JP4682802B2 - Sensor device and self-propelled robot using the same - Google Patents

Sensor device and self-propelled robot using the same Download PDF

Info

Publication number
JP4682802B2
JP4682802B2 JP2005312014A JP2005312014A JP4682802B2 JP 4682802 B2 JP4682802 B2 JP 4682802B2 JP 2005312014 A JP2005312014 A JP 2005312014A JP 2005312014 A JP2005312014 A JP 2005312014A JP 4682802 B2 JP4682802 B2 JP 4682802B2
Authority
JP
Japan
Prior art keywords
wave
pulse width
drive input
input waveform
dense
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005312014A
Other languages
Japanese (ja)
Other versions
JP2007121046A (en
Inventor
祥文 渡部
由明 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005312014A priority Critical patent/JP4682802B2/en
Publication of JP2007121046A publication Critical patent/JP2007121046A/en
Application granted granted Critical
Publication of JP4682802B2 publication Critical patent/JP4682802B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は、物体までの距離や物体の存在する方位などの検出に用いられるセンサ装置およびそれを用いた自走ロボットに関するものである。   The present invention relates to a sensor device used for detecting a distance to an object, an azimuth in which the object exists, and a self-running robot using the sensor device.

従来から、この種のセンサ装置として、例えば、超音波のような疎密波を送波可能な送波素子を有する送波装置から疎密波を空気中へ間欠的に送波し物体で反射された疎密波を受波素子により受波するまでの時間差に基づいて物体までの距離や物体の存在する方位を検出するセンサ装置が知られている(例えば、特許文献1参照)。なお、この種のセンサ装置は、例えば、障害物や人体の検出などの用途に使用され、障害物を回避しながら移動する自走ロボットの分野においては障害物を検知する障害物検知装置として利用されている。   Conventionally, as this type of sensor device, for example, a sparse wave is intermittently transmitted into the air from a wave transmission device having a transmission element capable of transmitting a sparse wave such as an ultrasonic wave and reflected by an object. There is known a sensor device that detects a distance to an object and an azimuth in which the object exists based on a time difference until a dense wave is received by a wave receiving element (see, for example, Patent Document 1). Note that this type of sensor device is used as an obstacle detection device that detects obstacles in the field of a self-propelled robot that moves while avoiding obstacles, for example, for applications such as detection of obstacles and human bodies. Has been.

上記特許文献1に開示されたセンサ装置は、送波素子から送波され物体で反射された疎密波を受波する受波装置が、一平面上に配列された複数個の受波素子を有しており、疎密波の到来方向(物体の存在する方位)と隣り合う受波素子において疎密波が到達する時刻の時間差とが関連することを利用して所望の方位に存在する物体を検出できるように構成されている。   In the sensor device disclosed in Patent Document 1, a receiving device that receives a dense wave transmitted from a transmitting device and reflected by an object has a plurality of receiving devices arranged on one plane. Therefore, it is possible to detect an object existing in a desired direction by using the relation between the arrival direction of the dense wave (the direction in which the object exists) and the time difference between the arrival times of the dense wave in adjacent receiving elements. It is configured as follows.

すなわち、上記特許文献1に開示されたセンサ装置は、各受波素子それぞれの受波信号をそれぞれ各受波素子の配列パターン(配置位置)に応じた遅延時間で遅延させた受波信号を組にして出力する遅延手段と、遅延手段により遅延された受波信号の組を加算する加算器と、加算器の出力波形のピーク値と適宜の閾値との大小関係を比較し閾値を超えるピーク値が得られたときに遅延手段で設定されている遅延時間の組み合わせに対応する方向を物体の存在する方位(疎密波の到来方向)と判断する判断手段とを備えている。要するに、判断手段は、加算器の出力波形のピーク値が閾値を超えているとき、言い換えれば遅延手段により遅延されたすべての受波信号のタイミングが重なる(受波信号の時刻が一致する)ときの遅延時間の組み合わせに対応する方位を受波装置に対する疎密波の到来方向(物体の存在する方位)とするように構成されている。   That is, the sensor device disclosed in Patent Document 1 combines a received signal obtained by delaying the received signal of each receiving element by a delay time corresponding to the arrangement pattern (arrangement position) of each receiving element. The output of the delay means, the adder for adding the set of received signals delayed by the delay means, and the peak value exceeding the threshold by comparing the magnitude relationship between the peak value of the output waveform of the adder and an appropriate threshold And determining means for determining that the direction corresponding to the combination of the delay times set by the delay means is the direction in which the object exists (the arrival direction of the dense wave). In short, when the peak value of the output waveform of the adder exceeds the threshold value, in other words, when the timings of all the received signals delayed by the delay unit overlap (when the times of the received signals match) The direction corresponding to the combination of the delay times is set as the arrival direction of the dense wave with respect to the receiving device (the direction in which the object exists).

なお、上記センサ装置では、送波素子および各受波素子それぞれに、圧電素子が広く用いられている。
特開2002−156451号公報
In the sensor device, piezoelectric elements are widely used for the transmitting elements and the receiving elements.
JP 2002-156451 A

しかしながら、上記特許文献1に記載されたセンサ装置では、各受波素子それぞれの受波信号を各受波素子の配列パターンに応じた遅延時間で遅延させて加算するという複雑な信号処理を行うことで物体までの距離や物体の存在する方位を求めているので、複数の受波素子が必要であり、信号処理用の回路が複雑でセンサ装置全体の構成が複雑になっていた。また、送波素子と受波素子とを1つずつ備えたセンサ装置では、当該センサ装置の仕様によって送波素子の指向性が決められていたので、当該センサ装置の検知エリアを調整するには、送波素子からの疎密波の放射範囲を調整する放射範囲調整部材を配置したり、送波素子の向きを変えるための可動機構を設ける必要があった。   However, the sensor device described in Patent Document 1 performs complicated signal processing in which the received signal of each receiving element is added with a delay time corresponding to the arrangement pattern of each receiving element. Therefore, since the distance to the object and the azimuth in which the object exists are obtained, a plurality of receiving elements are required, the signal processing circuit is complicated, and the configuration of the entire sensor device is complicated. Further, in the sensor device having one transmitting element and one receiving element, the directivity of the transmitting element is determined by the specifications of the sensor apparatus. Therefore, in order to adjust the detection area of the sensor apparatus In addition, it is necessary to provide a radiation range adjusting member for adjusting the radiation range of the dense wave from the transmission element and to provide a movable mechanism for changing the direction of the transmission element.

本発明は上記事由に鑑みて為されたものであり、その目的は、従来に比べて簡単な構成で検知エリアを調整可能なセンサ装置および従来に比べて簡単な構成で障害物の検知エリアを調整可能な自走ロボットを提供することにある。   The present invention has been made in view of the above reasons, and its purpose is to provide a sensor device capable of adjusting the detection area with a simpler configuration than before and an obstacle detection area with a simpler configuration than conventional. It is to provide an adjustable self-propelled robot.

請求項1,2の発明は、疎密波を送波する送波素子と、送波素子から送波され物体で反射された疎密波を受波するとともに受波した疎密波を電気信号である受波信号に変換する受波素子と、受波素子から出力された受波信号を用いて物体を検出する信号処理部とを備え、送波素子が、発熱部への通電に伴う発熱部の温度変化により空気に熱衝撃を与えることで疎密波を発生させる音波発生素子からなり、送波素子の発熱部へ通電する駆動入力波形のパルス幅が可変であり当該パルス幅を制御することで送波素子から発生させる疎密波の指向性を制御可能な送波制御部を有することを特徴とする。 The inventions of claims 1 and 2 are a transmission element that transmits a sparse / dense wave, a sparse wave that is transmitted from the transmission element and reflected by an object, and the received sparse / dense wave is an electrical signal. And a signal processing unit for detecting an object using the received wave signal output from the wave receiving element, and the wave transmitting element has a temperature of the heat generating part due to energization of the heat generating part. It consists of a sound wave generating element that generates a dense wave by giving a thermal shock to the air by change, and the pulse width of the drive input waveform energized to the heat generating part of the transmitting element is variable, and the wave is transmitted by controlling the pulse width It has a transmission control unit capable of controlling the directivity of the dense wave generated from the element.

この発明によれば、送波素子が発熱部への通電に伴う発熱部の温度変化により空気に熱衝撃を与えることで疎密波を発生させる音波発生素子からなり、送波素子の発熱部へ通電する駆動入力波形のパルス幅が可変であり当該パルス幅を制御することで送波素子から発生させる疎密波の指向性を制御可能な送波制御部を有するので、放射範囲調整部材を利用して疎密波の放射範囲を調整したり、送波素子の向きを調整する可動機構を設けて当該可動機構により送波素子の向きを調整して疎密波の放射範囲を調整せずとも、送波制御部から送波素子の発熱部へ通電する駆動入力波形のパルス幅を制御することで送波素子から発生させる疎密波の指向性を変化させることができ、検知エリアを調整できるから、従来に比べて簡単な構成で検知エリアを調整可能になる。また、駆動入力波形のパルス幅の変更を指示するスイッチを設けておけば、設置場所ごとの周囲の状況や使用者の目的に応じてその場で検知エリアを容易に調整したり変更したりすることが可能となる。   According to this invention, the wave transmitting element is composed of a sound wave generating element that generates a sparse wave by applying a thermal shock to the air due to a temperature change of the heat generating part accompanying energization of the heat generating part, and energizes the heat generating part of the wave transmitting element. Since the pulse width of the drive input waveform is variable and has a transmission control unit capable of controlling the directivity of the dense wave generated from the transmission element by controlling the pulse width, the radiation range adjustment member is used. Control of transmission without adjusting the radiation range of the dense wave by adjusting the radiation range of the dense wave or providing a movable mechanism that adjusts the direction of the transmission element and adjusting the direction of the transmission element by the movable mechanism By controlling the pulse width of the drive input waveform energized from the heating part to the heating element of the wave transmitting element, the directivity of the dense wave generated from the wave transmitting element can be changed and the detection area can be adjusted. Detection area with simple configuration It becomes adjustable. In addition, if a switch for instructing to change the pulse width of the drive input waveform is provided, the detection area can be easily adjusted or changed on the spot according to the surrounding conditions at each installation location and the purpose of the user. It becomes possible.

