JP4698718B2 - Wind turbine generator group control device and control method - Google Patents

Wind turbine generator group control device and control method Download PDF

Info

Publication number
JP4698718B2
JP4698718B2 JP2008252056A JP2008252056A JP4698718B2 JP 4698718 B2 JP4698718 B2 JP 4698718B2 JP 2008252056 A JP2008252056 A JP 2008252056A JP 2008252056 A JP2008252056 A JP 2008252056A JP 4698718 B2 JP4698718 B2 JP 4698718B2
Authority
JP
Japan
Prior art keywords
wind
wind power
output
generator group
power generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008252056A
Other languages
Japanese (ja)
Other versions
JP2010084545A (en
Inventor
真一 近藤
康則 大野
倫行 内山
雅哉 一瀬
貢 松竹
孝志 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008252056A priority Critical patent/JP4698718B2/en
Priority to CN2009102045006A priority patent/CN101713376B/en
Priority to US12/570,169 priority patent/US8332077B2/en
Publication of JP2010084545A publication Critical patent/JP2010084545A/en
Application granted granted Critical
Publication of JP4698718B2 publication Critical patent/JP4698718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/04Control effected upon non-electric prime mover and dependent upon electric output value of the generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/047Automatic control; Regulation by means of an electrical or electronic controller characterised by the controller architecture, e.g. multiple processors or data communications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • F03D7/048Automatic control; Regulation by means of an electrical or electronic controller controlling wind farms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/82Forecasts
    • F05B2260/821Parameter estimation or prediction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/32Wind speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/321Wind directions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2101/00Special adaptation of control arrangements for generators
    • H02P2101/15Special adaptation of control arrangements for generators for wind-driven turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、風力エネルギーを利用して発電した電力を電力系統に供給する複数の風力発電装置から構成される風力発電装置群(ウィンドファーム)に関する。   The present invention relates to a wind power generator group (wind farm) including a plurality of wind power generators that supply electric power generated using wind energy to an electric power system.

近年、地球温暖化対策の一つとして、風力発電の導入が世界的に盛んになってきている。風力発電の大量導入にあたっては、費用対効果の観点から一定の地域に複数台の風力発電装置を設け、それらの風力発電装置群を統括して制御し運用するウィンドファームとして設置されることが多くなっている。   In recent years, the introduction of wind power generation has become popular worldwide as one of the measures against global warming. When introducing a large amount of wind power generation, it is often installed as a wind farm in which multiple wind power generation devices are installed in a certain area from a cost-effective viewpoint, and these wind power generation devices are controlled and operated in an integrated manner. It has become.

これまで、ウィンドファームおよび個々の風力発電装置に関して種々の提案がなされている。特許文献1では、複数台の風力発電装置で構成されるウィンドファームにおいて目標発電量が設定され、ウィンドファームを構成する各風力発電装置の合計出力電力を目標発電量に近づけるために、風力発電装置の間で保守履歴データや運転特性データなどの運転情報を交換し、風力発電装置の運転パターンを決定する方法が開示されている。   So far, various proposals have been made regarding wind farms and individual wind power generators. In Patent Document 1, a target power generation amount is set in a wind farm composed of a plurality of wind power generation devices, and the wind power generation device is used to bring the total output power of each wind power generation device constituting the wind farm closer to the target power generation amount. A method is disclosed in which operation information such as maintenance history data and operation characteristic data is exchanged to determine an operation pattern of the wind turbine generator.

特許文献2には、出力変動の大きい風力発電装置のパワーカーブの最大値をピッチ制御などで変更することにより出力変動を抑制する制御方法が記載されている。   Patent Document 2 describes a control method for suppressing output fluctuations by changing the maximum value of the power curve of a wind turbine generator with large output fluctuations by pitch control or the like.

特許文献3には、風力発電装置に蓄電器を接続し、設定した基準発電電力からのずれを蓄電器を充放電制御することによって調整し、発電電力の変動を抑制する制御方法が記載されている。   Patent Document 3 describes a control method in which a capacitor is connected to a wind power generator, a deviation from a set reference generated power is adjusted by charge / discharge control of the capacitor, and fluctuations in generated power are suppressed.

特許文献4には、風力発電装置にドップラー効果を利用したレーザ式風向風速計を設置し、風力発電装置の位置と離隔した地点の風向風速を計測することにより風力発電装置での近未来の風速を予測し、予測値に応じて制御を行うことにより発電出力を一定にする制御方法が記載されている。   In Patent Document 4, a laser-type anemometer utilizing the Doppler effect is installed in a wind power generator, and the wind speed of the near future in the wind power generator is measured by measuring the wind direction wind speed at a location separated from the position of the wind power generator. A control method is described in which power generation output is made constant by predicting the above and performing control according to the predicted value.

特開2002−349413号公報JP 2002-349413 A 特開2001−234845号公報JP 2001-234845 A 特開2002−27679号公報JP 2002-27679 A 特開2004−301116号公報JP 2004-301116 A

気象状況により発電出力が変動する風力発電装置の電力系統への導入が多くなるにつれて、その導入が将来さらに増えた場合の電力系統の電圧や周波数の維持に関する影響が懸念されている。   As wind power generators whose power generation output fluctuates depending on weather conditions are increasingly introduced into the power system, there are concerns about the effects of maintaining the voltage and frequency of the power system when the number of wind power generators increases in the future.

周波数の維持について言えば、これまでも各地域の電力会社が、主として需要の変動に対して種々の電源を組み合わせて需要と供給をバランスさせてきた。風力発電が電力系統に大量に連系された場合、従来の需要にいわばマイナスの負荷が重畳されることになる。需要の変動と風力発電出力の組み合わせによっては、これまで以上に高い需給調整能力が必要になることも予想される。   Speaking of frequency maintenance, power companies in each region have so far balanced demand and supply mainly by combining various power sources against fluctuations in demand. When a large amount of wind power generation is connected to the power system, a negative load is superimposed on the conventional demand. Depending on the combination of fluctuations in demand and wind power output, it is expected that a higher supply-demand adjustment capability will be required.

需要変動は、変化幅の小さい種々の振幅と周期を持った脈動成分や不規則な変動が重畳したものと考えられ、その成分は周期が数分までの微小変動、数分から10数分程度までの短周期変動、10数分以上の長周期変動の主要な3成分に分けられる。風力発電の発電出力においても同様に上述の3成分が含まれる。   Demand fluctuation is thought to be a superposition of pulsating components with various amplitudes and periods with small variation widths and irregular fluctuations, and the components are minute fluctuations of up to several minutes, ranging from several minutes to about 10 to several minutes. Are divided into three main components of a long period fluctuation of 10 minutes or more. The above three components are also included in the power generation output of wind power generation.

上記の需要変動に対して、周期数分程度までの微小変動は発電所の調速機を利用したガバナーフリー運転により調整が可能である。周期が数分から10数分程度までの短周期変動に対しては、周波数偏差等を検出して周波数調整発電所の発電機出力を変化させており、これを負荷周波数制御(LFC)と呼んでいる。周期がそれ以上長い長周期変動に対しては、経済性を考慮して各発電所に発電指令を送ることにより調整を行っており、これを経済負荷配分制御(ELD)と呼んでいる。   With respect to the above demand fluctuations, minute fluctuations up to a few minutes can be adjusted by governor-free operation using the governor of the power plant. For short cycle fluctuations with a period of several minutes to about 10 and several minutes, the frequency output is detected and the generator output of the frequency adjustment power plant is changed. This is called load frequency control (LFC). Yes. For long-period fluctuations with longer periods, adjustments are made by sending a power generation command to each power plant in consideration of economic efficiency, which is called economic load distribution control (ELD).

風力発電を大量に導入した場合、特に問題になるのは上記第2の負荷周波数制御(LFC)である。風力発電出力の変動が需要(負荷)変動に重畳された場合、周波数調整発電所の設備容量が不足することが考えられる。しかし、単純に周波数調整発電所の設備容量を大きくすることは経済的負担が大きく、何らかの代替手段が必要である。   When a large amount of wind power generation is introduced, the second load frequency control (LFC) is particularly problematic. When fluctuations in wind power generation output are superimposed on demand (load) fluctuations, it is conceivable that the installed capacity of the frequency adjustment power plant will be insufficient. However, simply increasing the installed capacity of the frequency-regulated power plant is an economic burden and requires some alternative means.

