JP4569564B2 - Flow line measurement system - Google Patents

Flow line measurement system Download PDF

Info

Publication number
JP4569564B2
JP4569564B2 JP2006337379A JP2006337379A JP4569564B2 JP 4569564 B2 JP4569564 B2 JP 4569564B2 JP 2006337379 A JP2006337379 A JP 2006337379A JP 2006337379 A JP2006337379 A JP 2006337379A JP 4569564 B2 JP4569564 B2 JP 4569564B2
Authority
JP
Japan
Prior art keywords
ultrasonic
sound source
trigger signal
identification information
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006337379A
Other languages
Japanese (ja)
Other versions
JP2007127663A (en
Inventor
山中  浩
祥文 渡部
由明 本多
倫生 大塚
弘通 後藤
耕作 北田
和男 澤田
裕志 河田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2006337379A priority Critical patent/JP4569564B2/en
Publication of JP2007127663A publication Critical patent/JP2007127663A/en
Application granted granted Critical
Publication of JP4569564B2 publication Critical patent/JP4569564B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

本発明は、超音波を利用して移動体の位置情報を検出し建物内の床面上を移動する移動体の移動状況を追跡する動線計測を行う動線計測システムに関するものである。   The present invention relates to a flow line measurement system that performs flow line measurement that detects the position information of a moving body using ultrasonic waves and tracks the moving state of the moving body that moves on a floor surface in a building.

従来から、複数の移動体それぞれに設けられた超音波発信機と、建物内の天井面の所定領域ごとに設置された少なくとも3個の超音波受信機と、超音波発信機から発信された超音波が超音波受信機で受信されるまでの時間に基づいて移動体の位置情報を求める演算処理手段とを備えた位置検出システムが提案されている(例えば、特許文献1,2参照)。なお、上記特許文献1,2に開示された位置検出システムでは、各超音波受信機それぞれを2線式の信号線によりジャンクションボックスと接続し、演算処理手段を構成するコンピュータとジャンクションボックスとを別途の信号線を介して接続している。
特開2003−279640号公報(段落〔0012〕〜〔0024〕、図1〜図4) 特開平8−226810号公報(段落〔0025〕〜〔0033〕、図1〜図3)
Conventionally, an ultrasonic transmitter provided in each of a plurality of moving bodies, at least three ultrasonic receivers installed for each predetermined area of a ceiling surface in a building, and an ultrasonic transmitter transmitted from the ultrasonic transmitter There has been proposed a position detection system including an arithmetic processing unit that obtains position information of a moving body based on a time until a sound wave is received by an ultrasonic receiver (see, for example, Patent Documents 1 and 2). In the position detection systems disclosed in Patent Documents 1 and 2, each ultrasonic receiver is connected to a junction box with a two-wire signal line, and a computer and a junction box constituting the arithmetic processing means are separately provided. Are connected via the signal line.
JP 2003-279640 A (paragraphs [0012] to [0024], FIGS. 1 to 4) JP-A-8-226810 (paragraphs [0025] to [0033], FIGS. 1 to 3)

上記特許文献1,2に開示された位置検出システムは、建物の天井面の所定領域ごとに超音波受信機からなる超音波受信装置を1つずつ設置するようにしたシステムであって、演算処理手段において検出対象の物体(移動体)の位置情報を求めるためには、少なくとも3箇所に超音波受信装置を設置しなければならず、施工作業が面倒になってしまう。しかも、上述の位置検出システムでは、3つの超音波受信装置の検知エリアの重なる領域に存在する物体の位置情報しか得ることができないので、超音波受信装置の配置設計が難しく、施工作業が面倒になってしまう。   The position detection systems disclosed in Patent Documents 1 and 2 are systems in which one ultrasonic receiving device including an ultrasonic receiver is installed for each predetermined area on the ceiling surface of a building, In order to obtain the position information of the object (moving body) to be detected by the means, it is necessary to install ultrasonic receiving devices in at least three places, and the construction work becomes troublesome. In addition, in the above-described position detection system, only the position information of the object existing in the area where the detection areas of the three ultrasonic reception devices overlap can be obtained, so the layout design of the ultrasonic reception device is difficult and the construction work is troublesome. turn into.

本発明は上記事由に鑑みて為されたものであり、その目的は、施工が容易で且つ超音波受信装置の配置設計が容易な動線計測システムを提供することにある。   The present invention has been made in view of the above-described reasons, and an object of the present invention is to provide a flow line measurement system that is easy to construct and easy to design the arrangement of an ultrasonic receiver.

請求項1の発明は、建物内の床面上を移動する移動体の移動状況を追跡する動線計測を行う動線計測システムであって、前記移動体に搭載され超音波を発生可能であり共振特性のQ値が1程度である音源と、前記床面上方の施工面に設置され音源から送波された超音波を受波するとともに受波した超音波を電気信号である受波信号に変換し共振特性のQ値が3〜4程度である複数個の受波素子が同一基板上に配列された超音波アレイセンサからなる超音波受信装置と、超音波受信装置である超音波アレイセンサの各受波素子で超音波を受波した時間の時間差と各受波素子の配置位置とに基づいて超音波受信装置に対して音源の存在する方位を求める位置演算部と、音源と超音波受信装置とのうち音源側に設けられ光もしくは電波のトリガ信号を発信するトリガ信号発信器と、超音波受信装置側に設けられトリガ信号を受信するトリガ信号受信器と、トリガ信号発信器からのトリガ信号の送波開始タイミングおよび音源からの超音波の送波開始タイミングを制御する制御部とを備え、位置演算部が、トリガ信号受信器によりトリガ信号を受信した時刻と受波素子により超音波を受波した時刻との関係から超音波受信装置と音源との距離を求める距離演算手段を備え、位置演算部で求めた音源の存在する方位および音源までの距離を、トリガ信号受信器によりトリガ信号を受信した時刻と対応付けて時系列的に記憶するメモリを備えることを特徴とする。 The invention of claim 1, a flow line measuring system for the flow line measurement to track the movement condition of a movable body that moves on the floor surface in the building, in generating available-ultrasound mounted on the movable body There sound source Q value of the resonance characteristics is about 1, reception is an electrical signal of ultrasonic waves received wave as well as reception of the ultrasonic wave transmitted from the sound source is disposed in the construction plane of the floor above an ultrasonic receiver multi several wave receiving element consists of an ultrasonic array sensor that is arranged on the same substrate Q value of the conversion and resonance characteristics is about 3 to 4 to the signal is the ultrasonic receiving apparatus A position calculation unit that obtains the direction in which the sound source exists for the ultrasonic receiving device based on the time difference between the time when the ultrasonic wave is received by each receiving element of the ultrasonic array sensor and the arrangement position of each receiving element ; Light or radio trigger signal provided on the sound source side of the sound source and ultrasonic receiver Trigger signal transmitter to transmit, trigger signal receiver provided on the ultrasonic receiver side to receive the trigger signal, transmission start timing of trigger signal from trigger signal transmitter and transmission start of ultrasonic wave from sound source A control unit that controls the timing, and the position calculation unit determines whether the ultrasonic reception device and the sound source have a relationship between the time when the trigger signal is received by the trigger signal receiver and the time when the ultrasonic wave is received by the wave receiving element. A memory that includes distance calculation means for calculating a distance, and stores the azimuth of the sound source obtained by the position calculation unit and the distance to the sound source in time series in association with the time when the trigger signal is received by the trigger signal receiver. It is characterized by providing .

この発明によれば、1つの超音波受信装置を配置することにより当該超音波受信装置を中心とした検知エリア内に存在する移動体に搭載された音源の存在する方位を求めることができるので、施工が容易になるとともに超音波受信装置の配置設計が容易になる。また、超音波受信装置と音源との距離を求めることができるので、音源の存在する方位と音源までの距離とに基づいて超音波受信装置に対する音源の相対位置を求めることができる。また、音源と受波素子との共振特性のQ値が圧電素子に比べて十分に小さいので、残響成分に起因した不感帯を短くすることができ、とくに受波素子について不感帯を短くすることにより角度分解能が改善される。また、メモリに、位置演算部で求めた音源の存在する方位および音源までの距離を、トリガ信号受信器によりトリガ信号を受信した時刻と対応付けて時系列的に記憶することができる。 According to this invention, by arranging one ultrasonic receiving device, it is possible to obtain the azimuth in which the sound source mounted on the moving body existing in the detection area centered on the ultrasonic receiving device exists. The construction becomes easy and the layout design of the ultrasonic receiving device becomes easy . In addition, since the distance between the ultrasonic receiving device and the sound source can be obtained, the relative position of the sound source with respect to the ultrasonic receiving device can be obtained based on the direction in which the sound source exists and the distance to the sound source. In addition, since the Q value of the resonance characteristics of the sound source and the receiving element is sufficiently smaller than that of the piezoelectric element, the dead zone caused by the reverberation component can be shortened. Resolution is improved. Further, the azimuth in which the sound source exists and the distance to the sound source obtained by the position calculation unit can be stored in the memory in time series in association with the time when the trigger signal is received by the trigger signal receiver.