また、請求項1,2の発明は、送波制御部は、送波素子から指向性がそれぞれ異なる複数種類の疎密波が順次送波されるように駆動入力波形のパルス幅を順次変化させ、信号処理部は、各パルス幅それぞれの駆動入力波形の通電タイミングそれぞれに応じて規定した各受波期間における前記受波素子の出力を用いて物体を検出することを特徴とする。 The invention of claim 1 and 2, feed wave control unit causes directional from the waves element feed has successively changing the pulse width of the drive input waveform as a plurality of types of compressional waves respectively different are sequentially transmitting, signal processing unit, and detects the object by using the output of the wave receiving element at each wave receiving period defined in accordance with the respective energization timing of each pulse width each drive input waveform.

この発明によれば、送波制御部が、送波素子から指向性がそれぞれ異なる複数種類の疎密波が順次送波されるように駆動入力波形のパルス幅を順次変化させ、信号処理部が、各パルス幅それぞれの駆動入力波形の通電タイミングそれぞれに応じて規定した各受波期間における受波素子の出力を用いて物体を検出するので、複数の検知エリアを設定することが可能になる。また、従来の圧電素子を利用した超音波発生素子では連続波もしくは複数サイクルの疎密波を放射することで音圧を高めているのに対して、送波素子では、発生期間が短く且つ音圧の高い疎密波を発生できるので、駆動入力波形の通電タイミングの間隔を短くすることができ、送波素子から順次送波されそれぞれ指向性の異なる疎密波であって物体により反射された各疎密波を比較的短い時間間隔で受波素子にて各別に受波してそれぞれ独立した受波信号を得ることが可能となるから、時間分解能を高めることも可能となる。 According to the present invention, feeding wave control unit causes directivity from the waves element feed has successively changing the pulse width of the drive input waveform as a plurality of types of compressional waves different each is sequentially transmit, the signal processing unit , and detects the object by using the output of the put that received wave element in each wave receiving period defined in accordance with the respective energization timing of each pulse width each drive input waveform, to be capable of setting a plurality of detection areas Become. Moreover, whereas the ultrasonic wave generating device using a conventional piezoelectric element to enhance the sound pressure can radiate compression wave of a continuous wave or a plurality of cycles, with feed wave element, the occurrence period and short sound pressure Can generate a high density of sparse and dense waves, so that the interval between the energization timings of the drive input waveform can be shortened, and each of the sparse and dense waves that are sequentially transmitted from the transmission element and have different directivities and reflected by the object Can be received separately by the receiving element at relatively short time intervals to obtain independent received signals, so that the time resolution can be increased.

また、請求項1の発明では、信号処理部は、各パルス幅それぞれの駆動入力波形の通電タイミングそれぞれに応じて規定した各受波期間における受波素子の出力と各パルス幅に対応する指向性との関係に基づいて物体の存在するエリアを推定するエリア推定手段を備えてなることを特徴とする。 Further, in the invention of claim 1, signal processing unit corresponding to the output and the pulse width of the put that received wave element in each wave receiving period defined in accordance with the respective energization timing of each pulse width each drive input waveform It is characterized by comprising area estimation means for estimating the area where an object exists based on the relationship with directivity.

この発明によれば、物体の存在するエリアを推定することができる。   According to the present invention, an area where an object exists can be estimated.

また、請求項2の発明では、信号処理部は、各パルス幅それぞれの駆動入力波形の通電タイミングそれぞれに応じて規定した各受波期間における前記受波素子の出力と各パルス幅に対応する指向性との関係に基づいて物体の存在する方位を推定する方位推定手段を備えてなることを特徴とする。 Further, in the invention of claim 2, signal processing unit corresponds to the output and the pulse width of the wave receiving devices of each wave receiving period defined in accordance with the respective energization timing of each pulse width each drive input waveform It is characterized by comprising azimuth estimating means for estimating the azimuth in which an object exists based on the relationship with directivity.

この発明によれば、物体の存在する方位を推定することができる。   According to the present invention, the azimuth in which an object exists can be estimated.

請求項の発明は、請求項記載のセンサ装置からなるセンサユニットが同一平面上に複数個配置され、他のセンサユニットの送波素子から送波され物体で反射された疎密波が受波素子に入射するのを防止する遮蔽板を備えてなることを特徴とする。 According to a third aspect of the present invention, a plurality of sensor units comprising the sensor device according to the second aspect are arranged on the same plane, and a dense wave transmitted from a wave transmitting element of another sensor unit and reflected by an object is received. It is characterized by comprising a shielding plate that prevents the light from entering the element.

この発明によれば、物体の存在する方位をより正確に推定することが可能となる。   According to the present invention, it is possible to more accurately estimate the azimuth in which an object exists.

請求項の発明は、ロボット本体と、ロボット本体を移動可能とする走行手段と、ロボット本体に搭載され障害物を検知する障害物検知装置と、障害物検知装置により検知された障害物を回避しながらロボット本体が移動するように走行手段を制御する走行制御手段とを備え、障害物検知装置として請求項1ないし請求項のいずれか1項に記載のセンサ装置を用いてなることを特徴とする。 According to a fourth aspect of the present invention, there is provided a robot main body, traveling means for allowing the robot main body to move, an obstacle detection device mounted on the robot main body for detecting an obstacle, and avoiding an obstacle detected by the obstacle detection device. And a travel control means for controlling the travel means so that the robot body moves, and the sensor device according to any one of claims 1 to 3 is used as an obstacle detection device. And

この発明によれば、自走ロボットにおける障害物検知装置の検知エリアを従来に比べて簡単な構成で調整可能になり、ロボット本体に対する障害物検知装置の取付位置の自由度が高くなるとともに取付作業が容易になり、また、複雑な制御系や駆動系を備えた自走ロボットの負荷を軽減できる。   According to the present invention, it becomes possible to adjust the detection area of the obstacle detection device in the self-running robot with a simple configuration as compared with the conventional one, the degree of freedom of the attachment position of the obstacle detection device with respect to the robot body is increased, and the installation work And the load on a self-propelled robot equipped with a complicated control system and drive system can be reduced.

請求項1,2の発明では、送波制御部から送波素子の発熱部へ通電する駆動入力波形のパルス幅を制御することで送波素子から発生させる疎密波の指向性を変化させることができ、検知エリアを調整できるから、従来に比べて簡単な構成で検知エリアを調整可能になるという効果がある。 According to the first and second aspects of the present invention, the directivity of the dense wave generated from the transmission element can be changed by controlling the pulse width of the drive input waveform energized from the transmission control unit to the heat generating part of the transmission element. In addition, since the detection area can be adjusted, there is an effect that the detection area can be adjusted with a simpler configuration than in the past.

請求項の発明では、自走ロボットにおける障害物検知装置の検知エリアを従来に比べて簡単な構成で調整可能になるという効果がある。 In the invention of claim 4 , there is an effect that the detection area of the obstacle detection device in the self-propelled robot can be adjusted with a simpler configuration than in the prior art.

(参考例)
本参考例のセンサ装置は、図1に示すように、疎密波を送波する送波素子10と、送波素子10を制御する送波制御部20と、送波素子10から送波され物体Obで反射された疎密波を受波するとともに受波した疎密波を電気信号である受波信号に変換する受波素子30と、受波素子30から出力された受波信号を用いて物体Obを検出する信号処理部50とを備えている。
(Reference example)
As shown in FIG. 1, the sensor device of this reference example includes a transmission element 10 that transmits a sparse / dense wave, a transmission control unit 20 that controls the transmission element 10, and an object transmitted from the transmission element 10. A wave receiving element 30 that receives the density wave reflected by Ob and converts the received density wave into a received wave signal that is an electric signal, and a received signal output from the wave receiving element 30 is used to detect the object Ob. And a signal processing unit 50 for detecting.

本参考例では、送波素子10として、後述のように空気に熱衝撃を与えることにより疎密波を発生させる音波発生素子を用いることで、送波素子10の共振特性のQ値を圧電素子に比べて十分に小さくして残響時間が短い疎密波を送波するようにし、かつ、受波素子30として共振特性のQ値が圧電素子に比べて十分に小さく受波信号に含まれる残響成分の発生期間が短い静電容量型のマイクロホンを用いている。 In this reference example, a sound wave generating element that generates a dense wave by applying a thermal shock to air as will be described later is used as the wave transmitting element 10, so that the Q value of the resonance characteristics of the wave transmitting element 10 is expressed as a piezoelectric element. The reverberation component included in the received signal is such that the density of the resonance characteristic of the receiving element 30 is sufficiently smaller than that of the piezoelectric element. A capacitance type microphone with a short generation period is used.

