JP4705451B2 - Manufacturing method of sea-island type composite fiber - Google Patents

Manufacturing method of sea-island type composite fiber Download PDF

Info

Publication number
JP4705451B2
JP4705451B2 JP2005292830A JP2005292830A JP4705451B2 JP 4705451 B2 JP4705451 B2 JP 4705451B2 JP 2005292830 A JP2005292830 A JP 2005292830A JP 2005292830 A JP2005292830 A JP 2005292830A JP 4705451 B2 JP4705451 B2 JP 4705451B2
Authority
JP
Japan
Prior art keywords
sea
island
fiber
component
composite fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005292830A
Other languages
Japanese (ja)
Other versions
JP2007100253A (en
Inventor
みゆき 沼田
三枝 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Fibers Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2005292830A priority Critical patent/JP4705451B2/en
Publication of JP2007100253A publication Critical patent/JP2007100253A/en
Application granted granted Critical
Publication of JP4705451B2 publication Critical patent/JP4705451B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Multicomponent Fibers (AREA)

Description

本発明は、易溶解性ポリマーを海成分、難溶解性ポリマーを島成分とする海島型複合繊維の製造方法に関するものである。   The present invention relates to a method for producing a sea-island composite fiber having a readily soluble polymer as a sea component and a hardly soluble polymer as an island component.

極細繊維の実用化においては、極細繊維の繊維径の均一性と生産性の向上が課題となっている。かかる超極細繊維の製造方法としては、海島型複合紡糸法、直接紡糸法、さらに最近注目を集めているエレクトロスピニングなどがある。このうち、直接紡糸法は細繊度化が難しいという問題があり、エレクトロスピニングは数十nmレベルの繊維径を持つ不織布を製造可能であるが、特許文献1に記載されているように繊維径のばらつきが大きく、強度が弱いために応用面で限界があり、製造方法も溶剤や高電圧を使用するなど、設備面の安全性や環境負荷の観点から問題がある。   In the practical application of ultrafine fibers, there is an issue of improving the fiber diameter uniformity and productivity of the ultrafine fibers. Examples of the method for producing such ultrafine fibers include a sea-island type composite spinning method, a direct spinning method, and electrospinning which has recently attracted attention. Among these, the direct spinning method has a problem that it is difficult to reduce the fineness, and electrospinning can produce a nonwoven fabric having a fiber diameter of several tens of nanometers. Due to the large variation and weak strength, there is a limit in application, and the manufacturing method has a problem from the viewpoint of equipment safety and environmental load, such as using solvents and high voltage.

これに対して、海島型複合紡糸法では、例えば、海成分と島成分となるポリマーをチップ状態でブレンドして紡糸した繊維から海成分を抽出除去して超極細繊維を得る方法(例えば、特許文献2、3など)が知られており、かかる方法は従来ある装置で容易に製造できることから広く利用されている。しかし、この方法により得られた極細繊維は繊維径のばらつきが大きいという問題点がある。   In contrast, in the sea-island type composite spinning method, for example, a sea component and a polymer that is an island component are blended in a chip state to extract and remove the sea component from the spun fiber to obtain ultrafine fibers (for example, patents). Documents 2 and 3) are known, and such a method is widely used because it can be easily manufactured by a conventional apparatus. However, there is a problem that the ultrafine fibers obtained by this method have a large variation in fiber diameter.

一方、繊維径の均一な超極細繊維を作成するためには、断面形状が海島型である複合繊維から1成分を溶解除去する方法が知られている。ここで重要なのは海ポリマーの溶解速度が速いことである。海成分ポリマーの溶解速度が遅いと繊維断面中央部の海成分を溶解する間に、分離した最外層にあった島成分が溶解されて、島成分の太さ斑などによる強度劣化が発生し、毛羽や染め斑が起こる。   On the other hand, in order to create ultra-fine fibers having a uniform fiber diameter, a method of dissolving and removing one component from a composite fiber having a sea-island cross-sectional shape is known. What is important here is the high dissolution rate of the sea polymer. When the dissolution rate of the sea component polymer is slow, while the sea component at the center of the fiber cross-section is dissolved, the island component that was in the separated outermost layer is dissolved, causing strength deterioration due to the thickness variation of the island component, Fluff and dyed spots occur.

かかる問題に対して海成分ポリマーの溶解速度を早くするために、特許文献4では、8〜15mol%の5−ナトリウムスルホイソフタル酸、イソフタル酸やテレフタル酸を特定の範囲で共重合したポリエチレンテレフタレートを1成分に用いた複合繊維が提案されている。しかしながら、上記従来技術に具体的に例示されている紡糸速度は1000〜1200m/min程度である。また、現実的に5−ナトリウムスルホイソフタル酸を多く共重合したポリエチレンテレフタレートでは、高速紡糸性が悪くなり、生産性の向上につながらないといった問題点がある。   In order to increase the dissolution rate of the sea component polymer for such a problem, Patent Document 4 discloses that polyethylene terephthalate obtained by copolymerizing 8 to 15 mol% of 5-sodium sulfoisophthalic acid, isophthalic acid or terephthalic acid in a specific range is used. A composite fiber used for one component has been proposed. However, the spinning speed specifically exemplified in the above prior art is about 1000 to 1200 m / min. In addition, polyethylene terephthalate obtained by copolymerizing a large amount of 5-sodium sulfoisophthalic acid has a problem in that high-speed spinnability is deteriorated and productivity is not improved.

特開2004−68161号公報JP 2004-68161 A 特開平3−113082号公報Japanese Patent Laid-Open No. 3-113082 特開平4−126815号公報JP-A-4-126815 特公昭61−296120号公報Japanese Patent Publication No.61-296120

本発明は、上記の問題点を克服し、繊維径が均一な極細繊維が得られる海島型複合繊維を生産性よく製造する方法を提供することを課題とする。   An object of the present invention is to overcome the above-mentioned problems and to provide a method for producing a sea-island type composite fiber capable of obtaining ultrafine fibers having a uniform fiber diameter with high productivity.

本発明者らは上記の問題点を解決するために鋭意検討した結果、本発明に達した。すなわち、本発明によれば、易溶解性ポリマーを海成分、難溶解性ポリマーを島成分として海島型に複合した溶融ポリマーを紡糸口金から溶融吐出し、これを巻き取って海島型複合繊維を製造する方法において、海成分と島成分の重量比率が40:60〜10:90、海成分を構成する易溶解ポリマーが、5−ナトリウムスルホイソフタル酸を6〜12モル%および分子量4000〜12000のポリエチレングリコールを3〜10重量%共重合したポリエチレンテレフタレートであり、かつ、該複合繊維の繊維直径(R)、該複合繊維横断面における島成分の平均直径(r)、および、該複合繊維横断面の中心を通り互いに45度の角度毎に4本の直線を引いたときこの直線上にある島成分の間隔の平均値(S)、および、繊維外周に最も近い島成分と繊維外周との間隔(So)が下記の関係式(I)〜(III)を満足しており、さらに引取り速度を2000〜5000m/minとすることを特徴とする海島型複合繊維の製造方法が提供される。
0.01≦r/R≦0.06 (I)
0.001≦S/R≦0.015 (II)
0.5≦So/S≦1.5 (III)
As a result of intensive studies to solve the above problems, the present inventors have reached the present invention. That is, according to the present invention, a melted polymer in which an easily soluble polymer is composed of a sea component and a hardly soluble polymer is composed of an island component is melt-discharged from a spinneret and wound up to produce a sea-island composite fiber. In this method, the weight ratio of the sea component to the island component is 40:60 to 10:90, and the easily soluble polymer constituting the sea component is polyethylene having 6 to 12 mol% of 5-sodium sulfoisophthalic acid and a molecular weight of 4000 to 12000. Polyethylene terephthalate copolymerized with 3 to 10% by weight of glycol, and the fiber diameter (R) of the composite fiber, the average diameter (r) of island components in the cross section of the composite fiber, and the cross section of the composite fiber When four straight lines are drawn every 45 degrees through the center, the average value (S) of the distance between the island components on this straight line and A sea-island type composite characterized in that the distance (So) between the island component and the fiber outer periphery satisfies the following relational expressions (I) to (III), and the take-up speed is 2000 to 5000 m / min. A method of manufacturing a fiber is provided.
0.01 ≦ r / R ≦ 0.06 (I)
0.001 ≦ S / R ≦ 0.015 (II)
0.5 ≦ So / S ≦ 1.5 (III)

本発明によれば、海成分の溶解速度が速く、繊維径が均一な極細繊維が得られる海島型複合繊維を高紡糸速度で安定して生産性よく製造することができる。このため、生産性の向上のみならず省エネルギー化につながり、コストパフォーマンスや環境の面でも優れた効果を発揮する。   ADVANTAGE OF THE INVENTION According to this invention, the sea-island type | mold composite fiber from which the melt | dissolution rate of a sea component is quick and the ultrafine fiber with a uniform fiber diameter is obtained can be manufactured stably with high spinning speed with high productivity. For this reason, it not only improves productivity but also saves energy, and exhibits excellent effects in terms of cost performance and the environment.