請求項2の発明は、建物内の床面上を移動する移動体の移動状況を追跡する動線計測を行う動線計測システムであって、前記移動体に搭載され超音波を発生可能であり共振特性のQ値が1程度である音源と、前記床面上方の施工面に設置され音源から送波された超音波を受波するとともに受波した超音波を電気信号である受波信号に変換し共振特性のQ値が3〜4程度である複数個の受波素子が同一基板上に配列された超音波アレイセンサからなる超音波受信装置と、超音波受信装置である超音波アレイセンサの各受波素子で超音波を受波した時間の時間差と各受波素子の配置位置とに基づいて超音波受信装置に対して音源の存在する方位を求める位置演算部と、音源と超音波受信装置とのうち超音波受信装置側に設けられ光もしくは電波のトリガ信号を発信するトリガ信号発信器と、音源側に設けられトリガ信号を受信するトリガ信号受信器と、トリガ信号受信器にてトリガ信号を受信したときに音源から超音波を送波させる制御部とを備え、位置演算部は、トリガ信号発信器からトリガ信号が発信された時刻と受波素子により超音波を受波した時刻との関係から超音波受信装置と音源との距離を求める距離演算手段を備え、位置演算部で求めた音源の存在する方位および音源までの距離を、トリガ信号受信器によりトリガ信号を受信した時刻と対応付けて時系列的に記憶するメモリを備えることを特徴とする。The invention of claim 2 is a flow line measurement system for performing flow line measurement for tracking the movement state of a moving body moving on a floor surface in a building, and is mounted on the moving body and can generate ultrasonic waves. A sound source having a resonance property Q value of about 1 and an ultrasonic wave transmitted from the sound source installed on the construction surface above the floor and receiving the received ultrasonic wave as an electric signal An ultrasonic receiving device comprising an ultrasonic array sensor in which a plurality of receiving elements having a resonance characteristic Q value of about 3 to 4 are arranged on the same substrate, and an ultrasonic array sensor being an ultrasonic receiving device A position calculation unit for obtaining the direction in which the sound source is present with respect to the ultrasonic receiving device based on the time difference between the times when the ultrasonic waves are received by each of the receiving elements and the arrangement position of each receiving element; It is installed on the ultrasonic receiver side of the receiver, and the light or radio wave A trigger signal transmitter that transmits a trigger signal, a trigger signal receiver that is provided on the sound source side and receives a trigger signal, and a control unit that transmits ultrasonic waves from the sound source when the trigger signal is received by the trigger signal receiver The position calculation unit calculates the distance between the ultrasonic receiver and the sound source from the relationship between the time when the trigger signal is transmitted from the trigger signal transmitter and the time when the ultrasonic wave is received by the wave receiving element. And a memory for storing in time series the direction in which the sound source exists and the distance to the sound source obtained by the position calculation unit are associated with the time when the trigger signal is received by the trigger signal receiver. To do.

この発明によれば、1つの超音波受信装置を配置することにより当該超音波受信装置を中心とした検知エリア内に存在する移動体に搭載された音源の存在する方位を求めることができるので、施工が容易になるとともに超音波受信装置の配置設計が容易になる。また、超音波受信装置と音源との距離を求めることができるので、音源の存在する方位と超音波受信装置と音源との距離とに基づいて超音波受信装置に対する音源の相対位置を求めることができる。また、音源と受波素子との共振特性のQ値が圧電素子に比べて十分に小さいので、残響成分に起因した不感帯を短くすることができ、とくに受波素子について不感帯を短くすることにより角度分解能が改善される。また、メモリに、位置演算部で求めた音源の存在する方位および音源までの距離を、トリガ信号受信器によりトリガ信号を受信した時刻と対応付けて時系列的に記憶することができる。According to this invention, by arranging one ultrasonic receiving device, it is possible to obtain the azimuth in which the sound source mounted on the moving body existing in the detection area centered on the ultrasonic receiving device exists. The construction becomes easy and the layout design of the ultrasonic receiving device becomes easy. In addition, since the distance between the ultrasonic receiving device and the sound source can be obtained, the relative position of the sound source with respect to the ultrasonic receiving device can be obtained based on the direction in which the sound source exists and the distance between the ultrasonic receiving device and the sound source. it can. In addition, since the Q value of the resonance characteristics of the sound source and the receiving element is sufficiently smaller than that of the piezoelectric element, the dead zone caused by the reverberation component can be shortened. Resolution is improved. Further, the azimuth in which the sound source exists and the distance to the sound source obtained by the position calculation unit can be stored in the memory in time series in association with the time when the trigger signal is received by the trigger signal receiver.

請求項3の発明は、請求項1の発明において、前記音源が複数あり、前記各音源と前記超音波受信装置とのうち前記各音源側に設けられそれぞれ固有の識別情報信号を発信する複数の識別情報信号発信器と、前記超音波受信装置側に設けられ識別情報信号を受信する識別情報信号受信器とを備え、前記トリガ信号発信器として識別情報信号発信器を用いるとともに前記トリガ信号受信器として識別情報信号受信器を用いて前記トリガ信号を識別情報信号で兼用し、前記制御部は、前記音源側に設けられ識別情報信号発信器からの識別情報信号の送信開始タイミングおよび前記音源からの超音波の送波開始タイミングを制御し、前記位置演算部は、識別情報信号受信部にて受信した識別情報信号に基づいて前記各音源を個別に特定する音源特定手段を備え、前記距離演算手段は、識別情報信号受信部により識別情報信号を受信した時刻と前記受波素子により超音波を受波した時刻との関係から前記超音波受信装置と前記音源との距離を求めることを特徴とする。The invention of claim 3 is the invention of claim 1, wherein there are a plurality of the sound sources, and a plurality of sound sources provided on the sound source side of the sound sources and the ultrasonic receivers, each transmitting a unique identification information signal. An identification information signal transmitter; and an identification information signal receiver provided on the ultrasonic receiver side for receiving an identification information signal, wherein the trigger signal transmitter uses the identification information signal transmitter and the trigger signal receiver. As the identification information signal receiver, the trigger signal is also used as the identification information signal, and the control unit is provided on the sound source side and the transmission start timing of the identification information signal from the identification information signal transmitter and from the sound source The position calculation unit controls the transmission start timing of the ultrasonic wave, and the position calculation unit specifies the sound sources individually based on the identification information signal received by the identification information signal reception unit. The distance calculating means includes a relationship between a time at which the identification information signal is received by the identification information signal receiving unit and a time at which the ultrasonic wave is received by the receiving element. It is characterized by obtaining a distance.

この発明によれば、前記超音波受信装置から前記各音源それぞれまでの距離を求めることができるので、前記各音源それぞれの存在する方位と前記超音波受信装置から前記各音源それぞれまでの距離とに基づいて前記超音波受信装置に対する前記各音源それぞれの相対位置を求めることができる。According to this invention, since the distance from the ultrasonic receiver to each of the sound sources can be obtained, the azimuth in which each of the sound sources exists and the distance from the ultrasonic receiver to each of the sound sources. Based on this, it is possible to obtain the relative position of each sound source with respect to the ultrasonic receiving device.

請求項4の発明は、請求項1または請求項2の発明において、前記音源が複数あり、前記各音源と前記超音波受信装置とのうち前記各音源側に設けられそれぞれ固有の識別情報信号を発信する識別情報信号発信器と、前記超音波受信装置側に設けられ識別情報信号を受信する識別情報信号受信器と、前記超音波受信装置側に設けられ識別情報信号受信部にて受信した識別情報信号に基づいて前記各音源を個別に特定する音源特定手段とを備えることを特徴とする。According to a fourth aspect of the present invention, in the first or second aspect of the present invention, there are a plurality of the sound sources, and each of the sound sources and the ultrasonic receiving device is provided on the sound source side and has a unique identification information signal. An identification information signal transmitter for transmitting, an identification information signal receiver for receiving an identification information signal provided on the ultrasonic receiving device side, and an identification received by an identification information signal receiving unit provided on the ultrasonic receiving device side Sound source specifying means for individually specifying each sound source based on an information signal.

この発明によれば、前記超音波受信装置に対する前記各音源それぞれの存在する方位を前記音源ごとに特定して求めることができる。According to the present invention, the direction in which each of the sound sources exists with respect to the ultrasonic receiving apparatus can be specified and determined for each sound source.

請求項の発明は、請求項1ないし請求項4の発明において、前記音源は、支持基板と、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する熱絶縁層とを備え、発熱体層への通電に伴う発熱体層の温度変化に伴って超音波を発生する超音波発生素子からなることを特徴とする。 According to a fifth aspect of the present invention, in the first to fourth aspects of the invention, the sound source is supported by a support substrate, a heating element layer formed on one surface side of the support substrate, and the one surface side of the support substrate. A thermal insulating layer interposed between the substrate and the heating element layer, and comprising an ultrasonic wave generating element that generates an ultrasonic wave in accordance with a temperature change of the heating element layer caused by energization of the heating element layer. To do.

この発明によれば、前記音源として圧電式の超音波発生素子を用いる場合に比較して共振特性のQ値が小さいから、残響時間が短く発生期間の短い超音波を発生させることができ、前記音源から送波される超音波における残響成分に起因した不感帯を短くすることができる。   According to this invention, since the Q value of the resonance characteristics is small compared to the case where a piezoelectric ultrasonic generator is used as the sound source, it is possible to generate ultrasonic waves with a short reverberation time and a short generation period. The dead zone caused by the reverberation component in the ultrasonic wave transmitted from the sound source can be shortened.