ここにおいて、送波素子10は、図2に示すように、単結晶のp形のシリコン基板からなるベース基板11の一表面(図2における上面)側に多孔質シリコン層からなる熱絶縁層(断熱層)12が形成され、熱絶縁層12の表面側に発熱部として金属薄膜からなる発熱体層13が形成され、ベース基板11の上記一表面側に発熱体層13と電気的に接続された一対のパッド14,14が形成されている。なお、ベース基板11の平面形状は長方形状であって、熱絶縁層12、発熱体層13それぞれの平面形状も長方形状に形成してある。   Here, as shown in FIG. 2, the wave transmitting element 10 includes a heat insulating layer (including a porous silicon layer) on one surface (upper surface in FIG. 2) of a base substrate 11 made of a single crystal p-type silicon substrate. A heat insulating layer) 12 is formed, and a heat generating layer 13 made of a metal thin film is formed on the surface side of the heat insulating layer 12 as a heat generating portion, and is electrically connected to the heat generating layer 13 on the one surface side of the base substrate 11. A pair of pads 14 and 14 are formed. The planar shape of the base substrate 11 is a rectangular shape, and the planar shapes of the heat insulating layer 12 and the heating element layer 13 are also formed in a rectangular shape.

上述の送波素子10では、発熱体層13の両端のパッド14,14間に通電して発熱体層13に急激な温度変化を生じさせると、発熱体層13に接触している空気(媒質)に急激な温度変化(熱衝撃)が生じる(つまり、発熱体層13に接触している空気に熱衝撃が与えられる)。したがって、発熱体層13に接触している空気は、発熱体層13の温度上昇時には膨張し発熱体層13の温度下降時には収縮するから、発熱体層13への通電を適宜に制御することによって空気中を伝搬する疎密波を発生させることができる。要するに、送波素子10を構成する音波発生素子は、発熱体層13への通電に伴う発熱体層13の急激な温度変化を媒質の膨張収縮に変換することにより媒質を伝搬する疎密波を発生するので、圧電素子のように機械的振動により疎密波を発生する場合に比べて、残響時間を低減できる(言い換えれば、送波素子10から送波される疎密波における残響成分を少なくできる)。なお、圧電素子を用いた送波素子から送波される疎密波では残響時間が0.5ms程度であるのに対して、上述の音波発生素子よりなる送波素子10から送波される疎密波は残響時間を0.05ms程度に抑えることができる。   In the above-described transmission element 10, when a sudden temperature change is caused in the heating element layer 13 by energizing the pads 14 and 14 at both ends of the heating element layer 13, the air (medium that is in contact with the heating element layer 13) ) Abruptly changes in temperature (thermal shock) (that is, thermal shock is applied to the air in contact with the heating element layer 13). Accordingly, the air in contact with the heating element layer 13 expands when the temperature of the heating element layer 13 rises and contracts when the temperature of the heating element layer 13 decreases. Therefore, by appropriately controlling energization to the heating element layer 13 Density waves propagating in the air can be generated. In short, the sound wave generating element constituting the wave transmitting element 10 generates a sparse wave propagating through the medium by converting a rapid temperature change of the heating element layer 13 accompanying energization to the heating element layer 13 into expansion and contraction of the medium. Therefore, the reverberation time can be reduced as compared with the case where a dense wave is generated by mechanical vibration like a piezoelectric element (in other words, the reverberation component in the dense wave transmitted from the wave transmitting element 10 can be reduced). In addition, the reverberation time is about 0.5 ms in the dense wave transmitted from the wave transmitting element using the piezoelectric element, whereas the dense wave transmitted from the wave transmitting element 10 including the above-described sound wave generating element. Can suppress the reverberation time to about 0.05 ms.

上述の送波素子10は、ベース基板11としてp形のシリコン基板を用いており、熱絶縁層12を多孔度が略60〜略70%の多孔質シリコン層により構成しているので、ベース基板11として用いるシリコン基板の一部をフッ化水素水溶液とエタノールとの混合液からなる電解液中で陽極酸化処理することにより熱絶縁層12となる多孔質シリコン層を形成することができる(ここで、陽極酸化処理により形成された多孔質シリコン層は、結晶粒径がナノメータオーダの微結晶シリコンからなるナノ結晶シリコンを多数含んでいる)。多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなるので、熱絶縁層12の熱伝導度および熱容量をベース基板11の熱伝導度および熱容量に比べて小さくし、熱絶縁層12の熱伝導度と熱容量との積をベース基板11の熱伝導度と熱容量との積に比べて十分に小さくすることにより、発熱体層13の温度変化を空気に効率よく伝達することができ発熱体層13と空気との間で効率的な熱交換が起こり、かつ、ベース基板11が熱絶縁層12からの熱を効率良く受け取って熱絶縁層12の熱を逃がすことができて発熱体層13からの熱が熱絶縁層12に蓄積されるのを防止することができる。なお、熱伝導率が148W/(m・K)、熱容量が1.63×10J/(m・K)の単結晶のシリコン基板を陽極酸化して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1W/(m・K)、熱容量が0.7×10J/(m・K)であることが知られている。本参考例では、熱絶縁層12を多孔度が略70%の多孔質シリコン層により構成してあり、熱絶縁層12の熱伝導率が0.12W/(m・K)、熱容量が0.5×10J/(m・K)となっている。 In the above-described transmission element 10, a p-type silicon substrate is used as the base substrate 11, and the heat insulating layer 12 is composed of a porous silicon layer having a porosity of about 60 to about 70%. A porous silicon layer serving as the thermal insulating layer 12 can be formed by anodizing a part of the silicon substrate used as 11 in an electrolytic solution made of a mixed solution of hydrogen fluoride aqueous solution and ethanol (here, The porous silicon layer formed by the anodization treatment contains a large number of nanocrystalline silicon composed of microcrystalline silicon having a crystal grain size on the order of nanometers). Since the porous silicon layer has a lower thermal conductivity and heat capacity as the porosity becomes higher, the thermal conductivity and heat capacity of the heat insulating layer 12 are made smaller than the heat conductivity and heat capacity of the base substrate 11, and heat insulation is performed. By making the product of the thermal conductivity and the thermal capacity of the layer 12 sufficiently smaller than the product of the thermal conductivity and the thermal capacity of the base substrate 11, the temperature change of the heating element layer 13 can be efficiently transmitted to the air. The heat generating body layer 13 and the air can efficiently exchange heat, and the base substrate 11 can efficiently receive the heat from the heat insulating layer 12 and release the heat of the heat insulating layer 12 to generate heat. It is possible to prevent heat from the body layer 13 from being accumulated in the heat insulating layer 12. Note that the porosity formed by anodizing a single crystal silicon substrate having a thermal conductivity of 148 W / (m · K) and a heat capacity of 1.63 × 10 6 J / (m 3 · K) is 60%. The porous silicon layer is known to have a thermal conductivity of 1 W / (m · K) and a heat capacity of 0.7 × 10 6 J / (m 3 · K). In this reference example, the heat insulating layer 12 is composed of a porous silicon layer having a porosity of approximately 70%, the heat conductivity of the heat insulating layer 12 is 0.12 W / (m · K), and the heat capacity is 0. .5 × 10 6 J / (m 3 · K).

発熱体層13は、高融点金属の一種であるタングステンにより形成してあるが、発熱体層13の材料はタングステンに限らず、例えば、タンタル、モリブデン、イリジウム、アルミニウムなどを採用してもよい。また、上述の送波素子10では、ベース基板11の厚さを300〜700μm、熱絶縁層12の厚さを1〜10μm、発熱体層13の厚さを20〜100nm、各パッド14の厚さを0.5μmとしてあるが、これらの厚さは一例であって特に限定するものではない。また、ベース基板11の材料としてSiを採用しているが、ベース基板11の材料はSiに限らず、例えば、Ge,SiC,GaP,GaAs,InPなどの陽極酸化処理による多孔質化が可能な他の半導体材料でもよい。   The heating element layer 13 is formed of tungsten, which is a kind of refractory metal, but the material of the heating element layer 13 is not limited to tungsten, and for example, tantalum, molybdenum, iridium, aluminum, or the like may be employed. Further, in the above-described transmission element 10, the thickness of the base substrate 11 is 300 to 700 μm, the thickness of the thermal insulating layer 12 is 1 to 10 μm, the thickness of the heating element layer 13 is 20 to 100 nm, and the thickness of each pad 14. Although the thickness is 0.5 μm, these thicknesses are merely examples and are not particularly limited. Further, Si is adopted as the material of the base substrate 11, but the material of the base substrate 11 is not limited to Si, and, for example, it can be made porous by anodizing treatment such as Ge, SiC, GaP, GaAs, InP or the like. Other semiconductor materials may be used.

上述のように送波素子10は、一対のパッド14,14を介した発熱体層13への通電に伴う発熱体層13の温度変化に伴って疎密波を発生するものであり、発熱体層13へ与える駆動電圧波形あるいは駆動電流波形からなる駆動入力波形を例えば周波数がf1の正弦波波形とした場合、理想的には、発熱体層13で生じる温度振動の周波数が駆動入力波形の周波数f1の2倍の周波数f2となり、駆動入力波形f1の略2倍の周波数の疎密波を発生させることができる。すなわち、上述の送波素子10は、平坦な周波数特性を有しており、発生させる疎密波の周波数を広範囲にわたって変化させることができる。また、上述の送波素子10では、例えば正弦波波形の半周期の孤立波を駆動入力波形として駆動回路20から一対のパッド14,14間へ与えることによって、残響の少ない略1周期の疎密波を発生させることができる。   As described above, the wave transmitting element 10 generates a dense wave in accordance with a temperature change of the heating element layer 13 due to energization of the heating element layer 13 via the pair of pads 14 and 14. When the drive input waveform formed from the drive voltage waveform or the drive current waveform applied to 13 is a sine wave waveform having a frequency of f1, for example, the frequency of the temperature oscillation generated in the heating element layer 13 is ideally the frequency f1 of the drive input waveform. The frequency f2 is twice that of the drive input waveform f1, and a dense wave having a frequency approximately twice that of the drive input waveform f1 can be generated. That is, the above-described transmission element 10 has a flat frequency characteristic, and the frequency of the generated dense wave can be changed over a wide range. Further, in the above-described transmission element 10, for example, a half-cycle isolated wave having a sine wave waveform is applied as a drive input waveform from the drive circuit 20 to the pair of pads 14, 14, so that a sparse wave having approximately one cycle with less reverberation is provided. Can be generated.