本発明は、易溶解性ポリマーを海成分、難溶解性ポリマーを島成分として海島型に複合した溶融ポリマーを複合紡糸口金から溶融吐出し、これを巻き取って海島型複合繊維を製造する方法である。
本発明において、易溶解性ポリマー、難溶解性ポリマーとは、アルカリ水溶液に対して溶解性の異なる2種類のポリマーにおいて、溶解性の高い方を難溶解性ポリマー、他方を溶解し易いほうを易溶解性ポリマーという。
The present invention is a method for producing a sea-island type composite fiber by melt-discharging a molten polymer, which is a sea-island type compound comprising an easily soluble polymer as a sea component and a hardly soluble polymer as an island component, from a composite spinneret and winding it up. is there.
In the present invention, the easily soluble polymer and the hardly soluble polymer are the two types of polymers having different solubility in the alkaline aqueous solution. It is called a soluble polymer.

本発明においては、海島型複合繊維の海成分:島成分の重量比率を40:60〜10:90の範囲、好ましくは30:70〜15:85の範囲とする必要がある。海成分の割合が40%を超える場合は、海成分の溶解に必要な溶剤の量が多くなり、生産性が低下するだけでなく、安全性や環境負荷の点でも好ましくない。一方、海成分の割合が10%未満の場合には島同士が膠着する可能性が高くなり、均一な繊維径の極細繊維が得られにくくなる。   In the present invention, the weight ratio of sea component: island component of the sea-island type composite fiber needs to be in the range of 40:60 to 10:90, preferably in the range of 30:70 to 15:85. When the proportion of the sea component exceeds 40%, the amount of the solvent necessary for dissolving the sea component increases, which not only decreases productivity but also is not preferable in terms of safety and environmental load. On the other hand, when the proportion of the sea component is less than 10%, there is a high possibility that the islands are stuck together, and it becomes difficult to obtain ultrafine fibers having a uniform fiber diameter.

本発明においては、海成分を構成する易溶解性ポリマーが、次に述べる特定の共重合ポリエステルであること、上記海島型複合繊維において、該複合繊維の繊維直径(R)、該複合繊維横断面における島成分の平均直径(r)、該複合繊維横断面の中心を通り互いに45度の角度毎に4本の直線を引いたときこの直線上にある島成分の間隔の平均値(S)、および、および、繊維外周に最も近い島成分と繊維外周との間隔(So)が下記の関係式(I)〜(III)を満足していることが肝要である。これにより、繊維径が均一な極細繊維が得られる海島型複合繊維を、後述する速い引取り速度で、生産性よく製造することができる。
r/R≦0.08 (I)
S/R≦0.02 (II)
0.1≦So/S≦1.5 (III)
In the present invention, the readily soluble polymer constituting the sea component is a specific copolymer polyester described below, and in the sea-island type composite fiber, the fiber diameter (R) of the composite fiber, the cross section of the composite fiber The average diameter (r) of the island components at, and the average value (S) of the spacing of the island components on this straight line when four straight lines are drawn at 45 degree angles to each other through the center of the composite fiber cross section, It is important that the distance (So) between the island component closest to the fiber outer periphery and the fiber outer periphery satisfy the following relational expressions (I) to (III). Thereby, the sea-island type composite fiber from which ultrafine fibers having a uniform fiber diameter can be obtained can be produced with high productivity at a fast take-up speed described later.
r / R ≦ 0.08 (I)
S / R ≦ 0.02 (II)
0.1 ≦ So / S ≦ 1.5 (III)

すなわち、海島型複合繊維の海成分を構成する易溶解性ポリマーは、5−ナトリウムスルホイソフタル酸を6〜12モル%および分子量4000〜12000のポリエチレングリコールを3〜10重量%共重合したポリエチレンテレフタレート系共重合ポリエステルである必要がある。なお、5−ナトリウムスルホイソフタル酸は親水性と溶融粘度向上に、ポリエチレングリコール(PEG)は親水性の向上に寄与している。   That is, the easily soluble polymer constituting the sea component of the sea-island composite fiber is a polyethylene terephthalate system obtained by copolymerizing 6 to 12 mol% of 5-sodium sulfoisophthalic acid and 3 to 10 wt% of polyethylene glycol having a molecular weight of 4000 to 12000. It must be a copolyester. In addition, 5-sodium sulfoisophthalic acid contributes to hydrophilicity and melt viscosity improvement, and polyethylene glycol (PEG) contributes to hydrophilicity improvement.

この際、5−ナトリウムスルホイソフタル酸が6モル%未満であると海成分を構成する易溶解性ポリマーの溶解速度が低くなり、繊維断面中央部の海成分が完全に溶解除去されていないにもかかわらず、既に分離した繊維断面表層部の島成分がさらに侵食されるため、島成分の太さ斑が発生するだけでなく、強度劣化が発生して、毛羽や染め斑が起こるなどの問題が生じる。一方、12モル%を超えると、固有粘度が低下し、高速紡糸性が悪くなる。   At this time, if the amount of 5-sodium sulfoisophthalic acid is less than 6 mol%, the dissolution rate of the easily soluble polymer constituting the sea component is low, and the sea component in the center of the fiber cross section is not completely dissolved and removed. Regardless, the island component of the surface section of the already separated fiber cross-section is further eroded, causing not only the thickness of the island component, but also the deterioration of strength, which causes fluff and dyed spots. Arise. On the other hand, when it exceeds 12 mol%, the intrinsic viscosity is lowered and the high-speed spinnability is deteriorated.

また、PEGの共重合量が3重量%を超えると海成分の溶解速度が低下し、5−ナトリウムスルホイソフタル酸が6モル%未満の場合と同様の問題が発生する。一方、PEGの共重合量が10重量%を超えると、溶融粘度が低下し高速紡糸性が悪くなる。また、PEGの分子量は大きいほど、その高次構造に起因すると考えられる親水性増加作用があるが、反応性が悪くなってブレンド系になるため、紡糸における耐熱性や高速紡糸安定性の面で問題が生じるため、分子量は4000〜12000の範囲とする必要がある。   Moreover, when the copolymerization amount of PEG exceeds 3% by weight, the dissolution rate of the sea component decreases, and the same problem as in the case where 5-sodium sulfoisophthalic acid is less than 6 mol% occurs. On the other hand, when the copolymerization amount of PEG exceeds 10% by weight, the melt viscosity is lowered and the high-speed spinnability is deteriorated. In addition, as the molecular weight of PEG increases, there is an effect of increasing hydrophilicity, which is considered to be due to its higher order structure, but since the reactivity becomes poor and a blend system is formed, in terms of heat resistance in spinning and high-speed spinning stability Since a problem arises, the molecular weight needs to be in the range of 4000-12000.

本発明の海島型複合繊維を構成するポリマーの組み合わせは、以下の2点を満たしていることが好ましい。2点とは、(1)溶融紡糸時における海成分の溶融粘度が島成分の溶融粘度よりも大きい、(2)島成分を構成するポリマーに対する海成分を構成するポリマーの溶解速度比が500倍以上であることである。   The combination of polymers constituting the sea-island composite fiber of the present invention preferably satisfies the following two points. The two points are (1) the melt viscosity of the sea component during melt spinning is larger than the melt viscosity of the island component, and (2) the dissolution rate ratio of the polymer constituting the sea component to the polymer constituting the island component is 500 times. That is all.