請求項の発明は、請求項1ないし請求項5の発明において、前記受波素子は、超音波の音圧を静電容量の変化に変換する静電容量式のマイクロホンからなることを特徴とする。 According to a sixth aspect of the present invention, in any of the first to fifth aspects of the present invention, the wave receiving element comprises a capacitive microphone that converts ultrasonic sound pressure into a change in capacitance. To do.

この発明によれば、前記受波素子の共振特性のQ値が圧電素子の共振特性のQ値に比べて小さいから、従来のように受波素子として圧電式の受波素子を用いる場合に比べて、前記受波素子で超音波を受波したときに発生する受波信号における残響時間を短くできるので、前記受波素子から出力される受波信号における残響成分に起因した不感帯を短くすることができる。   According to the present invention, since the Q value of the resonance characteristic of the receiving element is smaller than the Q value of the resonance characteristic of the piezoelectric element, the piezoelectric receiving element is used as the receiving element as in the prior art. In addition, since the reverberation time in the received signal generated when receiving the ultrasonic wave by the receiving element can be shortened, the dead zone caused by the reverberant component in the received signal output from the receiving element can be shortened. Can do.

請求項1,2の発明では、1つの超音波受信装置を配置することにより当該超音波受信装置を中心とした検知エリア内に存在する移動体に搭載された音源の存在する方位を求めることができるので、施工が容易になるとともに超音波受信装置の配置設計が容易になるという効果がある。 In the present invention of claim 1, it is possible to determine the direction in which the presence of the sound source which is mounted on a moving body is present in the detection area centering on the ultrasonic receiving apparatus by placing one ultrasonic receiving device Therefore, there is an effect that the construction becomes easy and the layout design of the ultrasonic receiving device becomes easy.

本実施形態では、図1(a)に示すように、位置検出対象の物体Aが建物内で床面100上を移動する移動体(例えば、ショッピングカートなど)であり、間欠的に超音波を発生可能な音源11(図2参照)を備えた音源ユニット1を物体Aの上面に搭載する一方で、音源11から間欠的に送波された超音波を受波する超音波受信装置21(図2参照)を備えたセンサユニット2を施工面である天井面200の定位置に設置し、超音波受信装置21に対する物体Aの相対位置を音源11の相対位置として求め、物体Aの移動状況(物体Aの動き)を追跡する動線計測を行う動線計測システムを例示する。   In the present embodiment, as shown in FIG. 1A, the position detection target object A is a moving body (for example, a shopping cart) that moves on the floor surface 100 in a building, and intermittently transmits ultrasonic waves. While the sound source unit 1 including the sound source 11 (see FIG. 2) that can be generated is mounted on the upper surface of the object A, the ultrasonic receiver 21 (see FIG. 2) that receives the ultrasonic waves intermittently transmitted from the sound source 11. 2) is installed at a fixed position on the ceiling surface 200 as a construction surface, the relative position of the object A with respect to the ultrasonic receiver 21 is obtained as the relative position of the sound source 11, and the movement state of the object A ( The flow line measurement system which performs the flow line measurement which tracks the motion of the object A) is illustrated.

音源ユニット1には、上述の音源11と、音源11を駆動するドライバ12と、光もしくは電波からなるトリガ信号を発信するトリガ信号発信器13と、トリガ信号発信器13を駆動するドライバ14と、固有の識別情報信号を発信する識別情報信号発信器15と、識別情報信号発信器15を駆動するドライバ16と、各ドライバ12,14,16を制御する制御部17とを備えている。ここにおいて、音源11からの超音波の送波開始タイミング、トリガ信号発信器13からのトリガ信号の送信開始タイミング、識別情報信号発信器15からの識別情報信号の送信タイミングは、制御部17により制御される。なお、制御部17は、マイクロコンピュータを主構成とし、上述の制御部17の機能はマイクロコンピュータに適宜のプログラムを搭載することにより実現される。   The sound source unit 1 includes the above-described sound source 11, a driver 12 that drives the sound source 11, a trigger signal transmitter 13 that transmits a trigger signal made of light or radio waves, a driver 14 that drives the trigger signal transmitter 13, An identification information signal transmitter 15 that transmits a unique identification information signal, a driver 16 that drives the identification information signal transmitter 15, and a control unit 17 that controls the drivers 12, 14, and 16 are provided. Here, the transmission start timing of the ultrasonic wave from the sound source 11, the transmission start timing of the trigger signal from the trigger signal transmitter 13, and the transmission timing of the identification information signal from the identification information signal transmitter 15 are controlled by the control unit 17. Is done. The control unit 17 includes a microcomputer as a main component, and the functions of the control unit 17 described above are realized by installing an appropriate program in the microcomputer.

一方、センサユニット2には、上述の超音波受信装置21と、トリガ信号発信器13から送信されたトリガ信号を受信したときにトリガ受信信号を出力するトリガ信号受信器23と、識別情報信号発信器15から送信された識別情報信号を受信する識別情報信号受信器25と、超音波受信装置21から出力される受波信号とトリガ信号受信器23から出力されるトリガ受信信号とに基づいて超音波受信装置21に対する音源11の相対位置(音源11の存在する方位および音源11までの距離)を求めて出力する位置演算部22と、トリガ信号受信器23からのトリガ受信信号を受けた時刻(以下、トリガ受信時刻と称す)を出力するタイマ26と、位置演算部22から出力される演算結果(音源11の存在する方位および音源11までの距離)をタイマ26から出力されたトリガ受信時刻と対応付けて時系列的に記憶するメモリ24とを備えている。メモリ24に格納されているトリガ受信時刻、トリガ受信時刻毎の音源11の存在する方位および音源11までの距離(要するに、各音源11それぞれの時系列的な相対位置の変化に関するデータ)は制御部27により出力部28のデータ転送形式のデータ列に変換され出力部28を通して外部のコンピュータなどの管理装置へ出力される。出力部28としては、例えば、TIA/EIA−232−EやUSBなどのようなシリアル転送方式のインタフェースや、SCSIなどのようなパラレル転送方式のインタフェースなどを採用することができる。なお、制御部27の機能はマイクロコンピュータに適宜のプログラムを搭載することにより実現される。   On the other hand, the sensor unit 2 includes a trigger signal receiver 23 that outputs a trigger reception signal when receiving the trigger signal transmitted from the trigger signal transmitter 13, the trigger signal transmitter 13, and an identification information signal transmission. Based on the identification information signal receiver 25 that receives the identification information signal transmitted from the receiver 15, the received signal output from the ultrasonic receiver 21, and the trigger reception signal output from the trigger signal receiver 23. The position calculation unit 22 that obtains and outputs the relative position of the sound source 11 with respect to the sound wave receiving device 21 (the direction in which the sound source 11 exists and the distance to the sound source 11), and the time when the trigger reception signal is received from the trigger signal receiver 23 ( Hereinafter, the timer 26 that outputs the trigger reception time) and the calculation result (the direction in which the sound source 11 exists and the distance to the sound source 11) output from the position calculation unit 22 are output. ) A and a memory 24 for time series stored in association with the trigger receiving time output from the timer 26. The trigger reception time stored in the memory 24, the azimuth of the sound source 11 at each trigger reception time, and the distance to the sound source 11 (in short, data relating to changes in the time-series relative position of each sound source 11) are the control unit. 27 is converted to a data string in the data transfer format of the output unit 28 and output to a management device such as an external computer through the output unit 28. As the output unit 28, for example, a serial transfer system interface such as TIA / EIA-232-E or USB, a parallel transfer system interface such as SCSI, or the like can be employed. The function of the control unit 27 is realized by installing an appropriate program in the microcomputer.

音源ユニット1の音源11としては、圧電効果による機械的振動を利用した圧電式の超音波発生素子を用いてもよいが、このような圧電式の超音波発生素子(圧電素子)は共振特性のQ値(機械的品質係数Q)が一般的に100よりも高くて残響時間が長くなってしまう。そこで、音源11から残響時間の短い超音波を間欠的に発生させる(つまり、発生期間の短い超音波を間欠的に発生させる)には、音源11として、図3に示すように、単結晶のp形のシリコン基板からなる支持基板31の一表面(図3における上面)側に多孔質シリコン層からなる熱絶縁層(断熱層)32が形成され、熱絶縁層32上に金属薄膜(例えば、タングステン薄膜)からなる発熱体層33が形成され、支持基板31の上記一表面側に発熱体層33と電気的に接続された一対のパッド34,34が形成された熱励起式の超音波発生素子を用いることが望ましい。なお、支持基板31の平面形状は長方形状であって、熱絶縁層32、発熱体層33それぞれの平面形状も長方形状に形成してある。 As the sound source 11 of the sound source unit 1, a piezoelectric ultrasonic generating element using mechanical vibration due to the piezoelectric effect may be used. Such a piezoelectric ultrasonic generating element (piezoelectric element) has a resonance characteristic. The Q value (mechanical quality factor Q m ) is generally higher than 100, and the reverberation time becomes long. Therefore, in order to intermittently generate an ultrasonic wave having a short reverberation time from the sound source 11 (that is, to intermittently generate an ultrasonic wave having a short generation period), as shown in FIG. A thermal insulation layer (heat insulation layer) 32 made of a porous silicon layer is formed on one surface (upper surface in FIG. 3) of the support substrate 31 made of a p-type silicon substrate, and a metal thin film (for example, Thermally-excited ultrasonic wave generation in which a heating element layer 33 made of a tungsten thin film is formed and a pair of pads 34, 34 electrically connected to the heating element layer 33 is formed on the one surface side of the support substrate 31. It is desirable to use an element. The planar shape of the support substrate 31 is a rectangular shape, and the planar shapes of the heat insulating layer 32 and the heating element layer 33 are also rectangular.