また、上述の受波素子30を構成する静電容量型のマイクロホンは、マイクロマシンニング技術を利用して形成されており、図3に示すように、シリコン基板に厚み方向に貫通する窓孔31aを設けることで形成された矩形枠状のフレーム31と、フレーム31の一表面側においてフレーム31の対向する2つの辺に跨る形で配置されるカンチレバー型の受圧部32とを備えている。ここにおいて、フレーム31の一表面側には熱酸化膜35と熱酸化膜35を覆うシリコン酸化膜36とシリコン酸化膜36を覆うシリコン窒化膜37とが形成されており、受圧部32の一端部がシリコン窒化膜37とを介してフレーム31に支持され、他端部が上記シリコン基板の厚み方向においてシリコン窒化膜37に対向している。また、シリコン窒化膜37における受圧部32の他端部との対向面に金属薄膜(例えば、クロム膜など)からなる固定電極33aが形成され、受圧部32の他端部におけるシリコン窒化膜37との対向面とは反対側に金属薄膜(例えば、クロム膜など)からなる可動電極33bが形成されている。なお、フレーム31の他表面にはシリコン窒化膜38が形成されている。また、受圧部32は、上記各シリコン窒化膜37,38とは別工程で形成されるシリコン窒化膜により構成されている。   Further, the capacitance type microphone constituting the wave receiving element 30 is formed by utilizing micromachining technology, and as shown in FIG. 3, a window hole 31a penetrating in the thickness direction through the silicon substrate is formed. A rectangular frame 31 is provided, and a cantilever-type pressure receiving portion 32 is disposed on one surface side of the frame 31 so as to straddle two opposing sides of the frame 31. Here, a thermal oxide film 35, a silicon oxide film 36 covering the thermal oxide film 35, and a silicon nitride film 37 covering the silicon oxide film 36 are formed on one surface side of the frame 31, and one end of the pressure receiving portion 32. Is supported by the frame 31 via the silicon nitride film 37, and the other end faces the silicon nitride film 37 in the thickness direction of the silicon substrate. Further, a fixed electrode 33 a made of a metal thin film (for example, a chromium film) is formed on a surface of the silicon nitride film 37 facing the other end of the pressure receiving portion 32, and the silicon nitride film 37 at the other end of the pressure receiving portion 32 is formed. A movable electrode 33b made of a metal thin film (for example, a chromium film) is formed on the opposite side of the opposite surface. A silicon nitride film 38 is formed on the other surface of the frame 31. The pressure receiving portion 32 is constituted by a silicon nitride film formed in a separate process from the silicon nitride films 37 and 38 described above.

図3に示した構成の静電容量型のマイクロホンからなる受波素子30では、固定電極33aと可動電極33bとを電極とするコンデンサが形成されるから、受圧部32が疎密波の圧力を受けることにより固定電極33aと可動電極33bとの間の距離が変化し、固定電極33aと可動電極33bとの間の静電容量が変化する。したがって、固定電極33aおよび可動電極33bに設けたパッド(図示せず)間に直流バイアス電圧を印加しておけば、パッドの間には疎密波の音圧に応じて微小な電圧変化が生じるから、疎密波の音圧を電気信号に変化することができる。   In the wave receiving element 30 composed of the capacitance type microphone having the configuration shown in FIG. 3, a capacitor having the fixed electrode 33a and the movable electrode 33b as electrodes is formed, so that the pressure receiving portion 32 receives the pressure of the dense wave. As a result, the distance between the fixed electrode 33a and the movable electrode 33b changes, and the capacitance between the fixed electrode 33a and the movable electrode 33b changes. Therefore, if a DC bias voltage is applied between pads (not shown) provided on the fixed electrode 33a and the movable electrode 33b, a minute voltage change occurs between the pads in accordance with the sound pressure of the dense wave. The sound pressure of the dense wave can be changed to an electric signal.

ところで、上述の送波素子10では、一対のパッド14,14を介して発熱体層13へ与える駆動入力波形をガウス波形状の孤立波とした場合、ガウス波形状の疎密波を単パルス的に送波することができ、送波素子10から送波される疎密波にサイドローブが形成されるのを防止することができる。   By the way, in the above-described transmission element 10, when the drive input waveform applied to the heating element layer 13 via the pair of pads 14 and 14 is a Gaussian-shaped isolated wave, a Gaussian-shaped sparse / dense wave is converted into a single pulse. Waves can be transmitted, and side lobes can be prevented from being formed in the dense wave transmitted from the wave transmitting element 10.

ここにおいて、送波素子10へ通電する駆動入力波形のパルス幅を100kHz〜20kHz程度の超音波の1周期の時間10μs〜50μsで変化させて送波素子10から送波される疎密波の音圧を測定したところ、図4に示すような結果が得られ、パルス幅を変化させても音圧の変化が少ないという知見を得た。   Here, the sound pressure of the dense wave transmitted from the transmission element 10 by changing the pulse width of the drive input waveform energized to the transmission element 10 in the period of 10 μs to 50 μs of one cycle of ultrasonic waves of about 100 kHz to 20 kHz. As a result, the results shown in FIG. 4 were obtained, and it was found that the change in sound pressure was small even when the pulse width was changed.

また、駆動入力波形のパルス幅を同様に10μs〜50μsの範囲で変化させて送波素子10から送波される疎密波の指向性を測定したところ、図5に示すような結果が得られ、パルス幅を10μs〜25μsの範囲で変化させることにより指向角を変化させることができるというという知見を得た。なお、図5の縦軸の指向角は、所望の最大測定距離に存在する物体Obで反射された疎密波を受波素子30にて検出する場合に最大測定距離において最低限必要な音圧として規定した所定音圧が得られる放射範囲の最大角度として定義した角度である。   Similarly, when the directivity of the dense wave transmitted from the transmission element 10 was measured by changing the pulse width of the drive input waveform in the range of 10 μs to 50 μs, the result shown in FIG. 5 was obtained. It was found that the directivity angle can be changed by changing the pulse width in the range of 10 μs to 25 μs. Note that the directivity angle on the vertical axis in FIG. 5 is the minimum sound pressure required at the maximum measurement distance when the receiving element 30 detects the dense wave reflected by the object Ob existing at the desired maximum measurement distance. It is an angle defined as the maximum angle of the radiation range where a prescribed predetermined sound pressure is obtained.

ところで、送波素子10を制御する送波制御部20は、送波素子10の発熱体層13へ通電する駆動入力波形のパルス幅が可変であり当該パルス幅を制御することで送波素子10から発生させる疎密波の指向性を制御可能となるように構成されている。   By the way, the transmission control unit 20 that controls the transmission element 10 has a variable pulse width of the drive input waveform energized to the heating element layer 13 of the transmission element 10, and the transmission element 10 is controlled by controlling the pulse width. It is configured to be able to control the directivity of the dense wave generated from the.

具体的には、送波制御部20は、図6に示すように、3つの充放電回路21,22,23を備えており、各充放電回路21,22,23は、直流電圧源Eの両端間に充電用スイッチSW0を介してコンデンサC1、C2,C3が接続され、サイリスタTh1,Th2,Th3とインダクタL1,L2,L3との直列回路におけるサイリスタTh1,Th2,Th3側の一端がコンデンサC1,C2,C3の高電位側に接続され、インダクタL1,L2,L3側の他端が送波素子10と接続されている。また、充電用スイッチSW0と各コンデンサC1,C2,C3との間にパルス幅切替用スイッチSW1,SW2,SW3が挿入され、さらに、パルス幅切替用スイッチSW1,SW2,SW3とコンデンサC1,C2,C3との間に、直流電圧源Eの出力電圧を昇圧する昇圧回路からなる可変電源部VE1,VE2,VE3が挿入されている。   Specifically, as shown in FIG. 6, the transmission control unit 20 includes three charging / discharging circuits 21, 22, and 23, and each charging / discharging circuit 21, 22, and 23 is connected to the DC voltage source E. Capacitors C1, C2, C3 are connected between both ends via a charging switch SW0, and one end on the thyristor Th1, Th2, Th3 side in a series circuit of thyristors Th1, Th2, Th3 and inductors L1, L2, L3 is a capacitor C1. , C2 and C3 are connected to the high potential side, and the other ends of the inductors L1, L2 and L3 are connected to the transmission element 10. Further, pulse width switching switches SW1, SW2, SW3 are inserted between the charging switch SW0 and the capacitors C1, C2, C3, and further, the pulse width switching switches SW1, SW2, SW3 and the capacitors C1, C2, Between C3, variable power supply units VE1, VE2, and VE3 including a booster circuit that boosts the output voltage of the DC voltage source E are inserted.