溶融紡糸時における海成分の溶融粘度が島成分の溶融粘度よりも大きいことにより、海島断面形成性が良好となる。この条件を満たしていれば、海成分の複合重量比率が50%以下になっても、島同士が大部分膠着した繊維となりにくい。島同士が膠着すると、海成分を溶解除去した際に極細繊維だけではなく異形繊維まで作成されることとなり、染め斑やピリングなど品位に問題が生じやすくなる。特に好ましい溶融粘度比(海/島)は1.1〜2.0、特に1.3〜1.5の範囲である。この比が1.1未満の場合には溶融紡糸時に島成分が膠着しやすくなり、一方2.0を超える場合には粘度差が大きすぎるために紡糸調子が低下しやすい。なお、溶融紡糸時の温度としては、海成分または島成分を構成するポリマーのうち融点または軟化点の高い方の融点または軟化点の10〜40℃高い温度で紡糸することが想定される。   When the melt viscosity of the sea component at the time of melt spinning is larger than the melt viscosity of the island component, the sea-island cross-section formability is improved. If this condition is satisfied, even if the composite weight ratio of the sea components is 50% or less, it is difficult to form fibers in which the islands are mostly stuck together. When the islands are stuck together, when sea components are dissolved and removed, not only ultrafine fibers but also irregular fibers are created, and problems such as dyed spots and pilling are likely to occur. A particularly preferred melt viscosity ratio (sea / island) is in the range of 1.1 to 2.0, particularly 1.3 to 1.5. If this ratio is less than 1.1, the island components are likely to stick together during melt spinning, whereas if it exceeds 2.0, the difference in viscosity is too large and the spinning tone tends to decrease. In addition, as the temperature at the time of melt spinning, it is assumed that spinning is performed at a temperature that is 10 to 40 ° C. higher than the melting point or softening point of the higher melting point or softening point of the polymer constituting the sea component or island component.

島成分を構成するポリマーに対する海成分を構成するポリマーの溶解速度比が500倍以上であることにより、島分離性が良好となる。溶解速度比が500倍未満の場合には、繊維断面中央部の海成分を溶解する間に、分離した繊維断面表層部の島成分が、繊維径が小さいために溶解されるため、海相当分が減量されているにもかかわらず、繊維断面中央部の海成分を完全に溶解除去できず、島成分の太さ斑や溶剤侵食による強度劣化が発生して、毛羽や染め斑が起こるなどの問題が生じる。なお、ここで溶解速度比は、それぞれのポリマーの溶解速度定数であり、溶解速度定数は、4%NaOH水溶液で95℃にて、減量時間に対する減量率(不溶解重量分率=1−減量率)と処理時間、繊維半径から下記式より算出した。   When the dissolution rate ratio of the polymer constituting the sea component to the polymer constituting the island component is 500 times or more, the island separability is improved. When the dissolution rate ratio is less than 500 times, the island component of the separated fiber cross-section surface layer is dissolved because the fiber diameter is small while the sea component at the center of the fiber cross-section is dissolved. Despite being reduced in weight, the sea component at the center of the fiber cross-section cannot be completely dissolved and removed, resulting in the thickness deterioration of the island component and the deterioration of strength due to solvent erosion, resulting in fluff and dyed spots. Problems arise. Here, the dissolution rate ratio is the dissolution rate constant of each polymer, and the dissolution rate constant is a weight loss rate (insoluble weight fraction = 1−weight reduction rate) with respect to the weight loss time at 95 ° C. in a 4% NaOH aqueous solution. ), Treatment time, and fiber radius.

Figure 0004705451
kは溶解速度定数、Rwは不溶解重量分率、tは処理時間、r0は繊維半径である。
Figure 0004705451
k is the dissolution rate constant, Rw is the insoluble weight fraction, t is the treatment time, and r0 is the fiber radius.

島成分を構成するポリマーは上記の2点を満たしているものが好ましく、特に繊維形成性の良い、ポリエステル系ポリマー、ポリアミド系ポリマー、ポリスチレン系ポリマー、ポリエチレン系ポリマーなどいずれのポリマーなどが例示できる。なかでも、衣料用途ではポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ナイロン6、ナイロン66が好ましい。一方、産業資材や医療用途では、水や酸、アルカリに強いポリスチレンやポリエチレンなどが耐久性の点で好ましい。さらに島成分は丸断面に限らず、異形断面であってもよい。   The polymer constituting the island component preferably satisfies the above-mentioned two points, and examples thereof include any polymer such as a polyester polymer, a polyamide polymer, a polystyrene polymer, and a polyethylene polymer that have particularly good fiber formation. Among these, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, nylon 6, and nylon 66 are preferable for clothing. On the other hand, in industrial materials and medical applications, polystyrene, polyethylene and the like that are resistant to water, acid, and alkali are preferable in terms of durability. Furthermore, the island component is not limited to a round cross section, and may be an irregular cross section.

本発明においては、前述したように、海島型複合繊維が、該複合繊維横断面の中心を通り互いに45度の角度毎に4本の直線を引いたときこの直線上にある島成分の間隔の平均値(S)が下記の関係式(I)〜(II)を満足している必要がある。
r/R≦0.08 (I)
S/R≦0.02 (II)
0.1≦So/S≦1.5 (III)
In the present invention, as described above, when the sea-island type composite fiber passes through the center of the cross-section of the composite fiber and draws four straight lines at an angle of 45 degrees to each other, the interval between the island components on the straight line is reduced. The average value (S) needs to satisfy the following relational expressions (I) to (II).
r / R ≦ 0.08 (I)
S / R ≦ 0.02 (II)
0.1 ≦ So / S ≦ 1.5 (III)

ここで、r/Rの値が0.08を超えるか、S/Rの値が0.02を超えるか、または、So/Sが、1.5を超える場合は、高速紡糸性が悪なる。より好ましくは、下記範囲である。また、So/Sが、0.1未満の場合は島成分同士が膠着し易くなり、均一な繊維径の極細繊維が得られない。
0.01≦r/R≦0.06
0.001≦S/R≦0.015
0.5≦So/S≦1.5
Here, when the r / R value exceeds 0.08, the S / R value exceeds 0.02, or the So / S exceeds 1.5, the high-speed spinnability is deteriorated. . More preferably, it is the following range. Moreover, when So / S is less than 0.1, island components are easily stuck together, and ultrafine fibers having a uniform fiber diameter cannot be obtained.
0.01 ≦ r / R ≦ 0.06
0.001 ≦ S / R ≦ 0.015
0.5 ≦ So / S ≦ 1.5

上記複合繊維において、島数は400以上であることが特に好ましい。島数が多いことにより海成分が断面上に微細に分散するため高速紡糸性が良くなり、生産性が向上する。ここで重要なのは海成分が海島断面において均一に微分散していることである。海成分に偏りがあってはならない。これにより、高速紡糸性の悪さを克服することができる。また、島数を増やすことにより、海成分を溶解除去して得られる極細繊維の細さも顕著となって極細繊維特有の柔らかさ、光沢感などを表現することができる。ここで、島数400未満の場合には、それほど分散されないために高速紡糸性が悪くなり、コストパフォーマンスが悪くなる。また、海成分を溶解除去しても繊維径の小さい極細繊維が得られない。島数が多くなりすぎると紡糸口金の製造コストが高くなるだけではなく、加工性自体も低下しやすくなるので1000以下とするのが好ましい。   In the composite fiber, the number of islands is particularly preferably 400 or more. The large number of islands allows the sea components to be finely dispersed on the cross section, improving high-speed spinnability and improving productivity. What is important here is that the sea components are uniformly finely dispersed in the cross section of the sea island. There should be no bias in sea components. Thereby, the poor high-speed spinnability can be overcome. Further, by increasing the number of islands, the fineness of the ultrafine fibers obtained by dissolving and removing the sea components becomes remarkable, and the softness, glossiness, etc. specific to the ultrafine fibers can be expressed. Here, when the number of islands is less than 400, it is not dispersed so much, so that the high-speed spinnability is deteriorated and the cost performance is deteriorated. Further, even if sea components are dissolved and removed, ultrafine fibers having a small fiber diameter cannot be obtained. If the number of islands increases too much, not only the production cost of the spinneret increases, but also the workability itself tends to decrease.

次に、島成分の径は10〜1500nm、好ましくは100〜1000nmの範囲とする必要がある。径が50nm未満の場合には繊維構造の不安定さから物性や繊維形態が不安定で好ましくなく、一方1500nmを超える場合には極細繊維特有の柔らかさ、光沢感などが得られず好ましくない。   Next, the diameter of the island component needs to be in the range of 10 to 1500 nm, preferably 100 to 1000 nm. If the diameter is less than 50 nm, the physical properties and the fiber form are unstable due to the instability of the fiber structure. On the other hand, if it exceeds 1500 nm, the softness and glossiness peculiar to ultrafine fibers cannot be obtained.

この極細繊維用海島型複合未延伸糸の、室温下での荷伸曲線において、海成分の部分破断に相当する降伏点が発現するものもある。これは海部が島部よりも早く固化することにより配向が進む、一方島部は海部の影響により配向が下がるために観察される現象である。第1次降伏点は海成分の部分破断点を意味し、降伏点以降は配向が低い島部が伸びる。そして荷重−伸長曲線の破断点では海島部がともに破断する。紡糸速度が高くなるほど第1次降伏点が初期段階へ移行することからもこれらの現象を説明できる。もちろん、室温下での荷伸曲線は上記したものに限らず通常の荷伸曲線を示してもよい。   Some of these sea-island composite undrawn yarns for ultrafine fibers exhibit a yield point corresponding to a partial breakage of sea components in the unloading curve at room temperature. This is a phenomenon observed when the sea part solidifies faster than the island part, and the island part is oriented due to the influence of the sea part. The first yield point means a partial break point of the sea component, and after the yield point, an island portion having a low orientation extends. And the sea island part breaks at the breaking point of the load-elongation curve. These phenomena can also be explained from the fact that the primary yield point shifts to the initial stage as the spinning speed increases. Of course, the unloading curve at room temperature is not limited to the above, and may be a normal unloading curve.

本発明において溶融紡糸に用いられる紡糸口金としては、島成分を形成するための中空ピン群や微細孔群を有するものなど任意のものを用いることができる。例えば中空ピンや微細孔より押し出された島成分とその間を埋める形で流路を設計されている海成分流とを合流し、これを圧縮することにより海島断面が形成されるといった紡糸口金でもよい。好ましく用いられる紡糸口金例を図1および2に示すが、必ずしもこれらに限定されるものではない。なお図1は中空ピンを海成分樹脂貯め部分に吐出してそれを合流圧縮する方式であり、図2は微細孔方式で島を形成する方法である。   As the spinneret used for melt spinning in the present invention, any one such as a hollow pin group for forming an island component or a group having a fine hole group can be used. For example, a spinneret may be used in which an island component extruded from a hollow pin or a fine hole and a sea component flow that is designed to fill the gap between the island component are joined and compressed to form a cross section of the sea island. . Examples of spinnerets that are preferably used are shown in FIGS. 1 and 2, but are not necessarily limited thereto. FIG. 1 shows a method of discharging a hollow pin into a sea component resin reservoir and compressing it by joining, and FIG. 2 shows a method of forming an island by a fine hole method.

さらに具体的に各図について説明する。図1に示されている紡糸口金1においては、分配前の島成分用ポリマー溜め部2内の溶融された島成分ポリマーは、複数の中空ピンにより形成された島成分用ポリマー導入通路3中に分配され、一方、海成分用ポリマー導入通路4を通って、溶融された海成分ポリマーが、分配前海成分用ポリマー溜め部5に導入される。島成分用ポリマー導入通路3を形成している中空ピンは、それぞれ海成分用ポリマー溜め部5を貫通して、その下に形成された複数の芯鞘型複合流用通路6の各々の入り口の中央部分において下向きに開口している。島成分用ポリマー導入通路3の下端から、島成分ポリマー流が、芯鞘型複合流用通路6の中心部分に導入され、海成分用ポリマー溜め部の5中の海成分用ポリマー流は、芯鞘型複合流用通路6中に、島成分ポリマーをかこむように導入され、島成分ポリマー流を芯とし、海成分ポリマー流を鞘とする芯鞘型複合流が形成され、複数の芯鞘型複合流がロート状の合流通路7中に導入され、この合流通路7中において、複数の芯鞘型複合流は、それぞれの鞘部が互いに近接して、海島型複合流が形成される。この海島型複合流は、ロート状合流通路7中を流下する間に、次第にその水平方向の断面積を減少し、合流通路7の下端の吐出口8から吐出される。   Each figure will be described more specifically. In the spinneret 1 shown in FIG. 1, the melted island component polymer in the island component polymer reservoir 2 before distribution is in the island component polymer introduction passage 3 formed by a plurality of hollow pins. On the other hand, the molten sea component polymer is introduced into the pre-distribution sea component polymer reservoir 5 through the sea component polymer introduction passage 4. The hollow pin forming the island component polymer introduction passage 3 passes through the sea component polymer reservoir 5 and is located at the center of the entrance of each of the plurality of core-sheath type composite flow passages 6 formed thereunder. The part opens downward. The island component polymer flow is introduced from the lower end of the island component polymer introduction passage 3 into the central portion of the core-sheath type composite flow passage 6, and the sea component polymer flow in the sea component polymer reservoir 5 is Is introduced so as to enclose the island component polymer, and a core-sheath type composite flow having the island component polymer flow as a core and a sea component polymer flow as a sheath is formed. It introduce | transduces in the funnel-shaped confluence | merging channel | path 7, and in this confluence | merging channel | path 7, each sheath part adjoins each other, and a sea-island type compound flow is formed. The sea-island type composite flow gradually decreases in the horizontal cross-sectional area while flowing down in the funnel-shaped merge passage 7 and is discharged from the discharge port 8 at the lower end of the merge passage 7.

また、図2に示されている紡糸口金11においては、島成分ポリマー用溜め部2と、海成分ポリマー用溜め部5とが、複数の透孔からなる島成分ポリマー用導入通路13に連結されていて、島成分用ポリマー溜め部2中の溶融された島成分ポリマーは、複数の島成分ポリマー用導入通路13に分配され、それを通って、海成分用ポリマー溜め部5に収容されている溶融された海成分ポリマー中を貫いて、芯鞘型複合流通路6中に流入し、その中心部を流下する。一方、海成分ポリマー用溜め部5中の海成分ポリマーは、芯鞘型複合流用通路6中に、その中心部を流下する島成分ポリマーの周りをかこむように流下する。これによって、複数の芯鞘型複合流通路6中において、複数の芯鞘型複合流が形成され、ロート状合流通路6中において、複数の芯鞘型複合流が形成され、ロート状合流通路7中に流下し、図1と同様にして海島型複合流を形成しつつ流下し、さらにその水平方向の断面積を減少し、吐出口8から吐出される。   In the spinneret 11 shown in FIG. 2, the island component polymer reservoir 2 and the sea component polymer reservoir 5 are connected to an island component polymer introduction passage 13 formed of a plurality of through holes. The molten island component polymer in the island component polymer reservoir 2 is distributed to the plurality of island component polymer introduction passages 13 and is accommodated in the sea component polymer reservoir 5 through the plurality of island component polymer introduction passages 13. It passes through the melted sea component polymer and flows into the core-sheath type composite flow passage 6 and flows down the central portion thereof. On the other hand, the sea component polymer in the sea component polymer reservoir 5 flows down into the core-sheath composite flow passage 6 so as to surround the island component polymer flowing down the central portion thereof. As a result, a plurality of core-sheath type composite flows are formed in the plurality of core-sheath type composite flow passages 6, and a plurality of core-sheath type composite flows are formed in the funnel-shaped join passage 6. In the same manner as in FIG. 1, it flows down while forming a sea-island type composite flow, further reduces its horizontal cross-sectional area, and is discharged from the discharge port 8.

吐出された海島型複合繊維は冷却風により固化され、巻き取る。この巻取り速度は、2000〜5000m/minであることが望ましい。特に好ましくは2500〜4000m/minである。2000m/min未満では生産性が十分でない。また、5000m/minを超えると紡糸安定性が悪い。   The discharged sea-island type composite fiber is solidified by cooling air and wound up. The winding speed is preferably 2000 to 5000 m / min. Particularly preferred is 2500 to 4000 m / min. If it is less than 2000 m / min, the productivity is not sufficient. If it exceeds 5000 m / min, the spinning stability is poor.

本発明で得られた海島型複合繊維の伸度は100%以上であることが好ましい。これ以上であれば、高延伸倍率のため高強度極細繊維を作成することができ、繊維製品に限らず幅広い分野で応用展開が可能となる。
得られた未延伸糸は希望する強度・伸度・熱収縮特性に合わせることができる。延伸工程は一旦巻取り後別途延伸工程を行うかもしくは紡糸同時延伸を行い、延伸工程後に巻き取る方法などいずれでもかまわない。
得られた未延伸糸は仮撚り加工が可能であり、得られた加工糸は優れた加工物性を有している。
The elongation of the sea-island composite fiber obtained in the present invention is preferably 100% or more. If it is more than this, a high-strength ultrafine fiber can be produced because of a high draw ratio, and application development is possible not only for fiber products but also in a wide range of fields.
The obtained undrawn yarn can be adjusted to desired strength, elongation and heat shrinkage characteristics. The stretching step may be any of a method such as a separate stretching step after winding, or a method of simultaneously spinning and performing winding after the stretching step.
The obtained undrawn yarn can be false twisted, and the obtained processed yarn has excellent processed physical properties.

図3は、本発明の海島型複合繊維の一態様(21)の横断面説明図であって、海成分22とその中に互いに隔離して配置された多数の島成分23とによって構成されている。この図により、島成分の間隔を測定する方法について説明する。図3においては、横断面21に、その中心24を通り、互いに45度の角度をおいて、4本の直線25−1、25−2、25−3、25−4を引いたとき、この4本の直線上にある島成分の間隔を測定し、その中から最大値Sm、および繊維外周に最も近い島成分と繊維外周との間隔Soを定め、かつ、島成分間の間隔の平均値Sを算出する。図3においては、4本の直線状の島成分を出して記載したもので、その島成分の記載が省略されている。   FIG. 3 is a cross-sectional explanatory view of an embodiment (21) of the sea-island type composite fiber of the present invention, which is composed of a sea component 22 and a large number of island components 23 arranged separately from each other in the sea component 22. Yes. A method for measuring the interval between island components will be described with reference to FIG. In FIG. 3, when the four straight lines 25-1, 25-2, 25-3, and 25-4 are drawn on the cross section 21 through the center 24 at an angle of 45 degrees with respect to each other, The distance between the island components on the four straight lines is measured, and the maximum value Sm and the distance So between the island component closest to the fiber outer periphery and the fiber outer periphery are determined, and the average value of the intervals between the island components is determined. S is calculated. In FIG. 3, four linear island components are drawn and described, and the description of the island components is omitted.

本発明により製造された海島型複合繊維、または該複合繊維からから海成分を除去して得られる極細繊維束は、これらを少なくとも一部に用いた、糸、組み紐状糸、紡績糸、織物、フェルト、不織布、人工皮革などの中間製品として用いることができる。   The sea-island type composite fiber produced according to the present invention, or the ultrafine fiber bundle obtained by removing sea components from the composite fiber is a yarn, braided yarn, spun yarn, woven fabric using at least a part thereof, It can be used as an intermediate product such as felt, nonwoven fabric, and artificial leather.

また、上記の極細繊維束は高タフネスであるため、上記中間製品は、ジャケット、スカート、パンツ、下着などの衣料、スポーツ衣料、衣料資材、カーペット、ソファー、カーテンなどのインテリア、カーシートなどの車両内装品、化粧品、化粧品マスク、ワイピングクロス、健康用品などの生活用品や、研磨布、フィルター、有害物質除去製品、電池用セパレーターなどの環境・産業資材、縫合糸、スキャフォールド、人工血管、血液フィルターなどの医療用途などに幅広く用途展開が可能である。   In addition, since the above-mentioned ultrafine fiber bundle has high toughness, the intermediate products include jackets, skirts, pants, underwear and other clothing, sports clothing, clothing materials, carpets, sofas, curtains, interiors, and car seats. Interior goods, cosmetics, cosmetic masks, wiping cloths, health goods, and other daily necessities, environment and industrial materials such as abrasive cloths, filters, harmful substance removal products, battery separators, sutures, scaffolds, artificial blood vessels, blood filters It can be used for a wide range of medical purposes.

さらに、上記極細繊維側は比面積が大きいため、吸着・吸収特性に優れているため、例えばたんぱく質、ビタミン類など健康・美容促進のための薬剤、抗炎症剤、消毒剤などの医薬品を吸着させて用いることができる。一方で除放性を有するためドラッグデリバリーシステムなど医薬・衛生用途にも用いることができる。   Furthermore, because the above-mentioned ultrafine fiber side has a large specific area, it has excellent adsorption and absorption characteristics.For example, it can adsorb drugs such as proteins and vitamins, health and beauty promoting drugs, anti-inflammatory agents, disinfectants, etc. Can be used. On the other hand, since it has sustained release properties, it can be used for pharmaceutical and hygiene applications such as drug delivery systems.

以下、実施例をあげて本発明をさらに具体的に説明する。各評価項目は下記の方法で測定した。
(1)溶融粘度測定
乾燥処理後のポリマーを紡糸時のルーダー溶融温度に設定したオリフィスにセットして5分間溶融保持したのち、数水準の荷重をかけて押し出し、そのときのせん断速度と溶融粘度をプロットする。そのプロットをなだらかにつないで、せん断速度−溶融粘度曲線を作成し、せん断速度が1000秒−1の時の溶融粘度を見る。
(2)海島断面形成性
光学顕微鏡を用いて海島状態を観察し、2段階評価した。
○:島膠着部分なし
×:島膠着部分あり
(3)溶解速度測定
海・島成分の各々0.3φ−0.6L×24Hの口金にて2000m/minの紡糸速度で糸を巻取り、さらに残留伸度が30〜60%の範囲になるように延伸して、75de/24filのマルチフィラメントを作成する。これを各溶剤にて溶解しようとする温度で浴比100にて溶解時間と溶解量から、減量速度を算出した。
(4)繊維直径(R)、島成分の平均直径(r)、該繊維横断面の中心を通り互いに45度の角度毎に4本の直線を引いたとき、この直線上にある島成分の間隔の平均値(S)及び繊維外周に最も近い島成分と外周との間隔(So)
透過型電子顕微鏡TEMで、倍率30000倍で繊維断面写真を撮影し、前述した方法により測定および算出した。
(5)荷重−伸長曲線
海島型複合繊維9000mの重量を3回測定して平均値から繊度を求めた。そして、室温で初期試料長100mm、引っ張り速度200m/分として荷重−伸長曲線を求めた。荷重−伸長曲線に海成分の部分破断に相当する降伏点が発現した場合には、中間降伏点と破断伸度の差はチャート紙から求めた。
(6)高速紡糸性
実施例における半延伸糸を製造し、30分間巻き取りできたものに○、巻取りできなかったものを×とする。
(7)極細繊維の繊維径と繊維径の均一性
海成分溶解除去後の極細繊維の30000倍TEM観察により、1本の複合繊維内の極細繊維について、平均繊維直径を算出し、その最大−最小幅が平均繊維直径の50%よりも小さいものを○、大きいものを×とした。
(8)生産性
生産性の指標として、延伸倍率×紡糸速度が5000以上を○、5000以下を×とした。この指標は同じ伸度を持つFOYを製造する場合の、単位時間あたりの巻き量を意味する。
(9)極細繊維の風合い
モニター7人に対して官能試験を実施し、2段階評価した。
○:極細繊維特有のぬめり感があると評価した人が5人以上
×:極細繊維特有のぬめり感があると評価した人が5人以下
Hereinafter, the present invention will be described more specifically with reference to examples. Each evaluation item was measured by the following method.
(1) Melt viscosity measurement The polymer after drying is set in an orifice set at the melter melting temperature at the time of spinning, melted and held for 5 minutes, and then extruded under several levels of load. The shear rate and melt viscosity at that time Plot. By gently connecting the plots, a shear rate-melt viscosity curve is created, and the melt viscosity when the shear rate is 1000 sec- 1 is observed.
(2) Sea-island cross-section formation The sea-island state was observed using an optical microscope and evaluated in two stages.
○: No island sticking part ×: With island sticking part (3) Dissolution rate measurement Winding the yarn at a spinning speed of 2000 m / min with a 0.3φ-0.6L × 24H base for each of the sea and island components, and further Stretching is performed so that the residual elongation is in the range of 30 to 60%, and a 75 de / 24 fil multifilament is produced. The weight loss rate was calculated from the dissolution time and the dissolution amount at a bath ratio of 100 at a temperature at which the solvent was dissolved in each solvent.
(4) When the fiber diameter (R), the average diameter (r) of the island component, and four straight lines are drawn every 45 degrees through the center of the fiber cross section, the island component on this straight line Average spacing (S) and spacing between the island component closest to the fiber circumference and the circumference (So)
Fiber cross-sectional photographs were taken with a transmission electron microscope TEM at a magnification of 30000, and measured and calculated by the method described above.
(5) Load-elongation curve The weight of 9000 m of the sea-island type composite fiber was measured three times to obtain the fineness from the average value. Then, a load-elongation curve was obtained at room temperature with an initial sample length of 100 mm and a pulling speed of 200 m / min. When the yield point corresponding to the partial breakage of the sea component appeared in the load-elongation curve, the difference between the intermediate yield point and the breaking elongation was obtained from the chart paper.
(6) High-speed spinnability The semi-stretched yarns in the examples were manufactured, and those that could be wound for 30 minutes were marked with ◯, and those that could not be wound were marked with ×.
(7) Fiber diameter of ultrafine fiber and uniformity of fiber diameter By 30,000 times TEM observation of ultrafine fiber after dissolution and removal of sea components, the average fiber diameter is calculated for the ultrafine fiber in one composite fiber, and the maximum − A sample having a minimum width smaller than 50% of the average fiber diameter was evaluated as “◯”, and a sample having a minimum width as “×”.
(8) Productivity As an index of productivity, a draw ratio × spinning speed of 5000 or more was evaluated as ◯, and 5000 or less was evaluated as ×. This index means the winding amount per unit time when manufacturing FOY having the same elongation.
(9) Texture of ultrafine fibers A sensory test was conducted on seven monitors and evaluated in two stages.
○: 5 or more people who evaluated that there was a slimy feeling peculiar to ultrafine fibers ×: 5 or less who evaluated that there was a slimy feeling peculiar to ultrafine fibers

[実施例1]
島成分に285℃での溶融粘度が1200poiseのポリエチレンテレフタレート、海成分に285℃での溶融粘度が1600poiseである平均分子量4000のポリエチレングリコール(PEG)を4wt%、5−ナトリウムスルホイソフタル酸(SIP)を8mol%共重合した改質ポリエチレンテレフタレートを海成分:島成分を40:60の重量比率で、島数500の図1に示す紡糸口金を用いて紡糸温度285℃で溶融吐出させた。溶融吐出糸条は巻取り速度3000m/minで安定して巻き取ること可能であった。結果を表1に示す。これにより、室温下での荷重−伸度曲線(以下、荷伸曲線と称することがある)において海成分の部分破断に相当する降伏点が発現している、伸度が330%の高延伸倍率可能な高伸度未延伸糸を得た。得られた未延伸糸を延伸温度90℃、延伸倍率2.4倍でローラー延伸し、次いで150℃で熱セットして巻き取り、20dtex/10filの延伸糸を得た。筒編みを作成し4%NaOH水溶液で95℃にて40%減量した。ここで、島成分ポリマーに対する海成分ポリマーの溶解速度比は1200倍であった。繊維断面を観察したところ、均一な極細繊維群を形成していた。極細繊維直径の平均値は470nmであった。また、生産性の指標は7200であり、繊維径が均一な超極細繊維を高速紡糸により効率よく生産することが可能であった。表1にさらに結果を示すが、該表において海、島成分のポリマーの下の括弧内に記載されている数字はそれぞれ溶融粘度(poise)を示す。
[Example 1]
Polyethylene terephthalate having a melt viscosity of 1,200 poise at 285 ° C. for the island component, and 4 wt%, 5-sodium sulfoisophthalic acid (SIP) of polyethylene glycol (PEG) having an average molecular weight of 4000 having a melt viscosity of 1,600 poise at 285 ° C. A modified polyethylene terephthalate copolymerized with 8 mol% was melt-discharged at a spinning temperature of 285 ° C. using a spinneret shown in FIG. The melt-discharged yarn could be stably wound at a winding speed of 3000 m / min. The results are shown in Table 1. As a result, a yield point corresponding to a partial fracture of the sea component is expressed in a load-elongation curve at room temperature (hereinafter sometimes referred to as a load-elongation curve), and a high stretch ratio with an elongation of 330%. A possible high elongation undrawn yarn was obtained. The obtained undrawn yarn was roller-drawn at a drawing temperature of 90 ° C. and a draw ratio of 2.4 times, and then heat-set at 150 ° C. and wound to obtain a drawn yarn of 20 dtex / 10 fil. Tube knitting was made and reduced by 40% at 95 ° C. with 4% NaOH aqueous solution. Here, the dissolution rate ratio of the sea component polymer to the island component polymer was 1200 times. When the cross section of the fiber was observed, a uniform ultrafine fiber group was formed. The average value of the ultrafine fiber diameter was 470 nm. The productivity index was 7200, and it was possible to efficiently produce ultra-fine fibers with a uniform fiber diameter by high-speed spinning. The results are further shown in Table 1. In the table, the numbers described in parentheses below the polymers of the sea and island components respectively indicate the melt viscosity.

[実施例2]
実施例1と同じ海島ポリマーを同じ海島比率で使用し、島数980の口金を用いて紡糸し、巻取り速度5000m/minで巻き取った。これにより、室温下での荷伸曲線において、海成分の部分破断に相当する降伏点が発現している、伸度が200%の高延伸倍率可能な高伸度未延伸糸を得た。得られた未延伸糸を延伸温度90℃、延伸倍率2.0倍でローラー延伸し、次いで150℃で熱セットして巻き取り、20dtex/10filの延伸糸を得た。筒編みを作成し、4%NaOH水溶液で95℃にて40%減量した。結果を表1に示す。
[Example 2]
The same sea-island polymer as in Example 1 was used at the same sea-island ratio, spun using a base having 980 islands, and wound at a winding speed of 5000 m / min. As a result, a high elongation undrawn yarn capable of a high draw ratio with an elongation of 200% in which a yield point corresponding to the partial breakage of the sea component was expressed in the unloading curve at room temperature was obtained. The obtained undrawn yarn was roller-drawn at a drawing temperature of 90 ° C. and a draw ratio of 2.0 times, and then heat-set at 150 ° C. and wound to obtain a drawn yarn of 20 dtex / 10 fil. Cylinder knitting was made and reduced by 40% at 95 ° C. with 4% NaOH aqueous solution. The results are shown in Table 1.

[実施例3]
島成分に285℃での溶融粘度が1200poiseのポリエチレンテレフタレート、海成分に285℃での溶融粘度が1700poiseである平均分子量4000のポリエチレングリコールを3wt%、5−ナトリウムスルホイソフタル酸を10mol%共重合した改質ポリエチレンテレフタレートを使用し、海:島を10:90の比率とし、島数800の口金を用いて紡糸し、巻取り速度4000m/minで巻き取った。これにより、室温下での荷伸曲線においては、海成分の部分破断に相当する降伏点が発現しておらず、伸度は250%であり高延伸倍率可能な高伸度未延伸糸を得た。得られた未延伸糸を延伸温度90℃、延伸倍率2.2倍でローラー延伸し、次いで150℃で熱セットして巻き取り、20dtex/10filの延伸糸を得た。筒編みを作成し、4%NaOH水溶液で95℃にて10%減量した。ここで、島成分ポリマーに対する海成分ポリマーの溶解速度比は1500倍であった。結果を表1に示す。
[Example 3]
The island component was copolymerized with polyethylene terephthalate having a melt viscosity at 285 ° C. of 1200 poise, and the sea component was copolymerized with 3 wt% of polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 1700 poise at 285 ° C. and 10 mol% of 5-sodium sulfoisophthalic acid. The modified polyethylene terephthalate was used, the ratio of sea: island was 10:90, spinning was performed using a die having 800 islands, and wound at a winding speed of 4000 m / min. As a result, the yield point corresponding to the partial breakage of the sea component is not expressed in the unwinding curve at room temperature, and the elongation is 250%, and a high elongation unstretched yarn capable of a high draw ratio is obtained. It was. The obtained undrawn yarn was roller-drawn at a drawing temperature of 90 ° C. and a draw ratio of 2.2 times, and then heat-set at 150 ° C. and wound to obtain a drawn yarn of 20 dtex / 10 fil. Cylinder knitting was made and reduced by 10% at 95 ° C. with 4% NaOH aqueous solution. Here, the dissolution rate ratio of the sea component polymer to the island component polymer was 1500 times. The results are shown in Table 1.

[実施例4]
島成分に285℃での溶融粘度が1300poiseのポリエチレンテレフタレート、海成分に285℃での溶融粘度が1800poiseである平均分子量4000のポリエチレングリコールを8wt%、5−ナトリウムスルホイソフタル酸を7mol%共重合した改質ポリエチレンテレフタレートを使用し、海:島を30:70の重量比率とし、島数500の口金を用いて紡糸し、巻取り速度2000m/minで巻き取った。これにより、室温下での荷伸曲線においては、海成分の部分破断に相当する降伏点が発現している、伸度が350%である未延伸糸を得た。得られた未延伸糸を延伸温度90℃、延伸倍率2.7倍でローラー延伸し、次いで150℃で熱セットして巻き取り、20dtex/10filの仮撚り糸を得た。筒編みを作成し、4%NaOH水溶液で95℃にて10%減量した。ここで、島成分ポリマーに対する海成分ポリマーの溶解速度比は1200倍であった。結果を表1に示す。
[Example 4]
The island component was copolymerized with polyethylene terephthalate having a melt viscosity of 1300 poise at 285 ° C., and the sea component was copolymerized with 8 wt% of polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 1800 poise at 285 ° C. and 7 mol% of 5-sodium sulfoisophthalic acid. Using modified polyethylene terephthalate, the weight ratio of sea: island was 30:70, and spinning was performed using a die having 500 islands, and wound at a winding speed of 2000 m / min. As a result, an undrawn yarn having an elongation of 350% in which a yield point corresponding to the partial breakage of the sea component was developed in the unloading curve at room temperature was obtained. The obtained undrawn yarn was roller-drawn at a drawing temperature of 90 ° C. and a draw ratio of 2.7 times, and then heat-set at 150 ° C. and wound to obtain a 20 dtex / 10 fil false twisted yarn. Cylinder knitting was made and reduced by 10% at 95 ° C. with 4% NaOH aqueous solution. Here, the dissolution rate ratio of the sea component polymer to the island component polymer was 1200 times. The results are shown in Table 1.

[比較例1]
実施例1と同じ海島ポリマーを使用し、島数は同じであるが異なる口金を用いて同じ海島比率で紡糸した。So/Sは3であり巻取り開始後、5分程度で単糸が紡糸筒から落ちてきたために巻き取りできず、高速紡糸性が悪く超極細繊維は作成できなかった。
[Comparative Example 1]
The same sea-island polymer as in Example 1 was used and spun at the same sea-island ratio using the same number of islands but different bases. So / S was 3, and after about 5 minutes from the start of winding, the single yarn fell from the spinning tube, so that it could not be wound up, and the high-speed spinning property was poor, so that an ultrafine fiber could not be produced.

[比較例2]
実施例1と同じ海島ポリマーを使用し、島数が100島である口金を用いて海:島を30:70として紡糸した。海島断面形成性は良好であったが、r/Rが0.08、S/Rが0.015であり、巻取り開始後、1分程度で単糸が紡糸筒から落ちてきたために巻き取りできず、高速紡糸性が悪く超極細繊維は作成できなかった。
[Comparative Example 2]
The same sea-island polymer as in Example 1 was used, and the sea: island was spun at 30:70 using a base having 100 islands. Sea-island cross-section formation was good, but r / R was 0.08, S / R was 0.015, and winding took place because the single yarn fell from the spinning tube in about 1 minute after starting winding. It was not possible to produce ultra-fine fibers due to poor high-speed spinnability.

[比較例3]
島成分に285℃での溶融粘度が1200poiseのポリエチレンテレフタレート、海成分に285℃での溶融粘度が1650poiseである平均分子量4000のポリエチレングリコールを2wt%、5−ナトリウムスルホイソフタル酸を3mol%共重合した改質ポリエチレンテレフタレートを実施例3と同じ海島比率で、同じ島数の口金を用いて紡糸し、巻取り速度3000m/minで巻き取った、得られた未延伸糸を筒編し、4%NaOH水溶液で95℃にて10%減量した。島成分ポリマーに対する海成分ポリマーの溶解速度比は100倍であり不十分であるため、海相当分が減量されているにもかかわらず、繊維表面の島も減量され、繊維断面中央の大部分の海が減量されないため、極細繊維は均一な繊維径とならず、特有の柔らかさが得られなかった。
[Comparative Example 3]
The island component was copolymerized with polyethylene terephthalate having a melt viscosity at 285 ° C. of 1200 poise, and the sea component was copolymerized with 2 wt% of polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 1650 poise at 285 ° C. and 3 mol% of 5-sodium sulfoisophthalic acid. The modified polyethylene terephthalate was spun using the same number of islands with the same sea-island ratio as in Example 3 and wound up at a winding speed of 3000 m / min. Reduced by 10% at 95 ° C. with aqueous solution. Since the dissolution rate ratio of the sea component polymer to the island component polymer is 100 times, which is insufficient, the island on the fiber surface is also reduced, although the sea equivalent is reduced, and most of the center of the fiber cross section is reduced. Since the sea was not reduced, the ultrafine fiber did not have a uniform fiber diameter, and a specific softness could not be obtained.

[比較例4]
島成分に285℃での溶融粘度が1200poiseのポリエチレンテレフタレート、海成分に285℃での溶融粘度が900poiseである平均分子量4000のポリエチレングリコールを20wt%、5−ナトリウムスルホイソフタル酸を8mol%共重合した改質ポリエチレンテレフタレートを海:島を40:60の重量比率として、島数400の口金を用いて紡糸し、巻取り速度4000m/minで巻き取ったが、海島断面形成性は不良であった。具体的には繊維表面部には島が独立して存在しているが、繊維中心部には接合した島の周囲を海成分が取り囲むような断面を形成していた。したがって、減量しても極細繊維は形成できなかった。
[Comparative Example 4]
The island component was copolymerized with polyethylene terephthalate having a melt viscosity at 285 ° C. of 1200 poise, and the sea component was copolymerized with 20 wt% of polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 900 poise at 285 ° C. and 8 mol% of 5-sodium sulfoisophthalic acid. The modified polyethylene terephthalate was spun with a weight ratio of sea: island 40:60 using a die having 400 islands and wound at a winding speed of 4000 m / min. However, the sea-island cross-sectional formability was poor. Specifically, although islands exist independently on the fiber surface portion, a cross section is formed in the fiber center portion so that the sea component surrounds the joined island. Therefore, even if the amount was reduced, ultrafine fibers could not be formed.

Figure 0004705451
Figure 0004705451

本発明によれば、海成分の溶解速度が速く、繊維径が均一な極細繊維が得られる海島型複合繊維を高紡糸速度で安定して生産性よく製造することができる。このため、生産性の向上のみならず省エネルギー化につながり、コストパフォーマンスや環境の面でも優れた効果を発揮する。このため産業的価値が極めて高いものである。   ADVANTAGE OF THE INVENTION According to this invention, the sea-island type | mold composite fiber from which the melt | dissolution rate of a sea component is quick and the ultrafine fiber with a uniform fiber diameter is obtained can be manufactured stably with high spinning speed with high productivity. For this reason, it not only improves productivity but also saves energy, and exhibits excellent effects in terms of cost performance and the environment. Therefore, the industrial value is extremely high.

本発明の海島型複合繊維を紡糸するために用いられる紡糸口金の一例の一部の断面説明図である。FIG. 2 is a partial cross-sectional explanatory view of an example of a spinneret used for spinning the sea-island type composite fiber of the present invention. 本発明の海島型複合繊維を紡糸するために用いられる紡糸口金の他の一例の一部の断面説明図である。FIG. 6 is a cross-sectional explanatory view of a part of another example of the spinneret used for spinning the sea-island type composite fiber of the present invention. 本発明の海島型複合繊維の一実施態様の断面説明図である。It is a section explanatory view of one embodiment of the sea-island type composite fiber of the present invention.