これまで、特許文献1および特許文献2に記載されているように、ウィンドファーム内の運転台数を調整したり、パワーカーブの最大値を小さく制限して出力変動を緩和することが検討されてきた。パワーカーブの最大値を制限する手法では変動はある程度緩和できるが、風速が急に低下した際には発電出力を低下させることになるため変動が発生し、当該電力系統に接続された例えば、火力発電所や原子力発電所などの電源や負荷(消費者)に電圧変動や周波数変動等の悪影響が生じる恐れがある。   So far, as described in Patent Document 1 and Patent Document 2, it has been studied to adjust the number of operating units in the wind farm or to limit the maximum value of the power curve to reduce the output fluctuation. . The method of limiting the maximum value of the power curve can alleviate the fluctuation to some extent, but when the wind speed suddenly drops, the power generation output will be reduced, so the fluctuation occurs, for example, thermal power connected to the power system There is a risk of adverse effects such as voltage fluctuations and frequency fluctuations on power supplies and loads (consumers) such as power plants and nuclear power plants.

また、特許文献3のように蓄電器(蓄電池)を設置する手法では、蓄電器の充放電制御を適切に行うことにより変動を緩和できるが、蓄電器を設置することによる風力発電事業者のコスト負担が大きくなる問題がある。   Moreover, in the method of installing a storage battery (storage battery) as in Patent Document 3, fluctuations can be mitigated by appropriately performing charge / discharge control of the storage battery, but the cost burden of the wind power generation company by installing the storage battery is large. There is a problem.

新たな高価な設備を設けることなく、近未来の風速を予測し予測値に基づく制御を行うことで、風力発電出力変動を低減あるいは抑制することはある程度可能である。特許文献4のようにドップラーレーザ式風向風速計を利用すれば、通常風向風速の計測を行っている風力発電装置の設置位置のみでなく、離隔した周辺位置での風向風速が計測できる利点がある。しかしドップラーレーザ式風向風速計では計測に必要な強度のレーザ光が届く範囲は限られており、特にウィンドファームの面積が広い場合にレーザ式風向風速計を設置する風力発電事業者のコスト負担が大きくなる問題がある。   It is possible to reduce or suppress wind power generation output fluctuation to some extent by predicting near-future wind speed and performing control based on the predicted value without providing new expensive equipment. If a Doppler laser anemometer is used as in Patent Document 4, there is an advantage that the wind direction wind speed can be measured not only at the installation position of the wind power generation apparatus that measures the normal wind direction wind speed but also at a remote peripheral position. . However, the Doppler laser anemometer has a limited range of laser light that is necessary for the measurement. Especially when the area of the wind farm is large, the cost burden of the wind power generation company that installs the laser anemometer There is a growing problem.

本発明の目的は、ウィンドファームから電力系統へ出力される電力の変動を抑制し、一定の出力を維持することにある。特に、電力系統制御の観点から有効な、数分から10数分程度の短周期変動をほぼ一定にできる、風力発電装置群の制御装置方式及び制御方法を提供することである。   The objective of this invention is suppressing the fluctuation | variation of the electric power output from a wind farm to an electric power grid | system, and maintaining a fixed output. In particular, it is an object of the present invention to provide a control device method and control method for a group of wind power generators that can effectively make short-cycle fluctuations of several minutes to 10 and several minutes effective from the viewpoint of power system control.

上記の目的を達成するため本発明は、電力系統に対して送電線を介して接続された可変回転数および可変ピッチ制御可能な複数台の風力発電装置から構成される風力発電装置群において、前記風力発電装置群は、各風力発電装置に設けられる風向風速計と、各風力発電装置に設けられるとともに通信ネットワークを介して各風力発電装置の風向、風力を含む運転情報を送受信する個別制御装置と、前記通信ネットワークを介して前記個別制御装置からの情報を受信して出力変動を演算処理する集中制御装置を備え、前記集中制御装置から各風力発電装置に送信される出力指令値に応じて前記風力発電装置群の運転を制御することを特徴とする。   In order to achieve the above object, the present invention provides a wind power generator group composed of a plurality of wind power generators connected to an electric power system via a transmission line and capable of variable rotation speed and variable pitch control. The wind power generator group includes a wind direction anemometer provided in each wind power generator, an individual control device provided in each wind power generator and transmitting / receiving operation information including wind direction and wind power of each wind power generator via a communication network, and , Comprising a centralized control device that receives information from the individual control device via the communication network and computes output fluctuations, and according to the output command value transmitted from the centralized control device to each wind turbine generator It controls the operation of the wind power generator group.

また、前記集中制御装置は、各風力発電装置から送付される運転情報を受信する送受信手段と、前記運転情報に基づき前記風力発電装置群に対する近未来の風速変動を予測する風速変動予測手段と、前記風速変動の予測に基づき前記風力発電装置群の近未来の出力変動を予測する出力予測手段と、前記風力発電装置群の合計出力が大きくなるときに風力エネルギーを風力発電装置群の回転エネルギーとして蓄積させ、前記風力発電装置群の合計出力が小さくなるときに回転エネルギーとして蓄積させた風力エネルギーを放出させる動的エネルギー蓄積指令手段とを備え、前記風力発電装置群の出力を一定に維持することを特徴とする。   In addition, the central control device is a transmission / reception means for receiving operation information sent from each wind power generator, wind speed fluctuation prediction means for predicting near-future wind speed fluctuation for the wind power generator group based on the operation information, Output prediction means for predicting near-future output fluctuations of the wind power generator group based on the wind speed fluctuation prediction, and wind energy as rotational energy of the wind power generator group when the total output of the wind power generator group becomes large Dynamic energy storage command means for storing and releasing wind energy stored as rotational energy when the total output of the wind power generator group decreases, and maintaining the output of the wind power generator group constant It is characterized by.

また、前記動的エネルギー蓄積指令手段は、前記出力予測手段により予測された前記風力発電装置群の合計出力が大きくなる時間帯に風力エネルギーを各風力発電装置の回転エネルギーとして蓄積させる回転数上昇指令手段と、予測された前記風力発電装置群の合計出力が小さくなる時間帯に各風力発電装置の回転エネルギーとして蓄積された風力エネルギーを放出させる回転数下降指令手段とを備えたことを特徴とする。   In addition, the dynamic energy accumulation command means is a rotation speed increase command for accumulating wind energy as rotational energy of each wind power generator during a time period when the total output of the wind power generator group predicted by the output predictor is large. And a rotational speed lowering command means for releasing the wind energy accumulated as the rotational energy of each wind power generator during a time period when the predicted total output of the wind power generator group is small. .

また、前記送電線に接続された少なくとも1台の蓄電装置を備え、前記集中制御装置からの出力指令により前記風力発電装置群の出力を一定に制御したとき、前記風速の予測誤差から前記一定出力からの逸脱があった場合に、前記蓄電装置の充放電電力によって前記逸脱を補償することを特徴とする。   In addition, when the output of the wind power generator group is controlled to be constant according to an output command from the central control device, the constant output is obtained from the wind speed prediction error, provided with at least one power storage device connected to the power transmission line. When there is a deviation from the above, the deviation is compensated by charge / discharge power of the power storage device.

また、前記集中制御装置と前記個別制御装置は同一のハードウェアに設けられた各々異なる制御ソフトウェアを有することを特徴とする。   Further, the central control device and the individual control device have different control software provided in the same hardware.

さらに、電力系統に対して送電線を介して接続された可変回転数および可変ピッチ制御可能な複数台の風力発電装置から構成される風力発電装置群の制御方法において、前記風力発電装置群は、各風力発電装置に設けられた個別制御装置と、通信ネットワークを介して各風力発電装置の風向、風力を含む運転情報を送受信し出力変動を演算処理する集中制御装置を備え、該集中制御装置からの出力指令値に応じて前記風力発電装置群の運転を制御することを特徴とする。   Furthermore, in the control method of a wind power generator group composed of a plurality of wind power generators that can be controlled with a variable rotation speed and variable pitch connected to a power system via a transmission line, the wind power generator group includes: An individual control device provided in each wind turbine generator and a central control device that transmits and receives operation information including wind direction and wind power of each wind turbine generator via a communication network, and calculates output fluctuations. From the central controller The operation of the wind power generator group is controlled according to the output command value.

さらに、各風力発電装置から送付される運転情報を受信し、前記運転情報に基づき前記風力発電装置群に対する近未来の風速変動を予測し、前記風速変動の予測に基づき前記風力発電装置群の近未来の出力変動を予測し、前記風力発電装置群の合計出力が大きくなるときに風力エネルギーを風力発電装置群の回転エネルギーとして蓄積させ、前記風力発電装置群の合計出力が小さくなるときに回転エネルギーとして蓄積させた風力エネルギーを放出させ、前記風力発電装置群の出力を一定に維持することを特徴とする。   Further, it receives the operation information sent from each wind power generator, predicts near-future wind speed fluctuations for the wind power generator group based on the operation information, and based on the prediction of the wind speed fluctuation, Predict output fluctuations in the future, accumulate wind energy as rotational energy of the wind power generator group when the total output of the wind power generator group increases, and rotate energy when the total output of the wind power generator group decreases The accumulated wind energy is discharged, and the output of the wind power generator group is maintained constant.