図6に例示した送波制御部20では、3つの充放電回路21,22,23それぞれの回路定数を異ならせることで送波素子10へ通電する駆動入力波形のパルス幅が異なるようにしてある。さらに説明すれば、送波素子10の抵抗値は充放電回路21,22,23によらず同じであるから、充放電回路21,22,23それぞれの時定数をコンデンサC1,C2,C3の容量とインダクタL1,L2,L3のインダクタンスとの組み合わせで調整することで各充放電回路21,22,23から送波素子10へ通電される駆動入力波形のパルス幅が異なるようにしてある。また、送波制御部20では、駆動入力波形のパルス幅によらず送波素子10から送波される疎密波の音圧が略一定となるように可変電源部VE1,VE2、VE3それぞれの出力電圧を調整するようにしてある。   In the transmission control unit 20 illustrated in FIG. 6, the pulse widths of the drive input waveforms energized to the transmission element 10 are made different by changing the circuit constants of the three charge / discharge circuits 21, 22, and 23. . More specifically, since the resistance value of the transmission element 10 is the same regardless of the charge / discharge circuits 21, 22, 23, the time constants of the charge / discharge circuits 21, 22, 23 are set to the capacitances of the capacitors C1, C2, C3. And the inductances of the inductors L1, L2, and L3 are adjusted so that the pulse widths of the drive input waveforms supplied from the charge / discharge circuits 21, 22, and 23 to the transmission element 10 are different. Further, in the transmission control unit 20, the outputs of the variable power supply units VE1, VE2, and VE3 are set so that the sound pressure of the dense wave transmitted from the transmission element 10 is substantially constant regardless of the pulse width of the drive input waveform. The voltage is adjusted.

ここにおいて、本参考例のセンサ装置では、上述のパルス幅切替用スイッチSW1,SW2,SW3の操作部をセンサ装置本体に設けてあって、操作部を操作することでパルス幅切替用スイッチSW1,SW2,SW3を択一的にオンさせることができるようになっており、3つの充放電回路21,22,23のいずれか1つを択一的に充放電動作させることができるようになっている。 Here, in the sensor device of this reference example , the operation unit of the above-described pulse width switching switches SW1, SW2, SW3 is provided in the sensor device body, and the pulse width switching switch SW1, SW1 is operated by operating the operation unit. SW2 and SW3 can be selectively turned on, and any one of the three charge / discharge circuits 21, 22, and 23 can be selectively charged / discharged. Yes.

上述の充放電回路21,22,23では、充電用スイッチSW0およびパルス幅切替用スイッチスイッチSW1,SW2,SW3のオン期間にコンデンサC1,C2,C3が充電されるが、送波素子10への駆動入力波形の通電タイミングを制御する通電タイミング制御回路(図示せず)が、コンデンサC1,C2,C3の両端電圧を検出しており、コンデンサC1,C2,C3の両端電圧がそれぞれについて設定された所定のしきい値を超えると充電用スイッチSW0をオフさせてからサイリスタTh1,Th2,Th3のゲートへ制御信号を与える。すなわち、図6に示す構成の充放電回路21,22,23では、直流電圧源Eから可変電源部VE1,VE2,VE3を通してコンデンサC1,C2,C3に電荷を蓄積し、コンデンサC1,C2,C3の両端電圧がそれぞれについて設定された所定のしきい値を超えると、通電タイミング制御回路からサイリスタTh1,Th2,Th3へ制御信号が与えられてサイリスタTh1,Th2,Th3がターンオンし、送波素子10のパッド14,14間に駆動入力波形(電圧)が印加されて発熱体層13の温度変化に伴って疎密波が送波される。   In the above-described charging / discharging circuits 21, 22, and 23, the capacitors C1, C2, and C3 are charged while the charging switch SW0 and the pulse width switching switches SW1, SW2, and SW3 are on. An energization timing control circuit (not shown) that controls the energization timing of the drive input waveform detects the voltages across the capacitors C1, C2, and C3, and the voltages across the capacitors C1, C2, and C3 are set for each. When a predetermined threshold value is exceeded, the charging switch SW0 is turned off and a control signal is given to the gates of the thyristors Th1, Th2, Th3. That is, in the charge / discharge circuits 21, 22, 23 having the configuration shown in FIG. 6, charges are accumulated in the capacitors C1, C2, C3 from the DC voltage source E through the variable power supply units VE1, VE2, VE3, and the capacitors C1, C2, C3. When the voltage at both ends of each exceeds a predetermined threshold value set for each, a control signal is given from the energization timing control circuit to the thyristors Th1, Th2, Th3, the thyristors Th1, Th2, Th3 are turned on, and the transmitting element 10 A drive input waveform (voltage) is applied between the pads 14 and 14, and a dense wave is transmitted along with the temperature change of the heating element layer 13.

ところで、上述の信号処理部50は、駆動入力波形の通電タイミングに応じて規定した受波期間における受波素子30の出力を用いて物体Obを検出するように構成されている。   By the way, the above-described signal processing unit 50 is configured to detect the object Ob using the output of the wave receiving element 30 in the wave receiving period defined according to the energization timing of the drive input waveform.

ここで、信号処理部50は、受波素子30から出力された受波信号を増幅するアンプからなる信号増幅部51と、信号増幅部51にて増幅されたアナログの受波信号をディジタルの受波信号に変換して出力するA/D変換部52と、A/D変換部52の出力が格納されるメモリ53と、送波制御部20から送波素子10への通電タイミングを制御する上記制御信号に同期して出力されるタイミング信号を受けたときにA/D変換部52を所定の受波期間だけ作動させメモリ53に格納された受波信号のデータを用いて物体Obまでの距離を求める演算を行うマイクロコンピュータからなる演算部54とを備えている。   Here, the signal processing unit 50 includes a signal amplification unit 51 configured by an amplifier that amplifies the reception signal output from the reception element 30, and an analog reception signal amplified by the signal amplification unit 51. The A / D conversion unit 52 that converts and outputs the wave signal, the memory 53 that stores the output of the A / D conversion unit 52, and the energization timing from the transmission control unit 20 to the transmission element 10 are controlled. The distance to the object Ob using the data of the received signal stored in the memory 53 by operating the A / D converter 52 for a predetermined receiving period when receiving a timing signal output in synchronization with the control signal. And a calculation unit 54 composed of a microcomputer for performing a calculation to obtain the above.

本参考例では、A/D変換部52が、送波素子10が疎密波を送波した後の所定の受波期間のみ受波素子30から出力される受波信号を有効にする受波タイミング制御部としての機能を有しているが、受波タイミング制御部は、A/D変換部52とは別に受波素子30とメモリ53との間に設けられて受波期間以外の受波信号を無効にするものであってもよい。また、本参考例では、受波素子30として上述の静電容量型のマイクロホンを用いているので、受波素子30が受波期間にのみ疎密波を受波信号に変換して変換して出力するように、受波素子30が上記通電タイミング制御回路からのタイミング信号を受けて動作するように構成してもよい。本参考例では、上述の受波タイミング制御部を有していることにより、受波期間のみ受波素子30から出力される受波信号が有効となり、受波期間以外に受波素子30から出力される受波信号が無効となるので、外来ノイズや多重反射などのノイズの影響を低減することができる。 In the present reference example, the A / D conversion unit 52 receives a wave that makes the received signal output from the wave receiving element 30 valid only during a predetermined wave receiving period after the wave transmitting element 10 transmits a dense wave. Although it has a function as a timing control unit, the reception timing control unit is provided between the reception element 30 and the memory 53 separately from the A / D conversion unit 52 and receives signals outside the reception period. The signal may be invalidated. Further, in this reference example, since the above-described capacitance type microphone is used as the wave receiving element 30, the wave receiving element 30 converts a sparse wave into a wave receiving signal and converts it only during the wave receiving period. The receiving element 30 may be configured to operate in response to a timing signal from the energization timing control circuit so as to output. In the present reference example, by having the above-described reception timing control unit, the reception signal output from the reception element 30 is effective only during the reception period, and from the reception element 30 other than the reception period. Since the output received signal becomes invalid, the influence of noise such as external noise and multiple reflection can be reduced.

演算部54は、上記タイミング信号を受けた時刻(つまり、送波素子10から疎密波を送波したタイミング)と、ディジタルの受波信号がメモリ53に格納された時刻(信号処理部50内での遅れ時間を無視すれば、受波素子30により疎密波を受波したタイミング)との時間差(言い換えれば、送波素子10が疎密波を送波してから受波素子30が疎密波を受波するまでの時間)に基づいて、物体Obまでの距離を演算する距離演算手段を備えている。なお、演算部54の距離演算手段は、上記マイクロコンピュータに適宜のプログラムを搭載することにより実現できる。   The arithmetic unit 54 receives the timing signal (that is, the timing at which a sparse wave is transmitted from the transmission element 10) and the time when the digital reception signal is stored in the memory 53 (in the signal processing unit 50). If the delay time is ignored, the time difference (in other words, the timing at which the dense wave is received by the wave receiving element 30) (in other words, the wave receiving element 30 receives the dense wave after the wave transmitting element 10 transmits the dense wave). Distance calculating means for calculating the distance to the object Ob based on the time until the wave travels. The distance calculation means of the calculation unit 54 can be realized by mounting an appropriate program on the microcomputer.