熱励起式の超音波発生素子では、発熱体層33の両端のパッド34,34間に通電して発熱体層33に温度変化を生じさせると、発熱体層33に接触している空気に温度変化が生じる。発熱体層33に接触している空気は、発熱体層33の温度上昇時には膨張し発熱体層33の温度下降時には収縮するから、発熱体層33への通電を適宜に制御することによって空気中を伝搬する超音波を発生させることができる。   In the thermal excitation type ultrasonic wave generating element, when a temperature change is caused in the heating element layer 33 by energizing the pads 34, 34 at both ends of the heating element layer 33, the temperature of the air in contact with the heating element layer 33 is increased. Change occurs. The air in contact with the heating element layer 33 expands when the temperature of the heating element layer 33 rises and contracts when the temperature of the heating element layer 33 decreases. Can be generated.

上述の圧電式の超音波発生素子では、共振特性のQ値が高いので、図5に示すような超音波波形のような残響時間が長くなってしまうが、上述の熱励起式の超音波発生素子では、一対のパッド34,34を介した発熱体層33への通電に伴う発熱体層33の温度変化に伴って超音波を発生するものであり、発熱体層33へ与える駆動電圧あるいは駆動電流の波形を例えば周波数がf1の正弦波波形とした場合、当該周波数f1の略2倍の周波数の超音波を発生させることができ、例えば正弦波波形の半周期の孤立波を駆動電圧としてドライバ12から一対のパッド34,34間へ与えることによって、図4に示すような残響時間が短く且つ発生期間の短い略1周期の超音波を発生させることができる。要するに、圧電式の超音波発生素子は、固有の共振周波数をもつので周波数帯域が狭いが、熱励起式の超音波発生素子では、発生させる超音波の周波数を広範囲にわたって変化させることができ、駆動電圧もしくは駆動電流の波形を孤立波とすれば、図4に示すような略1周期の超音波を発生させることができる。   In the above-described piezoelectric ultrasonic wave generating element, since the Q value of the resonance characteristic is high, the reverberation time like the ultrasonic waveform as shown in FIG. 5 becomes long. In the element, an ultrasonic wave is generated in accordance with a temperature change of the heating element layer 33 accompanying energization of the heating element layer 33 via the pair of pads 34, 34, and a driving voltage or driving applied to the heating element layer 33 is generated. When the current waveform is, for example, a sine wave waveform having a frequency of f1, an ultrasonic wave having a frequency approximately twice that of the frequency f1 can be generated. By applying from 12 to the pair of pads 34, 34, it is possible to generate an ultrasonic wave of approximately one cycle having a short reverberation time and a short generation period as shown in FIG. In short, piezoelectric ultrasonic generators have a specific resonance frequency, so the frequency band is narrow. However, thermal excitation ultrasonic generators can change the frequency of generated ultrasonic waves over a wide range, and drive If the waveform of the voltage or drive current is an isolated wave, it is possible to generate an ultrasonic wave having approximately one cycle as shown in FIG.

上述の熱励起式の超音波発生素子は、支持基板31としてp形のシリコン基板を用いており、熱絶縁層32を多孔度が略70%の多孔質シリコン層により構成しているので、支持基板31として用いるシリコン基板の一部をフッ化水素水溶液とエタノールとの混合液からなる電解液中で陽極酸化処理することにより熱絶縁層32となる多孔質シリコン層を形成することができる。ここに、陽極酸化処理の条件(例えば、電流密度、通電時間など)を適宜設定することにより、熱絶縁層32となる多孔質シリコン層の多孔度や厚みそれぞれを所望の値とすることができる。多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなり、例えば、熱伝導率が148W/(m・K)、熱容量が1.63×10J/(m・K)の単結晶のシリコン基板を陽極酸化して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1W/(m・K)、熱容量が0.7×10J/(m・K)であることが知られている。本実施形態では、上述のように熱絶縁層32を多孔度が略70%の多孔質シリコン層により構成してあり、熱絶縁層32の熱伝導率が0.12W/(m・K)、熱容量が0.5×10J/(m・K)となっている。なお、熱絶縁層32の熱伝導度および熱容量を支持基板31の熱伝導度および熱容量に比べて小さくし、熱絶縁層32の熱伝導度と熱容量との積を支持基板31の熱伝導度と熱容量との積に比べて十分に小さくすることにより、発熱体層33の温度変化を空気に効率よく伝達することができ発熱体層33と空気との間で効率的な熱交換が起こり、且つ、支持基板31が熱絶縁層32からの熱を効率よく受け取って熱絶縁層32の熱を逃がすことができて発熱体層33からの熱が熱絶縁層32に蓄積されるのを防止することができる。 In the above-described thermal excitation type ultrasonic wave generating element, a p-type silicon substrate is used as the support substrate 31, and the heat insulating layer 32 is composed of a porous silicon layer having a porosity of approximately 70%. A porous silicon layer serving as the thermal insulating layer 32 can be formed by anodizing a part of a silicon substrate used as the substrate 31 in an electrolytic solution composed of a mixed solution of hydrogen fluoride aqueous solution and ethanol. Here, by appropriately setting the conditions for anodizing treatment (for example, current density, energization time, etc.), the porosity and thickness of the porous silicon layer to be the heat insulating layer 32 can be set to desired values, respectively. . The porous silicon layer has a smaller thermal conductivity and heat capacity as the porosity increases. For example, the thermal conductivity is 148 W / (m · K), and the heat capacity is 1.63 × 10 6 J / (m 3 · K. The porous silicon layer having a porosity of 60% formed by anodizing a single crystal silicon substrate of) has a thermal conductivity of 1 W / (m · K) and a heat capacity of 0.7 × 10 6 J / ( m 3 · K). In the present embodiment, as described above, the thermal insulating layer 32 is configured by a porous silicon layer having a porosity of approximately 70%, and the thermal conductivity of the thermal insulating layer 32 is 0.12 W / (m · K), The heat capacity is 0.5 × 10 6 J / (m 3 · K). The thermal conductivity and thermal capacity of the thermal insulating layer 32 are made smaller than the thermal conductivity and thermal capacity of the support substrate 31, and the product of the thermal conductivity and thermal capacity of the thermal insulating layer 32 is calculated as the thermal conductivity of the support substrate 31. By making it sufficiently smaller than the product of the heat capacity, the temperature change of the heating element layer 33 can be efficiently transmitted to the air, and efficient heat exchange occurs between the heating element layer 33 and the air, and The support substrate 31 can efficiently receive the heat from the heat insulating layer 32 and release the heat of the heat insulating layer 32, thereby preventing the heat from the heating element layer 33 from being accumulated in the heat insulating layer 32. Can do.

また、発熱体層33は、高融点金属の一種であるタングステンにより形成してあり、熱伝導率が174W/(m・K)、熱容量が2.5×10J/(m・K)となっている。発熱体層33の材料はタングステンに限らず、例えば、タンタル、モリブデン、イリジウムなどを採用してもよい。 The heating element layer 33 is made of tungsten, which is a kind of refractory metal, and has a thermal conductivity of 174 W / (m · K) and a heat capacity of 2.5 × 10 6 J / (m 3 · K). It has become. The material of the heating element layer 33 is not limited to tungsten, and for example, tantalum, molybdenum, iridium, or the like may be employed.

なお、上述の熱励起式の超音波発生素子では、支持基板31の厚さを525μm、熱絶縁層32の厚さを10μm、発熱体層33の厚さを50nm、各パッド34の厚さを0.5μmとしてあるが、これらの厚さは一例であって特に限定するものではない。また、支持基板31の材料としてSiを採用しているが、支持基板31の材料はSiに限らず、例えば、Ge,SiC,GaP,GaAs,InPなどの陽極酸化処理による多孔質化が可能な他の半導体材料でもよい。   In the thermal excitation type ultrasonic wave generating element described above, the thickness of the support substrate 31 is 525 μm, the thickness of the thermal insulation layer 32 is 10 μm, the thickness of the heating element layer 33 is 50 nm, and the thickness of each pad 34 is Although the thickness is 0.5 μm, these thicknesses are merely examples and are not particularly limited. Further, Si is adopted as the material of the support substrate 31, but the material of the support substrate 31 is not limited to Si, and for example, it can be made porous by anodizing treatment of Ge, SiC, GaP, GaAs, InP or the like. Other semiconductor materials may be used.

トリガ信号発信器13は、トリガ信号として光を採用する場合には、例えば、発光ダイオードを用いればよく、トリガ信号として電波を採用する場合には、例えば、電波発信器を用いればよい。ここにおいて、光や電波は音波に対して十分に高速なので、音源ユニット1からセンサユニット2までの音波の到達時間のレンジでは、光や電波の到達時間はゼロとみなすことができる。   For example, a light emitting diode may be used as the trigger signal transmitter 13 when light is used as the trigger signal. For example, a radio wave transmitter may be used when a radio wave is used as the trigger signal. Here, since light and radio waves are sufficiently fast with respect to sound waves, the arrival time of light and radio waves can be regarded as zero in the range of arrival times of sound waves from the sound source unit 1 to the sensor unit 2.

識別情報信号発信器15としては、識別情報信号として光を採用する場合には、例えば、発光ダイオードを用いればよく、識別情報信号として電波を採用する場合には、例えば、電波発信器を用いればよく、識別情報信号として音波を採用する場合には、例えば、熱励起式の音波発生素子を用いればよい。   As the identification information signal transmitter 15, for example, a light emitting diode may be used when light is used as the identification information signal, and when a radio wave is used as the identification information signal, for example, a radio wave transmitter may be used. When a sound wave is adopted as the identification information signal, for example, a thermal excitation type sound wave generating element may be used.

センサユニット2の超音波受信装置21は、図1(b)に示すように、音源11から送波された超音波を受波するとともに受波した超音波を電気信号である受波信号に変換する複数個(図示例では、4個であるが、個数は特に限定するものではない)の受波素子21aが同一基板21b上で2次元的に配列された超音波アレイセンサにより構成されている。ここにおいて、受波素子21aの中心間距離(配列ピッチ)Lは音源11から発生させる超音波の波長程度(例えば、超音波の波長の0.5〜5倍程度)に設定することが望ましく、超音波の波長の0.5倍よりも小さいと超音波が隣り合う受波素子21aそれぞれへ到達する時間の時間差が小さくなり、当該時間差の検出が困難となる。受波素子21aとしては、例えば、超音波を圧電効果により電気信号に変換する圧電式の受波素子(圧電素子)や、超音波を静電容量の変化に変換する静電容量式の受波素子などの超音波用の受波素子として広く知られているものを採用することが考えられるが、音源11と同様に残響を少なくするために、静電容量式の受波素子の構造を採用することが望ましい。   As shown in FIG. 1B, the ultrasonic receiver 21 of the sensor unit 2 receives the ultrasonic wave transmitted from the sound source 11 and converts the received ultrasonic wave into a received signal that is an electric signal. A plurality of receiving elements 21a (four in the illustrated example, but the number is not particularly limited) is constituted by an ultrasonic array sensor in which the receiving elements 21a are two-dimensionally arranged on the same substrate 21b. . Here, it is desirable to set the center-to-center distance (arrangement pitch) L of the wave receiving elements 21a to about the wavelength of the ultrasonic wave generated from the sound source 11 (for example, about 0.5 to 5 times the wavelength of the ultrasonic wave). If it is smaller than 0.5 times the wavelength of the ultrasonic wave, the time difference between the time when the ultrasonic wave reaches each adjacent receiving element 21a becomes small, and it becomes difficult to detect the time difference. As the wave receiving element 21a, for example, a piezoelectric wave receiving element (piezoelectric element) that converts an ultrasonic wave into an electric signal by a piezoelectric effect, or a capacitance wave receiving wave that converts an ultrasonic wave into a change in capacitance. Although it is conceivable to adopt a widely known ultrasonic wave receiving element such as an element, the structure of a capacitive wave receiving element is adopted in order to reduce reverberation in the same manner as the sound source 11. It is desirable to do.

本実施形態では、受波素子21aとして、図6に示すような静電容量式のマイクロホンを採用している。図6に示す構成の静電容量式のマイクロホンは、マイクロマシニング技術を利用して形成されており、シリコン基板に厚み方向に貫通する窓孔41aを設けることで形成された矩形枠状のフレーム41と、フレーム41の一表面側においてフレーム41の対向する2つの辺に跨る形で配置されるカンチレバー型の受圧部42とを備えている。ここにおいて、フレーム41の一表面側には熱酸化膜45と熱酸化膜45を覆うシリコン酸化膜46とシリコン酸化膜46を覆うシリコン窒化膜47とが形成されており、受圧部42の一端部がシリコン窒化膜47とを介してフレーム41に支持され、他端部が上記シリコン基板の厚み方向においてシリコン窒化膜47に対向している。また、シリコン窒化膜47における受圧部42の他端部との対向面に金属薄膜(例えば、クロム膜など)からなる固定電極43aが形成され、受圧部42の他端部におけるシリコン窒化膜47との対向面とは反対側に金属薄膜(例えば、クロム膜など)からなる可動電極43bが形成されている。なお、フレーム41の他表面にはシリコン窒化膜48が形成されている。また、受圧部42は、上記各シリコン窒化膜47,48とは別工程で形成されるシリコン窒化膜により構成されている。   In the present embodiment, a capacitive microphone as shown in FIG. 6 is employed as the wave receiving element 21a. The capacitance type microphone having the configuration shown in FIG. 6 is formed by using a micromachining technique, and is a rectangular frame-shaped frame 41 formed by providing a window hole 41a penetrating in a thickness direction in a silicon substrate. And a cantilever-type pressure receiving portion 42 disposed on one surface side of the frame 41 so as to straddle two opposing sides of the frame 41. Here, a thermal oxide film 45, a silicon oxide film 46 covering the thermal oxide film 45, and a silicon nitride film 47 covering the silicon oxide film 46 are formed on one surface side of the frame 41, and one end portion of the pressure receiving portion 42. Is supported by the frame 41 through the silicon nitride film 47, and the other end faces the silicon nitride film 47 in the thickness direction of the silicon substrate. In addition, a fixed electrode 43 a made of a metal thin film (for example, a chromium film) is formed on the surface of the silicon nitride film 47 facing the other end of the pressure receiving portion 42, and the silicon nitride film 47 at the other end of the pressure receiving portion 42 A movable electrode 43b made of a metal thin film (for example, a chromium film) is formed on the opposite side of the opposite surface. A silicon nitride film 48 is formed on the other surface of the frame 41. The pressure receiving portion 42 is constituted by a silicon nitride film formed in a separate process from the silicon nitride films 47 and 48 described above.

図6に示した構成の静電容量式のマイクロホンからなる受波素子21aでは、固定電極43aと可動電極43bとを電極とするコンデンサが形成されるから、受圧部42が音波の圧力を受けることにより固定電極43aと可動電極43bとの間の距離が変化し、固定電極43aと可動電極43bとの間の静電容量が変化する。したがって、固定電極43aおよび可動電極43bに設けたパッド(図示せず)間に直流バイアス電圧を印加しておけば、パッドの間には超音波の音圧に応じて微小な電圧変化が生じるから、超音波の音圧を電気信号に変換することができる。   In the wave receiving element 21a composed of a capacitance type microphone having the configuration shown in FIG. 6, a capacitor having the fixed electrode 43a and the movable electrode 43b as electrodes is formed, so that the pressure receiving portion 42 receives the pressure of the sound wave. As a result, the distance between the fixed electrode 43a and the movable electrode 43b changes, and the capacitance between the fixed electrode 43a and the movable electrode 43b changes. Therefore, if a DC bias voltage is applied between pads (not shown) provided on the fixed electrode 43a and the movable electrode 43b, a minute voltage change occurs between the pads in accordance with the sound pressure of the ultrasonic waves. The sound pressure of ultrasonic waves can be converted into an electric signal.

なお、受波素子21aとして用いる静電容量式のマイクロホンの構造は図6の構造に特に限定するものではなく、例えば、シリコン基板などをマイクロマシニング技術などにより加工して形成され、超音波を受けるダイヤフラム部からなる可動電極と、ダイヤフラム部に対向する背板部からなる固定電極との間に、超音波を受けていない状態でのダイヤフラム部と背板部とのギャップ長を規定する絶縁膜からなるスペーサ部が介在し、背板部に複数の排気孔が貫設された構造を有するものでもよい。このような静電容量式のマイクロホンでは、ダイヤフラム部が超音波を受けて変形してダイヤフラム部と背板部との距離が変化することにより、可動電極と固定電極との間の静電容量が変化する。   Note that the structure of the capacitance type microphone used as the wave receiving element 21a is not particularly limited to the structure shown in FIG. 6. For example, the structure is formed by processing a silicon substrate or the like by a micromachining technique and receives ultrasonic waves. Between the movable electrode made of the diaphragm and the fixed electrode made of the back plate facing the diaphragm, an insulating film that defines the gap length between the diaphragm and the back plate in a state where no ultrasonic waves are received. It may have a structure in which a plurality of exhaust holes are provided in the back plate portion. In such a capacitance type microphone, the diaphragm portion receives the ultrasonic wave and is deformed to change the distance between the diaphragm portion and the back plate portion, so that the capacitance between the movable electrode and the fixed electrode is increased. Change.