本発明は、各風力発電装置に設けられる個別制御装置と、個別制御装置の情報により出力予測演算を行う集中制御装置を備え、簡潔な構成でウィンドファーム内の各風力発電装置で計測した風向・風速の計測値から近未来のウィンドファームの出力変動を予測することができる。また、ウィンドファームの出力変動を各風力発電装置の回転数増減によって回転エネルギーとして蓄積・放出することによって出力変動を抑制し、ウィンドファームの出力を一定に保つことを可能とし電力系統への影響を軽減することができる。   The present invention includes an individual control device provided in each wind power generator and a centralized control device that performs output prediction calculation based on information of the individual control device, and the wind direction and the wind direction measured by each wind power generator in the wind farm with a simple configuration. The output fluctuation of the wind farm in the near future can be predicted from the measured wind speed. In addition, the output fluctuation of the wind farm can be stored and released as rotational energy by increasing or decreasing the rotation speed of each wind power generator, so that the output fluctuation can be suppressed and the output of the wind farm can be kept constant. Can be reduced.

また、ウィンドファームの出力変動抑制の目的で付加的に設置される蓄電装置の容量を低減することが可能となりコスト低減ができる。   In addition, it is possible to reduce the capacity of the power storage device additionally installed for the purpose of suppressing the output fluctuation of the wind farm, thereby reducing the cost.

以下に本発明の実施例を図面について説明する。図1は、本発明の一実施例の装置構成を示すブロック図である。ウィンドファーム100は電力系統7に一箇所で接続されており、電力系統7とウィンドファーム100から需要家8に対して電力を供給している。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an apparatus configuration of an embodiment of the present invention. The wind farm 100 is connected to the power system 7 at one location, and supplies power to the customer 8 from the power system 7 and the wind farm 100.

ウィンドファーム100は可変回転数及び可変ピッチ制御可能な複数の風力発電装置11、12、13で構成される。各風力発電装置は送電線9を介して電力系統7に接続される。風力発電装置11、12、13には風向風速計21、22、23と、個別制御装置31、32、33が接続されており、個別制御装置31、32、33は通信ネットワーク5を介して相互に接続されるとともに、集中制御装置41に接続される。42は各風力発電装置の出力特性データ等を記憶する記憶装置である。   The wind farm 100 is composed of a plurality of wind power generators 11, 12, and 13 that can control the variable rotation speed and variable pitch. Each wind power generator is connected to the electric power system 7 through a transmission line 9. An anemometer 21, 22, 23 and individual control devices 31, 32, 33 are connected to the wind power generators 11, 12, 13, and the individual control devices 31, 32, 33 are mutually connected via the communication network 5. And is connected to the centralized control device 41. Reference numeral 42 denotes a storage device that stores output characteristic data of each wind turbine generator.

矢印6で表される風向の風が吹いているとき、ウィンドファーム100の中で風速の変動が最初に到達するのは風力発電装置11である。風力発電装置11に付属する個別制御装置31は風向風速計21で計測した風向、風速を通信ネットワーク5を介して集中制御装置41に送信する。同様に他の風力発電装置の風向、風速データも集中制御装置41に送信される。集中制御装置41は、受信した風向データからウィンドファーム100内で風力発電装置11が最も風上にいることを判断し、風速データから他の風力発電装置12、13に到達する風速変動の時間変化を予測する。   When the wind of the wind direction represented by the arrow 6 is blowing, it is the wind power generator 11 that first reaches the fluctuation of the wind speed in the wind farm 100. The individual control device 31 attached to the wind power generator 11 transmits the wind direction and the wind speed measured by the wind direction anemometer 21 to the centralized control device 41 via the communication network 5. Similarly, wind direction and wind speed data of other wind turbine generators are also transmitted to the centralized controller 41. The centralized control device 41 determines from the received wind direction data that the wind power generator 11 is most upwind in the wind farm 100, and the time change of the wind speed fluctuation reaching the other wind power generators 12, 13 from the wind speed data. Predict.

図2は各風力発電装置に到達する風速の変動を予測する手法を示した模式図である。図2(a)は風力発電装置の配置と風向風力の関係を示す。図2(b)は風力変動の各風力発電装置への到達時間遅れを示す。風力発電装置の配置と風向風力の関係を示す。風速変動が最初に到達した風力発電装置11を基点として、他の風力発電装置までの距離Lと方角θは既知のデータとして記憶装置42にあらかじめ入力されているものとする。風力発電装置11で計測された風速から、風速変動が時刻T12に風力発電装置12に到達するまでの時間遅れT2は(数1)で表される。同様にウィンドファーム100内の他の風力発電装置13へ時刻T13に到達する風速変動の到達時間遅れT3が求められる。   FIG. 2 is a schematic diagram showing a method for predicting fluctuations in wind speed reaching each wind turbine generator. Fig.2 (a) shows the relationship between arrangement | positioning of a wind power generator, and a wind direction wind force. FIG.2 (b) shows the arrival time delay to each wind power generator of a wind force fluctuation | variation. The relationship between the arrangement of the wind power generator and the wind direction is shown. It is assumed that the distance L and the direction θ to the other wind power generators are input to the storage device 42 in advance as known data, starting from the wind power generator 11 at which the wind speed fluctuation first reaches. A time delay T2 from the wind speed measured by the wind turbine generator 11 until the wind speed fluctuation reaches the wind turbine generator 12 at time T12 is expressed by (Equation 1). Similarly, the arrival time delay T3 of the wind speed fluctuation reaching the other wind turbine generator 13 in the wind farm 100 at time T13 is obtained.

Figure 0004698718
図3は集中制御装置41の構成を示すブロック図である。図において、通信ネットワーク5から得られた各風力発電装置の風向、風速データ、出力データは送受信手段51を経由して風速変動予測手段52に入力されてウィンドファーム100全体の近未来の風速が予測される。風速予測データはさらに出力予測手段53に入力され、同じくウィンドファーム100全体の近未来の出力が予測される。出力予測データは次に動的エネルギー蓄積指令手段54に入力され、あらかじめ設定された予定出力と比較される。動的エネルギー蓄積指令手段54はさらに回転数上昇指令手段55と回転数下降指令手段56を有する。出力予測データが予定出力より高い場合は、回転数上昇指令手段55により風力発電装置の回転を高めて風力エネルギーを風力発電装置の回転エネルギーとして蓄積する。一方、出力予測データが予定出力より低い場合は、回転数下降指令手段56により風力発電装置の回転を低下させて蓄積された回転エネルギーを放出して出力の平均化を図る。記憶装置42に保存された各風力発電装置の出力特性データは、出力予測手段53、動的エネルギー蓄積指令手段54に与えられ、出力予測に用いられる。前記集中制御装置および個別制御装置は、コンピュータシステム上で作動する制御ソフトウェアから構成することができ、その場合は同一のコンピュータシステムに設けられた異なる制御ソフトウェアから構成することができる。
Figure 0004698718
FIG. 3 is a block diagram showing the configuration of the central control device 41. In the figure, the wind direction, wind speed data, and output data of each wind turbine generator obtained from the communication network 5 are input to the wind speed fluctuation predicting means 52 via the transmitting / receiving means 51 to predict the near-future wind speed of the entire wind farm 100. Is done. The wind speed prediction data is further input to the output prediction means 53, and the output in the near future of the entire wind farm 100 is also predicted. The output prediction data is then input to the dynamic energy storage command means 54 and compared with a preset scheduled output. The dynamic energy storage command means 54 further includes a rotation speed increase command means 55 and a rotation speed decrease command means 56. When the output prediction data is higher than the scheduled output, the rotation speed increase command means 55 increases the rotation of the wind turbine generator and accumulates the wind energy as the rotation energy of the wind turbine generator. On the other hand, when the output prediction data is lower than the scheduled output, the rotation speed decrease command means 56 reduces the rotation of the wind power generator and releases the accumulated rotational energy to average the output. The output characteristic data of each wind turbine generator stored in the storage device 42 is given to the output predicting means 53 and the dynamic energy storage command means 54 and used for output prediction. The central control device and the individual control device can be configured by control software that operates on a computer system, and in that case, can be configured by different control software provided in the same computer system.

図4は上記手法により予測された各風力発電装置に到達する風速変動予測結果を示したグラフである。図4(a)は、現在時点における風力発電装置11の風速変動の実測値を示す。また、図4(b)は、時刻T2経過後における風力発電装置12の風速変動の予測値を示す。同様に図4(c)は、時刻T3経過後における風力発電装置13の風速変動の予測値を示す。   FIG. 4 is a graph showing prediction results of wind speed fluctuations reaching each wind turbine generator predicted by the above method. Fig.4 (a) shows the measured value of the wind speed fluctuation | variation of the wind power generator 11 in the present time. FIG. 4B shows a predicted value of the wind speed fluctuation of the wind turbine generator 12 after the time T2. Similarly, FIG.4 (c) shows the predicted value of the wind speed fluctuation | variation of the wind power generator 13 after time T3 progress.