以上説明した本参考例のセンサ装置では、送波素子10が発熱部たる発熱体層13への通電に伴う発熱体層13の温度変化により空気に熱衝撃を与えることで疎密波を発生させる音波発生素子からなり、送波素子10の発熱体層13へ通電する駆動入力波形のパルス幅が可変であり当該パルス幅を制御することで送波素子10から発生させる疎密波の指向性を制御可能な送波制御部20を有するので、従来のように放射範囲調整部材を利用して疎密波の放射範囲を調整したり、圧電素子からなる送波素子の向きを調整する可動機構を設けて当該可動機構により圧電素子からなる送波素子の向きを調整して疎密波の放射範囲を調整せずとも、送波制御部20から送波素子10の発熱体層13へ通電する駆動入力波形のパルス幅を制御することで送波素子10から発生させる疎密波の指向性を変化させることができ、検知エリアを調整できるから、従来に比べて簡単な構成で検知エリアを調整可能になる。要するに、本参考例のセンサ装置では、放射範囲調整部材を取り付けたり、送波素子10や受波素子30の向きを調整したりすることなく、物体Obの検知エリアを調整することができる。 In the sensor device of this reference example described above, the acoustic wave that generates a dense wave by applying a thermal shock to the air due to the temperature change of the heating element layer 13 when the wave transmitting element 10 energizes the heating element layer 13 that is a heating part. The pulse width of the drive input waveform that is composed of the generation element and is energized to the heating element layer 13 of the transmission element 10 is variable, and the directivity of the dense wave generated from the transmission element 10 can be controlled by controlling the pulse width. Since the transmission control unit 20 is provided, a movable mechanism for adjusting the radiation range of the dense wave using a radiation range adjustment member or adjusting the direction of the transmission element made of a piezoelectric element is provided as in the prior art. A pulse of a drive input waveform energized from the transmission control unit 20 to the heating element layer 13 of the transmission element 10 without adjusting the radiation range of the dense wave by adjusting the direction of the transmission element made of a piezoelectric element by a movable mechanism. By controlling the width It is possible to change the compression wave directivity to be generated from the wave element 10, because it adjusts the detection area, it becomes possible to adjust the detection area with a simple configuration as compared with the prior art. In short, in the sensor device of the present reference example, the detection area of the object Ob can be adjusted without attaching the radiation range adjusting member or adjusting the direction of the transmitting element 10 or the receiving element 30.

また、本参考例のセンサ装置では、駆動入力波形のパルス幅の変更を指示するスイッチとして上述のパルス幅切替用スイッチSW1,SW2,SW3を備えており、パルス幅切替用スイッチSW1,SW2,SW3の操作部を外部から操作可能となっているので、当該センサ装置の設置場所ごとの周囲の状況や使用者の目的に応じてその場で検知エリアを容易に調整したり変更したりすることが可能となる。 Further, the sensor device of this reference example includes the above-described pulse width switching switches SW1, SW2, SW3 as switches for instructing the change of the pulse width of the drive input waveform, and the pulse width switching switches SW1, SW2, SW3. Since the operation unit can be operated from the outside, it is possible to easily adjust or change the detection area on the spot according to the surrounding situation for each installation location of the sensor device and the purpose of the user. It becomes possible.

(実施形態
本実施形態のセンサ装置の基本構成は参考例のセンサ装置と略同じなので図示を省略するが、送波制御部20の上記通電タイミング制御回路が、図6における下段の充放電回路21、同図における中段の充放電回路22、同図における上段の充放電回路23の順で充放電が行われるように、充電用スイッチSW0のオンオフのタイミングおよび各パルス幅切替用スイッチSW1,SW2,SW3のオンオフのタイミングおよび各サイリスタTh1,Th2,Th3へ各別の制御信号を与えるタイミングを制御する点などが相違する。要するに、本実施形態のセンサ装置では、上記通電タイミング制御回路が、駆動入力波形のパルス幅を順次変化させることで、送波素子10から指向性がそれぞれ異なる複数種類の疎密波が順次送波されるようになっている点などが参考例1と相違する。
(Embodiment 1 )
Although the basic configuration of the sensor device of the present embodiment is substantially the same as the sensor device of the reference example, the illustration is omitted. However, the energization timing control circuit of the transmission control unit 20 is the lower charge / discharge circuit 21 in FIG. The charging switch SW0 is turned on and off and the pulse width switching switches SW1, SW2, and SW3 are turned on and off so that the middle charging / discharging circuit 22 in FIG. And the timing of giving different control signals to the thyristors Th1, Th2 and Th3 are different. In short, in the sensor device of this embodiment, the energization timing control circuit sequentially changes the pulse width of the drive input waveform, so that a plurality of types of dense waves with different directivities are sequentially transmitted from the wave transmitting element 10. This is different from Reference Example 1 in that it is configured as described above.

また、信号処理部50は、各パルス幅それぞれの駆動入力波形の通電タイミングそれぞれに応じて受波期間を規定し、規定した各受波期間における受波素子30の出力を用いて物体Obを検出するように構成されている。   Further, the signal processing unit 50 defines a reception period according to each energization timing of the drive input waveform for each pulse width, and detects the object Ob using the output of the reception element 30 in each specified reception period. Is configured to do.

すなわち、信号処理部50のメモリ53には、各受波期間における受波素子30の受波信号が格納される。また、信号処理部50の演算部54は、メモリ53に格納された受波信号のデータを用いて物体Obまでの距離を求める演算を行うとともに物体Obの存在するエリアを推定するように構成されている。   That is, the received signal of the receiving element 30 in each receiving period is stored in the memory 53 of the signal processing unit 50. In addition, the calculation unit 54 of the signal processing unit 50 is configured to perform calculation for obtaining the distance to the object Ob using the received signal data stored in the memory 53 and to estimate the area where the object Ob exists. ing.

ここにおいて、演算部54は、参考例にて説明した距離演算手段の他に、メモリ53に格納された受波素子30の受波信号のデータを利用して物体Obの存在するエリア推定手段を備えている。ここで、エリア推定手段は、各パルス幅それぞれの駆動入力波形の通電タイミングそれぞれに応じて規定した各受波期間における受波素子30の出力と各パルス幅に対応する指向性との関係に基づいて物体Obの存在するエリアを推定する。例えば、送波素子10と物体Obとの相対的な位置関係が図7(a)に示すような位置関係にあって、送波素子10および物体Obの位置が変わらないものとし、送波素子10から送波される疎密波の指向角が同図(a)、同図(b)、同図(c)のように順次大きくなったとする。すると、図7(a)の場合には物体Obは検出されず、図7(b),(c)の場合には物体Obが検出されるので、各受波期間における受波素子30の出力と各パルス幅に対応する指向性との関係に基づいて物体Obの存在するエリアを推定することができる。なお、図7の例では、同図(b)の場合の検知エリアから同図(a)の場合の検知エリアを除いたエリアに物体Obが存在していると推定されることとなる。なお、演算部54の距離演算手段およびエリア推定手段は、上記マイクロコンピュータに適宜のプログラムを搭載することにより実現できる。 Here, the arithmetic unit 54, in addition to the distance calculation means that hand described in Reference Example, the area estimation means present in the object Ob by using the data of the received signals of the wave receiving devices 30 stored in the memory 53 I have. Here, the area estimation means is based on the relationship between the output of the wave receiving element 30 and the directivity corresponding to each pulse width in each wave receiving period defined according to the energization timing of each drive input waveform for each pulse width. The area where the object Ob exists is estimated. For example, it is assumed that the relative positional relationship between the transmission element 10 and the object Ob is as shown in FIG. 7A, and the positions of the transmission element 10 and the object Ob do not change. It is assumed that the directivity angle of the sparse / dense wave transmitted from 10 gradually increases as shown in FIG. 10 (a), FIG. 10 (b), and FIG. Then, in the case of FIG. 7A, the object Ob is not detected, and in the case of FIGS. 7B and 7C, the object Ob is detected. Therefore, the output of the wave receiving element 30 in each wave receiving period. And the area where the object Ob exists can be estimated based on the relationship between the directivity corresponding to each pulse width. In the example of FIG. 7, it is estimated that the object Ob exists in an area obtained by removing the detection area in the case of FIG. 7A from the detection area in the case of FIG. The distance calculation means and the area estimation means of the calculation unit 54 can be realized by installing an appropriate program in the microcomputer.

以上説明したように、本実施形態のセンサ装置は、送波制御部20が、送波素子10から指向性がそれぞれ異なる複数種類の疎密波が順次送波されるように駆動入力波形のパルス幅を順次変化させ、信号処理部50が、各パルス幅それぞれの駆動入力波形の通電タイミングそれぞれに応じて規定した各受波期間における受波素子30の出力を用いて物体Obを検出するので、複数の検知エリアを設定することが可能になる。   As described above, in the sensor device according to the present embodiment, the transmission control unit 20 has the pulse width of the drive input waveform so that a plurality of types of dense waves having different directivities are sequentially transmitted from the transmission element 10. Are sequentially changed, and the signal processing unit 50 detects the object Ob using the output of the wave receiving element 30 in each wave receiving period defined according to the energization timing of each drive input waveform of each pulse width. It is possible to set the detection area.

また、本実施形態のセンサ装置によれば、従来の圧電素子を利用した超音波発生素子では連続波もしくは複数サイクルの疎密波を放射することで音圧を高めているのに対して、送波素子10から発生期間が短く且つ音圧の高い疎密波を発生できるので、駆動入力波形の通電タイミングの間隔を短くすることができ、送波素子10から順次送波されそれぞれ指向性の異なる疎密波であって物体Obにより反射された各疎密波を比較的短い時間間隔で受波素子30にて各別に受波してそれぞれ独立した受波信号を得ることが可能となるから、時間分解能を高めることも可能となる。   In addition, according to the sensor device of the present embodiment, the ultrasonic pressure generating element using the conventional piezoelectric element increases the sound pressure by radiating a continuous wave or a plurality of cycles of dense waves. Since the generation period can be generated from the element 10 and the acoustic wave having a high sound pressure can be generated, the energization timing interval of the drive input waveform can be shortened. In addition, since each of the dense waves reflected by the object Ob can be received separately by the receiving element 30 at relatively short time intervals to obtain independent received signals, the time resolution is increased. It is also possible.