ところで、図3に示した熱励起式の音波発生素子からなる音源11は共振特性のQ値が1程度であり、図6に示した静電容量式のマイクロホンからなる受波素子21aの共振特性のQ値は3〜4程度であり、圧電素子に比べてQ値が十分に小さく、従来のように送波素子および受波素子に圧電素子を用いている場合に比べて、音源11から送波される超音波における残響成分に起因した不感帯を短くすることができるとともに、受波素子21aで超音波を受波したときに発生する受波信号における残響時間を短くできて受波素子21aから出力される受波信号における残響成分に起因した不感帯を短くすることができるので、角度分解能を改善することができる。なお、静電容量式のマイクロホンでは、圧電素子のような共振特性の高いQ値を持たないから、受波周波数の範囲を広くとることが可能になる。また、音源11および受波素子21aそれぞれの共振特性のQ値はいずれも10以下が望ましく、いずれも5以下がより望ましい。   Incidentally, the sound source 11 composed of the thermal excitation type sound wave generating element shown in FIG. 3 has a resonance characteristic Q value of about 1, and the resonance characteristic of the wave receiving element 21a composed of the capacitance type microphone shown in FIG. The Q value is about 3 to 4, and the Q value is sufficiently smaller than that of the piezoelectric element. Compared to the case where the piezoelectric element is used for the transmitting element and the receiving element as in the prior art, the Q value is transmitted from the sound source 11. The dead zone caused by the reverberation component in the ultrasonic wave to be waved can be shortened, and the reverberation time in the received signal generated when the ultrasonic wave is received by the wave receiving element 21a can be shortened. Since the dead zone due to the reverberation component in the output received signal can be shortened, the angular resolution can be improved. In addition, since the capacitance type microphone does not have a high Q value having a resonance characteristic unlike a piezoelectric element, it is possible to widen the range of the reception frequency. Further, the Q values of the resonance characteristics of the sound source 11 and the receiving element 21a are both preferably 10 or less, and more preferably 5 or less.

トリガ信号受信器23は、トリガ信号発信器13から送信するトリガ信号として光を採用する場合には、例えば、フォトダイオードを用いればよく、トリガ信号として電波を採用する場合には、例えば、電波受信アンテナを用いればよい。要するに、トリガ信号受信器23は、トリガ信号を受信してトリガ信号を電気信号(トリガ受信信号)に変換して出力できるものであればよい。   The trigger signal receiver 23 may use a photodiode, for example, when light is used as the trigger signal transmitted from the trigger signal transmitter 13, and may receive, for example, a radio wave when using a radio wave as the trigger signal. An antenna may be used. In short, the trigger signal receiver 23 only needs to be able to receive the trigger signal, convert the trigger signal into an electrical signal (trigger reception signal), and output the electrical signal.

識別情報信号受信器25は、識別情報信号発信器15から送信する識別情報信号として光を採用する場合には、例えば、フォトダイオードを用いればよく、識別情報信号として電波を採用する場合には、例えば、電波受信アンテナを用いればよく、識別情報信号として音波を採用する場合には、例えば、静電容量式の受波素子を用いればよい。要するに、識別情報信号受信器25は、識別情報信号を受信して識別情報信号を電気信号からなる識別情報に変換して出力できるものであればよい。   When the identification information signal receiver 25 employs light as the identification information signal transmitted from the identification information signal transmitter 15, for example, a photodiode may be used, and when the radio wave is employed as the identification information signal, For example, a radio wave receiving antenna may be used, and when a sound wave is adopted as the identification information signal, for example, a capacitive receiving element may be used. In short, the identification information signal receiver 25 only needs to be capable of receiving the identification information signal, converting the identification information signal into identification information including an electric signal, and outputting the identification information.

位置演算部22は、超音波受信装置21である超音波アレイセンサの各受波素子21aで音波を受波した時間の時間差と各受波素子21aの配置位置とに基づいて超音波受信装置21に対して音源11の存在する方位を示す方位角θ(超音波の到来方向)を求める機能を有している。   The position calculation unit 22 is based on the time difference between the time when each wave receiving element 21a of the ultrasonic array sensor which is the ultrasonic wave receiving apparatus 21 receives the sound wave and the arrangement position of each wave receiving element 21a. The azimuth angle θ (the direction of arrival of ultrasonic waves) indicating the azimuth in which the sound source 11 exists is obtained.

以下、位置演算部22について説明するが、説明を簡単にするために、超音波受信装置21の受波素子21aが図7に示すように同一平面上において1次元的に等間隔で配列されている例について説明する。受波素子21aが配列された面に対する超音波の波面の角度がθである場合を想定すると、超音波の到来方向(すなわち、超音波受信装置21に対して音源11の存在する方位角)はθになり、音速をc、超音波の波面が隣り合う受波素子21aのうちの一方の受波素子21aに到達する時刻における超音波の波面と他方の受波素子21aの中心との間の距離(遅延距離)をd、隣り合う受波素子21aの中心間距離をLとすれば、超音波の波面が隣り合う受波素子21a間に到達する時間差Δt(図8参照)は、Δt=d/c=L・sinθ/cになる。 Hereinafter, the position calculation unit 22 will be described. For simplicity of explanation, the receiving elements 21a of the ultrasonic receiving device 21 are arranged one-dimensionally at equal intervals on the same plane as shown in FIG. An example will be described. Assuming that the angle of the wavefront of the ultrasonic wave with respect to the surface on which the wave receiving elements 21 a are arranged is θ 0 , the arrival direction of the ultrasonic wave (that is, the azimuth angle where the sound source 11 exists with respect to the ultrasonic wave reception device 21). Becomes θ 0 , the sound velocity is c, and the ultrasonic wavefront at the time when the ultrasonic wavefront reaches one of the adjacent receiving elements 21a and the center of the other receiving element 21a are If the distance (delay distance) between them is d 0 and the distance between the centers of the adjacent wave receiving elements 21 a is L, the time difference Δt 0 when the ultrasonic wavefront reaches between the adjacent wave receiving elements 21 a (see FIG. 8). Is Δt 0 = d 0 / c = L · sin θ 0 / c.

図8(a)〜(c)は上述の熱励起式の超音波発生素子の発熱体層33へ正弦波波形の半周期の波形の駆動電圧を与えたときの図7の各受波素子21aそれぞれの受波信号を示しており、図8(a)が図7の一番上の受波素子21aの受波信号、図8(b)が図7の真ん中の受波素子21aの受波信号、図8(c)が図7の一番下の受波素子21aの受波信号を示している。ここにおいて、位置演算部22は、音源11の存在する方位を求める演算機能を有する信号処理部22cを備えている。信号処理部22cは、超音波受信装置21の各受波素子21aから出力された電気信号である受波信号をそれぞれ各受波素子21aの配列パターンに応じた遅延時間で遅延させた受波信号を組にして出力する遅延手段と、遅延手段により遅延された受波信号の組を加算する加算器と、加算器の出力波形のピーク値と適宜の閾値との大小関係を比較し閾値を超えるピーク値が得られたときに遅延手段で設定されている遅延時間に対応する方向を音源11の存在する方位(超音波の到来方向)と判断する判断手段とを備えているので、超音波受信装置21に対して音源11の存在する方位(超音波の到来方向)を検出することができる。ここで、位置演算部22は、上述の信号処理部22cの他に、超音波受信装置21の各受波素子21aから出力されるアナログの受波信号をディジタルの受波信号に変換して出力するA/D変換部22aと、トリガ信号受信器23からのトリガ受信信号が入力された時点から所定の受波期間だけA/D変換部22aの出力が格納されるデータ格納部22bとを備えており、上述の信号処理部22cは、データ格納部22bにトリガ受信信号が入力されたときに受波期間を設定し、受波期間にのみA/D変換部22aを作動させ、受波期間にデータ格納部22bに格納された受波信号のデータに基づいて音源11の存在する方位を求める。なお、信号処理部22cはマイクロコンピュータなどにより構成される。また、データ格納部22bには、〔受波素子21aの個数〕×〔各受波素子21aからの受波信号のデータ数〕の数だけデータが格納されることになるので、例えば、受波素子21aの個数を8個、受波期間を30ms、A/D変換部22aのサンプリング周期を1μsとした場合には、1データを1ワードとして240kワードの容量が必要となるから、256kワードのSRAMなどを使用すればよい。   8A to 8C show the wave receiving elements 21a shown in FIG. 7 when a driving voltage having a half-cycle waveform of a sine wave is applied to the heating element layer 33 of the above-described thermal excitation type ultrasonic wave generating element. FIG. 8A shows a received signal of the top receiving element 21a in FIG. 7, and FIG. 8B shows a received signal of the middle receiving element 21a in FIG. FIG. 8C shows the received signal of the lowermost receiving element 21a in FIG. Here, the position calculation unit 22 includes a signal processing unit 22c having a calculation function for obtaining the direction in which the sound source 11 exists. The signal processing unit 22c is a received signal obtained by delaying a received signal that is an electrical signal output from each receiving element 21a of the ultrasonic receiving device 21 by a delay time corresponding to the arrangement pattern of each receiving element 21a. A delay means for outputting a set of signals, an adder for adding a set of received signals delayed by the delay means, and comparing the magnitude relationship between the peak value of the output waveform of the adder and an appropriate threshold value, and exceeding the threshold value Since there is a judgment means for judging the direction corresponding to the delay time set by the delay means when the peak value is obtained as the direction in which the sound source 11 exists (the arrival direction of the ultrasonic wave), the ultrasonic reception The direction in which the sound source 11 exists (the arrival direction of the ultrasonic wave) can be detected with respect to the device 21. Here, in addition to the signal processing unit 22c described above, the position calculation unit 22 converts an analog reception signal output from each reception element 21a of the ultrasonic reception device 21 into a digital reception signal and outputs the digital reception signal. And an A / D converter 22a that stores the output of the A / D converter 22a for a predetermined reception period from when the trigger reception signal is input from the trigger signal receiver 23. The signal processing unit 22c sets a reception period when a trigger reception signal is input to the data storage unit 22b, operates the A / D conversion unit 22a only during the reception period, and receives the reception period. The direction in which the sound source 11 exists is obtained based on the received signal data stored in the data storage unit 22b. The signal processing unit 22c is configured by a microcomputer or the like. In addition, since data is stored in the data storage unit 22b by the number [number of receiving elements 21a] × [number of received signal data from each receiving element 21a], for example, If the number of the elements 21a is 8, the receiving period is 30 ms, and the sampling period of the A / D converter 22a is 1 μs, a capacity of 240 kwords is required with one data as one word, and 256 kwords An SRAM or the like may be used.