図5は風速と風力発電装置出力の関係(パワーカーブ)を表した特性図である。この特性データは予め集中制御装置41に接続された記憶装置42に保存してあり、ウィンドファーム出力予測演算時に集中制御装置41に呼び出される。またウィンドファーム100内に異なる特性の風力発電装置が設置してある場合には、ウィンドファーム100内に存在するすべての風力発電装置の特性データを保存して予測演算に用いる。   FIG. 5 is a characteristic diagram showing the relationship (power curve) between the wind speed and the wind turbine generator output. This characteristic data is stored in advance in the storage device 42 connected to the centralized control device 41, and is called by the centralized control device 41 during the wind farm output prediction calculation. When wind power generators having different characteristics are installed in the wind farm 100, the characteristic data of all wind power generators existing in the wind farm 100 are stored and used for the prediction calculation.

図6は図4の風速変動予測結果と、図5のパワーカーブから、ウィンドファーム100内の各風力発電装置の出力変動と、ウィンドファーム100の合計出力変動の予測結果を示した模式図である。図6(a)は各風力発電装置の出力予測を示し、各々濃度の異なるグラフ上の点P1、P2、P3が各時点における各風力発電装置の出力予測結果を示す。図6(b)はウィンドファーム100の予測合計出力を示し、上記P1、P2、P3を合計したものがウィンドファーム予測合計出力Psumである。Psumの変動範囲に基づいて一定値での安定制御が可能な出力を算出する。Psum’は一定制御の対象となる時間範囲(図6では20分)内での予測合計出力の最小値であり、これを一定制御の出力として設定する場合は、各風力発電装置への制御指令は図6のような出力制限が指示される。この場合に各風力発電装置への制御指令は図7のようになる。   FIG. 6 is a schematic diagram showing the prediction results of the wind speed fluctuation prediction results of FIG. 4 and the output fluctuation of each wind power generator in the wind farm 100 and the total output fluctuation of the wind farm 100 from the power curve of FIG. . FIG. 6A shows the output prediction of each wind turbine generator, and points P1, P2, and P3 on the graphs having different concentrations indicate the output prediction results of each wind turbine generator at each time point. FIG. 6B shows the predicted total output of the wind farm 100, and the sum of P1, P2 and P3 is the wind farm predicted total output Psum. An output capable of stable control at a constant value is calculated based on the fluctuation range of Psum. Psum ′ is the minimum value of the predicted total output within the time range (20 minutes in FIG. 6) subject to constant control, and when this is set as the output of constant control, the control command to each wind turbine generator Is instructed to limit the output as shown in FIG. In this case, the control command to each wind turbine generator is as shown in FIG.

図8は各風力発電装置への制御指令を示す模式図である。図8(a)は出力変動評価時間Teにおける各風力発電装置11、12、13の出力P1、P2、P3と、その合計であるウィンドファーム100の出力P1+P2+P3=Psumを示す。図8(b)は最小値Psumで制御を行った場合の出力制限制御結果を示す。Tcは出力制限指令周期である。   FIG. 8 is a schematic diagram showing a control command to each wind turbine generator. FIG. 8A shows the outputs P1, P2, and P3 of the wind turbine generators 11, 12, and 13 at the output fluctuation evaluation time Te, and the output P1 + P2 + P3 = Psum of the wind farm 100, which is the sum thereof. FIG. 8B shows the output restriction control result when the control is performed with the minimum value Psum. Tc is an output restriction command cycle.

図8において、各風力発電装置の制御指令の設定方法を(1)、(2)、(3)の各制御時刻について説明する。   In FIG. 8, the control command setting method for each wind turbine generator will be described for each control time of (1), (2), and (3).

(1)はP1+P2+P3>Psum’かつ、P1+P2<Psum’の場合であり、このときはほぼP1’=P2’=P3’かつ、P1’+P2’+P3’=Psum’となるように決定する。P1’<P1、P2’<P2、P3’<P3となる場合は、余力のある風力発電装置が不足分を負担するようにする。   (1) is a case where P1 + P2 + P3> Psum 'and P1 + P2 <Psum', and at this time, P1 '= P2' = P3 'and P1' + P2 '+ P3' = Psum 'are determined. When P1 ′ <P1, P2 ′ <P2, and P3 ′ <P3, the remaining wind power generator bears the shortage.

(2)はP1+P2>Psum’の場合であり、余力のあるP1、p2の出力を低下させてほぼP1’=P2’=P3’かつ、P1’+P2’+P3’=Psum’となるように決定する。エネルギー的にはP3’=0としても構わないが、1台だけ停止せずに運転した方がウィンドファーム内の運転を均一化でき、風力発電装置の劣化を均一化できるのでメンテナンスコストの点でメリットがある。   (2) is the case of P1 + P2> Psum ′, and the outputs of P1 and p2 having surplus power are reduced so that P1 ′ = P2 ′ = P3 ′ and P1 ′ + P2 ′ + P3 ′ = Psum ′. To do. In terms of energy, P3 ′ = 0 may be used, but operation without stopping only one unit can make the operation in the wind farm more uniform, and the deterioration of the wind power generator can be made uniform, so that the maintenance cost is high. There are benefits.

(3)はP1+P2+P3=Psum’の場合であり、このときは元の出力のままP1’=P1、P2’=P2、P3’=P3とする。   (3) is the case of P1 + P2 + P3 = Psum ', and in this case, P1' = P1, P2 '= P2, and P3' = P3 with the original output.

上述した図8の制御方式では、出力変動は抑制できるがPsum’以上の出力が出せないためエネルギーロスが大きくなる。そこで次に風力エネルギーを風力発電装置の回転エネルギーとして蓄えることによってエネルギーロスを小さくし、一定制御の出力を図6(b)の合計出力の平均値Psum’’まで上昇させる制御方式について説明する。図9は各風力発電装置への制御指令を示す模式図である。図9(a)は出力変動評価時間Teにおける各風力発電装置11、12、13の出力P1、P2、P3と、その合計であるウィンドファーム100の出力P1+P2+P3を示す。図9(b)はPsum’’で制御を行った場合の出力制限制御結果を示す。図10は風力発電装置の回転数−出力特性を示す特性図である。図10において、従来は点線で示すように各風速域において最大の出力を上げるように可変速制御を行っている。   In the control method of FIG. 8 described above, the output fluctuation can be suppressed, but the energy loss becomes large because the output higher than Psum 'cannot be output. Accordingly, a control method for reducing the energy loss by storing the wind energy as the rotational energy of the wind power generator and increasing the output of the constant control to the average value Psum ″ of the total output in FIG. FIG. 9 is a schematic diagram showing a control command to each wind turbine generator. FIG. 9A shows the outputs P1, P2, and P3 of the wind turbine generators 11, 12, and 13 at the output fluctuation evaluation time Te, and the output P1 + P2 + P3 of the wind farm 100, which is the sum thereof. FIG. 9B shows the output restriction control result when the control is performed with Psum ″. FIG. 10 is a characteristic diagram showing the rotational speed-output characteristic of the wind turbine generator. In FIG. 10, conventionally, variable speed control is performed so as to increase the maximum output in each wind speed region as indicated by a dotted line.

図9において、出力変動評価時間Teの予測発電量Psumの平均値をPsum’’と決める。そしてPsum’’よりも予測発電量の大きい時間帯(1)においては、図10に示す特性図に基づき、各風力発電装置への回転数指令値を最大出力回転数よりも上げて出力を下げるように制御し、風力エネルギーを風力発電装置の回転エネルギーとして蓄積する。一方Psum’’よりも予測発電量の小さい時間帯(2)においては、風力発電装置の回転数を徐々に下げることによって(1)の時間帯に蓄えた回転エネルギーを放出して、Psum’’の出力を維持するように制御する。   In FIG. 9, the average value of the predicted power generation amount Psum for the output fluctuation evaluation time Te is determined as Psum ″. In the time zone (1) where the predicted power generation amount is larger than Psum ″, based on the characteristic diagram shown in FIG. 10, the rotational speed command value for each wind turbine generator is increased above the maximum output rotational speed and the output is decreased. The wind energy is accumulated as the rotational energy of the wind power generator. On the other hand, in the time zone (2) where the predicted power generation amount is smaller than Psum ″, the rotational energy stored in the time zone (1) is released by gradually decreasing the rotational speed of the wind power generator, and Psum ″. Control to maintain the output of.

図11は複数の風力発電装置11、12、13に補助的に蓄電装置50を併設したウィンドファーム100に本発明を適用した場合のブロック図である。   FIG. 11 is a block diagram in a case where the present invention is applied to a wind farm 100 in which a power storage device 50 is supplementarily provided in a plurality of wind power generators 11, 12, and 13.