ところで、上述の実施形態では、演算部54が、各パルス幅それぞれの駆動入力波形の通電タイミングそれぞれに応じて規定した各受波期間における受波素子30の出力と各パルス幅に対応する指向性との関係に基づいて物体Obの存在するエリアを推定するエリア推定手段を備えているが、送波制御部20における充放電回路の数を更に増やして順次送波される疎密波の指向角の差を小さくするようにし、演算部54が、各パルス幅それぞれの駆動入力波形の通電タイミングそれぞれに応じて規定した各受波期間における受波素子30の出力と各パルス幅に対応する指向性との関係に基づいて物体Obの存在する方位(物体Obにより反射された疎密波の到来方向)を推定する方位推定手段を備えるようにしてもよい。このような方位推定手段を設ければ、物体Obの存在する方位を推定することが可能となり、物体Obの形状や動きを推定することも可能となる。   By the way, in the above-mentioned embodiment, the calculating part 54 has the directivity corresponding to each pulse width and the output of the receiving element 30 in each receiving period prescribed | regulated according to each energization timing of each drive input waveform of each pulse width. Area estimation means for estimating the area where the object Ob is present based on the relationship between the directivity and the directivity angle of the dense wave sequentially transmitted by further increasing the number of charge / discharge circuits in the transmission control unit 20. The difference is made small, and the calculation unit 54 outputs the output of the wave receiving element 30 in each wave receiving period and the directivity corresponding to each pulse width defined according to the energization timing of each drive input waveform of each pulse width. Based on the relationship, an azimuth estimating means for estimating the azimuth in which the object Ob exists (the arrival direction of the dense wave reflected by the object Ob) may be provided. By providing such an azimuth estimation means, it is possible to estimate the azimuth in which the object Ob exists, and it is also possible to estimate the shape and movement of the object Ob.

(実施形態
ところで、上述のように演算部54に方位推定手段を備えたセンサ装置においては、物体Obの存在する方位を推定することが可能となるものの、例えば、送波素子10と物体Obとの相対的な位置関係が図7(a)のような場合、同図(a)のように送波素子10の斜め上方に物体Obが存在するのか、送波素子10の斜め下方(つまり、実際に物体Obが存在する位置をミラー反転した位置)に物体Obが存在するのか識別することができない。そこで、複数個のセンサ装置を互いに干渉しない程度に離して配置して、各センサ装置の検出結果に基づいて物体Obの存在する方位を求める信号処理を行うようにしたシステムが考えられるが、このようなシステムでは、センサ装置の設置作業が面倒になるとともにシステム全体が大型化し、しかも、信号処理用の回路が複雑になってしまう。
(Embodiment 2 )
By the way, in the sensor device provided with the direction estimating means in the calculation unit 54 as described above, it is possible to estimate the direction in which the object Ob exists, but for example, the relative relationship between the wave transmitting element 10 and the object Ob. 7A, whether the object Ob exists obliquely above the transmission element 10 as shown in FIG. 7A, or obliquely below the transmission element 10 (that is, the actual object It is impossible to identify whether the object Ob is present at a position obtained by mirror-reversing the position where the Ob is present. Therefore, a system is considered in which a plurality of sensor devices are arranged so as not to interfere with each other, and signal processing for obtaining the direction in which the object Ob exists is performed based on the detection result of each sensor device. In such a system, the installation work of the sensor device becomes troublesome, the whole system becomes large, and the signal processing circuit becomes complicated.

これに対して、本実施形態のセンサ装置は、図8に示すように、上記方位推定手段を演算部54に備えたセンサ装置からなる複数個(図示例では、2個)のセンサユニット1が同一平面上に隣接して配置され、他のセンサユニット1の送波素子10から送波され物体Obで反射された疎密波が受波素子30に入射するのを防止する遮蔽板60を備えている点に特徴がある。ここにおいて、図8に示した構成のセンサ装置によれば、遮蔽板60よりも左側(図8における上側)のセンサユニット1では遮蔽板60よりも左側に検知エリアが設定され、遮蔽板60よりも右側(図8における下側)のセンサユニット1では遮蔽板60よりも右側に検知エリアが設定されるので、各センサユニット1において物体Obの存在する方位をより正確に推定することが可能となるから、いずれかのセンサユニット1により推定された物体Obの存在する方位を一意的に物体Obの存在する方位として処理することが可能となり、簡便な構成で物体Obまでの距離を求めるとともに物体Obの存在する方位をより正確に推定することが可能となる。   On the other hand, as shown in FIG. 8, the sensor device of the present embodiment includes a plurality (two in the illustrated example) of sensor units 1 including the sensor device including the azimuth estimation unit in the calculation unit 54. A shielding plate 60 that is arranged adjacent to each other on the same plane and prevents the dense wave transmitted from the wave transmitting element 10 of the other sensor unit 1 and reflected by the object Ob from entering the wave receiving element 30 is provided. There is a feature in that. Here, according to the sensor device having the configuration shown in FIG. 8, in the sensor unit 1 on the left side (upper side in FIG. 8) of the shielding plate 60, the detection area is set on the left side of the shielding plate 60. In the sensor unit 1 on the right side (lower side in FIG. 8), since the detection area is set on the right side of the shielding plate 60, it is possible to more accurately estimate the azimuth in which the object Ob exists in each sensor unit 1. Therefore, the azimuth in which the object Ob exists estimated by any one of the sensor units 1 can be uniquely processed as the azimuth in which the object Ob exists, and the distance to the object Ob is obtained with a simple configuration and the object It is possible to estimate the orientation in which Ob is present more accurately.

なお、上述の例では、遮蔽板60により物体Obにて反射された疎密波の入射する方向が制限されるようになっているが、送波素子10から送波される疎密波の放射範囲を遮蔽板60により制限するようにしてもよい。要するに、遮蔽板60は、異なるセンサユニット1間での干渉が防止されるように配置すればよい。   In the above-described example, the incident direction of the dense wave reflected by the object Ob by the shielding plate 60 is limited, but the radiation range of the dense wave transmitted from the wave transmitting element 10 is limited. You may make it restrict | limit with the shielding board 60. FIG. In short, the shielding plate 60 may be arranged so that interference between different sensor units 1 is prevented.

(実施形態
本実施形態の自走トボットは、図9に示すように、ロボット本体71と、ロボット本体71を移動可能とする車輪からなる走行手段72と、ロボット本体71に搭載され障害物を検知する2つの障害物検知装置73と、各障害物検知装置73それぞれにより検知された障害物を回避しながらロボット本体71が移動するように走行手段72を制御する走行制御手段(図示せず)とを備えており、障害物検知装置73として実施形態にて説明したセンサ装置を用いている。なお、図9に示した例では、ロボット本体71の前側(図9における左側)および後側(図9における右側)それぞれに障害物検知装置73を1個ずつ取り付けてある。
(Embodiment 3 )
As shown in FIG. 9, the self-propelled tobot of the present embodiment includes a robot main body 71, traveling means 72 including wheels that can move the robot main body 71, and two robots mounted on the robot main body 71 that detect obstacles. An obstacle detection device 73 and a travel control means (not shown) for controlling the travel means 72 so that the robot main body 71 moves while avoiding the obstacle detected by each obstacle detection device 73 are provided. The sensor device described in the first embodiment is used as the obstacle detection device 73. In the example shown in FIG. 9, one obstacle detection device 73 is attached to each of the front side (left side in FIG. 9) and the rear side (right side in FIG. 9) of the robot main body 71.

ところで、自走ロボットに障害物検知手段として従来のセンサ装置を搭載する場合や、検知エリアの狭い複数の超音波センサを搭載する場合には、ロボット本体71に対する障害物検知手段の取付位置の自由度が低くなるとともに取付作業が面倒になり、また、複雑な制御系や駆動系を備えた自走ロボットの負荷が重くなってしまうとともに、自走ロボットの体積および重量が増加してしまう。   By the way, when mounting a conventional sensor device as an obstacle detection means on a self-propelled robot, or when mounting a plurality of ultrasonic sensors with a narrow detection area, the attachment position of the obstacle detection means with respect to the robot body 71 can be freely set. As the degree is lowered, the mounting work becomes troublesome, and the load of the self-running robot having a complicated control system and drive system becomes heavy, and the volume and weight of the self-running robot increase.

これに対して、本実施形態では、自走ロボットにおける障害物検知装置73の検知エリアを従来に比べて簡単な構成で調整可能になり、ロボット本体71に対する障害物検知装置73の取付位置の自由度が高くなるとともに取付作業が容易になり、また、複雑な制御系や駆動系を備えた自走ロボットの負荷を軽減できる。   On the other hand, in the present embodiment, the detection area of the obstacle detection device 73 in the self-running robot can be adjusted with a simpler configuration than in the past, and the attachment position of the obstacle detection device 73 with respect to the robot body 71 can be freely set. The degree of installation becomes higher and the installation work becomes easier, and the load on a self-propelled robot equipped with a complicated control system and drive system can be reduced.

なお、上述の例では、障害物検知装置73として、実施形態にて説明したセンサ装置を採用しているが、参考例や他の実施形態にて説明したセンサ装置を採用してもよい。 In the above-described example, the sensor device described in the first embodiment is employed as the obstacle detection device 73. However , the sensor device described in the reference example or other embodiment 2 may be employed. .

参考例のセンサ装置の概略構成図である。It is a schematic block diagram of the sensor apparatus of a reference example . 同上における送波素子の概略断面図である。It is a schematic sectional drawing of the wave transmitting element same as the above. 同上における受波素子を示し、(a)は一部破断した概略斜視図、(b)は概略断面図である。The wave receiving element in the same as above is shown, (a) is a schematic perspective view partly broken, and (b) is a schematic sectional view. 同上における送波素子の動作説明図である。It is operation | movement explanatory drawing of the wave transmission element in the same as the above. 同上における送波素子の動作説明図である。It is operation | movement explanatory drawing of the wave transmission element in the same as the above. 同上における送波制御部の概略回路図である。It is a schematic circuit diagram of the wave transmission control part in the same as the above. 実施形態のセンサ装置の動作説明図である。FIG. 3 is an operation explanatory diagram of the sensor device of the first embodiment. 実施形態のセンサ装置の概略構成図である。It is a schematic block diagram of the sensor apparatus of Embodiment 2 . 実施形態の自走ロボットの概略構成図である。It is a schematic block diagram of the self-propelled robot of Embodiment 3 .