ところで、本実施形態では、音源11として上述の熱励起式の超音波発生素子を用いているので、図9に示すように、超音波受信装置21の各受波素子21aへ2つの方位から超音波が到来する場合に方位角がθの方位から到来する超音波の方が方位角θの方位から到来する超音波に比べて先に到達するとすれば、図10(a)〜(c)に示すように各受波素子21aそれぞれから出力される2つの受波信号が重なりにくく、各音源11それぞれからの存在する方位角(超音波の到来方向)θ,θを求めることができる。ここで、図10は、(a)が図9の一番上の受波素子21aの2つの受波信号、(b)が図9の真ん中の受波素子21aの2つの受波信号、(c)が図9の一番下の受波素子21aの2つの受波信号を示しており、(a)〜(c)それぞれにおける左側の受波信号がθの方位から到来した超音波に対応し、右側の受波信号がθの方位から到来した超音波に対応している。なお、θの方位からの超音波の波面が隣り合う受波素子21aのうちの一方の受波素子21aに到達する時刻における超音波の波面と他方の受波素子21aの中心との間の距離(遅延距離)をd(図9参照)とすれば、超音波の波面が隣り合う受波素子21a間に到達する時間差Δt(図10参照)は、Δt=d/c=L・sinθ/cになり、θの方位からの超音波の波面が隣り合う受波素子21aのうちの一方の受波素子21aに到達する時刻における超音波の波面と他方の受波素子21aの中心との間の距離(遅延距離)をd(図9参照)とすれば、超音波の波面が隣り合う受波素子21a間に到達する時間差Δt(図10参照)は、Δt=d/c=L・sinθ/cになる。 By the way, in the present embodiment, since the above-described thermal excitation type ultrasonic wave generating element is used as the sound source 11, as shown in FIG. 9, each wave receiving element 21 a of the ultrasonic wave receiving device 21 is superposed from two directions. If the ultrasonic wave arriving from the direction of the azimuth angle θ 1 arrives earlier than the ultrasonic wave arriving from the direction of the azimuth angle θ 2 when the sound wave arrives, FIG. ), The two received signals output from the respective receiving elements 21a are unlikely to overlap, and the azimuth angles (arrival directions of ultrasonic waves) θ 1 and θ 2 existing from the respective sound sources 11 can be obtained. it can. Here, FIG. 10A shows two received signals of the top receiving element 21a of FIG. 9, FIG. 10B shows two received signals of the middle receiving element 21a of FIG. c) is shows the two received signals of wave receiving element 21a at the bottom of FIG. 9, the ultrasonic waves left received signal arrives from theta 1 orientation in the respective (a) ~ (c) corresponding corresponds to ultrasonic waves right received signal arrives from theta 2 orientation. It is to be noted that the ultrasonic wavefront from the direction of θ 1 is between the ultrasonic wavefront and the center of the other receiving element 21a at the time when the ultrasonic wavefront from one of the adjacent receiving elements 21a reaches one receiving element 21a. If the distance (delay distance) is d 1 (see FIG. 9), the time difference Δt 1 (see FIG. 10) at which the wavefront of the ultrasonic wave reaches between adjacent receiving elements 21a is Δt 1 = d 1 / c = become L · sinθ 1 / c, ultrasonic wave at the time of reaching one of the wave receiving element 21a of the wave receiving devices 21a adjacent the ultrasound wavefront from theta 2 orientation and the other wave receiving element If the distance (delay distance) from the center of 21a is d 2 (see FIG. 9), the time difference Δt 2 (see FIG. 10) that the ultrasonic wavefront reaches between the adjacent receiving elements 21a is Δt 2 = d 2 / c = L · sin θ 2 / c.

また、位置演算部22の信号処理部22cは、トリガ信号受信器23によりトリガ信号を受信した時刻と受波素子21aにより超音波を受波した時刻との関係から超音波受信装置21と音源11との距離を求める距離演算手段を備えている。ここにおいて、上述のようにトリガ信号として光もしくは電波のように音波に比べて十分に高速な信号を採用していることにより、音源ユニット1からセンサユニット2までのトリガ信号の到達時間は音源ユニット1からセンサユニット2までの到達時間に比べて十分に短く(無視できる程度に短く)、トリガ信号の到達時間をゼロとみなすことができるので、距離演算手段では、図11(a)〜(c)に示すようにデータ格納部22bを介してトリガ受信信号STを受信した時刻と当該トリガ信号STの受信後に最初に受波素子21aからの受波信号SPを受信した時刻との時間差Tと、音速とによって超音波受信装置21と音源11との間の距離を求めるようにしてある。なお、信号処理部22cの距離演算手段は、当該信号処理部22cを構成するマイクロコンピュータに適宜のプログラムを搭載することにより実現される。   In addition, the signal processing unit 22c of the position calculation unit 22 includes the ultrasonic receiver 21 and the sound source 11 based on the relationship between the time when the trigger signal is received by the trigger signal receiver 23 and the time when the ultrasonic wave is received by the wave receiving element 21a. Distance calculating means for obtaining the distance between Here, as described above, a sufficiently high speed signal compared to sound waves such as light or radio waves is used as the trigger signal, so that the arrival time of the trigger signal from the sound source unit 1 to the sensor unit 2 is as follows. Since the arrival time of the trigger signal can be regarded as zero since the arrival time from 1 to the sensor unit 2 is sufficiently short (so short as to be negligible), the distance calculation means can perform the operations shown in FIGS. ), A time difference T between the time when the trigger reception signal ST is received via the data storage unit 22b and the time when the reception signal SP from the reception element 21a is first received after the reception of the trigger signal ST, The distance between the ultrasonic receiver 21 and the sound source 11 is obtained based on the speed of sound. The distance calculation means of the signal processing unit 22c is realized by mounting an appropriate program on the microcomputer that constitutes the signal processing unit 22c.

しかして、本実施形態の動線計測システムでは、1つのセンサユニット2を施工面である天井面200に設置することで1つの超音波受信装置21を配置することにより当該超音波受信装置21を中心とした検知エリア内に存在する物体Aに搭載された音源11の存在する方位を求めることができるので、施工が容易になるとともに超音波受信装置21の配置設計が容易になる。   Therefore, in the flow line measurement system of the present embodiment, the ultrasonic receiving device 21 is arranged by arranging one ultrasonic receiving device 21 by installing one sensor unit 2 on the ceiling surface 200 as a construction surface. Since the azimuth | direction in which the sound source 11 mounted in the object A which exists in the center detection area exists can be calculated | required, construction becomes easy and arrangement | positioning design of the ultrasonic receiver 21 becomes easy.

ところで、本実施形態の動線計測システムを適用する建物の床面100が平坦であって床面100から天井面200までの高さが一定であり、かつ、物体Aの大きさが一定(つまり、床面100から物体Aの上面までの高さが一定)であれば、天井面200に平行な面であって超音波受信装置21を含む平面と、天井面200に平行な面であって音源11を含む平面との間の距離は床面100上の物体Aの位置によらず一定距離となるので、当該一定距離をあらかじめ既知の距離情報(高さ情報)として距離演算手段に記憶させておくことにより、距離演算手段では、当該距離情報と音源11の存在する方位とから超音波受信装置21と音源11との間の距離を求めることができる。これに対して、信号処理部22cの距離演算手段が上述のようにトリガ信号受信器23によりトリガ信号を受信した時刻と受波素子21aにより超音波を受波した時刻との関係から超音波受信装置21と音源11との距離を求めることにより、図12に示すように建物の床面100に段差100bが存在するような場合でも、センサユニット2の超音波受信装置21と音源ユニット1の音源11との間の距離を精度良く求めることができ、超音波受信装置21に対する音源11の相対位置を精度良く求めることができる。   By the way, the floor surface 100 of the building to which the flow line measurement system of the present embodiment is applied is flat, the height from the floor surface 100 to the ceiling surface 200 is constant, and the size of the object A is constant (that is, If the height from the floor surface 100 to the upper surface of the object A is constant), the surface is parallel to the ceiling surface 200 and includes the plane including the ultrasonic receiver 21 and the surface parallel to the ceiling surface 200. Since the distance from the plane including the sound source 11 is a constant distance regardless of the position of the object A on the floor surface 100, the distance is stored in advance in the distance calculation means as known distance information (height information). By doing so, the distance calculation means can determine the distance between the ultrasonic receiver 21 and the sound source 11 from the distance information and the direction in which the sound source 11 exists. On the other hand, the ultrasonic wave reception is performed from the relationship between the time when the distance calculation means of the signal processing unit 22c receives the trigger signal by the trigger signal receiver 23 and the time when the ultrasonic wave is received by the wave receiving element 21a as described above. By obtaining the distance between the device 21 and the sound source 11, the sound source of the ultrasonic receiver 21 of the sensor unit 2 and the sound source unit 1 even when there is a step 100 b on the floor 100 of the building as shown in FIG. 11 can be obtained with high accuracy, and the relative position of the sound source 11 with respect to the ultrasonic receiver 21 can be obtained with high accuracy.

