JP4766697B2 - Small gas detector - Google Patents

Small gas detector Download PDF

Info

Publication number
JP4766697B2
JP4766697B2 JP2007074921A JP2007074921A JP4766697B2 JP 4766697 B2 JP4766697 B2 JP 4766697B2 JP 2007074921 A JP2007074921 A JP 2007074921A JP 2007074921 A JP2007074921 A JP 2007074921A JP 4766697 B2 JP4766697 B2 JP 4766697B2
Authority
JP
Japan
Prior art keywords
light
measurement
measurement light
emission
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007074921A
Other languages
Japanese (ja)
Other versions
JP2008232919A (en
Inventor
教明 山崎
潔 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2007074921A priority Critical patent/JP4766697B2/en
Publication of JP2008232919A publication Critical patent/JP2008232919A/en
Application granted granted Critical
Publication of JP4766697B2 publication Critical patent/JP4766697B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば都市ガスや化学プラント等の配管の劣化等に伴うガス漏洩を検出する際に用いられ、ガスの赤外線吸収特性を利用して光学的にガスを検知する携帯型の小型ガス検知装置に関する。 The present invention is used when detecting gas leakage due to deterioration of piping of city gas or chemical plant, for example, and is a portable small gas detector that optically detects gas using infrared absorption characteristics of gas. Relates to the device.

例えばメタン、二酸化炭素、アセチレン、アンモニア等の気体には、分子の回転や構成原子間の振動等に応じて特定波長の光を吸収する吸収帯があることが既に知られている。この吸収帯を利用したガス検知装置では、所定距離(この距離によって測定光路長が確定される)隔てて光源部と受光部とを配置し、光源部の半導体レーザにより周波数変調されたレーザ光を測定対象ガスを含む雰囲気中に通し、その透過光を受光部の光検出器で受光してガスを検知し、このときの出力信号から測定対象ガスのガス濃度を測定している。また、下記特許文献1に開示されるように、上述した光源部と受光部を共通の筐体に収容して携帯できるように構成したガス検知装置も知られている。なお、光源部と受光部は同じ位置に配置されていても測定光を反射光として受光できれば測定光路長は確保される。   For example, it is already known that gases such as methane, carbon dioxide, acetylene, and ammonia have an absorption band that absorbs light of a specific wavelength in accordance with molecular rotation, vibration between constituent atoms, and the like. In a gas detection device using this absorption band, a light source part and a light receiving part are arranged at a predetermined distance (the measurement optical path length is determined by this distance), and laser light frequency-modulated by a semiconductor laser of the light source part is used. It passes through the atmosphere containing the measurement target gas, and the transmitted light is received by the photodetector of the light receiving unit to detect the gas, and the gas concentration of the measurement target gas is measured from the output signal at this time. Further, as disclosed in Patent Document 1 below, there is also known a gas detection device configured such that the light source unit and the light receiving unit described above are accommodated in a common casing and can be carried. Even if the light source unit and the light receiving unit are arranged at the same position, the measurement optical path length is secured if the measurement light can be received as reflected light.

ここで、受光部の出力信号から検出される変調周波数の基本波位相敏感検波信号(以下、1f信号と略称する)には、強度変調に起因する大きなオフセットが生じる。このため、特に微小なガス濃度を高感度で測定するには、1f信号に比べてオフセットのかなり小さい2倍波位相敏感検波信号(以下、2f信号と略称する)が用いられる。   Here, a large offset due to intensity modulation occurs in a fundamental phase sensitive detection signal (hereinafter referred to as “1f signal”) having a modulation frequency detected from the output signal of the light receiving unit. For this reason, in order to measure a particularly minute gas concentration with high sensitivity, a second harmonic phase sensitive detection signal (hereinafter abbreviated as 2f signal) having a considerably smaller offset than the 1f signal is used.

実際にガス濃度を測定するにあたっては、測定ガス吸収線に合わせた波長の測定光が測定ガス雰囲気中を通ると、被測定ガスにより測定光が吸収され、ガス濃度光路長積に応じた強度で変調周波数の2倍の周波数の強度変化(2f信号成分I2f)による2f信号が生成される。そして、この2f信号の強度変化と元の変調周波数である1f信号の強度変化(1f信号成分I1f)の比率I2f/I1fの値は、ガス濃度光路長積に比例するので、この値に係数をかければガス濃度になる。 When actually measuring the gas concentration, when the measurement light with the wavelength matched to the measurement gas absorption line passes through the measurement gas atmosphere, the measurement light is absorbed by the gas to be measured, and the intensity according to the gas concentration optical path length product. A 2f signal is generated by an intensity change (2f signal component I 2f ) at a frequency twice the modulation frequency. The value of the ratio I 2f / I 1f between the intensity change of the 2f signal and the intensity change of the 1f signal (1f signal component I 1f ) which is the original modulation frequency is proportional to the gas concentration optical path length product. Multiplying the coefficient to get the gas concentration.

ところで、この種の従来のガス検知装置として、下記特許文献1には、測定光の出射位置を確認しながら測定雰囲気のガス検知が行える携帯型のガス濃度測定装置が開示されている。図5は特許文献1に開示されるガス濃度測定装置と同等の構成による従来のガス検知装置の外観を示す斜視図、図6は図5のB−B線における筐体の部分断面図である。   By the way, as a conventional gas detection device of this type, Japanese Patent Application Laid-Open No. 2004-228561 discloses a portable gas concentration measurement device capable of detecting a gas in a measurement atmosphere while confirming the emission position of measurement light. FIG. 5 is a perspective view showing an external appearance of a conventional gas detection device having a configuration equivalent to that of the gas concentration measurement device disclosed in Patent Document 1, and FIG. 6 is a partial cross-sectional view of the housing taken along line BB in FIG. .

図5及び図6に示すガス濃度測定装置(以下、従来装置と言う)51は、全体が銃型形状をなし、一面に開口穴52を有する有底筒型形状の筐体53と、筐体53の後端側に位置して筐体53を把持する把持部54とを備えている。筐体53内には、半導体レーザユニット55が組み込まれるとともに、筐体53内の中心軸線上の奥部に受光器56が配置される。半導体レーザユニット55は、測定雰囲気のガスを検知するための測定光を出射する半導体レーザを含む半導体レーザモジュール57と、レーザポインタ58と、合波手段59とからなる。筐体53の開口穴52には、測定光の出射に伴う測定雰囲気からの反射測定光を受光器56に集光する集光レンズ60が固設される。レーザポインタ58は、逆V字状の支持部材61によって筐体53の集光レンズ60後方に固定され、測定光の出射位置を確認するための可視光をガイド光として出射している。合波手段59は、筐体53の集光レンズ60後方で受光器56の光軸L−L上に配置され、測定光とガイド光とを受光器56の光軸L−L上で合波して集光レンズ60の中央のガラス窓62から出射している。
特開2005−106521号公報
A gas concentration measuring device (hereinafter referred to as a conventional device) 51 shown in FIGS. 5 and 6 is formed as a whole with a gun-like shape and has a bottomed cylindrical housing 53 having an opening 52 on one surface, and a housing. 53, and a grip portion 54 that grips the casing 53. A semiconductor laser unit 55 is incorporated in the housing 53, and a light receiver 56 is disposed at the back of the housing 53 on the central axis. The semiconductor laser unit 55 includes a semiconductor laser module 57 including a semiconductor laser that emits measurement light for detecting a gas in a measurement atmosphere, a laser pointer 58, and a multiplexing means 59. A condensing lens 60 for condensing the reflected measurement light from the measurement atmosphere accompanying the emission of the measurement light onto the light receiver 56 is fixed in the opening hole 52 of the housing 53. The laser pointer 58 is fixed to the rear of the condenser lens 60 of the housing 53 by an inverted V-shaped support member 61, and emits visible light as guide light for confirming the emission position of the measurement light. The multiplexing means 59 is disposed on the optical axis LL of the light receiver 56 behind the condenser lens 60 of the housing 53, and combines the measurement light and the guide light on the optical axis LL of the light receiver 56. Then, the light is emitted from the central glass window 62 of the condenser lens 60.
JP-A-2005-106521

しかしながら、上述した図5及び図6に示す従来装置51では、測定光とガイド光とを略同軸上で出射するため、測定光とガイド光とが集光レンズ60の集光エリア内の受光器56の光軸L−L上で合波するようにレーザポインタ58が配置された構成となっている。このため、測定光の出射に伴う測定雰囲気からの反射測定光がレーザポインタ58の支持部材61によって遮られ、十分な光量の反射測定光を受光器56に導くことができない。   However, in the conventional apparatus 51 shown in FIGS. 5 and 6 described above, the measurement light and the guide light are emitted substantially on the same axis, so that the measurement light and the guide light are within the light collection area of the condenser lens 60. A laser pointer 58 is arranged so as to be multiplexed on 56 optical axes LL. For this reason, the reflected measurement light from the measurement atmosphere accompanying the emission of the measurement light is blocked by the support member 61 of the laser pointer 58, and the reflected measurement light having a sufficient amount of light cannot be guided to the light receiver 56.

そこで、集光レンズ60が設けられる筐体53の開口穴52を極力大きく形成し、集光レンズ60から十分な光量の反射測定光が受光器56に集光されるようにしている。また、測定光とガイド光の出射位置が集光レンズ60の中心(光軸L−L)上にあり、受光器56との間の集光レンズ60の焦点距離(光軸L−L上でレンズ中心から受光器56の受光面までの距離)が短いと、反射測定光を集光レンズ60によって受光器56に集光する際に、多くの反射測定光がレーザポインタ58及び支持部材61によって遮られてしまう。このため、受光器56を筐体53の奥部に配置し、集光レンズ60の焦点距離を長く設定して、反射光の減衰量を少なくしている。その結果、図5及び図6に示す従来装置51では、光学部である集光レンズ60の外径及び厚さが大きくなるとともに焦点距離も長くなってしまい、携帯型にも関わらず装置全体が大型化するという問題があった。また、図5及び図6の従来装置51では、レーザポインタ58の配置位置も、集光レンズ60から受光器56に集光される反射測定光を極力遮らないように集光レンズ60と受光器56との間で集光レンズ60寄りに制限されるという問題があった。   Therefore, the opening hole 52 of the housing 53 provided with the condenser lens 60 is formed as large as possible so that a sufficient amount of reflected measurement light is condensed from the condenser lens 60 onto the light receiver 56. In addition, the emission position of the measurement light and the guide light is on the center of the condenser lens 60 (optical axis LL), and the focal length of the condenser lens 60 with respect to the light receiver 56 (on the optical axis LL). When the distance from the center of the lens to the light receiving surface of the light receiver 56 is short, a lot of reflected measurement light is collected by the laser pointer 58 and the support member 61 when the reflected measurement light is condensed on the light receiver 56 by the condenser lens 60. It will be blocked. For this reason, the light receiver 56 is arranged in the inner part of the housing 53, and the focal length of the condenser lens 60 is set to be long so that the attenuation amount of the reflected light is reduced. As a result, in the conventional apparatus 51 shown in FIGS. 5 and 6, the outer diameter and thickness of the condenser lens 60, which is an optical part, are increased and the focal length is increased. There was a problem of increasing the size. 5 and FIG. 6, the arrangement position of the laser pointer 58 is also arranged so that the reflected measurement light condensed from the condenser lens 60 to the light receiver 56 is not blocked as much as possible. There is a problem that it is limited to the position close to the condenser lens 60.

そこで、本発明は上記問題点に鑑みてなされたものであって、光学部を小さくして装置全体の小型化を図ることができる小型ガス検知装置(以下、ガス検知装置と略称する)を提供することを目的としている。 Accordingly, the present invention has been made in view of the above problems, and provides a small gas detection device (hereinafter abbreviated as a gas detection device) capable of reducing the size of the entire device by reducing the optical portion. The purpose is to do.

上記目的を達成するため、本発明の請求項1に記載されたガス検知装置は、測定雰囲気のガスを検知するためのレーザ光を測定光として出射する出射部8と、
前記測定雰囲気への前記測定光の出射に伴って前記測定雰囲気から反射してくるレーザ光を反射測定光として集光する1枚のアクリル樹脂からなる非球面フレネルレンズ7と、
該非球面フレネルレンズによって集光される前記反射測定光を受光する受光部9とが単一の筐体2に配設されたガス検知装置1であって、
前記出射部と前記受光部とは、前記単一の筐体の内部で且つ同一の空間内に配設されるとともに、前記出射部は、前記同一の空間内において前記非球面フレネルレンズによる集光エリア外に配設され、前記非球面フレネルレンズ外から前記測定光を出射することを特徴とする。
In order to achieve the above object, a gas detector according to claim 1 of the present invention includes an emission unit 8 that emits laser light for measuring gas in a measurement atmosphere as measurement light,
An aspherical Fresnel lens 7 made of a single acrylic resin that condenses laser light reflected from the measurement atmosphere as reflected measurement light as the measurement light is emitted to the measurement atmosphere;
A gas detection device 1 in which a light receiving unit 9 that receives the reflected measurement light collected by the aspheric Fresnel lens is disposed in a single housing 2,
The emitting portion and the light receiving portion are disposed in the same space within the single casing, and the emitting portion is condensed by the aspheric Fresnel lens in the same space. The measuring light is arranged outside the area and emits the measuring light from outside the aspheric Fresnel lens .

本発明の請求項2に記載されたガス検知装置は、請求項1のガス検知装置において、
前記出射部8は、前記測定光の出射位置を確認するための可視光をガイド光として前記測定光とともに前記集光エリア外から出射することを特徴とする。
本発明の請求項3に記載されたガス検知装置は、請求項1または2のガス検知装置において、
前記単一の筐体2が、直方体形状でなることを特徴とする。
The gas detection device according to claim 2 of the present invention is the gas detection device according to claim 1,
The emitting unit 8 emits visible light for confirming the emitting position of the measurement light from outside the light condensing area as the guide light together with the measurement light.
The gas detection device according to claim 3 of the present invention is the gas detection device according to claim 1 or 2,
The single casing 2 has a rectangular parallelepiped shape.

本発明に係るガス検知装置によれば、出射部と受光部とが単一の筐体の内部で且つ共通の空間内に配設され、共通の空間内において集光レンズによる集光エリア外から測定光(測定光及びガイド光)を出射するように出射部が筐体に組み込まれるので、光学部である集光レンズを小さく構成でき、装置全体の小型化が図れ、出射部の設計の自由度も増す。 According to the gas detection device of the present invention, the emitting part and the light receiving part are arranged in a common space inside a single housing, and from outside the light condensing area by the condensing lens in the common space. Since the emission part is built into the housing to emit measurement light (measurement light and guide light), the condensing lens, which is the optical part, can be made small, the entire device can be miniaturized, and the design of the emission part is free. Also increases.

以下、本発明の実施の形態を図面を参照しながら具体的に説明する。図1は本発明に係るガス検知装置の外観を示す斜視図、図2は図1のA−A線における筐体の部分断面図、図3は図2における出射部及び受光部が配設された放熱器の平面図、図4は本発明に係るガス検知装置のブロック構成図である。   Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. 1 is a perspective view showing an external appearance of a gas detector according to the present invention, FIG. 2 is a partial cross-sectional view of a housing taken along line AA in FIG. 1, and FIG. 3 is provided with an emitting portion and a light receiving portion in FIG. FIG. 4 is a block diagram of the gas detector according to the present invention.

本発明に係るガス検知装置は、例えば都市ガスや化学プラント等のガス配管の劣化等に伴うガス漏洩を検出する際に携帯可能に用いられ、ガスによるレーザ光の吸収を利用して光学的にガスを検知している。   The gas detection device according to the present invention is used in a portable manner, for example, when detecting gas leakage accompanying deterioration of gas pipes such as city gas or chemical plant, and optically utilizing absorption of laser light by gas. Gas is detected.

図1に示すように、本例のガス検知装置1は、利用者が携帯して操作が可能な大きさの直方体形状の単一の筐体2を本体としている。図1及び図2に示すように、筐体2の長手方向の一面には、上方寄りに矩形状の開口穴3が形成されている。この開口穴3には、後述する集光レンズ7が固設されている。また、図1及び図2に示すように、開口穴3の下部には、2つの円形状の窓穴4(4a,4b)が並設して形成されている。各窓穴4a,4bには、表面に例えばARコート(Anti-Reflection Coat)等の無反射防止処理が施されたガラス材からなる保護板5(5a,5b)が固設されている。さらに、これら開口穴3及び窓穴4が形成された面寄りの筐体2の底面の開口部には、放熱フィン6aが外に露出した状態で放熱器6が固設されている。この放熱器6上には、後述する出射部8が配設される。   As shown in FIG. 1, the gas detection device 1 of the present example has a single rectangular parallelepiped housing 2 that can be carried and operated by a user as a main body. As shown in FIGS. 1 and 2, a rectangular opening hole 3 is formed on one surface in the longitudinal direction of the housing 2 toward the upper side. A condensing lens 7 to be described later is fixed in the opening hole 3. As shown in FIGS. 1 and 2, two circular window holes 4 (4 a, 4 b) are formed side by side in the lower portion of the opening hole 3. In each of the window holes 4a and 4b, a protective plate 5 (5a and 5b) made of a glass material whose surface is subjected to antireflection treatment such as an AR coating (Anti-Reflection Coat) is fixed. Furthermore, the radiator 6 is fixedly installed in the opening portion on the bottom surface of the housing 2 near the surface where the opening hole 3 and the window hole 4 are formed, with the radiation fins 6a exposed to the outside. On the radiator 6, an emission unit 8 described later is disposed.

そして、筐体2には、図4に示すように、集光レンズ7、出射部8、受光部9、電気変換部10、操作入力部11、制御部12、表示部13が設けられている。なお、図1や図2に示すように、筐体2において、開口穴3及び窓穴4が形成された面と反対側の面側には、各部に駆動電源を供給するための電源として電池14を収容した電池ボックス15が着脱可能に設けられている。   As shown in FIG. 4, the housing 2 is provided with a condenser lens 7, an emitting unit 8, a light receiving unit 9, an electrical conversion unit 10, an operation input unit 11, a control unit 12, and a display unit 13. . As shown in FIG. 1 and FIG. 2, a battery as a power source for supplying driving power to each part is provided on the surface of the housing 2 opposite to the surface on which the opening hole 3 and the window hole 4 are formed. A battery box 15 containing 14 is detachably provided.

集光レンズ7は、筐体2の開口穴3に固設され、出射部8から測定雰囲気に向けての測定光の出射に伴って測定雰囲気から反射してくる反射測定光を受光部9の受光面に集光している。   The condenser lens 7 is fixed in the opening hole 3 of the housing 2, and reflects reflected measurement light reflected from the measurement atmosphere as the measurement light is emitted from the emission unit 8 toward the measurement atmosphere. Condensed on the light receiving surface.

具体的に、集光レンズ7は、アクリル樹脂からなる非球面フレネルレンズで構成され、透過ロスを低減させるために厚さ1mmと薄く形成されており、アクリルの透過率が約70%、外形が30mm×40mm、焦点距離(光軸L−L上でレンズ中心から受光部9の受光面までの距離)が40mmである。なお、図1の例では、集光レンズ7を矩形状としているが、円形状にすることもできる。   Specifically, the condenser lens 7 is composed of an aspheric Fresnel lens made of an acrylic resin, and is formed as thin as 1 mm in order to reduce transmission loss. The acrylic transmittance is about 70% and the outer shape is The focal length (distance from the center of the lens to the light receiving surface of the light receiving unit 9 on the optical axis LL) is 40 mm. In addition, in the example of FIG. 1, although the condensing lens 7 is made into the rectangular shape, it can also be made into a circular shape.

出射部8は、図2〜図4に示すように、検知対象の測定雰囲気に測定光を出射する測定光出射部8aと、測定光の出射位置を確認するためのガイド光を出射するガイド光出射部8bとからなる。なお、出射部8は、測定光出射部8aのみの構成としても良い。   As shown in FIGS. 2 to 4, the emission unit 8 includes a measurement light emission unit 8 a that emits measurement light to the measurement atmosphere to be detected, and guide light that emits guide light for confirming the emission position of the measurement light. It consists of the emission part 8b. In addition, the emission part 8 is good also as a structure only of the measurement light emission part 8a.

測定光出射部8aは、所定ガス特有の吸収線に合致した波長(検知対象となるガスの吸収線波長)のレーザ光を測定光として、制御部12の制御により、検知対象の測定雰囲気(例えばガス配管等の反射物)に出射している。この測定光出射部8aは、例えば前述した特許文献1(特開2005−106521号公報)にも開示されるような周知の半導体レーザモジュールで構成される。その構成の一例について説明すると、半導体レーザモジュールは、複数対の電極を有する箱型のバタフライ型ケース本体を基部とし、このケース本体の一面に貫通穴が形成され、貫通穴にガラス等の出射窓が設けられている。そして、半導体レーザモジュルは、発振波長が測定波長に制御されて周波数変調されたレーザ光を前後両面から発光し、前方の面から出射されるレーザ光を測定光とし、後方の面から出射されるレーザ光を参照光とする半導体レーザ、測定光を平行光にコリメートするコリメートレンズ、半導体レーザへの反射光の戻りを抑圧する光アイソレータ、半導体レーザの温度を制御するペルチェ素子(温度制御素子)、波長安定化用ガスが封入されたガスセル、参照光を受光検出するフォトダイオード(受光器)、半導体レーザの温度を検出するサーミスタ(温度計測素子)がケース本体内に収容され、各光学部品間の光軸調整がなされて気密封止される。   The measurement light emitting unit 8a uses a laser beam having a wavelength (absorption line wavelength of a gas to be detected) matched with an absorption line peculiar to a predetermined gas as measurement light, and is controlled by the control unit 12 to measure the measurement atmosphere (for example, (Reflecting material such as gas piping). The measurement light emitting unit 8a is formed of a known semiconductor laser module as disclosed in, for example, the above-described Patent Document 1 (Japanese Patent Laid-Open No. 2005-106521). An example of the configuration will be described. The semiconductor laser module is based on a box-shaped butterfly case body having a plurality of pairs of electrodes, a through hole is formed on one surface of the case body, and an emission window such as glass is formed in the through hole. Is provided. The semiconductor laser module emits laser light that is frequency-modulated by controlling the oscillation wavelength to the measurement wavelength, and emits the laser light emitted from the front surface and the laser light emitted from the front surface, and is emitted from the rear surface. A semiconductor laser that uses laser light as reference light, a collimating lens that collimates measurement light into parallel light, an optical isolator that suppresses the return of reflected light to the semiconductor laser, a Peltier element (temperature control element) that controls the temperature of the semiconductor laser, A gas cell filled with a wavelength stabilizing gas, a photodiode (receiver) that receives and detects the reference light, and a thermistor (temperature measurement element) that detects the temperature of the semiconductor laser are housed in the case body. The optical axis is adjusted and hermetically sealed.

ガイド光出射部8bは、発振波長が可視光領域(400〜720nm)にある可視光レーザで構成され、制御部12の制御により、測定光出射部8aが出射する測定光の出射位置を目視で確認しながら測定雰囲気の目的位置に測定光を導くための可視光をガイド光として出射している。   The guide light emitting unit 8b is composed of a visible light laser having an oscillation wavelength in the visible light region (400 to 720 nm), and the control unit 12 controls the emission position of the measurement light emitted from the measurement light emitting unit 8a. Visible light for guiding the measurement light to the target position in the measurement atmosphere is emitted as guide light while checking.

これら測定光出射部8aとガイド光出射部8bとは、図2に示すように、反射測定光の集光の妨げにならない位置として、筐体2内の底面側で保護板5a,5bの後方近傍に位置して放熱器6上に配設される。   As shown in FIG. 2, the measurement light emission part 8a and the guide light emission part 8b are positioned behind the protective plates 5a and 5b on the bottom side in the housing 2 as positions that do not hinder the collection of the reflected measurement light. It is located on the radiator 6 in the vicinity.

すなわち、出射部8は、集光レンズ7による集光エリア(集光レンズ7が集光した反射測定光を受光部9に集光する領域)外の位置から測定光やガイド光を出射するように筐体2内に配設すれば良い。本例では、図2に示すように、集光レンズ7と受光部9との間で集光エリア外の筐体2の底面側に配設した構成であるが、集光レンズ7と受光部9との間で集光エリア外の筐体2のどこにでも配設することができる。   That is, the emitting unit 8 emits the measurement light and the guide light from a position outside the condensing area by the condensing lens 7 (the region in which the reflected measurement light collected by the condensing lens 7 is collected on the light receiving unit 9). May be disposed in the housing 2. In this example, as shown in FIG. 2, the condensing lens 7 and the light receiving unit are arranged between the condensing lens 7 and the light receiving unit 9 on the bottom surface side of the housing 2 outside the condensing area. 9 and anywhere in the housing 2 outside the light condensing area.

また、測定光出射部8aとガイド光出射部8bとは、出射角度を集光レンズ7の中心軸(光軸L−L)側に所定角度傾けるのが好ましい。具体的には、出射角度を集光レンズ7の中心軸(光軸L−L)側に5mrad程傾け、例えば50cm〜1m程度の近距離測定時に受光部9の受光レベルの向上を図っている。   Further, it is preferable that the measurement light emission part 8 a and the guide light emission part 8 b are inclined at a predetermined angle toward the central axis (optical axis LL) side of the condenser lens 7. Specifically, the emission angle is inclined by about 5 mrad toward the central axis (optical axis LL) side of the condenser lens 7 so as to improve the light receiving level of the light receiving unit 9 when measuring a short distance of, for example, about 50 cm to 1 m. .

受光部9は、例えばフォトダイオードで構成され、受光面中心が集光レンズ7の焦点距離に位置し、測定光出射部8aから測定雰囲気への測定光の出射に伴って測定雰囲気から反射して集光レンズ7によって集光される反射測定光を受光し、受光した反射測定光による測定光信号を電気変換部10に出力している。また、受光部9は、受光面径を例えばφ1mmと小さくすることで、ノイズレベルの低減とコスト低減を図っている。   The light receiving unit 9 is composed of, for example, a photodiode, the center of the light receiving surface is located at the focal length of the condenser lens 7, and is reflected from the measurement atmosphere as the measurement light is emitted from the measurement light emitting unit 8a to the measurement atmosphere. The reflected measurement light collected by the condenser lens 7 is received, and a measurement light signal based on the received reflected measurement light is output to the electrical converter 10. In addition, the light receiving unit 9 reduces the noise level and the cost by reducing the diameter of the light receiving surface to, for example, φ1 mm.

電気変換部10は、プリアンプで構成され、受光部9で検出する1f信号と2f信号とが測定対象ガス濃度範囲で同等の検出レベルになるように、増幅度が1f信号、2f信号それぞれ最適な増幅度に設定されている。この電気変換部10は、受光部9から検出出力される測定光信号の受光電流を受光電圧に変換し、さらに設定された増幅度で増幅して制御部12に出力している。   The electrical conversion unit 10 is configured by a preamplifier, and the amplification degree is optimal for each of the 1f signal and the 2f signal so that the 1f signal and the 2f signal detected by the light receiving unit 9 have the same detection level in the measurement target gas concentration range. Amplification is set. The electrical conversion unit 10 converts the light reception current of the measurement light signal detected and output from the light reception unit 9 into a light reception voltage, and further amplifies it with a set amplification degree and outputs it to the control unit 12.

操作入力部11は、筐体2に設けられて利用者が直接操作する操作キーや操作ボタン等で構成され、測定雰囲気のガス検知の開始や停止の指示入力の他、ガス検知に関する各種設定や警報を出力するアラームレベルの設定等を行っており、これら指示入力や設定情報を制御部12に入力している。   The operation input unit 11 includes operation keys, operation buttons, and the like that are provided on the housing 2 and are directly operated by a user. In addition to inputting a start or stop instruction for gas detection in the measurement atmosphere, An alarm level for outputting an alarm is set, and these instruction inputs and setting information are input to the control unit 12.

制御部12は、ガス検知に関わる処理を統括制御するもので、発光制御部12a、濃度演算部12b、表示制御部12cを備えている。   The control unit 12 performs overall control of processes related to gas detection, and includes a light emission control unit 12a, a concentration calculation unit 12b, and a display control unit 12c.

発光制御部12aは、操作入力部11からの指示入力に基づき、測定光出射部8aからの測定光の出射と、ガイド光出射部8bからのガイド光の出射とを各々制御している。濃度演算部12bは、電気変換部10で増幅された測定光信号を信号処理して1f信号と2f信号とを位相敏感検波し、この位相敏感検波された2f信号の強度変化(2f信号成分I2f)と1f信号の強度変化(1f信号成分I1f)との比率I2f/I1fの値に所定の係数を掛け合わせてガス濃度光路長積を演算している。 Based on the instruction input from the operation input unit 11, the light emission control unit 12a controls the emission of the measurement light from the measurement light emission unit 8a and the emission of the guide light from the guide light emission unit 8b. The density calculation unit 12b performs signal processing on the measurement light signal amplified by the electrical conversion unit 10 to perform phase sensitive detection on the 1f signal and the 2f signal, and changes the intensity (2f signal component I) of the phase sensitive detection 2f signal. 2f ) and the change in intensity of the 1f signal (1f signal component I1f ), the value of the ratio I2f / I1f is multiplied by a predetermined coefficient to calculate the gas concentration optical path length product.

表示制御部12cは、操作入力部11からの設定情報に基づき、濃度演算部12bの演算によって得られるガス濃度光路長積に関する表示、アラームレベルに関する表示等を数百ミリ秒周期(例えば500ミリ秒周期)で逐次書き換えて行うべく表示部13の表示を制御している。   Based on the setting information from the operation input unit 11, the display control unit 12 c displays a display related to the gas concentration optical path length product obtained by the calculation of the concentration calculation unit 12 b, a display related to the alarm level, etc. for a cycle of several hundred milliseconds (for example, 500 milliseconds) The display on the display unit 13 is controlled so as to be sequentially rewritten at a period).

表示部13は、表示制御部12cの制御により、ガス濃度光路長積に関する表示、アラームレベルに関する表示を含む各種表示を行っている。   The display unit 13 performs various displays including a display regarding the gas concentration optical path length product and a display regarding the alarm level under the control of the display control unit 12c.

このように、本例のガス検知装置1は、集光レンズ7による集光エリア外から測定光(測定光及びガイド光)を出射するように出射部8が筐体2に組み込まれている。これにより、集光レンズ7を小さくでき、装置全体の小型化を図ることができる。しかも、出射部8は、集光レンズ7の集光エリア外から測定光やガイド光が出射される位置であれば良いので、図5及び図6に示す従来装置51と比較して、配置位置の幅が広がり、出射部8の設計の自由度も増す。   As described above, in the gas detection device 1 of this example, the emission portion 8 is incorporated in the housing 2 so as to emit measurement light (measurement light and guide light) from outside the light collection area by the condenser lens 7. Thereby, the condensing lens 7 can be made small and size reduction of the whole apparatus can be achieved. In addition, since the emission unit 8 may be a position where the measurement light and the guide light are emitted from the outside of the condensing area of the condensing lens 7, the arrangement position is larger than that of the conventional device 51 shown in FIGS. 5 and 6. And the degree of freedom in designing the emission part 8 increases.

ここで、本例のガス検知装置と図5及び図6に示す従来装置51とを具体的数値例を示して比較する。まず、図5及び図6に示す従来装置51の構成では、集光レンズ60として、厚さ2mm、外形直径95mm、焦点距離168mmを用いており、受光器56の受光面径がφ2mmである。これにより、従来装置51の外形寸法は、幅250mm(図5のD2に相当)、奥行き112mm(図5のW2に相当)、高さ248mm(図5のH2に相当)となっている。   Here, the gas detection apparatus of this example and the conventional apparatus 51 shown in FIGS. 5 and 6 will be compared with specific numerical examples. First, in the configuration of the conventional apparatus 51 shown in FIGS. 5 and 6, the condenser lens 60 has a thickness of 2 mm, an outer diameter of 95 mm, and a focal length of 168 mm, and the light receiving surface diameter of the light receiver 56 is φ2 mm. Thus, the external dimensions of the conventional apparatus 51 are 250 mm (corresponding to D2 in FIG. 5), 112 mm (corresponding to W2 in FIG. 5), and 248 mm (corresponding to H2 in FIG. 5).

これに対し、本例のガス検知装置1は、集光レンズ7として、厚さ1mm、外形30mm×40mm、焦点距離40mmを用いることができ、受光部9の受光面径もφ1mmである。これにより、本例のガス検知装置1の外形寸法は、幅175mm(図1のD1に相当)、奥行き40mm(図1のW1に相当)、高さ70mm(図1のH1に相当)となっている。   On the other hand, in the gas detection device 1 of this example, a thickness of 1 mm, an outer shape of 30 mm × 40 mm, and a focal length of 40 mm can be used as the condensing lens 7, and the light receiving surface diameter of the light receiving unit 9 is φ1 mm. As a result, the external dimensions of the gas detector 1 of this example are 175 mm in width (corresponding to D1 in FIG. 1), 40 mm in depth (corresponding to W1 in FIG. 1), and 70 mm in height (corresponding to H1 in FIG. 1). ing.

以上の数値比較からも明らかなように、本例のガス検知装置1は、図5及び図6に示す従来装置51と比較して、受光部9の受光面径を含め、集光レンズ7を、厚さ、外形、焦点距離の全ての要素において小さくすることができる。その結果、装置全体の外形寸法が小さくなり、小型化を図ることができる。   As is clear from the above numerical comparison, the gas detection device 1 of this example includes the condensing lens 7 including the light receiving surface diameter of the light receiving unit 9 as compared with the conventional device 51 shown in FIGS. , Thickness, outer shape, and focal length can be reduced. As a result, the overall external dimensions of the apparatus are reduced, and downsizing can be achieved.

本発明に係るガス検知装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the gas detection apparatus which concerns on this invention. 図1のA−A線における筐体の部分断面図である。It is a fragmentary sectional view of the housing | casing in the AA line of FIG. 図2における出射部及び受光部が配設された放熱器の平面図である。It is a top view of the heat radiator in which the emission part and light-receiving part in FIG. 2 were arrange | positioned. 本発明に係るガス検知装置のブロック構成図である。It is a block block diagram of the gas detection apparatus which concerns on this invention. 特許文献1に開示されるガス濃度測定装置と同等の構成による従来のガス検知装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the conventional gas detection apparatus by the structure equivalent to the gas concentration measuring apparatus disclosed by patent document 1. FIG. 図5のB−B線における筐体の部分断面図である。It is a fragmentary sectional view of the housing | casing in the BB line of FIG.

符号の説明Explanation of symbols

1 ガス検知装置
2 筐体
7 集光レンズ
8 出射部
8a 測定光出射部
8b ガイド光出射部
9 受光部
10 電気変換部
12 制御部
DESCRIPTION OF SYMBOLS 1 Gas detection apparatus 2 Case 7 Condensing lens 8 Output part 8a Measurement light output part 8b Guide light output part 9 Light receiving part 10 Electrical conversion part 12 Control part

Claims (3)

測定雰囲気のガスを検知するためのレーザ光を測定光として出射する出射部(8)と、
前記測定雰囲気への前記測定光の出射に伴って前記測定雰囲気から反射してくるレーザ光を反射測定光として集光する1枚のアクリル樹脂からなる非球面フレネルレンズ(7)と、
該非球面フレネルレンズによって集光される前記反射測定光を受光する受光部(9)とが単一の筐体(2)に配設されたガス検知装置(1)であって、
前記出射部と前記受光部とは、前記単一の筐体の内部で且つ同一の空間内に配設されるとともに、前記出射部は、前記同一の空間内において前記非球面フレネルレンズによる集光エリア外に配設され、前記非球面フレネルレンズ外から前記測定光を出射することを特徴とする小型ガス検知装置。
An emission section (8) for emitting laser light for detecting gas in the measurement atmosphere as measurement light;
An aspheric Fresnel lens (7) made of a single acrylic resin that condenses the laser light reflected from the measurement atmosphere as the measurement light with the emission of the measurement light to the measurement atmosphere;
A gas detector (1) in which a light receiving part (9) for receiving the reflected measurement light collected by the aspheric Fresnel lens is disposed in a single casing (2),
The emitting portion and the light receiving portion are disposed in the same space within the single casing, and the emitting portion is condensed by the aspheric Fresnel lens in the same space. A small gas detection device, which is disposed outside an area and emits the measurement light from outside the aspheric Fresnel lens .
前記出射部(8)は、前記測定光の出射位置を確認するための可視光をガイド光として前記測定光とともに前記集光エリア外から出射することを特徴とする請求項1記載の小型ガス検知装置。 2. The small gas detection according to claim 1, wherein the emission unit (8) emits visible light for confirming an emission position of the measurement light from outside the light collection area together with the measurement light as guide light. apparatus. 前記単一の筐体(2)が、直方体形状でなることを特徴とする請求項1または2に記載の小型ガス検知装置。 The small gas detector according to claim 1 or 2, wherein the single casing (2) has a rectangular parallelepiped shape.
JP2007074921A 2007-03-22 2007-03-22 Small gas detector Active JP4766697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007074921A JP4766697B2 (en) 2007-03-22 2007-03-22 Small gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007074921A JP4766697B2 (en) 2007-03-22 2007-03-22 Small gas detector

Publications (2)

Publication Number Publication Date
JP2008232919A JP2008232919A (en) 2008-10-02
JP4766697B2 true JP4766697B2 (en) 2011-09-07

Family

ID=39905878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007074921A Active JP4766697B2 (en) 2007-03-22 2007-03-22 Small gas detector

Country Status (1)

Country Link
JP (1) JP4766697B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5604120B2 (en) * 2010-01-25 2014-10-08 エクセリス インコーポレイテッド Checking data quality and ancillary data for Raman sensors
US8536529B2 (en) * 2010-10-13 2013-09-17 The Boeing Company Non-contact surface chemistry measurement apparatus and method
DE102015106635A1 (en) 2015-04-29 2016-11-03 Osram Opto Semiconductors Gmbh Optoelectronic arrangement
JP6292733B1 (en) * 2017-03-29 2018-03-14 東京ガスエンジニアリングソリューションズ株式会社 Gas detector
JP7100988B2 (en) * 2018-02-05 2022-07-14 東京瓦斯株式会社 Gas detection system and gas detection method
KR102216167B1 (en) * 2019-04-16 2021-02-18 연세대학교 산학협력단 Manufacturing method of multi gas sensor using Ultra thin film lens

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3059661B2 (en) * 1995-03-15 2000-07-04 アンリツ株式会社 Gas concentration measurement device
JPH11108836A (en) * 1997-10-07 1999-04-23 Nec Corp Apparatus and method for detecting very small amount of gas
EP1394531A1 (en) * 2001-04-25 2004-03-03 Hiromu Maeda Handy internal quality inspection instrument
JP2003254856A (en) * 2002-02-28 2003-09-10 Tokyo Gas Co Ltd Optical gas leakage detector and gas leakage detection vehicle
JP4343882B2 (en) * 2005-08-16 2009-10-14 アンリツ株式会社 Gas detector
JP2008232920A (en) * 2007-03-22 2008-10-02 Anritsu Corp Gas detection device, and calibration method and wavelength confirmation method using device

Also Published As

Publication number Publication date
JP2008232919A (en) 2008-10-02

Similar Documents

Publication Publication Date Title
JP4766697B2 (en) Small gas detector
US9671332B2 (en) Miniature tunable laser spectrometer for detection of a trace gas
US9035256B2 (en) Gas sensor with radiation guide
US7268882B2 (en) Gas sensor arrangement in an integrated construction
JP2014115019A (en) Air-conditioning control system
US7636153B2 (en) Gas sensor
CN103411921B (en) Based on the hand-held gas sensing system of optical telemetry camera lens
CN103792195A (en) Double-optical-path photoacoustic spectrometry detection module and gas concentration detector by adopting module
KR101031647B1 (en) absorbance and fluorescence measuring apparatus
KR20080076515A (en) Non-dispersive infrared gas sensor with oval-shaped reflector
JP2008070314A (en) Gas detection apparatus
JP2008232918A (en) Gas detector
US10996201B2 (en) Photoacoustic measurement systems and methods using the photoacoustic effect to measure emission intensities, gas concentrations, and distances
JP3691329B2 (en) Gas concentration measuring device
CN203385658U (en) Handheld gas sensing system based on optimal remote sensing lens
Lee et al. Development of a portable heavy-water leak sensor based on laser absorption spectroscopy
JP2009128111A (en) Light receiving unit and concentration measuring apparatus
JPH08247889A (en) Gas concentration measurement device
JP2002228582A (en) Gas detection device
JP2007113948A (en) Gas sensor
JP2002228578A (en) Gas detector and focusing method for the device
JP2006275641A (en) Spectroscopic gas sensor
JP2006329913A (en) Infrared gas analyzer
JP2022017606A (en) Concentration sensor
JP2009063311A (en) Gas detection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100624

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101112

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20101228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4766697

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250