low sensitivity to incident light.

特許文献2には、感度の異なる主画素と副画素とを有する複数の画素を備え、入射した被写体光を受光して電気信号に変換するCCD型撮像素子が記載されている。主画素と副画素とのうち一方が欠陥の場合には、他方の画素値を補正処理データの一部として用いて欠陥画素の画素値を補正する。   Patent Document 2 describes a CCD type imaging device that includes a plurality of pixels having main pixels and sub-pixels having different sensitivities, and receives incident subject light and converts them into electrical signals. If one of the main pixel and the sub-pixel is defective, the pixel value of the defective pixel is corrected using the other pixel value as part of the correction processing data.

特開2004−120525号公報JP 2004-120525 A 特開2004−247946号公報JP 2004-247946 A

欠陥画素の補正を行う場合は、該欠陥画素の周囲の画素信号を用いて演算処理によって欠陥画素の画素値を算出するため、例え周囲の画素値の平均値で補正したとしても演算処理に時間を要してしまう。
また、感度が異なる画素同士で欠陥画素の補正を行う場合は、感度の差を考慮して補正を行ったうえで欠陥画素の画素値を算出するが、感度の差が大きいと補正を精度良く行なうことができない。
When correcting a defective pixel, the pixel value of the defective pixel is calculated by a calculation process using pixel signals around the defective pixel, so even if the average value of the surrounding pixel values is corrected, the calculation process takes time. Is required.
In addition, when correcting defective pixels between pixels with different sensitivities, the pixel value of the defective pixel is calculated after correcting for the difference in sensitivity, but if the sensitivity difference is large, the correction is performed with high accuracy. I can't do it.

本発明は、上記事情に鑑みてなされたもので、その目的は、欠陥画素を補正する際にかかる処理時間が長くなることを抑えることができる撮像装置及び欠陥画素補正方法を提供することにある。   The present invention has been made in view of the above circumstances, and an object thereof is to provide an imaging apparatus and a defective pixel correction method capable of suppressing an increase in processing time required for correcting a defective pixel. .

本発明の欠陥画素補正方法は、カラー画像データを生成するために必要な色成分の光を検出する複数の光電変換素子が設けられ、前記複数の光電変換素子が複数の第1の光電変換素子と複数の第2の光電変換素子とから構成され、前記複数の第1の光電変換素子と前記複数の第2の光電変換素子とが同じ配列で、かつ、同じ色成分を検出する光電変換素子が互いに隣接するように配置されている撮像素子の欠陥画素補正方法であって、前記第1の光電変換素子と前記第2の光電変換素子とのうちいずれか一方が欠陥画素である場合に、他方の光電変換素子のうち、前記欠陥画素に近接し、かつ、同じ色成分を検出する光電変換素子で検出された画素信号を取得し、該画素信号を前記欠陥画素の画素信号としてそのまま用いて、または、前記第1の光電変換素子と第2の光電変換素子の受光感度が異なる場合には該受光感度に応じた感度係数の乗算のみで、補正処理を行う。   According to the defective pixel correction method of the present invention, a plurality of photoelectric conversion elements for detecting light of a color component necessary for generating color image data are provided, and the plurality of photoelectric conversion elements are a plurality of first photoelectric conversion elements. And a plurality of second photoelectric conversion elements, wherein the plurality of first photoelectric conversion elements and the plurality of second photoelectric conversion elements are in the same array and detect the same color component Is a defective pixel correction method for an image sensor arranged so as to be adjacent to each other, and when either one of the first photoelectric conversion element and the second photoelectric conversion element is a defective pixel, Among the other photoelectric conversion elements, a pixel signal that is close to the defective pixel and detected by the photoelectric conversion element that detects the same color component is obtained, and the pixel signal is used as it is as the pixel signal of the defective pixel. Or Of when the receiving sensitivity of the photoelectric conversion element and the second photoelectric conversion element are different only multiplies the sensitivity coefficient corresponding to the light receiving sensitivity, the correction process.

本発明の欠陥画素補正方法は、前記欠陥画素に近接し、かつ、同じ色成分を検出する光電変換素子が欠陥である場合には、前記第1の光電変換素子又は前記第2の光電変換素子のうち前記欠陥画素が含まれている方の、該欠陥画素に最も近く、かつ、同じ色成分の光電変換素子から、画素信号を取得し、該画素信号に基づいて前記欠陥画素の画素信号を演算する。   In the defective pixel correction method of the present invention, when the photoelectric conversion element that is close to the defective pixel and detects the same color component is defective, the first photoelectric conversion element or the second photoelectric conversion element The pixel signal of the defective pixel is obtained from the photoelectric conversion element closest to the defective pixel and containing the defective pixel, and having the same color component, and the pixel signal of the defective pixel is obtained based on the pixel signal. Calculate.

本発明の欠陥画素補正方法は、前記第1の光電変換素子と前記第2の光電変換素子がそれぞれ正方格子状に行方向及び列方向に配列され、前記第1の光電変換素子と前記第2の光電変換素子が配列ピッチの約1/2だけ前記行方向及び前記列方向にずれた位置に配置されている。   In the defective pixel correction method of the present invention, the first photoelectric conversion element and the second photoelectric conversion element are respectively arranged in a square lattice shape in a row direction and a column direction, and the first photoelectric conversion element and the second photoelectric conversion element are arranged. The photoelectric conversion elements are arranged at positions shifted by about ½ of the arrangement pitch in the row direction and the column direction.

本発明の欠陥画素補正方法は、前記第1の光電変換素子と前記第2の光電変換素子がそれぞれ行方向及び列方向に対して傾斜するように正方格子状に配列され、前記第1の光電変換素子の前記行方向及び前記列方向の間に各第2の光電変換素子が配置されている。   In the defective pixel correction method of the present invention, the first photoelectric conversion element and the second photoelectric conversion element are arranged in a square lattice so as to be inclined with respect to the row direction and the column direction, respectively, and the first photoelectric conversion element is arranged. Each second photoelectric conversion element is disposed between the row direction and the column direction of the conversion elements.

本発明の撮像装置は、カラー画像データを生成するために必要な色成分の光を検出する複数の光電変換素子が設けられ、前記複数の光電変換素子が複数の第1の光電変換素子と複数の第2の光電変換素子とから構成され、前記複数の第1の光電変換素子と前記複数の第2の光電変換素子とが同じ配列で、かつ、同じ色成分を検出する光電変換素子が互いに隣接するように配置されている撮像素子を備えた撮像装置であって、
前記第1の光電変換素子と前記第2の光電変換素子とのうちいずれか一方が欠陥画素である場合に、他方の光電変換素子のうち、前記欠陥画素に近接し、かつ、同じ色成分を検出する光電変換素子で検出された画素信号を取得し、該画素信号を前記欠陥画素の画素信号としてそのまま用いて、または、前記第1の光電変換素子と第2の光電変換素子の検出感度が異なる場合には該検出感度に応じた感度係数の乗算のみで、補正処理を行う欠陥画素補正手段を備える。
The imaging apparatus according to the present invention includes a plurality of photoelectric conversion elements that detect light of a color component necessary for generating color image data, and the plurality of photoelectric conversion elements include a plurality of first photoelectric conversion elements and a plurality of photoelectric conversion elements. The plurality of first photoelectric conversion elements and the plurality of second photoelectric conversion elements are in the same array, and the photoelectric conversion elements that detect the same color component are mutually connected. An imaging device including an imaging device arranged so as to be adjacent to each other,
When one of the first photoelectric conversion element and the second photoelectric conversion element is a defective pixel, the other photoelectric conversion element is close to the defective pixel and has the same color component. The pixel signal detected by the photoelectric conversion element to be detected is acquired and the pixel signal is used as it is as the pixel signal of the defective pixel, or the detection sensitivity of the first photoelectric conversion element and the second photoelectric conversion element is If they are different from each other, a defective pixel correction unit that performs correction processing only by multiplication of a sensitivity coefficient corresponding to the detection sensitivity is provided.