従来、ウィンドファームの出力変動を抑制する目的で蓄電装置を設置する場合には、ウィンドファームで発生するすべての出力変動を蓄電装置の充放電により吸収する必要があるため、蓄電装置の容量が大きくなりコストが高くなる問題があった。本発明では蓄電装置を用いることなくウィンドファームの出力を一定制御できるが、各風力発電装置の近未来の風速の予測に誤差が生じる可能性がありウィンドファーム出力が一定値に対して僅かにずれる。蓄電装置50はこのずれの分を充放電により補償すれば良く、従来に比べて蓄電装置の容量を小さくでき蓄電装置の設置コストを削減できる。   Conventionally, when installing a power storage device for the purpose of suppressing the output fluctuation of the wind farm, it is necessary to absorb all output fluctuations generated in the wind farm by charging and discharging the power storage device, so the capacity of the power storage device is large. There is a problem that the cost becomes high. In the present invention, the output of the wind farm can be controlled constantly without using a power storage device. However, there is a possibility that an error may occur in the prediction of the wind speed in the near future of each wind turbine generator, and the output of the wind farm is slightly deviated from the constant value. . The power storage device 50 only has to compensate for this deviation by charging and discharging, and the capacity of the power storage device can be reduced compared to the conventional case, and the installation cost of the power storage device can be reduced.

本発明の実施例の概念を示すウィンドファームのブロック図である。It is a block diagram of the wind farm which shows the concept of the Example of this invention. 各風力発電装置への風速変動の到達時間の予測方法を表す模式図である。It is a schematic diagram showing the prediction method of the arrival time of the wind speed fluctuation | variation to each wind power generator. 本発明実施例の集中制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the centralized control apparatus of this invention Example. 各風力発電装置の風速変動の予測結果を表すグラフである。It is a graph showing the prediction result of the wind speed fluctuation | variation of each wind power generator. 風力発電装置の予測風速と出力電力の特性を表す特性図である。It is a characteristic view showing the characteristic of the prediction wind speed and output electric power of a wind power generator. 各風力発電装置の出力とウィンドファーム合計出力の予測結果を表すグラフである。It is a graph showing the prediction result of the output of each wind power generator, and a wind farm total output. 風力発電装置のパワーカーブを出力制限により変更する方式を表す模式図である。It is a schematic diagram showing the system which changes the power curve of a wind power generator by output restrictions. 各風力発電装置への出力制限制御によりウィンドファーム出力を一定に保つ方式を表す模式図である。It is a schematic diagram showing the system which keeps a wind farm output constant by the output restriction control to each wind power generator. 各風力発電装置への回転数指令により、風力エネルギーを回転エネルギーとして蓄積・放出してウィンドファーム出力を一定に保つ方式を表した模式図である。It is the schematic diagram showing the system which accumulate | stores and discharge | releases wind energy as rotational energy by the rotation speed command to each wind power generator, and keeps a wind farm output constant. 風力発電装置の回転数と出力の関係を表す特性図である。It is a characteristic view showing the relationship between the rotation speed of a wind power generator and an output. 本発明の蓄電装置を併設したウィンドファームを示すブロック図である。It is a block diagram which shows the wind farm which provided the electrical storage apparatus of this invention side by side.

符号の説明Explanation of symbols

5…通信ネットワーク、6…風向、7…電力系統、8…需要家、9…送電線、
11、12、13…風力発電装置、21、22、23…風向風速計、31、32、33…個別制御装置、41…集中制御装置、42…記憶装置、50…蓄電装置、51…送受信手段、52…風速変動予測手段、53…出力予測手段、54…動的エネルギー蓄積指令手段、55…回転数上昇指令手段、56…回転数下降指令手段、100…ウィンドファーム
5 ... communication network, 6 ... wind direction, 7 ... electric power system, 8 ... customer, 9 ... transmission line,
DESCRIPTION OF SYMBOLS 11, 12, 13 ... Wind power generator, 21, 22, 23 ... Wind direction anemometer, 31, 32, 33 ... Individual control device, 41 ... Central control device, 42 ... Memory | storage device, 50 ... Power storage device, 51 ... Transmission / reception means 52 ... Wind speed fluctuation prediction means, 53 ... Output prediction means, 54 ... Dynamic energy storage command means, 55 ... Speed increase command means, 56 ... Speed decrease command means, 100 ... Wind farm

Claims (7)

電力系統に対して送電線を介して接続された可変回転数および可変ピッチ制御可能な複数台の風力発電装置から構成される風力発電装置群の制御装置において、
前記風力発電装置群は、各風力発電装置に設けられる風向風速計と、出力変動を演算処理する集中制御装置と、各風力発電装置に設けられるとともに通信ネットワークを介して各風力発電装置の風向、風力を含む運転情報を前記集中制御装置との間で送受信する個別制御装置とを備え、
前記集中制御装置は前記通信ネットワークを介して前記個別制御装置からの情報を受信して出力変動を演算処理すると共に、
集中制御装置は、各風力発電装置から送付される運転情報を受信する送受信手段と、前記運転情報に基づき前記風力発電装置群に対する近未来の風速変動を予測する風速変動予測手段と、前記風速変動の予測に基づき前記風力発電装置群の近未来の出力変動を予測する出力予測手段と、前記風力発電装置群の合計出力が大きくなるときに風カエネルギーを風力発電装置群の回転エネルギーとして蓄積させ、前記風力発電装置群の合計出力が小さくなるときに回転エネルギーとして蓄積させた風カエネルギーを放出させる動的エネルギー蓄積指令手段とを備え、前記風力発電装置群の出力を一定に維持し、
前記風力発電装置群の制御装置は、前記集中制御装置から各風力発電装置に送信される出力指令値に応じて前記風力発電装置群の運転を制御することを特徴とする風力発電装置群の制御装置。
In the control device of the wind turbine generator group composed of a plurality of wind turbine generators that can be controlled with a variable rotation speed and variable pitch connected to the power system via a transmission line,
The wind power generation device group includes a wind direction anemometer provided in each wind power generation device, a centralized control device that computes output fluctuation , a wind direction of each wind power generation device provided in each wind power generation device and via a communication network, An individual control device that transmits and receives operation information including wind power to and from the central control device ,
The centralized control device receives information from the individual control device via the communication network and computes output fluctuations ,
The centralized control device includes a receiving means for receiving operation information sent from the wind turbine generator, a wind velocity fluctuation estimation means for estimating the wind velocity fluctuations in the near future for the wind turbine generator groups based on the operation information, the air velocity Output prediction means for predicting near-future output fluctuations of the wind turbine generator group based on fluctuation prediction, and storing wind energy as rotational energy of the wind turbine generator group when the total output of the wind turbine generator group becomes large Dynamic energy storage command means for releasing wind energy stored as rotational energy when the total output of the wind power generator group decreases , and maintaining the output of the wind power generator group constant ,
The wind turbine generator group control apparatus controls the operation of the wind turbine generator group according to an output command value transmitted from the centralized controller to each wind turbine generator. apparatus.
請求項に記載の風力発電装置群の制御装置において、
前記動的エネルギー蓄積指令手段は、前記出力予測手段により予測された前記風力発電装置群の合計出力が大きくなる時間帯に風力エネルギーを各風力発電装置の回転エネルギーとして蓄積させる回転数上昇指令手段と、予測された前記風力発電装置群の合計出力が小さくなる時間帯に各風力発電装置の回転エネルギーとして蓄積された風力エネルギーを放出させる回転数下降指令手段とを備えたことを特徴とする風力発電装置群の制御装置。
In the control apparatus of the wind power generator group according to claim 1 ,
The dynamic energy accumulation command means includes a rotation speed increase command means for accumulating wind energy as rotational energy of each wind power generator in a time zone in which the total output of the wind power generator group predicted by the output predictor is large. Wind power generation, comprising: a rotation speed decrease command means for releasing wind energy accumulated as rotation energy of each wind power generator in a time zone when the predicted total output of the wind power generator group is small Control device for the device group.
請求項1又は2に記載の風力発電装置群において、
前記送電線に接続された少なくとも1台の蓄電装置を備え、前記集中制御装置からの出力指令により前記風力発電装置群の出力を一定に制御したとき、前記風速の予測誤差から前記一定出力からの逸脱があった場合に、前記蓄電装置の充放電電力によって前記逸脱を補償することを特徴とする風力発電装置群の制御装置。
In the wind power generator group according to claim 1 or 2 ,
When at least one power storage device connected to the power transmission line is provided, and when the output of the wind power generator group is controlled to be constant according to an output command from the centralized control device, from the wind speed prediction error, When there is a deviation, the deviation is compensated by charge / discharge power of the power storage device.
請求項1乃至のいずれか1項に記載の風力発電装置群において、
前記集中制御装置と前記個別制御装置は同一のハードウェアに設けられた各々異なる制御ソフトウェアを有することを特徴とする風力発電装置群の制御装置。
In the wind power generator group according to any one of claims 1 to 3 ,
The centralized control device and the individual control device have different control software provided on the same hardware, respectively.
請求項1乃至4のいずれか1項に記載の風力発電装置群の制御装置において、In the control apparatus of the wind power generator group of any one of Claims 1 thru | or 4,
前記風速変動予測手段は、風速の変動が最初に到達する風力発電装置の風速データから他の風力発電装置に到達する風速変動の時間変化を予測することを特徴とする風力発電装置群の制御装置。  The wind speed fluctuation predicting means predicts a time change of wind speed fluctuation reaching another wind power generation apparatus from wind speed data of the wind power generation apparatus where the wind speed fluctuation first arrives. .
電力系統に対して送電線を介して接続された可変回転数および可変ピッチ制御可能な複数台の風力発電装置から構成される風力発電装置群の制御方法において、
前記風力発電装置群は、各風力発電装置に設けられた個別制御装置と、通信ネットワークを介して各風力発電装置の風向、風力を含む運転情報を送受信し出力変動を演算処理する集中制御装置を備え、
各風力発電装置から送付される運転情報を受信し、前記運転情報に基づき前記風力発電装置群に対する近未来の風速変動を予測し、前記風速変動の予測に基づき前記風力発電装置群の近未来の出力変動を予測し、前記風力発電装置群の合計出力が大きくなるときに風カエネルギーを風力発電装置群の回転エネルギーとして蓄積させ、前記風力発電装置群の合計出力が小さくなるときに回転エネルギーとして蓄積させた風カエネルギ―を放出させ、前記風力発電装置群の出力を一定に維持し、
前記集中制御装置からの出力指令値に応じて前記風力発電装置群の運転を制御することを特徴とする風力発電装置群の制御方法。
In a method of controlling a wind turbine generator group composed of a plurality of wind turbine generators that can be controlled with a variable rotation speed and variable pitch connected to a power system via a transmission line,
The wind power generator group includes a central control device that transmits and receives the operation information including the wind direction and wind power of each wind power generator via the communication network and the individual control device provided in each wind power generator, and calculates the output fluctuation. Prepared,
Receiving the operation information sent from each wind turbine generator, predicting near-future wind speed fluctuations for the wind turbine generator group based on the operation information, and based on the prediction of the wind speed fluctuation Predicting output fluctuations, storing wind energy as rotational energy of the wind power generator group when the total output of the wind power generator group increases, and as rotational energy when the total output of the wind power generator group decreases The accumulated wind energy is discharged, the output of the wind power generator group is kept constant,
A method for controlling a wind power generator group, comprising controlling the operation of the wind power generator group in accordance with an output command value from the central control device.
請求項6に記載の風力発電装置群の制御方法において、前記近未来の風速変動の予測は、風速の変動が最初に到達する風力発電装置の風速データから他の風力発電装置に到達する風速変動の時間変化を予測することで行うことを特徴とする発電装置群の制御方法。The wind power generator group control method according to claim 6, wherein the prediction of the near-future wind speed fluctuation is based on wind speed fluctuation that reaches another wind power generator from wind speed data of the wind power generator that the wind speed fluctuation reaches first. A method for controlling a power generation device group, which is performed by predicting a time change of the power generation device.
JP2008252056A 2008-09-30 2008-09-30 Wind turbine generator group control device and control method Active JP4698718B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008252056A JP4698718B2 (en) 2008-09-30 2008-09-30 Wind turbine generator group control device and control method
CN2009102045006A CN101713376B (en) 2008-09-30 2009-09-29 Controller and control method for wind turbine generator set
US12/570,169 US8332077B2 (en) 2008-09-30 2009-09-30 Controller and control method for a wind farm including a plurality of wind turbine generators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008252056A JP4698718B2 (en) 2008-09-30 2008-09-30 Wind turbine generator group control device and control method

Publications (2)

Publication Number Publication Date
JP2010084545A JP2010084545A (en) 2010-04-15
JP4698718B2 true JP4698718B2 (en) 2011-06-08

Family

ID=42056602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008252056A Active JP4698718B2 (en) 2008-09-30 2008-09-30 Wind turbine generator group control device and control method

Country Status (3)

Country Link
US (1) US8332077B2 (en)
JP (1) JP4698718B2 (en)
CN (1) CN101713376B (en)

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3918837B2 (en) * 2004-08-06 2007-05-23 株式会社日立製作所 Wind power generator
US7642666B2 (en) * 2006-11-02 2010-01-05 Hitachi, Ltd. Wind power generation apparatus, wind power generation system and power system control apparatus
JP4995209B2 (en) * 2009-01-05 2012-08-08 三菱重工業株式会社 Wind power generator and wind direction estimating method for wind power generator
JP5550283B2 (en) * 2009-08-06 2014-07-16 三菱重工業株式会社 Wind turbine generator, wind turbine generator control method, wind turbine generator system, and wind turbine generator system control method
WO2012056564A1 (en) 2010-10-29 2012-05-03 三菱重工業株式会社 Control device for wind-powered electricity-generating device, wind farm, and control method for wind-powered electricity generating device
JP5342496B2 (en) * 2010-04-16 2013-11-13 株式会社日立製作所 Wind turbine generator group control device and control method thereof
DE102010023038A1 (en) * 2010-06-08 2011-12-08 Repower Systems Ag Wind energy plant and method for operating a wind energy plant
US7939970B1 (en) * 2010-07-26 2011-05-10 General Electric Company Variable frequency wind plant
JP5447282B2 (en) * 2010-08-11 2014-03-19 新神戸電機株式会社 Lead-acid battery and lead-acid battery system for natural energy utilization system
EP2431605A1 (en) * 2010-09-21 2012-03-21 Siemens Aktiengesellschaft A method of and a device for determining a characteristic blade frequency of a wind turbine rotor, and a method of operating a wind turbine
GB2491548A (en) * 2010-09-30 2012-12-12 Vestas Wind Sys As Over-rating control of a wind turbine power plant
US20120104753A1 (en) 2010-10-29 2012-05-03 Mitsubishi Heavy Industries, Ltd. Control system of wind power generator, wind farm, and method for controlling wind power generator
CA2728788A1 (en) * 2010-10-29 2012-04-29 Mitsubishi Heavy Industries, Ltd. Control system of wind power generator, wind farm, and method for controlling wind power generator
JP5492054B2 (en) * 2010-11-12 2014-05-14 株式会社日立製作所 Wind turbine generator group control device and control method
JP5427762B2 (en) * 2010-12-16 2014-02-26 株式会社日立製作所 Power conversion device, power conversion device control device, and power conversion device control method
DE102011003799C5 (en) * 2011-02-08 2017-10-26 Wobben Properties Gmbh Method for determining lost energy
WO2012111115A1 (en) * 2011-02-16 2012-08-23 株式会社安川電機 Power converter device for wind-power electricity-generation, wind-power electricity-generation device, wind farm, and wind turbine manufacturing method
US9002483B1 (en) 2011-03-18 2015-04-07 Rockwell Collins, Inc. Diploid control of water heaters
US8606418B1 (en) 2011-03-18 2013-12-10 Rockwell Collins, Inc. Wind prediction for wind farms through the use of weather radar
US8489247B1 (en) * 2011-03-18 2013-07-16 Rockwell Collins, Inc. Agent-based chaotic control of wind turbines
US8849737B1 (en) 2011-03-18 2014-09-30 Rockwell Collins, Inc. Prediction method of predicting a future state of a system
US10519931B2 (en) 2011-05-31 2019-12-31 Vestas Wind Systems A/S Systems and methods for generating an inertial response to a change in the voltage of an electrical grid
US9728969B2 (en) * 2011-05-31 2017-08-08 Vestas Wind Systems A/S Systems and methods for generating an inertial response to a change in the voltage of an electricial grid
EP2725677A4 (en) * 2011-06-22 2015-11-25 Kawasaki Heavy Ind Ltd Control method and control system for parallel operation of different types of power generation apparatuses
JP2013011200A (en) * 2011-06-28 2013-01-17 Mitsubishi Heavy Ind Ltd Operation monitoring system, operation monitoring method, and program
US20130003071A1 (en) * 2011-06-30 2013-01-03 Catch the Wind, Inc. System and Method of In Situ Wind Turbine Blade Monitoring
WO2013021481A1 (en) * 2011-08-10 2013-02-14 三菱重工業株式会社 Control device for wind power plant and control method for wind power plant
EP2557311A1 (en) * 2011-08-12 2013-02-13 kk-electronic a/s A method for controlling a wind power park and a wind power park controlled by such method
DE102011081795A1 (en) * 2011-08-30 2013-02-28 Wobben Properties Gmbh Method for operating a wind energy plant
US9217415B2 (en) * 2011-10-14 2015-12-22 Vestas Wind Systems A/S Estimation of wind properties using a light detection and ranging device
US9234506B2 (en) * 2011-10-14 2016-01-12 Vestas Wind Systems A/S Estimation of wind properties using a light detection and ranging device
CN102427247A (en) * 2011-10-24 2012-04-25 三一电气有限责任公司 Wind power generation field power adjusting system and adjusting method thereof
US9644610B2 (en) * 2011-12-06 2017-05-09 Vestas Wind Systems A/S Warning a wind turbine generator in a wind park of an extreme wind event
DE102011088313A1 (en) * 2011-12-12 2013-06-13 Wobben Properties Gmbh Method for operating a wind turbine or a wind farm
EP2610487A1 (en) * 2011-12-28 2013-07-03 Siemens Aktiengesellschaft Wind turbine controller and method for controlling a wind turbine to provide redundancy
US9876464B2 (en) * 2012-01-05 2018-01-23 Georgy Mamdouh Apparatus and method for renewable energy system
DK2639448T3 (en) * 2012-03-15 2017-05-22 Siemens Ag Method and apparatus for operating a wind turbine that takes power losses into account
US20130300115A1 (en) * 2012-05-08 2013-11-14 Johnson Controls Technology Company Systems and methods for optimizing power generation in a wind farm turbine array
US20130317748A1 (en) * 2012-05-22 2013-11-28 John M. Obrecht Method and system for wind velocity field measurements on a wind farm
US20130320674A1 (en) * 2012-05-30 2013-12-05 Clipper Windpower, Llc Net Present Value Optimized Wind Turbine Operation
DE102012011210A1 (en) * 2012-06-06 2013-12-12 Rwe Innogy Gmbh Target value-dependent control of a wind farm
DE102012011357A1 (en) * 2012-06-11 2013-12-12 Rwe Innogy Gmbh Wind turbine control system and system for controlling a wind farm
DE102012013896A1 (en) 2012-07-13 2014-01-16 E.N.O. Energy Systems Gmbh Wind turbine
WO2014026689A1 (en) * 2012-08-15 2014-02-20 Vestas Wind Systems A/S Wind power plant control system, wind power plant including wind power plant control system and method of controlling wind power plant
CN104620458B (en) * 2012-09-17 2017-07-04 维斯塔斯风力系统集团公司 Determine the method and power plant controller of each set point in power plant controller
US9276425B2 (en) 2012-12-28 2016-03-01 Younicos Inc. Power management systems with dynamic target state of charge
US9512820B2 (en) * 2013-02-19 2016-12-06 Siemens Aktiengesellschaft Method and system for improving wind farm power production efficiency
US20140312620A1 (en) * 2013-04-17 2014-10-23 General Electric Company Method and apparatus for improving grid stability in a wind farm
DE102013207264A1 (en) 2013-04-22 2014-10-23 Wobben Properties Gmbh Method for controlling a wind farm
DE102013208204A1 (en) * 2013-05-06 2014-11-06 Aktiebolaget Skf Account rolling device and method for operating power generation plants
WO2015036010A1 (en) * 2013-09-10 2015-03-19 Siemens Aktiengesellschaft A technique for setting a controlled component of a wind turbine based on weather prediction
US9605450B2 (en) 2014-05-20 2017-03-28 Ford Global Technologies, Llc Vehicle door closure system including speed-based latch release
JP6383301B2 (en) * 2015-02-10 2018-08-29 株式会社東芝 Power storage device control device, wind power generation system, and power storage device control method
CN107429669B (en) * 2015-02-12 2020-07-07 维斯塔斯风力系统集团公司 Control system with local and central controllers for a wind turbine system with multiple rotors
US10753338B2 (en) 2015-03-23 2020-08-25 Vestas Wind Systems A/S Control of a multi-rotor wind turbine system using a central controller to calculate local control objectives
CN105068148B (en) * 2015-07-14 2017-06-27 北京金风科创风电设备有限公司 Wind power plant gust prediction method and system
AT15428U1 (en) 2016-03-16 2017-08-15 Uptime Holding Gmbh Method for determining the wind speed and installation for carrying it out
CN106246467B (en) * 2016-03-18 2018-07-10 华北理工大学 The wind-driven power generation control system and its control method of wind power plant
ES2875766T3 (en) 2016-04-07 2021-11-11 Vestas Wind Sys As Control of a wind turbine taking noise into account
CN107304746B (en) 2016-04-20 2020-07-17 北京天诚同创电气有限公司 Wind generating set and operation control method and device thereof
US10581249B2 (en) 2017-11-14 2020-03-03 Inventus Holdings, Llc Battery energy storage system integrated with electrical generation site
EP3721301A1 (en) * 2017-12-06 2020-10-14 Vestas Wind Systems A/S Model predictive control in local systems
CN108798997B (en) * 2018-06-28 2020-02-07 北京金风科创风电设备有限公司 Control method, device, controller and system of wind generating set
CN111259570B (en) * 2020-02-26 2023-10-27 沈阳工业大学 Wind farm active standby quantization method based on information physical system
JP7451297B2 (en) 2020-05-21 2024-03-18 株式会社東芝 Power control device and power control method
JP2021191095A (en) * 2020-05-29 2021-12-13 株式会社日立製作所 Power storage system control device, power storage system, and program
WO2022015493A1 (en) 2020-07-13 2022-01-20 WindESCo, Inc. Methods and systems of advanced yaw control of a wind turbine
CN115680998A (en) * 2022-11-15 2023-02-03 盛东如东海上风力发电有限责任公司 Wind power plant output adjusting method and system based on power-adjustable fan

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349413A (en) * 2001-05-24 2002-12-04 Mitsubishi Electric Corp Wind power generation system
JP2004289896A (en) * 2003-03-19 2004-10-14 Mitsubishi Electric Corp Wind turbine generator system
JP2006022792A (en) * 2004-07-09 2006-01-26 Topy Ind Ltd Wind power generating system capable of increasing energy efficiency and method of controlling wind power generating system