Claims (4)

易溶解性ポリマーを海成分、難溶解性ポリマーを島成分として海島型に複合した溶融ポリマーを紡糸口金から溶融吐出し、これを巻き取って海島型複合繊維を製造する方法において、海成分と島成分の重量比率が40:60〜10:90、海成分を構成する易溶解性ポリマーが、5−ナトリウムスルホイソフタル酸を6〜12モル%および分子量4000〜12000のポリエチレングリコールを3〜10重量%共重合したポリエチレンテレフタレートであり、かつ、該複合繊維の繊維直径(R)、該複合繊維横断面における島成分の平均直径(r)、該複合繊維横断面の中心を通り互いに45度の角度毎に4本の直線を引いたときこの直線上にある島成分の間隔の平均値(S)、および、繊維外周に最も近い島成分と繊維外周との間隔(So)が下記の関係式(I)〜(III)を満足しており、さらに引取り速度を2000〜5000m/minとすることを特徴とする海島型複合繊維の製造方法。
0.01≦r/R≦0.06 (I)
0.001≦S/R≦0.015 (II)
0.5≦So/S≦1.5 (III)
In a method of manufacturing a sea-island type composite fiber by melting and discharging a melt polymer, which is composed of an easily soluble polymer as a sea component and a hardly soluble polymer as an island component, in a sea-island shape, and winding this from a spinneret, The weight ratio of the components is 40:60 to 10:90, and the easily soluble polymer constituting the sea component is 6 to 12 mol% of 5-sodium sulfoisophthalic acid and 3 to 10 wt% of polyethylene glycol having a molecular weight of 4000 to 12000. Copolymerized polyethylene terephthalate, and the fiber diameter (R) of the composite fiber, the average diameter (r) of the island component in the cross section of the composite fiber, and the angle of 45 degrees to each other through the center of the cross section of the composite fiber When four straight lines are drawn, the average value (S) of the distance between the island components on the straight line and the distance between the island component closest to the fiber outer periphery and the fiber outer periphery (S ) Has to satisfy the following relational formula (I) ~ (III), the method of producing sea-island type composite fiber characterized by a further take-up speed of 2000~5000m / min.
0.01 ≦ r / R ≦ 0.06 (I)
0.001 ≦ S / R ≦ 0.015 (II)
0.5 ≦ So / S ≦ 1.5 (III)
海島型複合繊維横断面において、島数が400以上であり、島成分の平均直径(r)が10〜1500nmである請求項1記載の海島型複合繊維の製造方法。   The method for producing a sea-island type composite fiber according to claim 1, wherein the number of islands is 400 or more and the average diameter (r) of the island component is 10 to 1500 nm in the cross section of the sea-island type composite fiber. 海島型複合繊維の伸度が100%以上である請求項1記載の海島型複合繊維の製造方法。   The method for producing a sea-island composite fiber according to claim 1, wherein the elongation of the sea-island composite fiber is 100% or more. 難溶解性ポリマーに対する易溶解性ポリマーの溶解速度比が500倍以上である請求項1記載の海島型複合繊維の製造方法。
なお、上記の溶解速度比は、それぞれのポリマーの溶解速度定数であり、溶解速度定数は、4%NaOH水溶液で95℃にて、減量時間に対する減量率(不溶解重量分率=1−減量率)と処理時間、繊維半径から下記式より算出した。
Figure 0004705451
kは溶解速度定数、Rwは不溶解重量分率、tは処理時間、r0は繊維半径である。
The method for producing a sea-island composite fiber according to claim 1, wherein the dissolution rate ratio of the easily soluble polymer to the hardly soluble polymer is 500 times or more.
The above dissolution rate ratio is the dissolution rate constant of each polymer, and the dissolution rate constant is a 4% NaOH aqueous solution at 95 ° C. and the weight loss rate (insoluble weight fraction = 1−weight loss rate). ), Treatment time, and fiber radius.
Figure 0004705451
k is the dissolution rate constant, Rw is the insoluble weight fraction, t is the treatment time, and r0 is the fiber radius.
JP2005292830A 2005-10-05 2005-10-05 Manufacturing method of sea-island type composite fiber Active JP4705451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005292830A JP4705451B2 (en) 2005-10-05 2005-10-05 Manufacturing method of sea-island type composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005292830A JP4705451B2 (en) 2005-10-05 2005-10-05 Manufacturing method of sea-island type composite fiber

Publications (2)

Publication Number Publication Date
JP2007100253A JP2007100253A (en) 2007-04-19
JP4705451B2 true JP4705451B2 (en) 2011-06-22

Family

ID=38027469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005292830A Active JP4705451B2 (en) 2005-10-05 2005-10-05 Manufacturing method of sea-island type composite fiber

Country Status (1)

Country Link
JP (1) JP4705451B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154012A (en) * 2011-01-28 2012-08-16 Toray Ind Inc Nanofiber having slits
JP5908811B2 (en) 2012-09-07 2016-04-26 有限会社ナイセム Ultrafine fiber medical material for long-term in vivo implantation
JP6303291B2 (en) * 2013-05-24 2018-04-04 東レ株式会社 Composite fiber
JP6434794B2 (en) * 2014-12-09 2018-12-05 株式会社クラレ Composite fiber made of acrylic block copolymer
JP7404970B2 (en) 2020-03-27 2023-12-26 東レ株式会社 Artificial leather and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278213A (en) * 1985-09-26 1987-04-10 Toray Ind Inc Polyester conjugated yarn
JPH0770848A (en) * 1993-08-27 1995-03-14 Kanebo Ltd Fusing textured yarn and its production
JPH07118977A (en) * 1993-10-28 1995-05-09 Toray Ind Inc Conjugate yarn and cloth
JPH09316730A (en) * 1996-03-29 1997-12-09 Japan Vilene Co Ltd Islands-sea structure fiber and nonwoven cloth using the same
JP2001064829A (en) * 1999-08-25 2001-03-13 Toray Ind Inc Ultrafine polyester fiber, combined filament yarn and cloth therefrom
JP2002107552A (en) * 1989-11-08 2002-04-10 Mitsubishi Rayon Co Ltd Plastic multi-filament type optical fiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278213A (en) * 1985-09-26 1987-04-10 Toray Ind Inc Polyester conjugated yarn
JP2002107552A (en) * 1989-11-08 2002-04-10 Mitsubishi Rayon Co Ltd Plastic multi-filament type optical fiber
JPH0770848A (en) * 1993-08-27 1995-03-14 Kanebo Ltd Fusing textured yarn and its production
JPH07118977A (en) * 1993-10-28 1995-05-09 Toray Ind Inc Conjugate yarn and cloth
JPH09316730A (en) * 1996-03-29 1997-12-09 Japan Vilene Co Ltd Islands-sea structure fiber and nonwoven cloth using the same
JP2001064829A (en) * 1999-08-25 2001-03-13 Toray Ind Inc Ultrafine polyester fiber, combined filament yarn and cloth therefrom

Also Published As

Publication number Publication date
JP2007100253A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4676857B2 (en) Sea-island composite fiber for high toughness ultrafine fiber
JP4473867B2 (en) Sea-island type composite fiber bundle and manufacturing method thereof
TWI579423B (en) Sea-island fiber
TWI658182B (en) Island composite fiber, composite ultrafine fiber and fiber products
TWI541399B (en) Composite fiber
KR101953662B1 (en) Island-in-sea fiber, combined filament yarn and textile product
JP2007262610A (en) Combined filament yarn
JP4705451B2 (en) Manufacturing method of sea-island type composite fiber
TWI633216B (en) Composite spinning nozzle, composite fiber, and manufacturing method of composite fiber
JP2014101613A (en) Ultra fine fiber
JP2005133250A (en) Core-sheath conjugate fiber
JP4995523B2 (en) False twisted yarn and method for producing the same
JP5928017B2 (en) Blended yarn
JP2018162528A (en) Sea-island type composite fiber bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

R150 Certificate of patent or registration of utility model

Ref document number: 4705451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140318

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250