本発明によれば、欠陥画素に近接し、かつ、同じ色成分を検出する光電変換素子で検出された画素信号を取得し、該画素信号を前記欠陥画素の画素信号として用いるため、演算処理を行う必要がない。このため、欠陥画素を補正する際にかかる処理時間が長くなることを抑えることができる。   According to the present invention, a pixel signal detected by a photoelectric conversion element that is close to a defective pixel and detects the same color component is acquired, and the pixel signal is used as a pixel signal of the defective pixel. There is no need to do it. For this reason, it can suppress that the processing time concerning correcting a defective pixel becomes long.

以下、本発明の実施形態を図面に基づいて詳しく説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(第1実施形態)
図1は、本発明の欠陥画素補正方法を行う撮像装置の一例であるデジタルカメラの概略構成を示す図である。
デジタルカメラの撮像系は、撮影レンズ1と、CCD型の固体撮像素子5と、この両者の間に設けられた絞り2と、赤外線カットフィルタ3と、光学ローパスフィルタ4とを備える。本実施形態ではCCD型の固体撮像素子5を用いた例を説明するが、本発明の欠陥画素補正方法で欠陥画素の補正が行われる撮像素子は、CCD型の固体撮像素子5に限定されず、例えば、CMOS型の撮像素子に適用することができる。
(First embodiment)
FIG. 1 is a diagram illustrating a schematic configuration of a digital camera which is an example of an imaging apparatus that performs the defective pixel correction method of the present invention.
The imaging system of the digital camera includes a photographic lens 1, a CCD type solid-state imaging device 5, a diaphragm 2 provided therebetween, an infrared cut filter 3, and an optical low-pass filter 4. In the present embodiment, an example using the CCD solid-state imaging device 5 will be described. However, the imaging device in which defective pixels are corrected by the defective pixel correction method of the present invention is not limited to the CCD solid-state imaging device 5. For example, the present invention can be applied to a CMOS type image sensor.

デジタルカメラの電気制御系全体を統括制御するシステム制御部11は、フラッシュ発光部12及び受光部13を制御し、レンズ駆動部8を制御して撮影レンズ1の位置をフォーカス位置に調整したりズーム調整を行ったりし、絞り駆動部9を介し絞り2の開口量を制御して露光量調整を行う。   A system control unit 11 that performs overall control of the electrical control system of the digital camera controls the flash light emitting unit 12 and the light receiving unit 13 and controls the lens driving unit 8 to adjust the position of the photographing lens 1 to the focus position and zoom. The exposure amount is adjusted by adjusting the aperture amount of the aperture 2 via the aperture drive unit 9.

システム制御部11は、撮像素子駆動部10を介して固体撮像素子5を駆動し、撮影レンズ1を通して撮像した被写体画像を色信号として出力させる。システム制御部11には、操作部14を通してユーザからの指示信号が入力される。   The system control unit 11 drives the solid-state image sensor 5 via the image sensor driving unit 10 and outputs a subject image captured through the photographing lens 1 as a color signal. An instruction signal from the user is input to the system control unit 11 through the operation unit 14.

デジタルカメラの電気制御系は、更に、固体撮像素子5の出力に接続された相関二重サンプリング処理等のアナログ信号処理を行うアナログ信号処理部6と、このアナログ信号処理部6から出力されたRGBの色信号をデジタル信号に変換するA/D変換回路7とを備え、これらはシステム制御部11によって制御される。   The electric control system of the digital camera further includes an analog signal processing unit 6 that performs analog signal processing such as correlated double sampling processing connected to the output of the solid-state imaging device 5, and RGB output from the analog signal processing unit 6. And an A / D conversion circuit 7 for converting the color signals into digital signals, which are controlled by the system control unit 11.

デジタルカメラの電気制御系は、更に、メインメモリ16と、メインメモリ16に接続されたメモリ制御部15と、黒レベル補正、補間演算やガンマ補正演算,RGB/YC変換処理等を行って画像データを生成するデジタル信号処理部17と、デジタル信号処理部17で生成された画像データをJPEG形式に圧縮したり圧縮画像データを伸張したりする圧縮伸張処理部18と、測光データを積算しデジタル信号処理部17が行うホワイトバランス補正のゲインを求める積算部19と、着脱自在の記録媒体21が接続される外部メモリ制御部20と、カメラ背面等に搭載された液晶表示部23が接続される表示制御部22とを備え、これらは、制御バス24及びデータバス25によって相互に接続され、システム制御部11からの指令によって制御される。   The electric control system of the digital camera further performs image data by performing black level correction, interpolation calculation, gamma correction calculation, RGB / YC conversion processing, and the like with the main memory 16 and the memory control unit 15 connected to the main memory 16. A digital signal processing unit 17 for generating a digital signal, a compression / decompression processing unit 18 for compressing the image data generated by the digital signal processing unit 17 into a JPEG format or expanding the compressed image data, and integrating the photometric data into a digital signal A display to which an integration unit 19 for obtaining a gain of white balance correction performed by the processing unit 17, an external memory control unit 20 to which a detachable recording medium 21 is connected, and a liquid crystal display unit 23 mounted on the back of the camera or the like is connected. And a control unit 22, which are connected to each other by a control bus 24 and a data bus 25, and in accordance with a command from the system control unit 11. It is controlled Te.

図2は、図1に示す固体撮像素子5の一構成例を示した平面模式図である。
固体撮像素子5は、半導体基板50上の行方向Xとこれに直交する列方向Yとに正方格子状に配列された赤色(R)の波長域の光(R光)を検出する光電変換素子51R(図中に“R”の文字を付してある)、緑色(G)の波長域の光(G光)を検出する光電変換素子51G(図中に“G”の文字を付してある)、青色(B)の波長域の光(B光)を検出する光電変換素子51B(図中に“B”の文字を付してある)からなる複数の第1の光電変換素子と、半導体基板50上の行方向Xとこれに直交する列方向Yとに正方格子状に配列されたR光を検出する光電変換素子51r(図中に“r”の文字を付してある)、G光を検出する光電変換素子51g(図中に“g”の文字を付してある)、B光を検出する光電変換素子51b(図中に“b”の文字を付してある)からなる複数の第2の光電変換素子とを備え、第1の光電変換素子と第2の光電変換素子とが、それぞれの光電変換素子配列ピッチの約1/2だけ、行方向X及び列方向Yにずれた位置に配置されている。
FIG. 2 is a schematic plan view showing a configuration example of the solid-state imaging device 5 shown in FIG.
The solid-state imaging device 5 is a photoelectric conversion device that detects light in the red (R) wavelength region (R light) arranged in a square lattice pattern in the row direction X on the semiconductor substrate 50 and the column direction Y orthogonal thereto. 51R (indicated by the letter “R” in the figure), photoelectric conversion element 51G for detecting light (G light) in the green (G) wavelength region (indicated by the letter “G” in the figure) A plurality of first photoelectric conversion elements composed of photoelectric conversion elements 51B that detect light in the blue (B) wavelength range (B light) (labeled with “B” in the drawing); A photoelectric conversion element 51r for detecting R light arranged in a square lattice pattern in a row direction X on the semiconductor substrate 50 and in a column direction Y orthogonal thereto (indicated by the letter “r” in the figure); Photoelectric conversion element 51g for detecting G light (the letter “g” is attached in the figure), photoelectric conversion element 51b for detecting B light (“b” in the figure) A plurality of second photoelectric conversion elements, and the first photoelectric conversion element and the second photoelectric conversion element are approximately ½ of the respective photoelectric conversion element array pitch. Only in positions shifted in the row direction X and the column direction Y.

第1の光電変換素子と第2の光電変換素子の各光電変換素子は、同じ色成分を検出する光電変換素子同士が隣接するように配列されている。つまり、行方向X及び列方向Yの斜め方向に、光電変換素子51Rは光電変換素子51rと隣接し、光電変換素子51Gは光電変換素子51gと隣接し、光電変換素子51Bは光電変換素子51bと隣接する。   The photoelectric conversion elements of the first photoelectric conversion element and the second photoelectric conversion element are arranged so that the photoelectric conversion elements that detect the same color component are adjacent to each other. That is, in the diagonal direction of the row direction X and the column direction Y, the photoelectric conversion element 51R is adjacent to the photoelectric conversion element 51r, the photoelectric conversion element 51G is adjacent to the photoelectric conversion element 51g, and the photoelectric conversion element 51B is adjacent to the photoelectric conversion element 51b. Adjacent.

第1の光電変換素子の各光電変換素子の配列ピッチと第2の光電変換素子の各光電変換素子の配列ピッチとは同じである。光電変換素子は、例えばフォトダイオードで構成されている。   The arrangement pitch of the photoelectric conversion elements of the first photoelectric conversion element is the same as the arrangement pitch of the photoelectric conversion elements of the second photoelectric conversion element. The photoelectric conversion element is composed of, for example, a photodiode.

第1の光電変換素子の各光電変換素子の上方にはカラーフィルタが設けられており、このカラーフィルタの配列はベイヤー配列となっている。第2の光電変換素子の各光電変換素子の上方にも同様にカラーフィルタが設けられており、このカラーフィルタの配列もベイヤー配列となっている。   A color filter is provided above each photoelectric conversion element of the first photoelectric conversion element, and the arrangement of the color filters is a Bayer arrangement. A color filter is similarly provided above each photoelectric conversion element of the second photoelectric conversion element, and this color filter array is also a Bayer array.

第1の光電変換素子の各光電変換素子の受光感度は、第2の光電変換素子の各光電変換素子の受光感度よりも高くなっている。光電変換素子の受光感度を変化させるには、第1の光電変換素子の各光電変換素子の受光面と第2の光電変換素子の各光電変換素子の受光面がそれぞれ異なる大きさの面積となるように構成してもよいし、光電変換素子上方に設けたマイクロレンズによって、集光面積を変化させてもよいし、光電変換素子の露光時間を変えてもよい。また、第1の光電変換素子の各光電変換素子の受光感度と、第2の光電変換素子の各光電変換素子の受光感度とは同じであってもよい。   The light receiving sensitivity of each photoelectric conversion element of the first photoelectric conversion element is higher than the light receiving sensitivity of each photoelectric conversion element of the second photoelectric conversion element. In order to change the light receiving sensitivity of the photoelectric conversion element, the light receiving surface of each photoelectric conversion element of the first photoelectric conversion element and the light receiving surface of each photoelectric conversion element of the second photoelectric conversion element have different areas. The condensing area may be changed or the exposure time of the photoelectric conversion element may be changed by a microlens provided above the photoelectric conversion element. Moreover, the light reception sensitivity of each photoelectric conversion element of the first photoelectric conversion element and the light reception sensitivity of each photoelectric conversion element of the second photoelectric conversion element may be the same.

第1の光電変換素子の各光電変換素子の配列は、列方向Yに並ぶ光電変換素子51Gと光電変換素子51Rとからなる光電変換素子列であるGR光電変換素子列と、列方向Yに並ぶ光電変換素子51Bと光電変換素子51Gとからなる光電変換素子列であるBG光電変換素子列とを、行方向Xに交互に配列したものである。また、第1の光電変換素子の各光電変換素子の配列は、行方向Xに並ぶ光電変換素子51Gと光電変換素子51Bとからなる光電変換素子行であるGB光電変換素子行と、行方向Xに並ぶ光電変換素子51Rと光電変換素子51Gとからなる光電変換素子行であるRG光電変換素子行とを、列方向Yに交互に配列したものでもある。   The array of the photoelectric conversion elements of the first photoelectric conversion element is arranged in the column direction Y with a GR photoelectric conversion element array that is a photoelectric conversion element array including a photoelectric conversion element 51G and a photoelectric conversion element 51R aligned in the column direction Y. BG photoelectric conversion element arrays, which are photoelectric conversion element arrays composed of photoelectric conversion elements 51B and 51G, are alternately arranged in the row direction X. In addition, the arrangement of the photoelectric conversion elements of the first photoelectric conversion element includes a GB photoelectric conversion element row, which is a photoelectric conversion element row including the photoelectric conversion elements 51G and 51B arranged in the row direction X, and the row direction X. RG photoelectric conversion element rows, which are photoelectric conversion element rows composed of photoelectric conversion elements 51R and 51G arranged in a row, are alternately arranged in the column direction Y.

第2の光電変換素子の各光電変換素子の配列は、列方向Yに並ぶ光電変換素子51gと光電変換素子51rとからなる光電変換素子列であるgr光電変換素子列と、列方向Yに並ぶ光電変換素子51bと光電変換素子51gとからなる光電変換素子列であるbg光電変換素子列とを、行方向Xに交互に配列したものである。また、第2の光電変換素子の各光電変換素子の配列は、行方向Xに並ぶ光電変換素子51gと光電変換素子51bとからなる光電変換素子行であるgb光電変換素子行と、行方向Xに並ぶ光電変換素子51rと光電変換素子51gとからなる光電変換素子行であるrg光電変換素子行とを、列方向Yに交互に配列したものでもある。本実施形態では、光電変換素子51Bと該光電変換素子51Bの図2中右上の光電変換素子51bとがペアとなり、光電変換素子51Gと該光電変換素子51Gの図2中右上の光電変換素子51gとがペアとなり、光電変換素子51Rと該光電変換素子51Rの図2中右上の光電変換素子51rとがペアとなる。   The arrangement of the photoelectric conversion elements of the second photoelectric conversion elements is arranged in the column direction Y with a gr photoelectric conversion element array that is a photoelectric conversion element array composed of the photoelectric conversion elements 51 g and the photoelectric conversion elements 51 r aligned in the column direction Y. The bg photoelectric conversion element array, which is a photoelectric conversion element array including the photoelectric conversion elements 51b and 51g, is alternately arranged in the row direction X. In addition, the arrangement of the photoelectric conversion elements of the second photoelectric conversion element includes a gb photoelectric conversion element row, which is a photoelectric conversion element row composed of the photoelectric conversion elements 51g and the photoelectric conversion elements 51b arranged in the row direction X, and the row direction X. The rg photoelectric conversion element rows, which are photoelectric conversion element rows composed of the photoelectric conversion elements 51r and 51g arranged in parallel, are alternately arranged in the column direction Y. In the present embodiment, the photoelectric conversion element 51B and the photoelectric conversion element 51b in the upper right in FIG. 2 of the photoelectric conversion element 51B form a pair, and the photoelectric conversion element 51G and the photoelectric conversion element 51g in the upper right in FIG. 2 of the photoelectric conversion element 51G. And the photoelectric conversion element 51R and the photoelectric conversion element 51r on the upper right in FIG. 2 of the photoelectric conversion element 51R form a pair.

各光電変換素子列の右側部には、各光電変換素子列を構成する光電変換素子に蓄積された電荷を列方向Yに転送するための垂直電荷転送路54(図2では一部のみ図示してある)が形成されている。垂直電荷転送路54は、例えば、n型シリコン基板上に形成されたpウェル層内に注入されたn型不純物によって形成されている。   On the right side of each photoelectric conversion element array, a vertical charge transfer path 54 for transferring charges accumulated in the photoelectric conversion elements constituting each photoelectric conversion element array in the column direction Y (only a part is shown in FIG. 2). Is formed). The vertical charge transfer path 54 is formed by, for example, n-type impurities injected into a p-well layer formed on an n-type silicon substrate.

垂直電荷転送路54上方には、垂直電荷転送路54に読み出された電荷の転送を制御するための8相の転送パルスが撮像素子駆動部10によって印加される転送電極V1〜V8が形成されている。   Above the vertical charge transfer path 54, transfer electrodes V <b> 1 to V <b> 8 are formed to which an eight-phase transfer pulse for controlling transfer of charges read out to the vertical charge transfer path 54 is applied by the image sensor driving unit 10. ing.

転送電極V1〜V8は、それぞれ、各光電変換素子行の間を、これらを構成する光電変換素子を避けるように行方向Xに蛇行して配設されている。gb光電変換素子行の上側部には、隣接する光電変換素子行との間に、該光電変換素子行側から順に転送電極V8と転送電極V1が配置されている。gb光電変換素子行の下側部には、隣接する光電変換素子行との間に、該gb光電変換素子行側から順に転送電極V2と転送電極V3が配置されている。rg光電変換素子行の上側部には、隣接する光電変換素子行との間に、該光電変換素子行側から順に転送電極V4と転送電極V5が配置されている。rg光電変換素子行の下側部には、隣接する光電変換素子行との間に、該rg光電変換素子行側から順に転送電極V6と転送電極V7が配置されている。   The transfer electrodes V1 to V8 are arranged so as to meander between the photoelectric conversion element rows in the row direction X so as to avoid the photoelectric conversion elements constituting them. On the upper side of the gb photoelectric conversion element row, a transfer electrode V8 and a transfer electrode V1 are arranged in this order from the photoelectric conversion element row side between adjacent photoelectric conversion element rows. On the lower side of the gb photoelectric conversion element row, the transfer electrode V2 and the transfer electrode V3 are arranged in order from the gb photoelectric conversion element row side between the adjacent photoelectric conversion element rows. On the upper side of the rg photoelectric conversion element row, a transfer electrode V4 and a transfer electrode V5 are arranged in this order from the photoelectric conversion element row side between adjacent photoelectric conversion element rows. On the lower side of the rg photoelectric conversion element row, a transfer electrode V6 and a transfer electrode V7 are arranged in order from the rg photoelectric conversion element row side between the adjacent photoelectric conversion element rows.

各光電変換素子と、それに対応する垂直電荷転送路54との間には、各光電変換素子で発生した電荷を、該垂直電荷転送路54に読み出すための電荷読出し部55が設けられている。電荷読出し部55は、例えば、n型シリコン基板上に形成されたpウェル層の一部分によって形成されている。電荷読出し部55は、各光電変換素子に対して同一の方向(図中の斜め右下方向)に設けられている。   Between each photoelectric conversion element and the vertical charge transfer path 54 corresponding to the photoelectric conversion element, a charge reading unit 55 for reading the charge generated in each photoelectric conversion element to the vertical charge transfer path 54 is provided. The charge readout unit 55 is formed by a part of a p-well layer formed on an n-type silicon substrate, for example. The charge readout unit 55 is provided in the same direction (in the diagonally lower right direction in the drawing) with respect to each photoelectric conversion element.

gb光電変換素子行の各光電変換素子に対応する電荷読出し部55上方には転送電極V2が形成されており、ここに読み出しパルスを印加することで、gb光電変換素子行の各光電変換素子に蓄積されている電荷を、各光電変換素子の右側部にある垂直電荷転送路54に読み出すことができる。   A transfer electrode V2 is formed above the charge reading unit 55 corresponding to each photoelectric conversion element in the gb photoelectric conversion element row, and a read pulse is applied to the transfer electrode V2 to each photoelectric conversion element in the gb photoelectric conversion element row. The accumulated charges can be read out to the vertical charge transfer path 54 on the right side of each photoelectric conversion element.

GB光電変換素子行の各光電変換素子に対応する電荷読出し部55上方には転送電極V4が形成されており、ここに読み出しパルスを印加することで、GB光電変換素子行の各光電変換素子に蓄積されている電荷を、各光電変換素子の右側部にある垂直電荷転送路54に読み出すことができる。   A transfer electrode V4 is formed above the charge reading unit 55 corresponding to each photoelectric conversion element in the GB photoelectric conversion element row, and a read pulse is applied to each of the photoelectric conversion elements in the GB photoelectric conversion element row. The accumulated charges can be read out to the vertical charge transfer path 54 on the right side of each photoelectric conversion element.

rg光電変換素子行の各光電変換素子に対応する電荷読出し部55上方には転送電極V6が形成されており、ここに読み出しパルスを印加することで、rg光電変換素子行の各光電変換素子に蓄積されている電荷を、各光電変換素子の右側部にある垂直電荷転送路54に読み出すことができる。   A transfer electrode V6 is formed above the charge reading unit 55 corresponding to each photoelectric conversion element in the rg photoelectric conversion element row, and by applying a read pulse to the transfer electrode V6, the transfer electrode V6 is applied to each photoelectric conversion element in the rg photoelectric conversion element row. The accumulated charges can be read out to the vertical charge transfer path 54 on the right side of each photoelectric conversion element.

RG光電変換素子行の各光電変換素子に対応する電荷読出し部55上方には転送電極V8が形成されており、ここに読み出しパルスを印加することで、RG光電変換素子行の各光電変換素子に蓄積されている電荷を、各光電変換素子の右側部にある垂直電荷転送路54に読み出すことができる。   A transfer electrode V8 is formed above the charge reading unit 55 corresponding to each photoelectric conversion element in the RG photoelectric conversion element row, and a read pulse is applied to each of the photoelectric conversion elements in the RG photoelectric conversion element row. The accumulated charges can be read out to the vertical charge transfer path 54 on the right side of each photoelectric conversion element.

垂直電荷転送路54には、垂直電荷転送路54を転送されてきた電荷を行方向Xに転送するための水平電荷転送路57が接続され、水平電荷転送路57には、水平電荷転送路57を転送されてきた電荷を電圧信号に変換して出力する出力アンプ58が接続されている。   A horizontal charge transfer path 57 for transferring the charges transferred through the vertical charge transfer path 54 in the row direction X is connected to the vertical charge transfer path 54. The horizontal charge transfer path 57 is connected to the horizontal charge transfer path 57. Is connected to an output amplifier 58 that converts the charge transferred to a voltage signal and outputs the voltage signal.

電荷読出し部55上方の転送電極(V2,V4,V6,V8)には、それぞれ、垂直電荷転送路54に電荷を蓄積するパケットを形成するためのミドルレベル(VM,例えば0V)の転送パルスVMと、垂直電荷転送路54に該パケットのバリアを形成するためのVMよりもレベルの低いローレベル(VL,例えば−8V)の転送パルスVLと、各光電変換素子から垂直電荷転送路54に電荷を読み出すためのパルスであってVMよりも高いレベル(VH,例えば15V)の読み出しパルスとのいずれかが印加可能となっている。電荷読出し部55上方の転送電極(V2,V4,V6,V8)以外の転送電極(V1,V3,V5,V7)には、VLとVMとのいずれかの転送パルスが印加可能となっている。   The transfer electrodes (V2, V4, V6, V8) above the charge reading unit 55 are respectively provided with a middle level (VM, for example, 0V) transfer pulse VM for forming a packet for accumulating charges in the vertical charge transfer path 54. And a transfer pulse VL having a low level (VL, for example, −8 V) lower than the VM for forming a barrier of the packet in the vertical charge transfer path 54, and a charge from each photoelectric conversion element to the vertical charge transfer path 54. Or a read pulse having a level higher than VM (VH, for example, 15 V) can be applied. Any transfer pulse of VL and VM can be applied to the transfer electrodes (V1, V3, V5, V7) other than the transfer electrodes (V2, V4, V6, V8) above the charge reading unit 55. .

本実施形態の固体撮像素子5は、第1の光電変換素子から得られる信号で第1画像情報を生成し、第2の光電変換素子から得られる信号で第2画像情報を生成する撮影モードを実行することができる。この撮影モードによれば、第1の光電変換素子と第2の光電変換素子の受光感度が異なるため、第1画像情報と第2画像情報を合成することでダイナミックレンジが広い画像を生成することができる。   The solid-state imaging device 5 of the present embodiment has a shooting mode in which first image information is generated with a signal obtained from the first photoelectric conversion element, and second image information is generated with a signal obtained from the second photoelectric conversion element. Can be executed. According to this shooting mode, the first photoelectric conversion element and the second photoelectric conversion element have different light receiving sensitivities, so that an image having a wide dynamic range is generated by combining the first image information and the second image information. Can do.