符号の説明Explanation of symbols

10 送波素子
20 送波制御部
30 受波素子
50 信号処理部
51 信号増幅部
52 A/D変換部
53 メモリ
54 演算部
Ob 物体
DESCRIPTION OF SYMBOLS 10 Transmission element 20 Transmission control part 30 Reception element 50 Signal processing part 51 Signal amplification part 52 A / D conversion part 53 Memory 54 Operation part Ob Object

Claims (4)

疎密波を送波する送波素子と、送波素子から送波され物体で反射された疎密波を受波するとともに受波した疎密波を電気信号である受波信号に変換する受波素子と、受波素子から出力された受波信号を用いて物体を検出する信号処理部とを備え、送波素子が、発熱部への通電に伴う発熱部の温度変化により空気に熱衝撃を与えることで疎密波を発生させる音波発生素子からなり、送波素子の発熱部へ通電する駆動入力波形のパルス幅が可変であり当該パルス幅を制御することで送波素子から発生させる疎密波の指向性を制御可能な送波制御部を有し、送波制御部は、送波素子から指向性がそれぞれ異なる複数種類の疎密波が順次送波されるように駆動入力波形のパルス幅を順次変化させ、信号処理部は、各パルス幅それぞれの駆動入力波形の通電タイミングそれぞれに応じて規定した各受波期間における受波素子の出力を用いて物体を検出するものであり、各パルス幅それぞれの駆動入力波形の通電タイミングそれぞれに応じて規定した各受波期間における受波素子の出力と各パルス幅に対応する指向性との関係に基づいて物体の存在するエリアを推定するエリア推定手段を備えてなることを特徴とするセンサ装置。 A transmitting element for transmitting a sparse / dense wave; and a receiving element for receiving a sparse wave transmitted from the transmitting element and reflected by an object and converting the received sparse / dense wave into a received signal that is an electrical signal; A signal processing unit that detects an object using a received signal output from the wave receiving element, and the wave transmitting element gives a thermal shock to the air due to a temperature change of the heat generating part when the heat generating part is energized The pulse width of the drive input waveform that energizes the heat generating part of the transmission element is variable, and the directivity of the dense wave generated from the transmission element by controlling the pulse width The transmission control unit can sequentially change the pulse width of the drive input waveform so that multiple types of dense waves with different directivities are sequentially transmitted from the transmission element. , The signal processing unit is the drive input waveform for each pulse width. An object is detected by using the output of the receiving element in each receiving period defined according to each electric timing, and each receiving period defined according to each energization timing of the drive input waveform for each pulse width A sensor device comprising area estimation means for estimating an area where an object exists based on a relationship between an output of a wave receiving element and directivity corresponding to each pulse width . 疎密波を送波する送波素子と、送波素子から送波され物体で反射された疎密波を受波するとともに受波した疎密波を電気信号である受波信号に変換する受波素子と、受波素子から出力された受波信号を用いて物体を検出する信号処理部とを備え、送波素子が、発熱部への通電に伴う発熱部の温度変化により空気に熱衝撃を与えることで疎密波を発生させる音波発生素子からなり、送波素子の発熱部へ通電する駆動入力波形のパルス幅が可変であり当該パルス幅を制御することで送波素子から発生させる疎密波の指向性を制御可能な送波制御部を有し、送波制御部は、送波素子から指向性がそれぞれ異なる複数種類の疎密波が順次送波されるように駆動入力波形のパルス幅を順次変化させ、信号処理部は、各パルス幅それぞれの駆動入力波形の通電タイミングそれぞれに応じて規定した各受波期間における受波素子の出力を用いて物体を検出するものであり、信号処理部は、各パルス幅それぞれの駆動入力波形の通電タイミングそれぞれに応じて規定した各受波期間における受波素子の出力と各パルス幅に対応する指向性との関係に基づいて物体の存在する方位を推定する方位推定手段を備えてなることを特徴とするセンサ装置。 A transmitting element for transmitting a sparse / dense wave; and a receiving element for receiving a sparse wave transmitted from the transmitting element and reflected by an object and converting the received sparse / dense wave into a received signal that is an electrical signal; A signal processing unit that detects an object using a received signal output from the wave receiving element, and the wave transmitting element gives a thermal shock to the air due to a temperature change of the heat generating part when the heat generating part is energized The pulse width of the drive input waveform that energizes the heat generating part of the transmission element is variable, and the directivity of the dense wave generated from the transmission element by controlling the pulse width has a controllable transmitting control unit, transmitting control unit, the pulse width of the drive input waveform is sequentially changed so as to be transmitting a plurality of types of compressional waves from transmission waves element different directivities respectively successively , signal processing unit, for each pulse width each drive input waveform A shall detect an object using the output of the put that received wave element in each wave receiving period defined in accordance with the respective electric timing, the signal processing unit are each conduction timing of each pulse width each drive input waveform it characterized in that it comprises a direction estimation means for estimating the existing orientation of an object based on a relationship between the output and the directivity corresponding to each pulse width of the wave receiving devices of each wave receiving period defined in accordance sensor apparatus. 請求項2記載のセンサ装置からなるセンサユニットが同一平面上に複数個配置され、他のセンサユニットの送波素子から送波され物体で反射された疎密波が受波素子に入射するのを防止する遮蔽板を備えてなることを特徴とするセンサ装置。 A plurality of sensor units comprising the sensor device according to claim 2 are arranged on the same plane, and prevent a dense wave transmitted from a wave transmitting element of another sensor unit and reflected by an object from entering the wave receiving element. It is provided with a shielding plate which features and to Rousset capacitors device. ロボット本体と、ロボット本体を移動可能とする走行手段と、ロボット本体に搭載され障害物を検知する障害物検知装置と、障害物検知装置により検知された障害物を回避しながらロボット本体が移動するように走行手段を制御する走行制御手段とを備え、障害物検知装置として請求項1ないし請求項3のいずれか1項に記載のセンサ装置を用いてなることを特徴とする自走ロボット。 The robot main body, traveling means that can move the robot main body, an obstacle detection device that is mounted on the robot main body and detects an obstacle, and the robot main body moves while avoiding the obstacle detected by the obstacle detection device and a traveling control means for controlling the driving means so as, self-propelled robot you characterized by using a sensor device according to any one of claims 1 to 3 as an obstacle detecting device.
JP2005312014A 2005-10-26 2005-10-26 Sensor device and self-propelled robot using the same Expired - Fee Related JP4682802B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312014A JP4682802B2 (en) 2005-10-26 2005-10-26 Sensor device and self-propelled robot using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312014A JP4682802B2 (en) 2005-10-26 2005-10-26 Sensor device and self-propelled robot using the same

Publications (2)

Publication Number Publication Date
JP2007121046A JP2007121046A (en) 2007-05-17
JP4682802B2 true JP4682802B2 (en) 2011-05-11

Family

ID=38145059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312014A Expired - Fee Related JP4682802B2 (en) 2005-10-26 2005-10-26 Sensor device and self-propelled robot using the same

Country Status (1)

Country Link
JP (1) JP4682802B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5796205B2 (en) * 2011-01-25 2015-10-21 パナソニックIpマネジメント株式会社 Humidity sensor
JP6638554B2 (en) * 2016-05-19 2020-01-29 株式会社デンソー Object detection device and object detection method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344539A (en) * 2002-05-22 2003-12-03 Toshiba Tec Corp Autonomous traveling car
JP2004180262A (en) * 2002-09-30 2004-06-24 Matsushita Electric Works Ltd Three-dimensional sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144382A (en) * 1984-08-07 1986-03-04 Nec Corp Active sonar apparatus
JPH03140100A (en) * 1989-10-26 1991-06-14 Fuji Xerox Co Ltd Electroacoustic transducing method and apparatus therefor
JP3705926B2 (en) * 1998-04-23 2005-10-12 独立行政法人科学技術振興機構 Pressure wave generator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344539A (en) * 2002-05-22 2003-12-03 Toshiba Tec Corp Autonomous traveling car
JP2004180262A (en) * 2002-09-30 2004-06-24 Matsushita Electric Works Ltd Three-dimensional sensor

Also Published As

Publication number Publication date
JP2007121046A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
CA2574028C (en) Acoustic wave sensor
JP2007024688A (en) Human body abnormality detection sensor, and information system using the same
JP2007000121A (en) Apparatus for threatening small animal
JP4682802B2 (en) Sensor device and self-propelled robot using the same
JP4936199B2 (en) Moving body position detection system
JP4100416B2 (en) Position detection system
JPWO2008010269A1 (en) Moving body position detection system
Je et al. The impact of micromachined ultrasonic radiators on the efficiency of transducers in air
WO2012020600A1 (en) Soundwave source and ultrasound generation device
JP5513706B2 (en) Position detection system
JP2006319789A (en) Obstacle detection sensor for vehicle
JP4100415B2 (en) Position detection system
JP3979423B2 (en) Position detection system
JP5390745B2 (en) Orientation detection system
JP2007003495A (en) Position detection system
JP2007004727A (en) Intrusion warning device
JP4569565B2 (en) Flow line measurement system
JP4569564B2 (en) Flow line measurement system
JP2006220637A (en) Sensor system
JP4569599B2 (en) Position detection system
JP4729941B2 (en) Sonic sensor
JP4569586B2 (en) Flow line measurement system
JP4297026B2 (en) Object detection method and object detection apparatus
JP4710855B2 (en) Flow line measurement system
WO2022185594A1 (en) Object detection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100222

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees