JP4676857B2 - Sea-island composite fiber for high toughness ultrafine fiber - Google Patents

Sea-island composite fiber for high toughness ultrafine fiber Download PDF

Info

Publication number
JP4676857B2
JP4676857B2 JP2005291547A JP2005291547A JP4676857B2 JP 4676857 B2 JP4676857 B2 JP 4676857B2 JP 2005291547 A JP2005291547 A JP 2005291547A JP 2005291547 A JP2005291547 A JP 2005291547A JP 4676857 B2 JP4676857 B2 JP 4676857B2
Authority
JP
Japan
Prior art keywords
island
sea
component
fiber
composite fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005291547A
Other languages
Japanese (ja)
Other versions
JP2007100243A (en
Inventor
みゆき 沼田
三枝 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Fibers Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2005291547A priority Critical patent/JP4676857B2/en
Publication of JP2007100243A publication Critical patent/JP2007100243A/en
Application granted granted Critical
Publication of JP4676857B2 publication Critical patent/JP4676857B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Multicomponent Fibers (AREA)

Description

島数が極めて多く、該海成分を溶解除去した際に強度があり、径均一性に優れる極細繊維に関するものである。   The present invention relates to an ultrafine fiber that has an extremely large number of islands, has strength when the sea component is dissolved and removed, and has excellent diameter uniformity.

従来、極細繊維の製造技術は数多く提案されている。代表的な製造方法として、直接紡糸法や海島型複合紡糸法、エレクトロスピニングなどがある。直接紡糸法では紡糸時のノズル径を小さくすることが必要となり、これにより押出圧力が大きくなり、結果として押出し状態が不安定になるため、糸切れや毛羽の発生という問題点が起こる。また、製造可能な繊維の径に限界があった。海島型複合紡糸法では、海島ポリマーをチップ状態でブレンドした繊維から極細繊維を得る方法が特許文献1や特許文献2に記載されている。従来ある装置で容易に製造できることから広く利用されている。しかし、この方法を用いて得られた海島型複合繊維からできる極細繊維は繊維径のばらつきが大きいという問題点がある。   Conventionally, many techniques for producing ultrafine fibers have been proposed. Typical production methods include direct spinning, sea-island type composite spinning, and electrospinning. In the direct spinning method, it is necessary to reduce the nozzle diameter at the time of spinning, which increases the extrusion pressure, and as a result, the extrusion state becomes unstable, causing problems such as yarn breakage and fluffing. Moreover, there was a limit to the diameter of the fiber that can be produced. In the sea-island type composite spinning method, Patent Documents 1 and 2 describe a method for obtaining ultrafine fibers from fibers obtained by blending sea-island polymers in a chip state. It is widely used because it can be easily manufactured by a conventional apparatus. However, the ultrafine fiber made from the sea-island type composite fiber obtained by using this method has a problem that the fiber diameter varies greatly.

また、特許文献3では、スタティクミキサーで混合した複合ポリマーを島成分として用いて海島断面を形成し、微細なポリマー短繊維の集合体からなる繊維の製造方法が記載されているが、ブレンドによる島相形成により、その均質性は不十分であるとともに、微細フィブリルからなる集合体繊維であるため、タフネスに問題がある。   Further, Patent Document 3 describes a method for producing a fiber composed of an aggregate of fine polymer short fibers by forming a sea-island cross section using a composite polymer mixed with a static mixer as an island component. Due to the formation of island phases, the homogeneity is insufficient and the aggregate fiber is composed of fine fibrils, which causes a problem in toughness.

特許文献4では海島ポリマーそれぞれの溶融流を接合して接合流を形成し、該接合流を分割し接合することを繰り返すことにより得た海島構造繊維の製造方法が記載されているが、繊維間の島数にばらつきがあるので、タフネスや製品の品質安定性に問題がある。   Patent Document 4 describes a method for producing a sea-island structure fiber obtained by joining a melt flow of each of the sea-island polymers to form a joined flow, and dividing and joining the joined flow. As the number of islands varies, there are problems with toughness and product quality stability.

エレクトロスピニングは数十nmレベルの繊維径を持つ不織布を製造可能な装置である。これは、高分子溶液の入ったノズルの先端と基板上の間に高電圧を加え、荷電した高分子溶液を噴射し、基板上に集積させるものである。微量かつ低濃度の溶液で容易に製造できることから、最近特に注目されている。しかし、エレクトロスピニングを用いて作成した不織布の繊維径は特許文献5にも記載されているように、かなりばらつきがある。また、タフネスも通常の繊維に比べて弱く、応用面で限界があった。製造方法も溶剤や高電圧を使用するなど、設備面の安全性や環境負荷の観点から問題があった。
以上のことから、繊維径が均一であり応用展開可能な高タフネス極細繊維が求められている。
Electrospinning is an apparatus capable of producing a nonwoven fabric having a fiber diameter of several tens of nanometers. In this method, a high voltage is applied between the tip of the nozzle containing the polymer solution and the substrate, and the charged polymer solution is ejected and accumulated on the substrate. Recently, it has attracted particular attention because it can be easily produced in a small amount and a low concentration solution. However, the fiber diameter of the nonwoven fabric prepared using electrospinning varies considerably as described in Patent Document 5. In addition, the toughness is weak compared to ordinary fibers, and there is a limit in application. The manufacturing method also has a problem from the viewpoint of facility safety and environmental load, such as using solvents and high voltage.
From the above, high toughness ultrafine fibers that have a uniform fiber diameter and can be applied and developed are demanded.

特開平3−113082号公報Japanese Patent Laid-Open No. 3-113082 特開平4−126815号公報JP-A-4-126815 特公昭60−28922号公報Japanese Patent Publication No. 60-28922 特開2000−110028号公報JP 2000-110028 A 特開2004−68161号公報JP 2004-68161 A

本発明は上記の問題点を克服し、繊維径が均一であり各用途に応用展開可能な高タフネス極細繊維を得ることができる高タフネス極細繊維用複合繊維を提供することを課題とすする。   An object of the present invention is to overcome the above-mentioned problems and to provide a composite fiber for high toughness ultrafine fibers that can obtain a high toughness ultrafine fiber that has a uniform fiber diameter and can be applied and developed for various uses.

本発明者らは上記の問題点を解決するために鋭意検討した結果、本発明に達した。すなわち、本発明によれば、易溶解性ポリマーを海成分、難溶解性ポリマーを島成分とする海島型複合繊維であって、海成分:島成分の比率が重量を基準として10:90〜60:40であり、繊維横断面において、繊維直径(R)及び島成分の平均直径(r)と、該繊維横断面の中心を通り互いに45度の角度毎に4本の直線を引いたときこの直線状にある島成分の間隔の、平均値(S)及び最大値(Smax)が以下の関係式(I)及び(II)を満たし、海成分溶解後の繊維のタフネスが20以上であることを特徴とする高タフネス極細繊維用海島型複合繊維が提供される。
0.001≦S/r≦0.5(I)
Smax/R≦0.15 (II)
As a result of intensive studies to solve the above problems, the present inventors have reached the present invention. That is, according to the present invention, a sea-island type composite fiber having an easily soluble polymer as a sea component and a hardly soluble polymer as an island component, wherein the ratio of sea component: island component is 10: 90-60 based on weight. 40, and in the fiber cross section, when the fiber diameter (R) and the average diameter (r) of the island component are drawn through the center of the fiber cross section and four straight lines are drawn every 45 degrees, The average value (S) and maximum value (Smax) of the distance between the island components in a straight line satisfy the following relational expressions (I) and (II), and the toughness of the fiber after dissolution of the sea components is 20 or more. A sea-island type composite fiber for ultra-toughness ultrafine fibers is provided.
0.001 ≦ S / r ≦ 0.5 (I)
Smax / R ≦ 0.15 (II)

本発明の高タフネス極細繊維用複合型複合繊維(以下、海島型複合繊維または複合繊維と称することがある)は、易溶解性ポリマーを海成分、難溶解性ポリマーを島成分とする海島型複合繊維であって、その海成分:島成分の比率が重量を基準として10:90〜60:40の範囲、好ましくは海成分:島成分20:80〜40:60の範囲である必要がある。海成分の割合が60%以上であると、海成分溶解に必要な溶剤の量が多くなり、安全性や環境への負荷、そしてコストの面で問題がある。また、10%未満の場合には島同士が膠着しやすくなる。   The composite type composite fiber for high toughness ultrafine fibers of the present invention (hereinafter sometimes referred to as sea-island type composite fiber or composite fiber) is a sea-island type composite having a readily soluble polymer as a sea component and a hardly soluble polymer as an island component. It is a fiber, and the ratio of the sea component: island component should be in the range of 10: 90-60: 40, preferably in the range of sea component: island component 20: 80-40: 60, based on weight. When the proportion of the sea component is 60% or more, the amount of the solvent necessary for dissolving the sea component increases, which causes problems in terms of safety, environmental load, and cost. If it is less than 10%, the islands are easily stuck.

本発明においては、上記複合繊維の繊維横断面において、繊維直径(R)及び島成分の平均直径(r)と、該繊維横断面の中心を通り互いに45度の角度毎に4本の直線を引いたときこの直線状にある島成分の間隔の、平均値(S)及び最大値(Smax)が以下の関係式(I)及び(II)を満たすこと、また、海成分溶解後の繊維のタフネスが20以上であることが肝要である。これにより、本発明の目的とする高タフネスを達成することができる。
0.001≦S/r≦0.5(I)
Smax/R≦0.15 (II)
なお、Smaxは繊維中心部に海成分が存在する場合はそれを除いた島成分の間隔の最大値である。
In the present invention, in the fiber cross section of the above-mentioned composite fiber, the fiber diameter (R) and the average diameter (r) of the island component, and four straight lines every 45 degrees through the center of the fiber cross section. The average value (S) and the maximum value (Smax) of the distance between the island components that are in a straight line when drawn are such that the following relational expressions (I) and (II) are satisfied. It is important that the toughness is 20 or more. Thereby, the high toughness which is the object of the present invention can be achieved.
0.001 ≦ S / r ≦ 0.5 (I)
Smax / R ≦ 0.15 (II)
Note that Smax is the maximum value of the interval between island components excluding sea components in the center of the fiber.

ここでS/rの値が0.5を超える場合、もしくはSmax/Rの値が0.15を超える場合には、高速紡糸性が悪くなり、また延伸倍率を大きくすることができないので、複合繊維の延伸糸の強伸度物性が低下し、海成分溶解後の極細繊維の強度が低くなる。S/rの値が0.001未満の場合には島成分同士が膠着しやすくなる。より高タフネスとするためにより好ましくは下記の範囲である。
0.01≦S/r≦0.3
Smax/R≦0.08
Here, when the value of S / r exceeds 0.5, or when the value of Smax / R exceeds 0.15, the high-speed spinnability deteriorates and the draw ratio cannot be increased. The high elongation property of the drawn yarn of the fiber is lowered, and the strength of the ultrafine fiber after the sea component is dissolved is lowered. When the value of S / r is less than 0.001, island components are easily stuck together. In order to obtain higher toughness, the following ranges are more preferable.
0.01 ≦ S / r ≦ 0.3
Smax / R ≦ 0.08

また、本発明においては、島成分の間隔の平均値(S)と、4本の直線を引いたときこの直線状にある繊維外周に最も近い島成分と繊維外周との間隔(So)との比So/Sが0.1〜2.0の範囲であることが好ましい。So/Sが、2.0を超える場合は複合繊維の延伸糸の強伸度物性が低下し、海成分溶解後の極細繊維の強度が低くなる傾向にあり、一方、0.1未満の場合は島成分同士が膠着し易くなる傾向がある。   Further, in the present invention, the average value (S) of the interval between the island components and the interval (So) between the island component closest to the fiber outer periphery and the fiber outer periphery when the four straight lines are drawn. The ratio So / S is preferably in the range of 0.1 to 2.0. When So / S exceeds 2.0, the strength and elongation properties of the drawn yarn of the composite fiber tend to decrease, and the strength of the ultrafine fiber after dissolution of the sea component tends to be low. Tends to stick together between island components.

本発明においては、海島型複合繊維が、室温下での荷重−伸度曲線において、海成分が破断することによる降伏点を有していることが好ましい。この降伏点の発現は、海成分が島成分よりも早く固化することにより配向が進み、一方島成分は海成分の影響により配向が下がるために観察される現象である。この降伏点は海成分の部分破断点を意味し、降伏点以降は配向が低い島成分が伸びる。そして荷重−伸長曲線の破断点では海島成分がともに破断する。紡糸速度が高くなるほど降伏点が初期段階(すなわち、伸度が0%の方向)へ移行することからもこれらの現象を説明できる。   In the present invention, it is preferable that the sea-island composite fiber has a yield point due to the sea component breaking in the load-elongation curve at room temperature. The manifestation of the yield point is a phenomenon observed because the sea component is solidified faster than the island component, and the orientation of the island component is lowered due to the influence of the sea component. This yield point means the partial break point of the sea component, and after the yield point, the island component with low orientation extends. The sea-island component breaks at the breaking point of the load-elongation curve. These phenomena can also be explained from the fact that the yield point shifts to the initial stage (that is, the direction of elongation is 0%) as the spinning speed increases.

また、本発明においては、降伏点における伸度(%)と破断伸度(%)の差が40%以上であることが特に好ましい。降伏点における伸度と破断伸度の差が40%以下である場合には、40%未満である場合に比べて伸度が低くなるため、延伸倍率が上がらずに高タフネス化できない傾向にある。より好ましい降伏点における伸度(%)と破断伸度(%)の差は50〜200%である。   In the present invention, the difference between the elongation (%) at the yield point and the breaking elongation (%) is particularly preferably 40% or more. When the difference between the elongation at the yield point and the elongation at break is 40% or less, the elongation is lower than when it is less than 40%, and therefore there is a tendency that the draw ratio does not increase and high toughness cannot be achieved. . The difference between the elongation (%) and the elongation at break (%) at a more preferable yield point is 50 to 200%.

次に繊維横断面における島数は100以上であることが特に好ましい。島数が多いほど海成分を溶解除去して極細繊維を製造する場合の生産性が高くなり、しかも得られる極細繊維の細さも顕著となって極細繊維特有の柔らかさ、光沢感などを表現することができる。ここで、島数100未満の場合には、海成分を溶解除去しても繊維径の小さい極細繊維が得られない。また、島数が多くなりすぎると紡糸口金の製造コストが高くなるだけではなく、加工性自体も低下しやすくなるので1000以下とするのが好ましい。   Next, the number of islands in the fiber cross section is particularly preferably 100 or more. The greater the number of islands, the higher the productivity when dissolving and removing sea components to produce ultrafine fibers, and the fineness of the resulting ultrafine fibers is also remarkable, expressing the softness and glossiness that are unique to ultrafine fibers. be able to. Here, when the number of islands is less than 100, an ultrafine fiber having a small fiber diameter cannot be obtained even if sea components are dissolved and removed. Further, if the number of islands is too large, not only the production cost of the spinneret is increased, but also the workability itself is liable to be lowered.

さらに、本発明においては、島成分の平均直径は50〜2000nm、好ましくは100〜1000nmの範囲とするであることが望ましい。島成分の平均直径が、50nm未満の場合には繊維構造が不安定で物性や繊維形態が不安定で好ましくなく、一方2000nmを超える場合には極細繊維特有の柔らかさ、光沢感などが得られず好ましくない。   Furthermore, in the present invention, it is desirable that the average diameter of the island component is 50 to 2000 nm, preferably 100 to 1000 nm. When the average diameter of the island component is less than 50 nm, the fiber structure is unstable and the physical properties and fiber form are unstable, which is not preferable. On the other hand, when the average diameter exceeds 2000 nm, softness and glossiness peculiar to ultrafine fibers are obtained. Not preferable.

本発明の海島型複合繊維を構成するポリマーの組み合わせは、以下の3点を満たしていることが好ましい。つまり、3点とは、(1)溶融成形時における海成分の溶融粘度が島成分の溶融粘度より大きい、(2)島成分に対する海成分の溶解速度が200倍以上、(3)島成分の残留伸度が海成分よりも大きいことである。   The combination of polymers constituting the sea-island composite fiber of the present invention preferably satisfies the following three points. That is, the three points are (1) the melt viscosity of the sea component at the time of melt molding is greater than the melt viscosity of the island component, (2) the dissolution rate of the sea component in the island component is 200 times or more, (3) the island component The residual elongation is greater than the sea component.

溶融紡糸時における海成分の溶融粘度が島成分の溶融粘度よりも大きいことにより、海島断面形成性が良好となる。この条件を満たしていれば、海成分の複合重量比率が50%以下になっても、島同士が大部分膠着して海島繊維と異なる繊維となることはない。島同士が膠着すると、海成分を溶解除去した際に極細繊維だけではなく異形繊維まで作成されることとなり、染め斑やピリングなど品位に問題が生じやすくなる。特に好ましい溶融粘度比(海/島)は1.1〜2.0、特に1.3〜1.5の範囲である。この比が1.1未満の場合には溶融紡糸時に島成分が膠着しやすくなり、一方2.0を超える場合には粘度差が大きすぎるために紡糸調子が低下しやすい。なお、溶融紡糸時におけるとは、具体的には島成分と海成分を構成するポリマーのうち融点が高い方のポリマーの融点よりも10〜40℃高い温度で測定したそれぞれの溶融粘度において(1)の関係を満たしていればよい。   When the melt viscosity of the sea component at the time of melt spinning is larger than the melt viscosity of the island component, the sea-island cross-section formability is improved. If this condition is satisfied, even if the composite weight ratio of the sea components is 50% or less, the islands will not adhere to each other and become different from the sea-island fibers. When the islands are stuck together, when sea components are dissolved and removed, not only ultrafine fibers but also irregular fibers are created, and problems such as dyed spots and pilling are likely to occur. A particularly preferred melt viscosity ratio (sea / island) is in the range of 1.1 to 2.0, particularly 1.3 to 1.5. If this ratio is less than 1.1, the island components are likely to stick together during melt spinning, whereas if it exceeds 2.0, the difference in viscosity is too large and the spinning tone tends to decrease. In the melt spinning, specifically, each melt viscosity measured at a temperature 10 to 40 ° C. higher than the melting point of the higher melting point polymer of the island component and the sea component (1 ) As long as the relationship is satisfied.

島成分に対する海成分の溶解速度が200倍以上であることにより、島分離性が良好となる。溶解速度が200倍未満の場合には、繊維断面中央部の海成分を溶解する間に、分離した繊維断面表層部の島成分が、繊維径が小さいために溶解されるため、海相当分が減量されているにもかかわらず、繊維断面中央部の海成分を完全に溶解除去できず、島成分の太さ斑や溶剤侵食による強度劣化が発生して、毛羽や染め斑が起こるなどの問題が生じる。上記の溶解速度は、具体的には、海成分がポリエステル系ポリマーの場合は4%NaOH水溶液で95℃にて、減量時間に対する減量率から溶解速度定数を算出し、その溶解速度定数の比とした。海成分がポリアミド系ポリマーの場合は99%のギ酸で25℃(室温)にて、海成分がスチレンの場合はトルエンで60℃にて、それぞれ24時間測定した溶解速度をいう。なお、本発明において、難溶解性ポリマー、易溶解性ポリマーとは、アルカリ水溶液、ギ酸、または、トルエンなどの有機溶剤に対する溶解性の難易に基づくポリマーを指すものである。   When the dissolution rate of the sea component with respect to the island component is 200 times or more, the island separation property is improved. When the dissolution rate is less than 200 times, the island component of the separated fiber cross-section surface layer is dissolved because the fiber diameter is small while the sea component in the center of the fiber cross-section is dissolved. Despite being reduced in weight, the sea component at the center of the fiber cross-section cannot be completely dissolved and removed, causing problems such as the thickness of island components and the deterioration of strength due to solvent erosion, resulting in fluff and dyed spots. Occurs. Specifically, when the sea component is a polyester polymer, the dissolution rate is calculated by calculating the dissolution rate constant from the weight loss rate with respect to the weight loss time at 95 ° C. with a 4% NaOH aqueous solution. did. When the sea component is a polyamide-based polymer, it means a dissolution rate measured for 24 hours at 25 ° C. (room temperature) with 99% formic acid, and when the sea component is styrene at 60 ° C. with toluene. In the present invention, the hardly soluble polymer and the easily soluble polymer refer to a polymer based on the solubility in an organic solvent such as an alkaline aqueous solution, formic acid, or toluene.

島成分の残留伸度が海成分よりも大きいことにより、海溶解後の島を高タフネスにすることができる。島成分の残留伸度が海成分より小さいと、延伸倍率を上げることができないため、海溶解後の島のタフネス値が低くなり、応用展開可能な極細繊維が作成できない。   When the residual elongation of the island component is greater than that of the sea component, the island after sea dissolution can be made tough. If the residual elongation of the island component is smaller than the sea component, the draw ratio cannot be increased, so that the toughness value of the island after sea dissolution becomes low, and an ultrathin fiber that can be applied and developed cannot be created.

海成分を構成するポリマーは上記の3点を満たしているポリマーが好ましく、特に繊維形成性の良いポリエステル系ポリマー、ポリアミド系ポリマー、ポリスチレン系ポリマー、ポリエチレン系ポリマーなどが好ましい。例えば、アルカリ水溶液に対して易溶解性ポリマーとしては、ポリ乳酸、超高分子量ポリアルキレンオキサイド縮合系ポリマー、5−ナトリウムスルホイソフタル酸の共重合ポリエステルが最適である。ここでアルカリ水溶液とは、水酸化カリウム、水酸化ナトリウム水溶液などを言う。また、ナイロン6はギ酸に溶解し易く、ポリスチレンはトルエンなど有機溶剤に溶解し易いので、これらでもよい。   The polymer constituting the sea component is preferably a polymer satisfying the above three points, and particularly preferred are polyester-based polymers, polyamide-based polymers, polystyrene-based polymers, and polyethylene-based polymers having good fiber-forming properties. For example, polylactic acid, an ultrahigh molecular weight polyalkylene oxide condensation polymer, and a copolymer polyester of 5-sodium sulfoisophthalic acid are optimal as the easily soluble polymer in an alkaline aqueous solution. Here, the alkaline aqueous solution refers to potassium hydroxide, sodium hydroxide aqueous solution and the like. Nylon 6 can be easily dissolved in formic acid, and polystyrene can be easily dissolved in an organic solvent such as toluene.

上記のポリエステル系ポリマーのなかでは、5−ナトリウムスルホイソフタル酸6〜12モル%と分子量4000〜12000のポリエチレングリコールを3〜10重量%共重合させた固有粘度が0.4〜0.6のポリエチレンテレフタレート系共重合ポリエステルが好ましい。ここで、5−ナトリウムスルホイソフタル酸は親水性と溶融粘度向上に寄与し、ポリエチレングリコール(PEG)は親水性を向上させる。また、PEGは分子量が大きいほど、その高次構造に起因すると考えられる親水性増加作用があるが、反応性が悪くなってブレンド系になるため、耐熱性や紡糸安定性の面で問題が生じる可能性がある。また、共重合量が10重量%以上になると、溶融粘度低下作用があるので、好ましくない。以上のことから上記の範囲が適切である。   Among the above polyester polymers, polyethylene having an intrinsic viscosity of 0.4 to 0.6 obtained by copolymerizing 6 to 12 mol% of 5-sodium sulfoisophthalic acid and 3 to 10 wt% of polyethylene glycol having a molecular weight of 4000 to 12000. A terephthalate copolymer polyester is preferred. Here, 5-sodium sulfoisophthalic acid contributes to improving hydrophilicity and melt viscosity, and polyethylene glycol (PEG) improves hydrophilicity. In addition, PEG has a hydrophilicity increasing action that is considered to be due to its higher-order structure as the molecular weight increases. However, since the reactivity becomes poor and a blend system is produced, problems arise in terms of heat resistance and spinning stability. there is a possibility. On the other hand, if the copolymerization amount is 10% by weight or more, there is an effect of decreasing the melt viscosity, which is not preferable. From the above, the above range is appropriate.

島成分を構成する難溶解性ポリマーは前述した3点を満たしていることが好ましく、ポリアミド系ポリマー、ポリスチレン系ポリマー、ポリエチレン系ポリマーなどを例示することができる。なかでも、衣料用途ではポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ナイロン6、ナイロン66が好ましい。一方、産業資材や医療用途では、水や酸、アルカリに強いポリスチレンやポリエチレンなどが耐久性の点で好ましい。さらに島成分は丸断面に限らず、異形断面であってもよい。   The sparingly soluble polymer constituting the island component preferably satisfies the above-mentioned three points, and examples thereof include polyamide-based polymers, polystyrene-based polymers, and polyethylene-based polymers. Among these, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, nylon 6, and nylon 66 are preferable for clothing. On the other hand, in industrial materials and medical applications, polystyrene, polyethylene and the like that are resistant to water, acid, and alkali are preferable in terms of durability. Furthermore, the island component is not limited to a round cross section, and may be an irregular cross section.

以上に説明した本発明の海島型複合繊維は、例えば以下の方法により容易に製造することができる。すなわち、まず溶融粘度が高く且つ易溶解性であるポリマーと溶融粘度が低く、且つ難溶解性のポリマーとを前者を海成分、後者を島成分として溶融紡糸する。ここで、海成分と島成分の溶融粘度の関係が重要であり、海成分の溶融粘度が小さい場合には島成分同士が膠着する可能性がある。   The sea-island type composite fiber of the present invention described above can be easily produced, for example, by the following method. That is, a polymer having a high melt viscosity and an easily soluble polymer and a polymer having a low melt viscosity and a hardly soluble polymer are melt-spun using the former as a sea component and the latter as an island component. Here, the relationship between the melt viscosity of the sea component and the island component is important, and when the melt viscosity of the sea component is small, the island components may stick together.

溶融紡糸に用いられる口金としては、島成分を形成するための中空ピン群や微細孔群を有するものなど任意のものを用いることができる。例えば中空ピンや微細孔より押し出された島成分とその間を埋める形で流路を設計されている海成分流とを合流し、これを圧縮することにより海島断面が形成されるといった紡糸口金でもよい。好ましく用いられる紡糸口金例を図1および2に示すが、必ずしもこれらに限定されるものではない。本発明の海島型複合繊維断面において、繊維直径(R)、島成分の平均直径(r)と、島成分の間隔の平均値(S)及び最大値(Smax)が前述した式(I)及び(II)を満たすことが重要であり、これらの式を満たすような断面を作成できる口金であれば、どのような口金でもよい。なお図1は中空ピンを海成分樹脂貯め部分に吐出してそれを合流圧縮する方式であり、図2は微細孔方式で島成分を形成する方法である。   As the die used for melt spinning, an arbitrary one such as a hollow pin group or a fine hole group for forming an island component can be used. For example, a spinneret may be used in which an island component extruded from a hollow pin or a fine hole and a sea component flow that is designed to fill the gap between the island component are joined and compressed to form a cross section of the sea island. . Examples of spinnerets that are preferably used are shown in FIGS. 1 and 2, but are not necessarily limited thereto. In the cross section of the sea-island type composite fiber of the present invention, the fiber diameter (R), the average diameter (r) of the island component, and the average value (S) and the maximum value (Smax) of the interval between the island components are represented by the formula (I) and It is important to satisfy (II), and any base can be used as long as it can create a cross section that satisfies these equations. FIG. 1 shows a method in which a hollow pin is discharged into a sea component resin reservoir portion and is joined and compressed. FIG. 2 shows a method in which island components are formed by a fine hole method.

さらに具体的に各図について説明する。図1に示されている紡糸口金1においては、分配前の島成分用ポリマー溜め部2内の溶融された島成分ポリマーは、複数の中空ピンにより形成された島成分用ポリマー導入通路3中に分配され、一方、海成分用ポリマー導入通路4を通って、溶融された海成分ポリマーが、分配前海成分用ポリマー溜め部5に導入される。島成分用ポリマー導入通路3を形成している中空ピンは、それぞれ海成分用ポリマー溜め部5を貫通して、その下に形成された複数の芯鞘型複合流用通路6の各々の入り口の中央部分において下向きに開口している。島成分用ポリマー導入通路3の下端から、島成分ポリマー流が、芯鞘型複合流用通路6の中心部分に導入され、海成分用ポリマー溜め部の5中の海成分用ポリマー流は、芯鞘型複合流用通路6中に、島成分ポリマーをかこむように導入され、島成分ポリマー流を芯とし、海成分ポリマー流を鞘とする芯鞘型複合流が形成され、複数の芯鞘型複合流がロート状の合流通路7中に導入され、この合流通路7中において、複数の芯鞘型複合流は、それぞれの鞘部が互いに近接して、海島型複合流が形成される。この海島型複合流は、ロート状合流通路7中を流下する間に、次第にその水平方向の断面積を減少し、合流通路7の下端の吐出口8から吐出される。   Each figure will be described more specifically. In the spinneret 1 shown in FIG. 1, the melted island component polymer in the island component polymer reservoir 2 before distribution is in the island component polymer introduction passage 3 formed by a plurality of hollow pins. On the other hand, the molten sea component polymer is introduced into the pre-distribution sea component polymer reservoir 5 through the sea component polymer introduction passage 4. The hollow pin forming the island component polymer introduction passage 3 passes through the sea component polymer reservoir 5 and is located at the center of the entrance of each of the plurality of core-sheath type composite flow passages 6 formed thereunder. The part opens downward. The island component polymer flow is introduced from the lower end of the island component polymer introduction passage 3 into the central portion of the core-sheath type composite flow passage 6, and the sea component polymer flow in the sea component polymer reservoir 5 is Is introduced so as to enclose the island component polymer, and a core-sheath type composite flow having the island component polymer flow as a core and a sea component polymer flow as a sheath is formed. It introduce | transduces in the funnel-shaped confluence | merging channel | path 7, and in this confluence | merging channel | path 7, each sheath part adjoins each other, and a sea-island type compound flow is formed. The sea-island type composite flow gradually decreases in the horizontal cross-sectional area while flowing down in the funnel-shaped merge passage 7 and is discharged from the discharge port 8 at the lower end of the merge passage 7.

また、図2に示されている紡糸口金11においては、島成分ポリマー用溜め部2と、海成分ポリマー用溜め部5とが、複数の透孔からなる島成分ポリマー用導入通路13に連結されていて、島成分用ポリマー溜め部2中の溶融された島成分ポリマーは、複数の島成分ポリマー用導入通路13に分配され、それを通って、海成分用ポリマー溜め部5に収容されている溶融された海成分ポリマー中を貫いて、芯鞘型複合流通路6中に流入し、その中心部を流下する。一方、海成分ポリマー用溜め部5中の海成分ポリマーは、芯鞘型複合流用通路6中に、その中心部を流下する島成分ポリマーの周りをかこむように流下する。これによって、複数の芯鞘型複合流通路6中において、複数の芯鞘型複合流が形成され、ロート状合流通路6中において、複数の芯鞘型複合流が形成され、ロート状合流通路7中に流下し、図1と同様にして海島型複合流を形成しつつ流下し、さらにその水平方向の断面積を減少し、吐出口8から吐出される。   In the spinneret 11 shown in FIG. 2, the island component polymer reservoir 2 and the sea component polymer reservoir 5 are connected to an island component polymer introduction passage 13 formed of a plurality of through holes. The molten island component polymer in the island component polymer reservoir 2 is distributed to the plurality of island component polymer introduction passages 13 and is accommodated in the sea component polymer reservoir 5 through the plurality of island component polymer introduction passages 13. It passes through the melted sea component polymer and flows into the core-sheath type composite flow passage 6 and flows down the central portion thereof. On the other hand, the sea component polymer in the sea component polymer reservoir 5 flows down into the core-sheath composite flow passage 6 so as to surround the island component polymer flowing down the central portion thereof. As a result, a plurality of core-sheath type composite flows are formed in the plurality of core-sheath type composite flow passages 6, and a plurality of core-sheath type composite flows are formed in the funnel-shaped join passage 6. In the same manner as in FIG. 1, it flows down while forming a sea-island type composite flow, further reduces its horizontal cross-sectional area, and is discharged from the discharge port 8.

吐出された海島型複合繊維は冷却風により固化され、巻き取られる。この巻取り速度は特に限定されないが、1000〜5000m/分であることが望ましい。1000m/分未満では製糸性が悪い。また、5000m/分を超えると紡糸安定性が悪い。
得られた未延伸糸は希望する強度・伸度・熱収縮特性に合わせることができる。延伸工程は一旦巻取り後別途延伸工程を行うかもしくは紡糸同時延伸を行い、延伸工程後に巻き取る方法などいずれでもかまわない。ここで重要なのは延伸の際の予熱条件が60〜150℃であることである。これにより糸斑や単糸切れを防ぐことができる。
The discharged sea-island type composite fiber is solidified by cooling air and wound up. The winding speed is not particularly limited, but is preferably 1000 to 5000 m / min. If it is less than 1000 m / min, the spinning property is poor. If it exceeds 5000 m / min, the spinning stability is poor.
The obtained undrawn yarn can be adjusted to desired strength, elongation and heat shrinkage characteristics. The stretching step may be any of a method such as a separate stretching step after winding, or a method of simultaneously spinning and performing winding after the stretching step. What is important here is that the preheating condition during stretching is 60 to 150 ° C. As a result, yarn irregularities and single yarn breakage can be prevented.

本発明で得られた海溶解後の極細繊維のタフネスは20以上であることが好ましい。これ以上であれば、繊維製品に限らず幅広い分野で応用展開が可能となる。より好ましくは25以上である。   The toughness of the ultrafine fiber after dissolution in the sea obtained in the present invention is preferably 20 or more. If it is more than this, application development is possible not only in textile products but in a wide range of fields. More preferably, it is 25 or more.

図3は、本発明の海島型複合繊維の一態様(21)の横断面説明図であって、海成分22とその中に互いに隔離して配置された多数の島成分23とによって構成されている。この図により、島成分の間隔を測定する方法について説明する。図3においては、横断面21に、その中心24を通り、互いに45度の角度をおいて、4本の直線25−1、25−2、25−3、25−4を引いたとき、この4本の直線上にある島成分の間隔を測定し、その中から最大値Sm、および繊維外周に最も近い島成分と繊維外周との間隔Soを定め、かつ、それらの間隔の平均値Sを算出する。図3においては、4本の直線状の島成分を出して記載したもので、その島成分の記載が省略されている。   FIG. 3 is a cross-sectional explanatory view of an embodiment (21) of the sea-island type composite fiber of the present invention, which is composed of a sea component 22 and a large number of island components 23 arranged separately from each other in the sea component 22. Yes. A method for measuring the interval between island components will be described with reference to FIG. In FIG. 3, when the four straight lines 25-1, 25-2, 25-3, and 25-4 are drawn on the cross section 21 through the center 24 at an angle of 45 degrees with respect to each other, The interval between the island components on the four straight lines is measured, and the maximum value Sm and the interval So between the island component closest to the fiber outer periphery and the fiber outer periphery are determined, and the average value S of these intervals is determined. calculate. In FIG. 3, four linear island components are drawn and described, and the description of the island components is omitted.

本発明の海島型複合繊維、または該複合繊維からから海成分を除去して得られる極細繊維束は、これらえを少なくとも一部に用いた、糸、組み紐状糸、紡績糸、織物、フェルト、不織布、人工皮革などの中間製品として用いることができる。   The sea-island type composite fiber of the present invention, or the ultrafine fiber bundle obtained by removing sea components from the composite fiber, is a yarn, braided yarn, spun yarn, woven fabric, felt, using at least a part of them. It can be used as an intermediate product such as non-woven fabric and artificial leather.

また、上記の極細繊維束は高タフネスであるため、上記中間製品は、ジャケット、スカート、パンツ、下着などの衣料、スポーツ衣料、衣料資材、カーペット、ソファー、カーテンなどのインテリア、カーシートなどの車両内装品、化粧品、化粧品マスク、ワイピングクロス、健康用品などの生活用品や、研磨布、フィルター、有害物質除去製品、電池用セパレーターなどの環境・産業資材、縫合糸、スキャフォールド、人工血管、血液フィルターなどの医療用途などに幅広く用途展開が可能である。   In addition, since the above-mentioned ultrafine fiber bundle has high toughness, the intermediate products include jackets, skirts, pants, underwear and other clothing, sports clothing, clothing materials, carpets, sofas, curtains, interiors, and car seats. Interior goods, cosmetics, cosmetic masks, wiping cloths, health goods, and other daily necessities, environment and industrial materials such as abrasive cloths, filters, harmful substance removal products, battery separators, sutures, scaffolds, artificial blood vessels, blood filters It can be used for a wide range of medical purposes.

さらに、上記極細繊維側は比面積が大きいため、吸着・吸収特性に優れているため、例えばたんぱく質、ビタミン類など健康・美容促進のための薬剤、抗炎症剤、消毒剤などの医薬品を吸着させて用いることができる。一方で除法性を有するためドラッグデリバリーシステムなど医薬・衛生用途にも用いることができる。   Furthermore, because the above-mentioned ultrafine fiber side has a large specific area, it has excellent adsorption and absorption characteristics.For example, it can adsorb drugs such as proteins and vitamins, health and beauty promoting drugs, anti-inflammatory agents, disinfectants, etc. Can be used. On the other hand, since it has regulability, it can be used for pharmaceutical and hygiene applications such as drug delivery systems.

以下、実施例をあげて本発明をさらに具体的に説明する。各評価項目は下記の方法で測定した。
(1)溶融粘度測定
乾燥処理後のポリマーを紡糸時のルーダー溶融温度に設定したオリフィスにセットして5分間溶融保持したのち、数水準の荷重をかけて押し出し、そのときのせん断速度と溶融粘度をプロットする。そのプロットをなだらかにつないで、せん断速度−溶融粘度曲線を作成し、せん断速度が1000秒−1の時の溶融粘度を見る。
Hereinafter, the present invention will be described more specifically with reference to examples. Each evaluation item was measured by the following method.
(1) Melt viscosity measurement The polymer after drying is set in an orifice set at the melter melting temperature at the time of spinning, melted and held for 5 minutes, and then extruded under several levels of load. The shear rate and melt viscosity at that time Plot. By gently connecting the plots, a shear rate-melt viscosity curve is created, and the melt viscosity when the shear rate is 1000 sec- 1 is observed.

(2)海島断面形成性
光学顕微鏡を用いて海島状態を観察し、2段階評価した。
○:島膠着部分なし
×:島膠着部分あり
(2) Sea-island cross-section formation The sea-island state was observed using an optical microscope and evaluated in two stages.
○: No island sticking part ×: With island sticking part

(3)溶解速度測定
海・島成分の各々0.3φ−0.6L×24Hの口金にて1000〜2000m/分の紡糸速度で糸を巻取り、さらに残留伸度が30〜60%の範囲になるように延伸して、75de/24filのマルチフィラメントを作成する。これを各溶剤にて溶解しようとする温度で浴比100にて溶解時間と溶解量から、減量速度を算出した。
表中では海島溶解速度差が200倍以上の場合を○、200倍以下の場合を×とした。
(3) Dissolution rate measurement Yarn is wound at a spinning speed of 1000 to 2000 m / min with a 0.3φ-0.6L × 24H base of each of the sea and island components, and the residual elongation is in the range of 30 to 60%. To obtain a 75 de / 24 fil multifilament. The weight loss rate was calculated from the dissolution time and the dissolution amount at a bath ratio of 100 at a temperature at which the solvent was dissolved in each solvent.
In the table, the case where the sea-island dissolution rate difference was 200 times or more was marked with ◯, and the case where it was 200 times or less was marked with ×.

(4)繊維直径(R)、島成分の平均直径(r)、該繊維横断面の中心を通り互いに45度の角度毎に4本の直線を引いたときこの直線状にある島成分の間隔の、平均値(S)及び最大値(Smax)
透過型電子顕微鏡TEMで、倍率30000倍で繊維断面写真を撮影し、測定した。
(4) Fiber diameter (R), average diameter (r) of island components, and the distance between island components in a straight line when four straight lines are drawn every 45 degrees through the center of the fiber cross section Average value (S) and maximum value (Smax)
Fiber cross-sectional photographs were taken and measured with a transmission electron microscope TEM at a magnification of 30000 times.

(5)荷重−伸長曲線
海島型複合繊維9000mの重量を3回測定して平均値から繊度を求めた。そして、室温で初期試料長100mm、引っ張り速度200m/分として荷重−伸長曲線を求めた。荷重−伸長曲線に海成分の部分破断に相当する降伏点が発現した場合には、中間降伏点と破断伸度の差はチャート紙から求めた。
(5) Load-elongation curve The weight of 9000 m of the sea-island type composite fiber was measured three times to obtain the fineness from the average value. And the load-elongation curve was calculated | required as initial stage sample length of 100 mm and pulling speed of 200 m / min at room temperature. When the yield point corresponding to the partial breakage of the sea component appeared in the load-elongation curve, the difference between the intermediate yield point and the breaking elongation was obtained from the chart paper.

(6)海溶解後の極細繊維タフネス
タフネスは以下の式から算出する。
タフネス=強度×(伸度)1/2
先に求めた海島型複合繊維の繊度(D)と溶解除去率(RR)から極細繊維の繊度を算出した。式は以下の通りである。
極細繊維の繊度=D×(1−RR)
海島型複合繊維を用いて重量1g以上の筒編みを作成し、海成分を溶解除去する。その後筒編をほどき、(5)に示した条件で荷重−伸長曲線を求めた。強度は破断時の荷重値を算出した繊度で割った値、伸度は破断時の伸長値から求めた。
(6) Ultrafine fiber toughness after dissolution in sea The toughness is calculated from the following formula.
Toughness = Strength x (Elongation) 1/2
The fineness of the ultrafine fiber was calculated from the fineness (D) and dissolution removal rate (RR) of the sea-island composite fiber obtained previously. The formula is as follows.
Fineness of extra fine fiber = D x (1-RR)
A cylindrical braid having a weight of 1 g or more is prepared using sea-island type composite fibers, and sea components are dissolved and removed. Thereafter, the cylinder was unwound and a load-elongation curve was obtained under the conditions shown in (5). The strength was obtained by dividing the load value at break by the calculated fineness, and the elongation was obtained from the elongation value at break.

(7)島成分の直径の均一性
海成分溶解除去後の極細繊維の30000倍TEM観察により、1本の複合繊維内の極細繊維について、平均繊維直径を算出し、その最大−最小幅が平均繊維直径の50%よりも小さいものを○、大きいものを×とした。
(7) Uniformity of island component diameter By 30,000 times TEM observation of ultrafine fiber after dissolution and removal of sea component, the average fiber diameter is calculated for the ultrafine fiber in one composite fiber, and the maximum-minimum width is average. Smaller than 50% of the fiber diameter was marked with ◯, and larger was marked with x.

(8)極細繊維の風合い
モニター7人に対して官能試験を実施し、2段階評価した。
○:極細繊維特有のぬめり感があると評価した人が5人以上
×:極細繊維特有のぬめり感があると評価した人が5人以下
島および海成分は表1に記載のポリマーを用い、表1記載の島数の海島型複合未延伸繊を紡糸温度285℃で溶融紡糸して、表1記載の紡糸速度で巻き取った。得られた未延伸糸を延伸温度60〜90℃、表2記載の倍率でローラー延伸し、次いで150℃で熱セットして巻き取った。この際に延伸糸が40dtex/10filになるように紡糸吐出量を調整した。この延伸糸を筒編みし、溶媒で海成分比率相当分を溶解処理した。島成分の均一性は繊維断面をTEM観察して判断した。島成分のタフネスについては、荷重−伸長曲線を求め、強度は破断時の荷重値を算出した繊度で割った値とし、伸度は破断時の伸長値として、計算式に当てはめて計算し、表2に示した。
(8) Texture of ultrafine fibers A sensory test was conducted on seven monitors and evaluated in two stages.
○: 5 or more people who evaluated that there was a slimy feeling peculiar to ultrafine fibers ×: 5 people or less who evaluated that there was a slimy feeling peculiar to ultrafine fibers Using the polymers listed in Table 1 for the island and sea components, Sea-island type composite unstretched fibers having the number of islands shown in Table 1 were melt-spun at a spinning temperature of 285 ° C. and wound at the spinning speed shown in Table 1. The obtained undrawn yarn was subjected to roller drawing at a drawing temperature of 60 to 90 ° C. and the magnification described in Table 2, and then heat-set at 150 ° C. and wound up. At this time, the spinning discharge amount was adjusted so that the drawn yarn was 40 dtex / 10 fil. This drawn yarn was knitted in a cylinder, and the sea component ratio equivalent was dissolved with a solvent. The uniformity of the island components was determined by TEM observation of the fiber cross section. For the toughness of the island component, a load-elongation curve is obtained, the strength is a value obtained by dividing the load value at break by the calculated fineness, and the elongation is calculated by applying to the calculation formula as the elongation value at break. It was shown in 2.

[実施例1]
島成分に285℃での溶融粘度が1200poiseのポリエチレンテレフタレート、海成分に285℃での溶融粘度が1400poiseである平均分子量4000のポリエチレングリコールを4wt%、5−ナトリウムスルホイソフタル酸を8mol%共重合した改質ポリエチレンテレフタレートを島成分:海成分=60:40の比率で、島数500の口金を用いて紡糸し、1500m/minで巻き取った。ここで、島成分の残留伸度は海成分よりも大きく、アルカリ減量速度差は1000倍であった。室温下での荷伸曲線においては、海成分の部分破断に相当する降伏点が発現していた。降伏点と破断伸度の差は60%であった。原糸断面をTEM観察したところ、海島断面形成性は良好であった。繊維直径(R)及び島成分の平均直径(r)と、該繊維横断面の中心を通り互いに45度の角度毎に4本の直線を引いたときこの直線状にある島成分の間隔の、平均値(S)及び最大値(Smax)の関係を調べたところ、S/r=0.1、Smax/R=0.05であった。また、島成分の間隔の平均値(S)と繊維外周に最も近い島成分と繊維外周との間隔(So)との比So/Sは0.8であった。さらにこれを延伸倍率2.8倍で延伸して得られた延伸糸を用いて筒編みを作成し4%NaOH水溶液で95℃にて40%減量した。繊維断面を観察したところ、均一な島径を有する極細島群を形成していた。海減量後の島成分の強度は3.1cN/dtex、伸度は75%でタフネスは30であり、繊維径が均一であり応用展開可能な高タフネス極細繊維を作成できた。
[Example 1]
The island component was copolymerized with polyethylene terephthalate having a melt viscosity at 285 ° C. of 1200 poise, and the sea component was copolymerized with 4 wt% of polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 1400 poise at 285 ° C. and 8 mol% of 5-sodium sulfoisophthalic acid. The modified polyethylene terephthalate was spun at a ratio of island component: sea component = 60: 40 using a die having 500 islands, and wound at 1500 m / min. Here, the residual elongation of the island component was larger than that of the sea component, and the difference in alkali weight loss rate was 1000 times. In the unloading curve at room temperature, the yield point corresponding to the partial rupture of the sea component was expressed. The difference between the yield point and the breaking elongation was 60%. When the cross section of the raw yarn was observed by TEM, the sea-island cross-section formation was good. The fiber diameter (R) and the average diameter (r) of the island component, and the distance between the island components in this straight line when four straight lines are drawn every 45 degrees through the center of the fiber cross section, When the relationship between the average value (S) and the maximum value (Smax) was examined, S / r = 0.1 and Smax / R = 0.05. Further, the ratio So / S of the average value (S) of the interval between the island components and the interval (So) between the island component closest to the fiber outer periphery and the fiber outer periphery was 0.8. Furthermore, a tubular knitting was made using a drawn yarn obtained by drawing this at a draw ratio of 2.8 times, and the weight was reduced by 40% at 95 ° C. with a 4% NaOH aqueous solution. When the cross section of the fiber was observed, a group of ultrafine islands having a uniform island diameter was formed. The strength of the island component after sea weight loss was 3.1 cN / dtex, the elongation was 75%, the toughness was 30, and a high-toughness ultrafine fiber having a uniform fiber diameter and applicable development could be produced.

[実施例2]
実施例1と同じ海島ポリマーを同じ海島比率で使用し、実施例1と同じ口金を用いて紡糸し、紡糸速度1000m/minで巻き取った。室温下での荷伸曲線においては、海成分の部分破断に相当する降伏点は発現しておらず、通常の荷伸曲線であった。さらにこれを延伸倍率4.5倍で延伸して得られた延伸糸は均一な島直径を持つ、海島断面を形成していた。延伸糸を用いて筒編みを作成し4%NaOH水溶液で95℃にて40%減量した。結果を表1に示す。
[Example 2]
The same sea-island polymer as in Example 1 was used at the same sea-island ratio, spun using the same die as in Example 1, and wound up at a spinning speed of 1000 m / min. In the unloading curve at room temperature, the yield point corresponding to the partial rupture of the sea component did not appear and was a normal unloading curve. Furthermore, the drawn yarn obtained by drawing this at a draw ratio of 4.5 times formed a sea-island cross section having a uniform island diameter. A cylindrical knitting was made using the drawn yarn, and the weight was reduced by 40% at 95 ° C. with a 4% NaOH aqueous solution. The results are shown in Table 1.

[実施例3]
島成分に285℃での溶融粘度が1200poiseのポリエチレンテレフタレート、海成分に285℃での溶融粘度が1350poiseである平均分子量4000のポリエチレングリコールを4wt%、5−ナトリウムスルホイソフタル酸を9mol%共重合した改質ポリエチレンテレフタレートを使用し、島数400の口金を用いて紡糸し、同じ紡糸速度で巻き取った。室温下での荷伸曲線においては、海成分の部分破断に相当する降伏点が発現していた。島成分の間隔の平均値(S)と繊維外周に最も近い島成分と繊維外周との間隔(So)との比So/Sは0.9であった。未延伸糸の物性を表1に、降伏点と伸度の差を表2に示す。さらにこれを延伸倍率3.9倍で延伸して得られた延伸糸を用いて筒編みを作成し4%NaOH水溶液で95℃にて10%減量した。繊維断面を観察したところ、均一な島径を有する極細島群を形成していた。結果を表1に示す。
[Example 3]
The island component was copolymerized with polyethylene terephthalate having a melt viscosity at 285 ° C. of 1200 poise, and the sea component was copolymerized with 4 wt% of polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 1350 poise at 285 ° C. and 9 mol% of 5-sodium sulfoisophthalic acid. Using modified polyethylene terephthalate, spinning was performed using a die having 400 islands, and wound at the same spinning speed. In the unloading curve at room temperature, the yield point corresponding to the partial rupture of the sea component was expressed. The ratio So / S of the average value (S) of the interval between the island components and the interval (So) between the island component closest to the fiber outer periphery and the fiber outer periphery was 0.9. Table 1 shows the physical properties of the undrawn yarn, and Table 2 shows the difference between the yield point and the elongation. Further, a tubular knitting was made using a drawn yarn obtained by drawing this at a draw ratio of 3.9, and the weight was reduced by 10% at 95 ° C. with a 4% NaOH aqueous solution. When the cross section of the fiber was observed, a group of ultrafine islands having a uniform island diameter was formed. The results are shown in Table 1.

[実施例4]
島成分に285℃での溶融粘度が1150poiseのポリエチレンテレフタレートを使用し、海成分に285℃での溶融粘度が1300poiseである平均分子量4000のポリエチレングリコールを3wt%、5−ナトリウムスルホイソフタル酸を10mol%共重合した改質ポリエチレンテレフタレートを島成分:海成分=70:30の比率で、島数900の口金を用いて紡糸し、3500m/minで巻き取った。ここで、島成分の残留伸度は海成分よりも大きく、アルカリ減量速度差は2000倍であった。室温下での荷伸曲線においては、海成分の部分破断に相当する降伏点が発現していた。島成分の間隔の平均値(S)と繊維外周に最も近い島成分と繊維外周との間隔(So)との比So/Sは1.1であった。未延伸糸の物性を表1に、降伏点の有無、降伏点と伸度の差を表2に示す。さらにこれを延伸倍率2.3倍で延伸して得られた延伸糸を用いて筒編みを作成し4%NaOH水溶液で95℃にて30%減量した。結果を表2に示す。
[Example 4]
Polyethylene terephthalate having a melt viscosity of 1150 poise at 285 ° C. is used as the island component, 3 wt% of polyethylene glycol having an average molecular weight of 4000 having a melt viscosity at 285 ° C. of 1300 poise is used as the sea component, and 10 mol% of 5-sodium sulfoisophthalic acid. The copolymerized modified polyethylene terephthalate was spun at a ratio of island component: sea component = 70: 30 using a die having 900 islands, and wound at 3500 m / min. Here, the residual elongation of the island component was larger than that of the sea component, and the alkali weight loss rate difference was 2000 times. In the unloading curve at room temperature, the yield point corresponding to the partial rupture of the sea component was expressed. The ratio So / S between the average value (S) of the interval between the island components and the interval (So) between the island component closest to the fiber outer periphery and the fiber outer periphery was 1.1. Table 1 shows the physical properties of the undrawn yarn, and Table 2 shows the presence or absence of the yield point and the difference between the yield point and the elongation. Further, a tubular knitting was made using a drawn yarn obtained by drawing this at a draw ratio of 2.3 times, and the weight was reduced by 30% at 95 ° C. with a 4% NaOH aqueous solution. The results are shown in Table 2.

[比較例1]
実施例1と同じ海島ポリマーを使用し、島数は同じであるが異なる口金を用いて同じ海島比率で紡糸し、同じ紡糸速度で巻き取った。室温下での荷伸曲線においては、海成分の部分破断に相当する降伏点は発現しておらず、通常の荷伸曲線であった。原糸断面をTEM観察したところ、海島断面形成性は良好であった。未延伸糸の物性を表1に、降伏点と伸度の差を表2に示す。同じ紡糸速度で巻き取ったにもかかわらず、上記の海島複合繊維の延伸倍率は2.1倍と実施例1に比べて低い値となった。延伸糸を用いて筒編みを作成し4%NaOH水溶液で95℃にて40%減量した。結果を表2に示す。
[Comparative Example 1]
The same sea-island polymer as in Example 1 was used, and the number of islands was the same but spinning was carried out at the same sea-island ratio using different bases and wound at the same spinning speed. In the unloading curve at room temperature, the yield point corresponding to the partial rupture of the sea component did not appear and was a normal unloading curve. When the cross section of the raw yarn was observed by TEM, the sea-island cross-section formation was good. Table 1 shows the physical properties of the undrawn yarn, and Table 2 shows the difference between the yield point and the elongation. Despite winding at the same spinning speed, the draw ratio of the above-mentioned sea-island composite fiber was 2.1 times, a value lower than that of Example 1. A cylindrical knitting was made using the drawn yarn, and the weight was reduced by 40% at 95 ° C. with a 4% NaOH aqueous solution. The results are shown in Table 2.

[比較例2]
実施例1と同じ海島ポリマーを使用し、同じ口金を用いて海:島=70:30の海島比率で紡糸し、同じ紡糸速度で巻き取った。室温下での荷伸曲線においては、海成分の部分破断に相当する降伏点は発現しておらず、通常の荷伸曲線であった。原糸断面をTEM観察したところ、海島断面形成性は良好であった。未延伸糸の物性を表1に、降伏点と伸度の差を表2に示す。海比率が70%と高いために延伸時に海成分の物性が反映されるため、延伸倍率は1.7倍と低かった。延伸糸を用いて筒編みを作成し4%NaOH水溶液で95℃にて70%減量した。海部を減量するために時間がかかるため、表面付近にある島が余分に減量され、島径は不均一となった。結果を表1に示す。
[Comparative Example 2]
Using the same sea-island polymer as in Example 1, using the same die, spinning was performed at a sea-island ratio of sea: island = 70: 30, and wound at the same spinning speed. In the unloading curve at room temperature, the yield point corresponding to the partial rupture of the sea component did not appear and was a normal unloading curve. When the cross section of the raw yarn was observed by TEM, the sea-island cross-section formation was good. Table 1 shows the physical properties of the undrawn yarn, and Table 2 shows the difference between the yield point and the elongation. Since the sea ratio is as high as 70%, the physical properties of the sea components are reflected at the time of stretching, so the stretching ratio was as low as 1.7 times. A cylindrical knitting was made using the drawn yarn, and the weight was reduced by 70% at 95 ° C. with a 4% NaOH aqueous solution. Since it took time to reduce the sea part, the islands near the surface were excessively reduced and the island diameter became uneven. The results are shown in Table 1.

[比較例3]
島成分に285℃での溶融粘度が1550poiseのポリエチレンテレフタレート、海成分に285℃での溶融粘度が1100poiseである平均分子量4000のポリエチレングリコールを3wt%、5−ナトリウムスルホイソフタル酸を3mol%共重合した改質ポリエチレンテレフタレートを海:島=30:70の比率で、島数500の口金を用いて紡糸し、1500m/minで巻き取った。ここで、島成分の残留伸度は海成分よりも大きく、アルカリ減量速度差は500倍であった。未延伸糸の物性を表1に、降伏点と伸度の差を表2に示す。室温下での荷伸曲線においては、海成分の部分破断に相当する降伏点が発現していた。また、島成分の間隔の平均値(S)と繊維外周に最も近い島成分と繊維外周との間隔(So)との比So/S0.8であった。さらにこれを延伸倍率2.2倍で延伸して得られた延伸糸を用いて筒編みを作成し4%NaOH水溶液で95℃にて30%減量した。繊維断面を観察したところ、均一な島径を有する極細島群を形成していた。しかし、延伸倍率を高くすることは困難であった。結果を表2に示す。
[Comparative Example 3]
The island component was copolymerized with polyethylene terephthalate having a melt viscosity of 1550 poise at 285 ° C., and the sea component was copolymerized with 3 wt% of polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 1100 poise at 285 ° C. and 3 mol% of 5-sodium sulfoisophthalic acid. The modified polyethylene terephthalate was spun at a ratio of sea: island = 30: 70 using a die having 500 islands and wound at 1500 m / min. Here, the residual elongation of the island component was larger than that of the sea component, and the difference in alkali weight loss rate was 500 times. Table 1 shows the physical properties of the undrawn yarn, and Table 2 shows the difference between the yield point and the elongation. In the unloading curve at room temperature, the yield point corresponding to the partial rupture of the sea component was expressed. Moreover, it was ratio So / S0.8 of the average value (S) of the space | interval of an island component, and the space | interval (So) of an island component nearest to a fiber outer periphery, and a fiber outer periphery. Further, a tubular knitting was made using a drawn yarn obtained by drawing this at a draw ratio of 2.2, and the weight was reduced by 30% at 95 ° C. with a 4% NaOH aqueous solution. When the cross section of the fiber was observed, a group of ultrafine islands having a uniform island diameter was formed. However, it has been difficult to increase the draw ratio. The results are shown in Table 2.

[比較例4]
島成分に285℃での溶融粘度が1200poiseのポリエチレンテレフタレート、海成分に285℃での溶融粘度が1500poiseである平均分子量4000のポリエチレングリコールを3wt%、5−ナトリウムスルホイソフタル酸を5mol%共重合した改質ポリエチレンテレフタレートを海:島=40:60の比率で、島数700の口金を用いて紡糸し、1000m/minで巻き取った。ここで、島成分の残留伸度は海成分よりも大きく、アルカリ減量速度差は100倍であった。原糸断面をTEM観察したところ、海島断面形成性は良好であったが、島成分に対する海成分のアルカリ減量速度差が100倍であり不十分であるため、繊維表面の島が、繊維径が小さいためにかなり減量され、海相当分が減量されているにもかかわらず、繊維断面中央の大部分の海が減量されないため、極細繊維特有の柔らかさが得られなかった。結果を表1及び表2に示す。
[Comparative Example 4]
The island component was copolymerized with polyethylene terephthalate having a melt viscosity at 285 ° C. of 1200 poise, and the sea component was copolymerized with 3 wt% of polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 1,500 poise at 285 ° C. and 5 mol% of 5-sodium sulfoisophthalic acid. The modified polyethylene terephthalate was spun at a ratio of sea: island = 40: 60 using a base having 700 islands, and wound at 1000 m / min. Here, the residual elongation of the island component was larger than that of the sea component, and the alkali weight loss rate difference was 100 times. When the cross-section of the raw yarn was observed with a TEM, the sea-island cross-section formation was good, but the difference in the alkali weight reduction rate of the sea component relative to the island component was 100 times, which was insufficient. Despite being considerably reduced due to its small size and the sea equivalent being reduced, most of the sea in the center of the fiber cross-section was not reduced, so the softness unique to ultrafine fibers could not be obtained. The results are shown in Tables 1 and 2.

[比較例5]
実施例1と同じ海島ポリマーを使用し、島数が25島である口金を用いて海:島=30:70で紡糸し、同じ紡糸速度で巻き取った。原糸断面をTEM観察したところ、海島断面形成性は良好であり、島成分に対する海成分のアルカリ減量速度差も十分であり、アルカリ減量後の繊維断面を観察したところ、均一な島径を有する島群を形成していたが、極細繊維の直径が3.2μmと大きいため極細特有の性質は現れなかった。結果を表1及び表2に示す。
[Comparative Example 5]
The same sea-island polymer as in Example 1 was used, and spinning was performed at sea: island = 30: 70 using a die having 25 islands, and wound at the same spinning speed. When the cross section of the raw yarn was observed with a TEM, the sea-island cross-section formability was good, the difference in the alkali weight loss rate of the sea component relative to the island component was sufficient, and the fiber cross-section after the alkali weight loss was observed to have a uniform island diameter. Although the island group was formed, since the diameter of the ultrafine fiber was as large as 3.2 μm, the characteristic unique to the ultrafine did not appear. The results are shown in Tables 1 and 2.

[比較例6]
島成分に285℃での溶融粘度が1200poiseのポリエチレンテレフタレート、海成分に285℃での溶融粘度が900poiseである平均分子量4000のポリエチレングリコールを20wt%、5−ナトリウムスルホイソフタル酸を8mol%共重合した改質ポリエチレンテレフタレートを海:島=40:60の比率で、島数100の口金を用いて紡糸し、1500m/minで巻き取った。原糸断面をTEM観察したところ、海島断面形成性は不良であった。具体的には繊維表面部には島が独立して存在しているが、繊維中心部には接合した島の周囲を海成分が取り囲むような断面を形成していた。したがって、減量しても極細繊維は形成できなかった。結果を表1及び表2に示す。
[Comparative Example 6]
The island component was copolymerized with polyethylene terephthalate having a melt viscosity at 285 ° C. of 1200 poise, and the sea component was copolymerized with polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 900 poise at 285 ° C. and 8 mol% of 5-sodium sulfoisophthalic acid. The modified polyethylene terephthalate was spun at a ratio of sea: island = 40: 60 using a die having 100 islands, and wound at 1500 m / min. When the cross-section of the raw yarn was observed by TEM, the sea-island cross-section formation was poor. Specifically, although islands exist independently on the fiber surface portion, a cross section is formed in the fiber center portion so that the sea component surrounds the joined island. Therefore, even if the amount was reduced, ultrafine fibers could not be formed. The results are shown in Tables 1 and 2.

[実施例5]
実施例1と同じ島ポリマーを使用し、海成分に285℃での溶融粘度が1350poiseのナイロン6を用いて、海:島=30:70の比率で、島数800の口金を用いて紡糸し、1000m/minで巻き取った。ここで、島成分の残留伸度は海成分よりも大きく、島成分であるPETはギ酸には実質的に溶解しないので、十分海島溶解速度差がある。室温下での荷伸曲線においては、海成分の部分破断に相当する降伏点は発現していなかった。原糸断面をTEM観察したところ、海島断面形成性は良好であった。未延伸糸の物性を表1に示す。さらにこれを延伸倍率2.9倍で延伸して得られた延伸糸を用いて筒編みを作成し海成分のみを溶解除去するためギ酸に浸漬させた。ギ酸処理後の繊維断面を観察したところ、均一な島径を有する極細島群を形成していた。結果を表2に示す。
[Example 5]
Using the same island polymer as in Example 1, using nylon 6 having a melt viscosity of 1350 poise at 285 ° C. as the sea component, spinning was performed using a base having 800 islands at a ratio of sea: island = 30: 70. , And wound up at 1000 m / min. Here, the residual elongation of the island component is larger than that of the sea component, and PET, which is the island component, does not substantially dissolve in formic acid. In the unloading curve at room temperature, the yield point corresponding to the partial fracture of the sea component did not appear. When the cross section of the raw yarn was observed by TEM, the sea-island cross-section formation was good. Table 1 shows the physical properties of the undrawn yarn. Further, a tubular knitting was made using a drawn yarn obtained by drawing this at a draw ratio of 2.9 times, and immersed in formic acid to dissolve and remove only the sea component. When the cross section of the fiber after formic acid treatment was observed, a group of ultrafine islands having a uniform island diameter was formed. The results are shown in Table 2.

[実施例6]
島成分に285℃での溶融粘度が1150poiseのナイロン66を使用し、海成分に実施例1で用いた改質PETを用いて、海:島=20:80の比率で、島数1000の口金を用いて紡糸し、1000m/minで巻き取った。ここで、島成分の残留伸度は海成分よりも大きく、島成分であるNyはアルカリ溶液には実質的に溶解しないので、十分海島溶解速度差がある。室温下での荷伸曲線においては、海成分の部分破断に相当する降伏点は発現していなかった。島成分の間隔の平均値(S)と繊維外周に最も近い島成分と繊維外周との間隔(So)との比So/Sは1.0であった。さらにこれを延伸倍率3.1倍で延伸して得られた延伸糸を用いて筒編みを作成し海成分のみを溶解除去するためギ酸に浸漬させた。ギ酸処理後の繊維断面を観察したところ、均一な島径を有する極細島群を形成していた。結果を表2に示す。
[Example 6]
Nylon 66 having a melt viscosity of 1150 poise at 285 ° C. is used as the island component, and the modified PET used in Example 1 is used as the sea component, and the base has 1000 islands at a ratio of sea: island = 20: 80. And wound up at 1000 m / min. Here, the residual elongation of the island component is larger than that of the sea component, and Ny, which is the island component, does not substantially dissolve in the alkaline solution, so there is a sufficient difference between the dissolution rates of the sea islands. In the unloading curve at room temperature, the yield point corresponding to the partial fracture of the sea component did not appear. The ratio So / S between the average value (S) of the interval between the island components and the interval (So) between the island component closest to the fiber outer periphery and the fiber outer periphery was 1.0. Furthermore, a tubular knitting was made using a drawn yarn obtained by drawing this at a draw ratio of 3.1, and immersed in formic acid to dissolve and remove only the sea component. When the cross section of the fiber after formic acid treatment was observed, a group of ultrafine islands having a uniform island diameter was formed. The results are shown in Table 2.

[実施例7]
島成分に285℃での溶融粘度が1000poiseのポリエチレンテレフタレート、海成分に285℃での溶融粘度が1200poiseである平均分子量4000のポリエチレングリコールを6wt%、5−ナトリウムスルホイソフタル酸を8mol%共重合した改質ポリエチレンテレフタレートを使用して、海:島=60:40の比率で、島数950の口金を用いて紡糸し、1000m/minで巻き取った。ここで、島成分の残留伸度は海成分よりも大きく、アルカリ減量速度差は2500倍であった。室温下での荷伸曲線においては、海成分の部分破断に相当する降伏点は発現していなかった。原糸断面をTEM観察したところ、海島断面形成性は良好であった。未延伸糸の結果を表1に示す。島成分の間隔の平均値(S)と繊維外周に最も近い島成分と繊維外周との間隔(So)との比So/Sは1.2であった。さらにこれを延伸倍率2.7倍で延伸して得られた延伸糸を用いて筒編みを作成し4%NaOH水溶液で95℃にて60%減量した。繊維断面を観察したところ、均一な島径を有する極細島群を形成していた。結果を表1に示す。
[Example 7]
The island component was copolymerized with polyethylene terephthalate having a melt viscosity at 285 ° C. of 1000 poise, and the sea component was copolymerized with 6 wt% of polyethylene glycol having an average molecular weight of 4000 having a melt viscosity of 1200 poise at 285 ° C. and 8 mol% of 5-sodium sulfoisophthalic acid. Using modified polyethylene terephthalate, spinning was performed using a base having 950 islands at a ratio of sea: island = 60: 40, and wound at 1000 m / min. Here, the residual elongation of the island component was larger than that of the sea component, and the alkali weight loss rate difference was 2500 times. In the unloading curve at room temperature, the yield point corresponding to the partial fracture of the sea component did not appear. When the cross section of the raw yarn was observed by TEM, the sea-island cross-section formation was good. The results of undrawn yarn are shown in Table 1. The ratio So / S between the average value (S) of the interval between the island components and the interval (So) between the island component closest to the fiber outer periphery and the fiber outer periphery was 1.2. Further, a tubular knitting was made using a drawn yarn obtained by drawing this at a draw ratio of 2.7 times, and the weight was reduced by 60% at 95 ° C. with a 4% NaOH aqueous solution. When the cross section of the fiber was observed, a group of ultrafine islands having a uniform island diameter was formed. The results are shown in Table 1.

Figure 0004676857
Figure 0004676857

Figure 0004676857
Figure 0004676857

本発明の海島型複合繊維を紡糸するために用いられる紡糸口金の一例の一部の断面説明図である。FIG. 2 is a partial cross-sectional explanatory view of an example of a spinneret used for spinning the sea-island type composite fiber of the present invention. 本発明の海島型複合繊維を紡糸するために用いられる紡糸口金の他の一例の一部の断面説明図である。FIG. 6 is a cross-sectional explanatory view of a part of another example of the spinneret used for spinning the sea-island type composite fiber of the present invention. 本発明の海島型複合繊維の一実施態様の断面説明図である。It is a section explanatory view of one embodiment of the sea-island type composite fiber of the present invention.

Claims (8)

易溶解性ポリマーを海成分、難溶解性ポリマーを島成分とする海島型複合繊維であって、海成分:島成分の比率が重量を基準として10:90〜60:40であり、繊維横断面において、繊維直径(R)及び島成分の平均直径(r)と、該繊維横断面の中心を通り互いに45度の角度毎に4本の直線を引いたときこの直線状にある島成分の間隔の、平均値(S)及び最大値(Smax)が以下の関係式(I)及び(II)を満たし、海成分溶解後の繊維のタフネスが20以上であることを特徴とする高タフネス極細繊維用海島型複合繊維。
0.001≦S/r≦0.5(I)
Smax/R≦0.15 (II)
A sea-island composite fiber having an easily soluble polymer as a sea component and a hardly soluble polymer as an island component, wherein the ratio of sea component: island component is 10:90 to 60:40 based on weight, and the fiber cross section , The fiber diameter (R) and the average diameter (r) of the island components, and the distance between the island components in a straight line when four straight lines are drawn every 45 degrees through the center of the fiber cross section High toughness ultrafine fibers characterized in that the mean value (S) and the maximum value (Smax) satisfy the following relational expressions (I) and (II), and the toughness of the fibers after dissolution of the sea component is 20 or more Sea-island type composite fiber.
0.001 ≦ S / r ≦ 0.5 (I)
Smax / R ≦ 0.15 (II)
海島型複合繊維の荷重−伸度曲線が海成分の破断による降伏点を有している請求項1記載の高タフネス極細繊維用海島型複合繊維。   The sea-island composite fiber for high-toughness ultrafine fibers according to claim 1, wherein the load-elongation curve of the sea-island composite fiber has a yield point due to the breakage of the sea component. 降伏点における伸度と破断伸度の差が40%以上である請求項2記載の高タフネス極細繊維用海島型複合繊維。   The sea-island composite fiber for high toughness ultrafine fiber according to claim 2, wherein the difference between the elongation at yield point and the elongation at break is 40% or more. 島数が100以上、島成分の平均直径(r)が50nm〜2μmであり、島成分の間隔の平均値(S)と、4本の直線を引いたときこの直線状にある繊維外周に最も近い島成分と繊維外周との間隔(So)との比So/Sが0.1〜2.0の範囲である請求項1記載の高タフネス極細繊維用海島型複合繊維。   The number of islands is 100 or more, the average diameter (r) of the island component is 50 nm to 2 μm, and the average value (S) of the interval between the island components and the fiber outer circumference in this straight line when drawing four straight lines The sea-island composite fiber for high toughness ultrafine fibers according to claim 1, wherein the ratio So / S between the distance between the island component and the fiber outer periphery (So) is in the range of 0.1 to 2.0. 溶融紡糸時における、海成分の溶融粘度が島成分の溶融粘度よりも高い請求項1記載の高タフネス極細繊維用海島型複合繊維。   The sea-island composite fiber for high toughness ultrafine fibers according to claim 1, wherein the melt viscosity of the sea component during melt spinning is higher than the melt viscosity of the island component. 海成分がポリ乳酸、超高分子量ポリアルキレンオキサイド縮合系ポリマー、ポリエチレングリコール系化合物共重合ポリエステルおよび、ポリエチレングリコール系化合物と5−ナトリウムスルホイソフタル酸の共重合ポリエステルから選択される少なくとも1種のアルカリ水溶液易溶解性ポリマーであり、島成分に対する海成分の減量速度が200倍以上である請求項1記載の高タフネス極細繊維用海島型複合繊維。   At least one alkaline aqueous solution in which the sea component is selected from polylactic acid, ultrahigh molecular weight polyalkylene oxide condensation polymer, polyethylene glycol compound copolymer polyester, and polyethylene glycol compound and 5-sodium sulfoisophthalic acid copolymer polyester The sea-island composite fiber for high toughness ultrafine fibers according to claim 1, which is an easily soluble polymer and has a sea component weight reduction rate of 200 times or more with respect to the island component. 海成分が5−ナトリウムスルホイソフタル酸を6〜12モル%および分子量4000〜12000のポリエチレングリコールを3〜10重量%共重合したポリエチレンテレフタレートである請求項1記載の高タフネス極細繊維用海島型複合繊維。   The sea-island type composite fiber for high toughness ultrafine fibers according to claim 1, wherein the sea component is polyethylene terephthalate copolymerized with 6 to 12 mol% of 5-sodium sulfoisophthalic acid and 3 to 10 wt% of polyethylene glycol having a molecular weight of 4000 to 12000. . 海成分がナイロンでありギ酸に可溶である請求項1記載の高タフネス極細繊維用海島型複合繊維。   The sea-island type composite fiber for high toughness ultrafine fiber according to claim 1, wherein the sea component is nylon and soluble in formic acid.
JP2005291547A 2005-10-04 2005-10-04 Sea-island composite fiber for high toughness ultrafine fiber Active JP4676857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005291547A JP4676857B2 (en) 2005-10-04 2005-10-04 Sea-island composite fiber for high toughness ultrafine fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005291547A JP4676857B2 (en) 2005-10-04 2005-10-04 Sea-island composite fiber for high toughness ultrafine fiber

Publications (2)

Publication Number Publication Date
JP2007100243A JP2007100243A (en) 2007-04-19
JP4676857B2 true JP4676857B2 (en) 2011-04-27

Family

ID=38027460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005291547A Active JP4676857B2 (en) 2005-10-04 2005-10-04 Sea-island composite fiber for high toughness ultrafine fiber

Country Status (1)

Country Link
JP (1) JP4676857B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5178076B2 (en) * 2007-07-19 2013-04-10 帝人ファイバー株式会社 underwear
JP5395088B2 (en) * 2008-10-22 2014-01-22 帝人株式会社 bra
JP2011058124A (en) * 2009-09-10 2011-03-24 Teijin Fibers Ltd Polylactic acid microfiber
JP2011157646A (en) * 2010-01-29 2011-08-18 Teijin Fibers Ltd Polyester microfiber
KR101605933B1 (en) 2010-01-29 2016-03-23 도레이 카부시키가이샤 Sea-island composite fiber, ultrafine fiber, and composite die
JP2011156609A (en) * 2010-01-29 2011-08-18 Teijin Fibers Ltd Fabric for abrasive cloth
WO2012090538A1 (en) 2010-12-27 2012-07-05 東レ株式会社 Composite spinneret and method of manufacturing composite fiber
EP2722426B1 (en) 2011-06-15 2017-12-13 Toray Industries, Inc. Composite fiber
JP5821714B2 (en) * 2012-03-09 2015-11-24 東レ株式会社 Composite base and composite fiber manufacturing method
JP6094096B2 (en) * 2012-08-31 2017-03-15 東レ株式会社 Composite fiber and substrate for artificial leather using the same
JP6651849B2 (en) 2014-02-25 2020-02-19 東レ株式会社 Sea-island composite fiber, composite microfiber and textile products
JP2020033681A (en) 2018-03-13 2020-03-05 東レ株式会社 Sea-island type composite fiber, fiber structure and polyester composition excellent in hygroscopicity

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278213A (en) * 1985-09-26 1987-04-10 Toray Ind Inc Polyester conjugated yarn
JPH07118977A (en) * 1993-10-28 1995-05-09 Toray Ind Inc Conjugate yarn and cloth
JPH09316730A (en) * 1996-03-29 1997-12-09 Japan Vilene Co Ltd Islands-sea structure fiber and nonwoven cloth using the same
JPH10212629A (en) * 1997-01-24 1998-08-11 Toray Ind Inc Mixed yarn having different denier and different shrinkage filaments
JP2002107552A (en) * 1989-11-08 2002-04-10 Mitsubishi Rayon Co Ltd Plastic multi-filament type optical fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278213A (en) * 1985-09-26 1987-04-10 Toray Ind Inc Polyester conjugated yarn
JP2002107552A (en) * 1989-11-08 2002-04-10 Mitsubishi Rayon Co Ltd Plastic multi-filament type optical fiber
JPH07118977A (en) * 1993-10-28 1995-05-09 Toray Ind Inc Conjugate yarn and cloth
JPH09316730A (en) * 1996-03-29 1997-12-09 Japan Vilene Co Ltd Islands-sea structure fiber and nonwoven cloth using the same
JPH10212629A (en) * 1997-01-24 1998-08-11 Toray Ind Inc Mixed yarn having different denier and different shrinkage filaments

Also Published As

Publication number Publication date
JP2007100243A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4676857B2 (en) Sea-island composite fiber for high toughness ultrafine fiber
JP4473867B2 (en) Sea-island type composite fiber bundle and manufacturing method thereof
TWI579423B (en) Sea-island fiber
EP3112505B1 (en) Sea-island composite fiber, composite ultra-fine fiber, and fiber product
KR101415783B1 (en) Composite fiber
US9663876B2 (en) Sea-island composite fiber, mixed yarn and fiber product
JP2007262610A (en) Combined filament yarn
JP4705451B2 (en) Manufacturing method of sea-island type composite fiber
TWI633216B (en) Composite spinning nozzle, composite fiber, and manufacturing method of composite fiber
JP2014101613A (en) Ultra fine fiber
JP2007084946A (en) Splittable conjugate fiber
JP2012057278A (en) Ultra fine fiber
JP2005133250A (en) Core-sheath conjugate fiber
JP4995523B2 (en) False twisted yarn and method for producing the same
JP2015074853A (en) Sea-island composite fiber
JP2013185291A (en) Combined filament yarn
JP2020026599A (en) Water-repellent ultrafine fiber bundle and fabric comprising water-repellent ultrafine fiber bundle
JP2018162528A (en) Sea-island type composite fiber bundle
JP2012236158A (en) Yarn for liquid purifier, and liquid purifier
JP2009263831A (en) Fiber with sea-island-type conjugate cross section

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4676857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250