次に、上記撮影モード時の固体撮像素子5の欠陥画素補正方法の手順を説明する。図3は、欠陥画素補正方法の手順を示すフローチャートである。
最初に撮影モードが設定されて撮影が行われ、この撮影による露光期間が終了すると、転送電極V4,V8に転送パルスVMが印加され、第1の光電変換素子の各光電変換素子に対応した電荷蓄積パケットが転送電極V4,V8下に形成される。この状態で、転送電極V4,V8にそれぞれ読み出しパルスが印加され、第1の光電変換素子の各光電変換素子で発生した電荷が、該各光電変換素子に対応して形成された電荷蓄積パケットに読み出される。次に、転送電極V1〜V8に所定パターンの転送パルスが印加され、電荷蓄積パケットに読み出された電荷が水平電荷転送路57まで転送され、ここから出力部58まで転送され、ここで信号に変換されて出力され、1フィールド目が終了する。1フィールド目で得られる信号を以下では第1画像情報とも言う。
Next, the procedure of the defective pixel correction method for the solid-state imaging device 5 in the shooting mode will be described. FIG. 3 is a flowchart showing the procedure of the defective pixel correction method.
First, the photographing mode is set and photographing is performed. When the exposure period by this photographing is completed, the transfer pulse VM is applied to the transfer electrodes V4 and V8, and the charge corresponding to each photoelectric conversion element of the first photoelectric conversion element. Accumulated packets are formed under the transfer electrodes V4 and V8. In this state, a read pulse is applied to each of the transfer electrodes V4 and V8, and the charge generated in each photoelectric conversion element of the first photoelectric conversion element is transferred to the charge accumulation packet formed corresponding to each photoelectric conversion element. Read out. Next, a transfer pulse of a predetermined pattern is applied to the transfer electrodes V1 to V8, and the charge read out in the charge accumulation packet is transferred to the horizontal charge transfer path 57 and transferred from here to the output unit 58, where It is converted and output, and the first field ends. Hereinafter, the signal obtained in the first field is also referred to as first image information.

次に、転送電極V2,V6にそれぞれ転送パルスVMが印加されて、第2の光電変換素子の各光電変換素子に対応した電荷蓄積パケットが転送電極V2,V6下に形成される。その後、転送電極V2,V6への読み出しパルスの印加は行われず、転送電極V1〜V8に、1フィールド目と同じ上記所定パターンの転送パルスが印加されて、該電荷蓄積パケットに存在する暗電流成分の電荷が1フィールド目の電荷と同じ転送パターンで水平電荷転送路57まで転送され、ここから出力部58まで転送され、ここで信号に変換されて出力され、2フィールド目が終了する。2フィールド目で得られる信号を以下では第2画像情報とも言う。   Next, the transfer pulse VM is applied to the transfer electrodes V2 and V6, respectively, and a charge accumulation packet corresponding to each photoelectric conversion element of the second photoelectric conversion element is formed below the transfer electrodes V2 and V6. Thereafter, the read pulse is not applied to the transfer electrodes V2 and V6, and the transfer pulse having the same predetermined pattern as that of the first field is applied to the transfer electrodes V1 to V8, and the dark current component existing in the charge accumulation packet is applied. Are transferred to the horizontal charge transfer path 57 in the same transfer pattern as the charge in the first field, transferred from here to the output unit 58, converted into a signal and output here, and the second field is completed. Hereinafter, the signal obtained in the second field is also referred to as second image information.

こうすることで、第1の光電変換素子で検出された第1画像情報と、第2の光電変換素子で検出された第2画像情報とを取得する(ステップS11)。   Thus, the first image information detected by the first photoelectric conversion element and the second image information detected by the second photoelectric conversion element are acquired (step S11).

1フィールド目と2フィールド目とで電荷蓄積パケットを同じ転送パターンで転送することで、第1画像情報と第2画像情報とをできるだけ同じ条件で得ることができる。   By transferring the charge accumulation packet in the first field and the second field with the same transfer pattern, the first image information and the second image information can be obtained under the same conditions as much as possible.

1フィールド目と2フィールド目でそれぞれ得られた画像情報は、デジタル変換された後、デジタル信号処理部17に入力される。デジタル信号処理部17は、1フィールド目で得られた第1画像情報に基づいて、第1の光電変換素子の欠陥画素の検出を行い、また、2フィールド目で得られた第2画像情報とに基づいて、第2の光電変換素子の欠陥画素の検出を行う(ステップS12)。   The image information obtained in each of the first field and the second field is digitally converted and then input to the digital signal processing unit 17. The digital signal processing unit 17 detects defective pixels of the first photoelectric conversion element based on the first image information obtained in the first field, and the second image information obtained in the second field. Based on the above, defective pixels of the second photoelectric conversion element are detected (step S12).

次に、第1画像情報で検出された欠陥画素と、第2画像情報で検出された欠陥画素とを比較する処理を行う。図4から図6は、光電変換素子の配列の一部と、各光電変換素子で検出する光の色成分を示す模式図である。   Next, a process of comparing the defective pixel detected by the first image information with the defective pixel detected by the second image information is performed. 4 to 6 are schematic diagrams illustrating a part of the array of photoelectric conversion elements and the color components of light detected by each photoelectric conversion element.

図4は、第1の光電変換素子のG光を検出する光電変換素子が欠陥画素である場合を示す模式図である。
図4に示すように、斜線で示す光電変換素子が欠陥画素である場合には、該欠陥画素に隣接する、同じ色成分を検出する光電変換素子(図4において丸で囲ったg光を検出する光電変換素子)が欠陥であるか否かを判別する(ステップS13)。そして、この隣接するg光を検出する光電変換素子が欠陥画素でないときには、該g光を検出する光電変換素子で検出された画素信号を取得する(ステップS15)。ここで、G光を検出する光電変換素子とg光を検出する光電変換素子は、図4中の右上方向から左下方向に交互に配列されているため、G光を検出する光電変換素子とペアとなる光電変換素子は、右上側及び左下側のいずれでもよく、一方が欠陥画素である場合には、反対側の画素をペアとなる光電変換素子の替わりとして用いてもよい。
FIG. 4 is a schematic diagram illustrating a case where the photoelectric conversion element that detects the G light of the first photoelectric conversion element is a defective pixel.
As shown in FIG. 4, when the photoelectric conversion element indicated by diagonal lines is a defective pixel, a photoelectric conversion element that detects the same color component adjacent to the defective pixel (detects g light circled in FIG. 4). It is determined whether or not the photoelectric conversion element to be defective is defective (step S13). When the photoelectric conversion element that detects the adjacent g light is not a defective pixel, the pixel signal detected by the photoelectric conversion element that detects the g light is acquired (step S15). Here, since the photoelectric conversion elements for detecting G light and the photoelectric conversion elements for detecting g light are alternately arranged from the upper right direction to the lower left direction in FIG. 4, they are paired with the photoelectric conversion elements for detecting G light. The photoelectric conversion element to be used may be either the upper right side or the lower left side. When one is a defective pixel, the opposite pixel may be used as a substitute for the pair of photoelectric conversion elements.

図5は、第2の光電変換素子のg光を検出する光電変換素子が欠陥画素である場合を示す模式図である。
図5に示すように、斜線で示す光電変換素子が欠陥画素である場合には、該欠陥画素に隣接する、同じ色成分を検出する光電変換素子(図5において丸で囲ったG光を検出する光電変換素子)が欠陥であるか否かを判別する(ステップS14)。そして、この隣接するG光を検出する光電変換素子が欠陥画素でないときには、該G光を検出する光電変換素子で検出された画素信号を取得する(ステップS16)。
FIG. 5 is a schematic diagram illustrating a case where the photoelectric conversion element that detects g light of the second photoelectric conversion element is a defective pixel.
As shown in FIG. 5, when the photoelectric conversion element indicated by hatching is a defective pixel, the photoelectric conversion element that detects the same color component adjacent to the defective pixel (the G light circled in FIG. 5 is detected). It is determined whether or not the photoelectric conversion element to be defective is defective (step S14). If the photoelectric conversion element that detects the adjacent G light is not a defective pixel, the pixel signal detected by the photoelectric conversion element that detects the G light is acquired (step S16).

一方、図6に示すように、斜線で示すG光を検出する光電変換素子と該G光を検出する光電変換素子に隣接するg光を検出する光電変換素子がいずれも欠陥画素である場合には、該欠陥画素の周囲に配置された光電変換素子のうち、最も近くに位置し、同じG光を検出する光電変換素子(図6において丸で囲ったG光を検出する光電変換素子)の画素信号を取得する(ステップS17)。なお、本実施形態では、G光又はg光を検出する光電変換素子が欠陥画素である場合を例に説明したが、R光又はr光を検出する光電変換素子が欠陥画素である場合やB光又はb光を検出する光電変換素子が欠陥画素である場合も同様に補正することができる。   On the other hand, as shown in FIG. 6, when both the photoelectric conversion element for detecting the G light indicated by the oblique lines and the photoelectric conversion element for detecting the g light adjacent to the photoelectric conversion element for detecting the G light are defective pixels. Is the closest photoelectric conversion element arranged around the defective pixel and detects the same G light (a photoelectric conversion element that detects G light circled in FIG. 6). A pixel signal is acquired (step S17). In this embodiment, the case where the photoelectric conversion element that detects G light or g light is a defective pixel has been described as an example. However, the case where the photoelectric conversion element that detects R light or r light is a defective pixel or B The same correction can be made when the photoelectric conversion element for detecting light or b light is a defective pixel.