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285481A (en) * 1979-06-04 1981-08-25 Biscomb Lloyd I Multiple wind turbine tethered airfoil wind energy conversion system
US5278773A (en) * 1990-09-10 1994-01-11 Zond Systems Inc. Control systems for controlling a wind turbine
US5155375A (en) * 1991-09-19 1992-10-13 U.S. Windpower, Inc. Speed control system for a variable speed wind turbine
US6420795B1 (en) * 1998-08-08 2002-07-16 Zond Energy Systems, Inc. Variable speed wind turbine generator
JP3250147B2 (en) * 1997-10-22 2002-01-28 株式会社日立製作所 Method and apparatus for estimating frequency characteristics of power system
JP4559577B2 (en) 2000-02-22 2010-10-06 沖縄電力株式会社 Output control method for operating multiple wind turbine generators
DE10011393A1 (en) * 2000-03-09 2001-09-13 Tacke Windenergie Gmbh Control system for a wind turbine
US20020029097A1 (en) * 2000-04-07 2002-03-07 Pionzio Dino J. Wind farm control system
AU2001274396A1 (en) * 2000-05-23 2001-12-03 Vestas Wind Systems A/S Variable speed wind turbine having a matrix converter
JP3905692B2 (en) 2000-07-10 2007-04-18 三菱重工業株式会社 Wind power generation control method
WO2002066974A2 (en) * 2001-02-19 2002-08-29 Rosemount Analytical Inc. Improved generator monitoring, control and efficiency
CA2460724C (en) * 2001-09-28 2013-03-12 Aloys Wobben Method for operating a wind park
ATE440315T1 (en) * 2001-09-28 2009-09-15 Vestas Wind Sys As METHOD AND COMPUTER SYSTEM FOR PROCESSING OPERATING DATA OF WIND TURBINE SYSTEMS
US7015595B2 (en) * 2002-02-11 2006-03-21 Vestas Wind Systems A/S Variable speed wind turbine having a passive grid side rectifier with scalar power control and dependent pitch control
US6975925B1 (en) * 2002-03-19 2005-12-13 Windlynx Systems, B.V. Forecasting an energy output of a wind farm
US6858953B2 (en) * 2002-12-20 2005-02-22 Hawaiian Electric Company, Inc. Power control interface between a wind farm and a power transmission system
US20070132247A1 (en) * 2003-03-03 2007-06-14 Stephen Galayda Electric power generation system
JP4102278B2 (en) 2003-03-19 2008-06-18 三菱電機株式会社 Wind power generation system
DE10320087B4 (en) * 2003-05-05 2005-04-28 Aloys Wobben Process for operating a wind park consisting of a number of wind energy plants comprises controlling the operations of each plant until the net electrical power is supplied up to a predetermined maximum value
US7042110B2 (en) * 2003-05-07 2006-05-09 Clipper Windpower Technology, Inc. Variable speed distributed drive train wind turbine system
US7233129B2 (en) * 2003-05-07 2007-06-19 Clipper Windpower Technology, Inc. Generator with utility fault ride-through capability
EP1665494B2 (en) * 2003-09-03 2023-06-28 Siemens Gamesa Renewable Energy Service GmbH Method for operating or controlling a wind turbine and method for providing primary control power by means of wind turbines
US7318154B2 (en) * 2003-09-29 2008-01-08 General Electric Company Various methods and apparatuses to provide remote access to a wind turbine generator system
CA2455689A1 (en) * 2004-01-23 2005-07-23 Stuart Energy Systems Corporation System for controlling hydrogen network
US7317260B2 (en) * 2004-05-11 2008-01-08 Clipper Windpower Technology, Inc. Wind flow estimation and tracking using tower dynamics
DE102004048341A1 (en) * 2004-10-01 2006-04-13 Repower Systems Ag Wind farm with robust reactive power regulation and method of operation
DE102004056254B4 (en) * 2004-11-22 2006-11-09 Repower Systems Ag Method for optimizing the operation of wind turbines
DE102004060943A1 (en) * 2004-12-17 2006-07-06 Repower Systems Ag Wind farm power control and method
US7298059B2 (en) * 2004-12-17 2007-11-20 General Electric Company System and method for operating a wind farm under high wind speed conditions
US7227275B2 (en) * 2005-02-01 2007-06-05 Vrb Power Systems Inc. Method for retrofitting wind turbine farms
WO2006127844A2 (en) * 2005-05-24 2006-11-30 Satcon Technology Corporation Device, system, and method for providing a low-voltage fault ride-through for a wind generator farm
US8649911B2 (en) * 2005-06-03 2014-02-11 General Electric Company System and method for operating a wind farm under high wind speed conditions
US7199482B2 (en) * 2005-06-30 2007-04-03 General Electric Company System and method for controlling effective wind farm power output
US7476985B2 (en) * 2005-07-22 2009-01-13 Gamesa Innovation & Technology, S.L. Method of operating a wind turbine
US20070124025A1 (en) * 2005-11-29 2007-05-31 General Electric Company Windpark turbine control system and method for wind condition estimation and performance optimization
US7345373B2 (en) * 2005-11-29 2008-03-18 General Electric Company System and method for utility and wind turbine control
US7613548B2 (en) * 2006-01-26 2009-11-03 General Electric Company Systems and methods for controlling a ramp rate of a wind farm
US7346462B2 (en) * 2006-03-29 2008-03-18 General Electric Company System, method, and article of manufacture for determining parameter values associated with an electrical grid
US8032614B2 (en) * 2006-04-30 2011-10-04 General Electric Company Method for configuring a windfarm network
JP2008011607A (en) * 2006-06-28 2008-01-17 Hitachi Ltd Speed-variable wind turbine power generation system
JP4796974B2 (en) * 2007-01-26 2011-10-19 株式会社日立産機システム Hybrid system of wind power generator and power storage device, wind power generation system, power control device
US7509190B2 (en) * 2007-04-03 2009-03-24 Tenaska Power Services Co. Method for administering an intermittent uncontrollable electric power generating facility
ES2701707T3 (en) * 2007-05-03 2019-02-25 Siemens Ag Operating procedure of a wind turbine and wind turbine
DK1993184T3 (en) * 2007-05-14 2018-05-22 Siemens Ag Process for starting at least part of a wind power plant, wind power plant and use of the wind power plant
US20090055030A1 (en) * 2007-08-21 2009-02-26 Ingeteam, S.A. Control of active power reserve in a wind-farm
US8239071B2 (en) * 2007-08-31 2012-08-07 Vestas Wind Systems A/S Method for controlling at least one adjustment mechanism of a wind turbine, a wind turbine and a wind park
US8482146B2 (en) * 2007-12-10 2013-07-09 V Squared Wind, Inc. Efficient systems and methods for construction and operation of accelerating machines
US7804186B2 (en) * 2007-12-10 2010-09-28 V Squared Wind, Inc. Modular array fluid flow energy conversion facility
WO2009076955A1 (en) * 2007-12-14 2009-06-25 Vestas Wind Systems A/S Lifetime optimization of a wind turbine generator by controlling the generator temperature
CN101919134B (en) * 2007-12-19 2013-04-24 维斯塔斯风力系统集团公司 Event-based control system for wind turbine generators and control method thereof
US20090160187A1 (en) * 2007-12-19 2009-06-25 Scholte-Wassink Hartmut Control system and method for operating a wind farm in a balanced state
CN101896872B (en) * 2007-12-20 2012-11-28 维斯塔斯风力系统集团公司 A method for controlling a common output from at least two wind turbines, a central wind turbine control system, a wind park and a cluster of wind parks
US7956482B2 (en) * 2008-01-18 2011-06-07 General Electric Company Speed controlled pitch system
US7994658B2 (en) * 2008-02-28 2011-08-09 General Electric Company Windfarm collector system loss optimization
US7999406B2 (en) * 2008-02-29 2011-08-16 General Electric Company Wind turbine plant high wind derating control
US8004100B2 (en) * 2008-03-14 2011-08-23 General Electric Company Model based wind turbine drive train vibration damper
US20090281820A1 (en) * 2008-05-12 2009-11-12 General Electric Company Method and system to quantify performance of a power generating system
DE102008028573A1 (en) * 2008-06-16 2009-12-31 Nordex Energy Gmbh Method for controlling a wind farm
ES2545606T3 (en) * 2008-06-30 2015-09-14 Vestas Wind Systems A/S Procedure and system for operating a wind power plant comprising a number of wind turbine generators
US7839024B2 (en) * 2008-07-29 2010-11-23 General Electric Company Intra-area master reactive controller for tightly coupled windfarms
WO2010037387A2 (en) * 2008-09-30 2010-04-08 Vestas Wind Systems A/S Control of wind park noise emission
US8041465B2 (en) * 2008-10-09 2011-10-18 General Electric Company Voltage control at windfarms
US8039979B2 (en) * 2009-01-07 2011-10-18 Mitsubishi Heavy Industries, Ltd. Wind turbine generator system and method of controlling output of the same
US7945350B2 (en) * 2009-07-07 2011-05-17 General Electric Company Wind turbine acoustic emission control system and method
US7902689B2 (en) * 2009-07-07 2011-03-08 General Electric Company Method and system for noise controlled operation of a wind turbine
JP4976466B2 (en) * 2009-08-18 2012-07-18 株式会社日立製作所 Wind farm control system, wind farm control device and control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002349413A (en) * 2001-05-24 2002-12-04 Mitsubishi Electric Corp Wind power generation system
JP2004289896A (en) * 2003-03-19 2004-10-14 Mitsubishi Electric Corp Wind turbine generator system
JP2006022792A (en) * 2004-07-09 2006-01-26 Topy Ind Ltd Wind power generating system capable of increasing energy efficiency and method of controlling wind power generating system

Also Published As

Publication number Publication date
US20100078940A1 (en) 2010-04-01
CN101713376B (en) 2012-12-12
CN101713376A (en) 2010-05-26
JP2010084545A (en) 2010-04-15
US8332077B2 (en) 2012-12-11

Similar Documents

Publication Publication Date Title
JP4698718B2 (en) Wind turbine generator group control device and control method
JP4976466B2 (en) Wind farm control system, wind farm control device and control method
US9124138B2 (en) Power grid operation control system, device, and method
US9473057B2 (en) System and method for wind power dispatch in a wind farm
EP2696463B1 (en) Wind power generation system, wind power generation control device and wind power generation control method
EP2375561B1 (en) Power management control system for natural energy power generation system provided with storage battery
JP6101188B2 (en) Wind farm control method and control device
JP5639540B2 (en) Storage battery supply and demand plan creation device and storage battery supply and demand plan creation method
JP6790833B2 (en) Storage battery control system, storage battery control method, and recording medium
JP5342496B2 (en) Wind turbine generator group control device and control method thereof
WO2016017424A1 (en) Control device, apparatus control device, reporting method, and recording medium
JP6623514B2 (en) Supply and demand control device, supply and demand control method, and power supply system
JP2013212044A (en) Supply and demand control device
US10468888B2 (en) Control system for solar power plant
JP2011229205A (en) Electric power management control system used in natural energy generating system incorporating storage battery
JP2012241576A (en) Control system and method of wind power generator group
US20130144450A1 (en) Generator system
JP2013219941A (en) Control method and control device of power generation system using renewable energy
JP7184060B2 (en) POWER MONITORING AND CONTROLLER, POWER MONITORING AND CONTROL METHOD, AND CONTROL PROGRAM
US20230352937A1 (en) Power regulation method and power regulation device
JP5492054B2 (en) Wind turbine generator group control device and control method
WO2011129003A1 (en) Power management control system used in natural energy generating system incorporating storage battery
JP6832769B2 (en) Distributed power system
KR101598051B1 (en) System and method for controlling the ramp rate of wind farm output
US20220329069A1 (en) Method for operating an electrical storage station

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110301

R150 Certificate of patent or registration of utility model

Ref document number: 4698718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150