その後、上記ステップS15からS17で取得した画素信号を使用して、該画素信号を欠陥画素の画素信号としてそのまま置き換えて用いることによって補正処理を行う(ステップS18)。このとき、取得した画素信号を欠陥画素の画素信号としてそのまま使用するのみで、または、第1の光電変換素子と第2の光電変換素子の受光感度が異なる場合には該受光感度に応じた感度係数の乗算のみで、演算処理にかかる時間を削減することができる。第1の光電変換素子と第2の光電変換素子の受光感度が等しい場合には、感度係数の乗算が必要ないため、演算処理を全く必要としない。このように、欠陥画素に対してペアとなる正常な光電変換素子の画素信号をそのまま欠陥画素の画素信号と用いることで、補正処理にかかる演算処理を低減又は省略することができる。   Thereafter, correction processing is performed by using the pixel signals acquired in steps S15 to S17 as they are as they are as pixel signals of defective pixels (step S18). At this time, the obtained pixel signal is used as it is as the pixel signal of the defective pixel, or when the light receiving sensitivities of the first photoelectric conversion element and the second photoelectric conversion element are different, the sensitivity corresponding to the light receiving sensitivity is used. The time required for the arithmetic processing can be reduced only by the multiplication of the coefficients. When the light receiving sensitivities of the first photoelectric conversion element and the second photoelectric conversion element are the same, no multiplication of sensitivity coefficients is necessary, so that no arithmetic processing is required. As described above, by using the pixel signal of the normal photoelectric conversion element paired with the defective pixel as it is as the pixel signal of the defective pixel, the arithmetic processing related to the correction processing can be reduced or omitted.

デジタル信号処理部17は、補正処理された第1画像情報と第2画像情報とを用いてカラー画像データを生成する。生成されたカラー画像データは圧縮された後、記録媒体21に記録される。   The digital signal processing unit 17 generates color image data using the corrected first image information and second image information. The generated color image data is compressed and then recorded on the recording medium 21.

本実施形態の補正方法によれば、第1の光電変換素子と第2の光電変換素子とで検出された画素信号に基づく第1画像情報及び第2画像情報とを比較することで、第1画像情報及び第2画像情報のうち一方の光電変換素子に欠陥画素がある場合に、該欠陥画素に隣接する他方の光電変換素子の画素信号を使用している。こうすれば、従来の補正方法のように欠陥画素の周囲の画素信号を用いて演算処理によって欠陥画素の画素値を算出する必要がない。   According to the correction method of the present embodiment, the first image information and the second image information based on the pixel signals detected by the first photoelectric conversion element and the second photoelectric conversion element are compared with each other. When there is a defective pixel in one of the image information and the second image information, the pixel signal of the other photoelectric conversion element adjacent to the defective pixel is used. In this way, it is not necessary to calculate the pixel value of the defective pixel by the arithmetic processing using the pixel signal around the defective pixel as in the conventional correction method.

なお、本実施形態の固体撮像素子は、欠陥画素の補正処理を行わない場合には、第1の光電変換素子から得られる画像情報のみで画像データを生成する駆動と、第1の光電変換素子から得られる第1画像情報と第2の光電変換素子から得られる第2画像情報とで画像データを生成する場合の駆動とを、任意に切り替えることができる。   Note that the solid-state imaging device of the present embodiment has a drive for generating image data only with image information obtained from the first photoelectric conversion element and the first photoelectric conversion element when the correction process of the defective pixel is not performed. The driving in the case of generating image data with the first image information obtained from the second image information obtained from the second photoelectric conversion element can be arbitrarily switched.

なお、上述したように第1の光電変換素子から得られる画像情報のみで画像データを生成する場合の駆動は、例えば動画撮影などの高速撮影モードにおいて実施するようにすればよい。   Note that, as described above, driving when image data is generated using only image information obtained from the first photoelectric conversion element may be performed in a high-speed shooting mode such as moving image shooting.

図2に示した構成において、第2の光電変換素子の各光電変換素子を、受光面上方に輝度フィルタを設けた光電変換素子に変更した構成としても、本発明を適用可能である。   In the configuration shown in FIG. 2, the present invention can also be applied to a configuration in which each photoelectric conversion element of the second photoelectric conversion element is changed to a photoelectric conversion element provided with a luminance filter above the light receiving surface.

輝度フィルタとは、光の輝度情報と相関のある分光特性を持ったフィルタである。この輝度フィルタは、NDフィルタや、透明フィルタ、白色フィルタ、グレーのフィルタ等が該当するが、光電変換素子の受光面上方に何も設けずに光が直接該受光面に入射する構成も、輝度フィルタを設けたということができる。   The luminance filter is a filter having spectral characteristics correlated with light luminance information. This luminance filter corresponds to an ND filter, a transparent filter, a white filter, a gray filter, or the like, but the configuration in which light is directly incident on the light receiving surface without providing anything above the light receiving surface of the photoelectric conversion element is also possible. It can be said that a filter is provided.

(第2実施形態)
次に、本発明の第2実施形態を説明する。本実施形態では、撮像装置の構成は、上記第1実施形態と同じである。
図7は、本実施形態の撮像素子の光電変換素子の配列の一例を模式的に示す図である。図7に示すように、第1の光電変換素子と第2の光電変換素子がそれぞれ行方向X及び列方向Yに対して45度傾斜するように正方格子状に配列され、第1の光電変換素子の行方向X及び列方向Yの間に各第2の光電変換素子が配置されている。また、各光電変換素子の上方に、行方向X及び列方向Yの斜め45度方向にみたときの第1の光電変換素子の2×2の配列がRGBのベイヤー配列となり、かつ、行方向X及び列方向Yの斜め45度方向にみたときの第1の光電変換素子の2×2の配列がrgbのベイヤー配列となるようにカラーフィルタが設けられている。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. In the present embodiment, the configuration of the imaging device is the same as that in the first embodiment.
FIG. 7 is a diagram schematically illustrating an example of an array of photoelectric conversion elements of the image sensor according to the present embodiment. As shown in FIG. 7, the first photoelectric conversion element and the second photoelectric conversion element are arranged in a square lattice so as to be inclined by 45 degrees with respect to the row direction X and the column direction Y, respectively. Each second photoelectric conversion element is arranged between the row direction X and the column direction Y of the element. Further, above each photoelectric conversion element, a 2 × 2 array of the first photoelectric conversion elements when viewed in an oblique 45 degree direction in the row direction X and the column direction Y is an RGB Bayer array, and the row direction X In addition, a color filter is provided so that the 2 × 2 arrangement of the first photoelectric conversion elements when viewed in an oblique 45 ° direction in the column direction Y is an rgb Bayer arrangement.

本実施形態では、光電変換素子51Bと該光電変換素子51Bの図7中下側に隣接する光電変換素子51bとがペアとなり、光電変換素子51Gと該光電変換素子51Gの図7中下側に隣接する光電変換素子51gとがペアとなり、光電変換素子51Rと該光電変換素子51Rの図7中下側に隣接する光電変換素子51rとがペアとなる。   In the present embodiment, the photoelectric conversion element 51B and the photoelectric conversion element 51b adjacent to the lower side of the photoelectric conversion element 51B in FIG. 7 are paired, and the photoelectric conversion element 51G and the photoelectric conversion element 51G are positioned on the lower side of FIG. The adjacent photoelectric conversion element 51g makes a pair, and the photoelectric conversion element 51R and the photoelectric conversion element 51r adjacent to the lower side of the photoelectric conversion element 51R in FIG. 7 form a pair.

第1の光電変換素子と第2の光電変換素子の各光電変換素子は、同じ色成分を検出する光電変換素子同士が隣接するように配列されている。つまり、光電変換素子51Rは光電変換素子51rと列方向Yで隣接し、光電変換素子51Gは光電変換素子51gと列方向Yで隣接し、光電変換素子51Bは光電変換素子51bと列方向Yで隣接する。   The photoelectric conversion elements of the first photoelectric conversion element and the second photoelectric conversion element are arranged so that the photoelectric conversion elements that detect the same color component are adjacent to each other. That is, the photoelectric conversion element 51R is adjacent to the photoelectric conversion element 51r in the column direction Y, the photoelectric conversion element 51G is adjacent to the photoelectric conversion element 51g in the column direction Y, and the photoelectric conversion element 51B is adjacent to the photoelectric conversion element 51b in the column direction Y. Adjacent.

図7に示すように光電変換素子が配列された撮像素子も、上記第1実施形態と同じ手順で欠陥画素を補正することができる。   As shown in FIG. 7, the imaging element in which the photoelectric conversion elements are arranged can also correct the defective pixel in the same procedure as in the first embodiment.

図8は、図7の光電変換素子の配列において、欠陥画素と該欠陥画素に隣接する同じ色成分の光電変換素子とを示す模式図である。
図8に示すように、斜線で示す光電変換素子が欠陥画素である場合には、該欠陥画素に隣接するペアとなる光電変換素子(図8において丸で囲ったg光を検出する光電変換素子)が欠陥であるか否かを判別し、この隣接するg光を検出する光電変換素子が欠陥画素でないときには、該g光を検出する光電変換素子で検出された画素信号を、欠陥画素の画素信号としてそのまま用いて、または、前記第1の光電変換素子と第2の光電変換素子の受光感度が異なる場合には該受光感度に応じた感度係数の乗算のみで、補正処理を行う。
FIG. 8 is a schematic diagram showing a defective pixel and a photoelectric conversion element of the same color component adjacent to the defective pixel in the photoelectric conversion element array of FIG.
As shown in FIG. 8, when the photoelectric conversion element indicated by diagonal lines is a defective pixel, a pair of photoelectric conversion elements adjacent to the defective pixel (photoelectric conversion element for detecting g light circled in FIG. 8) ) Is a defect, and when the photoelectric conversion element for detecting the adjacent g light is not a defective pixel, the pixel signal detected by the photoelectric conversion element for detecting the g light is used as the pixel of the defective pixel. The correction processing is performed by using the signal as it is or when the first photoelectric conversion element and the second photoelectric conversion element have different light reception sensitivities, only by multiplication of sensitivity coefficients corresponding to the light reception sensitivities.

図9は、図7の光電変換素子の配列において、欠陥画素と該欠陥画素に隣接する同じ色成分の光電変換素子とを示す模式図である。
図9に示すように、斜線で示す光電変換素子が欠陥画素である場合には、該欠陥画素に隣接するペアとなる光電変換素子(図9において丸で囲ったG光を検出する光電変換素子)が欠陥であるか否かを判別し、この隣接するG光を検出する光電変換素子が欠陥画素でないときには、該G光を検出する光電変換素子で検出された画素信号を、欠陥画素の画素信号として補正処理を行う。
FIG. 9 is a schematic diagram illustrating a defective pixel and a photoelectric conversion element having the same color component adjacent to the defective pixel in the arrangement of the photoelectric conversion elements in FIG. 7.
As shown in FIG. 9, in the case where the photoelectric conversion element indicated by hatching is a defective pixel, a pair of photoelectric conversion elements adjacent to the defective pixel (photoelectric conversion element for detecting G light circled in FIG. 9) ) Is a defect, and when the photoelectric conversion element for detecting the adjacent G light is not a defective pixel, the pixel signal detected by the photoelectric conversion element for detecting the G light is used as the pixel of the defective pixel. Correction processing is performed as a signal.

一方、図10に示すように、斜線で示すG光を検出する光電変換素子と該G光を検出する光電変換素子に隣接するg光を検出する光電変換素子がいずれも欠陥画素である場合には、該欠陥画素の周囲に配置された光電変換素子のうち、最も近くに位置し、同じG光を検出する光電変換素子(図10において丸で囲ったG光を検出する光電変換素子)の画素信号を用いて欠陥画素を補正する。本実施形態では、G光又はg光を検出する光電変換素子が欠陥画素である場合を例に説明したが、R光又はr光を検出する光電変換素子が欠陥画素である場合やB光又はb光を検出する光電変換素子が欠陥画素である場合も同様に補正することができる。   On the other hand, as shown in FIG. 10, when both the photoelectric conversion element that detects G light indicated by the oblique lines and the photoelectric conversion element that detects g light adjacent to the photoelectric conversion element that detects the G light are defective pixels. Is the closest photoelectric conversion element arranged around the defective pixel and detects the same G light (a photoelectric conversion element that detects G light circled in FIG. 10). The defective pixel is corrected using the pixel signal. In this embodiment, the case where the photoelectric conversion element that detects G light or g light is a defective pixel has been described as an example. However, when the photoelectric conversion element that detects R light or r light is a defective pixel, The same correction can be made when the photoelectric conversion element that detects b light is a defective pixel.

本発明の欠陥画素補正方法を行う撮像装置の一例であるデジタルカメラの概略構成を示す図である。It is a figure which shows schematic structure of the digital camera which is an example of the imaging device which performs the defective pixel correction method of this invention. 図1に示す固体撮像素子5の一構成例を示した平面模式図である。It is the plane schematic diagram which showed one structural example of the solid-state image sensor 5 shown in FIG. 欠陥画素補正方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the defective pixel correction method. 第1の光電変換素子のG光を検出する光電変換素子が欠陥画素である場合を示す模式図である。It is a schematic diagram which shows the case where the photoelectric conversion element which detects G light of a 1st photoelectric conversion element is a defective pixel. 第2の光電変換素子のg光を検出する光電変換素子が欠陥画素である場合を示す模式図である。It is a schematic diagram which shows the case where the photoelectric conversion element which detects the g light of a 2nd photoelectric conversion element is a defective pixel. G光を検出する光電変換素子と該G光を検出する光電変換素子に隣接するg光を検出する光電変換素子がいずれも欠陥画素である場合を示す模式図である。It is a schematic diagram which shows the case where both the photoelectric conversion element which detects G light, and the photoelectric conversion element which detects g light adjacent to the photoelectric conversion element which detects this G light are defective pixels. 光電変換素子の配列の他の例を模式的に示す図である。It is a figure which shows typically the other example of the arrangement | sequence of a photoelectric conversion element. 図7の光電変換素子の配列において、欠陥画素と該欠陥画素に隣接する同じ色成分の光電変換素子とを示す模式図である。FIG. 8 is a schematic diagram illustrating a defective pixel and a photoelectric conversion element having the same color component adjacent to the defective pixel in the arrangement of the photoelectric conversion elements in FIG. 7. 図7の光電変換素子の配列において、欠陥画素と該欠陥画素に隣接する同じ色成分の光電変換素子とを示す模式図である。FIG. 8 is a schematic diagram illustrating a defective pixel and a photoelectric conversion element having the same color component adjacent to the defective pixel in the arrangement of the photoelectric conversion elements in FIG. 7. G光を検出する光電変換素子と該G光を検出する光電変換素子に隣接するg光を検出する光電変換素子がいずれも欠陥画素である場合を示す模式図である。It is a schematic diagram which shows the case where both the photoelectric conversion element which detects G light, and the photoelectric conversion element which detects g light adjacent to the photoelectric conversion element which detects this G light are defective pixels.

符号の説明Explanation of symbols

5 撮像素子
51R,51G,51B 第1の光電変換素子
51r,51g,51b 第2の光電変換素子
5 Image sensor 51R, 51G, 51B 1st photoelectric conversion element 51r, 51g, 51b 2nd photoelectric conversion element

Claims (5)

カラー画像データを生成するために必要な色成分の光を検出する複数の光電変換素子が設けられ、前記複数の光電変換素子が複数の第1の光電変換素子と複数の第2の光電変換素子とから構成され、前記複数の第1の光電変換素子と前記複数の第2の光電変換素子とが同じ配列で、かつ、同じ色成分を検出する光電変換素子が互いに隣接するように配置されている撮像素子の欠陥画素補正方法であって、
前記第1の光電変換素子と前記第2の光電変換素子とのうちいずれか一方が欠陥画素である場合に、他方の光電変換素子のうち、前記欠陥画素に近接し、かつ、同じ色成分を検出する光電変換素子で検出された画素信号を取得し、該画素信号を前記欠陥画素の画素信号としてそのまま用いて、または、前記第1の光電変換素子と第2の光電変換素子の受光感度が異なる場合には該受光感度に応じた感度係数の乗算のみで、補正処理を行う欠陥画素補正方法。
A plurality of photoelectric conversion elements for detecting light of a color component necessary for generating color image data are provided, and the plurality of photoelectric conversion elements are a plurality of first photoelectric conversion elements and a plurality of second photoelectric conversion elements. The plurality of first photoelectric conversion elements and the plurality of second photoelectric conversion elements are arranged in the same arrangement, and the photoelectric conversion elements that detect the same color component are arranged adjacent to each other. A defective pixel correction method for an image sensor,
When one of the first photoelectric conversion element and the second photoelectric conversion element is a defective pixel, the other photoelectric conversion element is close to the defective pixel and has the same color component. The pixel signal detected by the photoelectric conversion element to be detected is acquired and the pixel signal is used as it is as the pixel signal of the defective pixel, or the light receiving sensitivity of the first photoelectric conversion element and the second photoelectric conversion element is A defective pixel correction method in which correction processing is performed only by multiplication of a sensitivity coefficient corresponding to the light receiving sensitivity if different.
前記欠陥画素に近接し、かつ、同じ色成分を検出する光電変換素子が欠陥である場合には、前記第1の光電変換素子又は前記第2の光電変換素子のうち前記欠陥画素が含まれている方の、該欠陥画素に最も近く、かつ、同じ色成分の光電変換素子から、画素信号を取得し、該画素信号に基づいて前記欠陥画素の画素信号を演算する請求項1に記載の欠陥画素補正方法。   When the photoelectric conversion element that is close to the defective pixel and detects the same color component is defective, the defective pixel is included in the first photoelectric conversion element or the second photoelectric conversion element. 2. The defect according to claim 1, wherein a pixel signal is obtained from a photoelectric conversion element closest to the defective pixel and having the same color component, and the pixel signal of the defective pixel is calculated based on the pixel signal. Pixel correction method. 前記第1の光電変換素子と前記第2の光電変換素子がそれぞれ正方格子状に行方向及び列方向に配列され、前記第1の光電変換素子と前記第2の光電変換素子が配列ピッチの約1/2だけ前記行方向及び前記列方向にずれた位置に配置されている請求項1又は2に記載の欠陥画素補正方法。   The first photoelectric conversion element and the second photoelectric conversion element are respectively arranged in a square lattice form in a row direction and a column direction, and the first photoelectric conversion element and the second photoelectric conversion element are arranged at about an arrangement pitch. The defective pixel correction method according to claim 1, wherein the defective pixel correction method is arranged at a position shifted by ½ in the row direction and the column direction. 前記第1の光電変換素子と前記第2の光電変換素子がそれぞれ行方向及び列方向に対して傾斜するように正方格子状に配列され、前記第1の光電変換素子の前記行方向及び前記列方向の間に各第2の光電変換素子が配置されている請求項1又は2に記載の欠陥画素補正方法。   The first photoelectric conversion element and the second photoelectric conversion element are arranged in a square lattice so as to be inclined with respect to the row direction and the column direction, respectively, and the row direction and the column of the first photoelectric conversion element The defective pixel correction method according to claim 1, wherein each second photoelectric conversion element is disposed between the directions. カラー画像データを生成するために必要な色成分の光を検出する複数の光電変換素子が設けられ、前記複数の光電変換素子が複数の第1の光電変換素子と複数の第2の光電変換素子とから構成され、前記複数の第1の光電変換素子と前記複数の第2の光電変換素子とが同じ配列で、かつ、同じ色成分を検出する光電変換素子が互いに隣接するように配置されている撮像素子を備えた撮像装置であって、
前記第1の光電変換素子と前記第2の光電変換素子とのうちいずれか一方が欠陥画素である場合に、他方の光電変換素子のうち、前記欠陥画素に近接し、かつ、同じ色成分を検出する光電変換素子で検出された画素信号を取得し、該画素信号を前記欠陥画素の画素信号としてそのまま用いて補正処理を行う欠陥画素補正手段を備えた撮像装置。
A plurality of photoelectric conversion elements for detecting light of a color component necessary for generating color image data are provided, and the plurality of photoelectric conversion elements are a plurality of first photoelectric conversion elements and a plurality of second photoelectric conversion elements. The plurality of first photoelectric conversion elements and the plurality of second photoelectric conversion elements are arranged in the same arrangement, and the photoelectric conversion elements that detect the same color component are arranged adjacent to each other. An image pickup apparatus including an image pickup device,
When one of the first photoelectric conversion element and the second photoelectric conversion element is a defective pixel, the other photoelectric conversion element is close to the defective pixel and has the same color component. An imaging apparatus comprising defective pixel correction means for acquiring a pixel signal detected by a photoelectric conversion element to be detected and performing correction processing using the pixel signal as it is as a pixel signal of the defective pixel.
JP2008156630A 2008-06-16 2008-06-16 Image capturing apparatus and defective pixel correcting method Pending JP2009303020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008156630A JP2009303020A (en) 2008-06-16 2008-06-16 Image capturing apparatus and defective pixel correcting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008156630A JP2009303020A (en) 2008-06-16 2008-06-16 Image capturing apparatus and defective pixel correcting method

Publications (1)

Publication Number Publication Date
JP2009303020A true JP2009303020A (en) 2009-12-24

Family

ID=41549432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008156630A Pending JP2009303020A (en) 2008-06-16 2008-06-16 Image capturing apparatus and defective pixel correcting method

Country Status (1)

Country Link
JP (1) JP2009303020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126898A (en) * 2016-01-14 2017-07-20 キヤノン株式会社 Imaging device and video processing apparatus
WO2019124136A1 (en) * 2017-12-20 2019-06-27 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element and solid-state imaging device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017126898A (en) * 2016-01-14 2017-07-20 キヤノン株式会社 Imaging device and video processing apparatus
WO2019124136A1 (en) * 2017-12-20 2019-06-27 ソニーセミコンダクタソリューションズ株式会社 Photoelectric conversion element and solid-state imaging device
US11469262B2 (en) 2017-12-20 2022-10-11 Sony Semiconductor Solutions Corporation Photoelectric converter and solid-state imaging device

Similar Documents

Publication Publication Date Title
JP4747154B2 (en) Solid-state imaging device driving method, solid-state imaging device, and imaging apparatus
JP5044673B2 (en) Solid-state imaging device and image recording device
JP4253634B2 (en) Digital camera
US8497925B2 (en) Solid-state imaging device, color filter arrangement method therefor and image recording apparatus
WO2018198766A1 (en) Solid-state image capturing device and electronic instrument
JP2009044593A (en) Imaging apparatus, and method of driving solid-state imaging element
JP2009055320A (en) Imaging apparatus and method for driving solid-state imaging device
JP2008104013A (en) Driving method of solid-state imaging element and imaging apparatus
US8830384B2 (en) Imaging device and imaging method
JP2009049525A (en) Imaging apparatus and method for processing signal
JP2009065478A (en) Driving method of solid-state image sensor, and imaging apparatus
JP2006237245A (en) Microlens mounting single ccd color solid state imaging device and image reading apparatus
JP2006303995A (en) Solid imaging device and imaging apparatus
JP5033711B2 (en) Imaging device and driving method of imaging device
JP2009088706A (en) Imaging apparatus, and method for driving solid-state imaging element
JP2009303020A (en) Image capturing apparatus and defective pixel correcting method
JP2007235888A (en) Single-ccd color solid-state imaging element and imaging apparatus
JP2009049524A (en) Imaging apparatus and method for processing signal
WO2015008635A1 (en) Solid-state imaging element, method for driving same, and electronic apparatus
JP4848349B2 (en) Imaging apparatus and solid-state imaging device driving method
JP4759396B2 (en) Solid-state image sensor
JP2007088732A (en) Solid-state imaging element
JP2008067281A (en) Digital camera and solid-state imaging element
JP2007235877A (en) Multi-ccd solid-state imaging element module and imaging apparatus
JP2017208651A (en) Imaging apparatus