また、上述の制御部27は、識別情報信号受信部25から出力されメモリ24に記憶された識別情報に基づいて各音源11を個別に特定する音源特定手段を備えており、超音波受信装置21により超音波を検出可能な検知エリア内に複数の音源11が存在する場合であっても、超音波受信装置21に対する各音源11それぞれの相対位置を求めることができる。ここにおいて、例えば、物体Aが4つ存在する場合には、各物体Aそれぞれに搭載する音源ユニット1それぞれの識別情報信号発信器15から送信する識別情報信号を図13(a)〜(d)に示すように異なるパルス列からなる識別情報信号としておくことにより、メモリ24には識別情報と位置演算部22の信号処理部22cの演算結果とが対応付けて格納される。したがって、制御部27では、位置演算部22により得られた音源11の存在する方位(超音波の到来方向)および超音波受信装置21と音源11との間の距離がどの音源ユニット1からのものか識別することができる。なお、識別情報信号として光もしくは電波を採用し、超音波受信装置21により超音波を検出可能な検知エリア内に1つの音源ユニット1が存在する場合を想定すると、センサユニット2の識別情報信号受信器25から出力される識別情報と、各受波素子21aそれぞれから出力される受波信号との関係は図14(a)〜(c)に示すようになるので、識別情報信号発信器15を上述のトリガ信号発信器13に兼用する(識別情報信号をトリガ信号として兼用する)こともでき、この場合には上述の音源特定手段を位置演算部22に設けてもよい。ここで、図14(a)は図7の一番上の受波素子21aの受波信号、図14(b)は図7の真ん中の受波素子21aの受波信号、図14(c)は図7の一番下の受波素子21aの受波信号を示している。   The control unit 27 includes sound source specifying means for individually specifying each sound source 11 based on the identification information output from the identification information signal receiving unit 25 and stored in the memory 24, and the ultrasonic receiving device 21. Even when there are a plurality of sound sources 11 in the detection area where ultrasonic waves can be detected, the relative positions of the sound sources 11 with respect to the ultrasonic receiver 21 can be obtained. Here, for example, when there are four objects A, the identification information signals transmitted from the identification information signal transmitters 15 of the sound source units 1 mounted on the respective objects A are shown in FIGS. As shown in FIG. 5, the identification information signal including different pulse trains is stored in the memory 24 in association with the identification information and the calculation result of the signal processing unit 22c of the position calculation unit 22. Therefore, in the control unit 27, the direction from which the sound source 11 exists (the arrival direction of the ultrasonic wave) obtained by the position calculation unit 22 and the distance between the ultrasonic receiving device 21 and the sound source 11 are determined from any sound source unit 1. Can be identified. Assuming the case where one sound source unit 1 exists in a detection area in which light or radio waves are adopted as the identification information signal and the ultrasonic wave reception device 21 can detect the ultrasonic wave, the identification information signal reception of the sensor unit 2 is received. The relationship between the identification information output from the receiver 25 and the received signal output from each of the receiving elements 21a is as shown in FIGS. 14 (a) to 14 (c). The trigger signal transmitter 13 can also be used (the identification information signal can also be used as a trigger signal). In this case, the sound source specifying means may be provided in the position calculation unit 22. Here, FIG. 14A shows the received signal of the top receiving element 21a in FIG. 7, FIG. 14B shows the received signal of the middle receiving element 21a in FIG. 7, and FIG. Indicates a received signal of the lowermost receiving element 21a in FIG.

なお、上記実施形態では、音源ユニット1にトリガ信号発信器13を設けるとともにセンサユニット2にトリガ信号受信器23を設けてあるが、トリガ信号発信器13をセンサユニット2側に設けるとともにトリガ信号受信器23を音源ユニット1側に設けて、制御部17がトリガ信号受信器23の出力に基づいて音源11から超音波が送波されるようにドライバ12を制御するようにし、位置演算部22における信号処理部22cの距離演算手段が、トリガ信号発信器13からトリガ信号が発信された時刻と受波素子21aにより超音波を受波した時刻との関係から音源11までの距離を求めるようにしてもよい。ここにおいて、制御部17は、トリガ信号受信器23から出力されたトリガ受信信号が入力されたときに直ちにドライバ12を制御するようにしてもよいし、所定時間後にドライバ12を制御するようにしてもよい。   In the above embodiment, the trigger signal transmitter 13 is provided in the sound source unit 1 and the trigger signal receiver 23 is provided in the sensor unit 2, but the trigger signal transmitter 13 is provided on the sensor unit 2 side and the trigger signal is received. The controller 23 is provided on the sound source unit 1 side, and the control unit 17 controls the driver 12 so that an ultrasonic wave is transmitted from the sound source 11 based on the output of the trigger signal receiver 23. The distance calculation means of the signal processing unit 22c obtains the distance to the sound source 11 from the relationship between the time when the trigger signal is transmitted from the trigger signal transmitter 13 and the time when the ultrasonic wave is received by the wave receiving element 21a. Also good. Here, the control unit 17 may control the driver 12 immediately when the trigger reception signal output from the trigger signal receiver 23 is input, or may control the driver 12 after a predetermined time. Also good.

実施形態を示し、(a)は動線計測システムの概略構成図、(b)は超音波アレイセンサの概略斜視図である。1A is a schematic configuration diagram of a flow line measurement system, and FIG. 2B is a schematic perspective view of an ultrasonic array sensor. 同上のブロック図である。It is a block diagram same as the above. 同上における熱励起式の超音波発生素子の概略断面図である。It is a schematic sectional drawing of the thermal excitation type ultrasonic wave generation element same as the above. 同上における熱励起式の超音波発生素子の動作説明図である。It is operation | movement explanatory drawing of the thermal excitation type ultrasonic wave generation element same as the above. 同上における圧電式の超音波発生素子の動作説明図である。It is operation | movement explanatory drawing of the piezoelectric type ultrasonic generation element in the same as the above. 同上における静電容量式のマイクロホンを示し、(a)は一部破断した概略斜視図、(b)は概略断面図である。The electrostatic capacitance type microphone in the same as above is shown, (a) is a schematic perspective view partly broken, and (b) is a schematic sectional view. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above. 同上の動作説明図である。It is operation | movement explanatory drawing same as the above.

A 物体
1 音源ユニット
2 センサユニット
11 音源
12 ドライバ
13 トリガ信号発信器
15 識別情報信号発信器
17 制御部
21 超音波受信装置(超音波アレイセンサ)
21a 受波素子
21b 基板
22 位置演算部
23 トリガ信号受信器
25 識別情報信号受信器
24 メモリ
27 制御部
28 出力部
31 支持基板
32 熱絶縁層
33 発熱体層
A object 1 sound source unit 2 sensor unit 11 sound source 12 driver 13 trigger signal transmitter 15 identification information signal transmitter 17 control unit 21 ultrasonic receiver (ultrasonic array sensor)
21a Receiving element 21b Substrate 22 Position calculator 23 Trigger signal receiver 25 Identification information signal receiver 24 Memory 27 Controller 28 Output unit 31 Support substrate 32 Thermal insulation layer 33 Heating element layer

Claims (6)

建物内の床面上を移動する移動体の移動状況を追跡する動線計測を行う動線計測システムであって、前記移動体に搭載され超音波を発生可能であり共振特性のQ値が1程度である音源と、前記床面上方の施工面に設置され音源から送波された超音波を受波するとともに受波した超音波を電気信号である受波信号に変換し共振特性のQ値が3〜4程度である複数個の受波素子が同一基板上に配列された超音波アレイセンサからなる超音波受信装置と、超音波受信装置である超音波アレイセンサの各受波素子で超音波を受波した時間の時間差と各受波素子の配置位置とに基づいて超音波受信装置に対して音源の存在する方位を求める位置演算部と、音源と超音波受信装置とのうち音源側に設けられ光もしくは電波のトリガ信号を発信するトリガ信号発信器と、超音波受信装置側に設けられトリガ信号を受信するトリガ信号受信器と、トリガ信号発信器からのトリガ信号の送波開始タイミングおよび音源からの超音波の送波開始タイミングを制御する制御部とを備え、位置演算部が、トリガ信号受信器によりトリガ信号を受信した時刻と受波素子により超音波を受波した時刻との関係から超音波受信装置と音源との距離を求める距離演算手段を備え、位置演算部で求めた音源の存在する方位および音源までの距離を、トリガ信号受信器によりトリガ信号を受信した時刻と対応付けて時系列的に記憶するメモリを備えることを特徴とする動線計測システム。 A flow line measuring system for the flow line measurement to track the movement condition of a movable body that moves on the floor surface in the building, is the occurrence available-ultrasound mounted on the moving body Q value of the resonance characteristics converted to resonance characteristics in received signal is an electrical signal of ultrasonic waves received wave as well as reception and sound source is about 1, the ultrasonic wave transmitted from the sound source is disposed in the construction plane of the floor above each receiving of the ultrasonic receiving apparatus birefringence several wave receiving element consists of an ultrasonic array sensor that is arranged on the same substrate as a Q value of about 3 to 4, an ultrasonic array sensor that is ultrasonic receiving apparatus A position calculation unit that obtains the direction in which the sound source is present with respect to the ultrasonic receiving device based on the time difference between the time when the ultrasonic wave is received by the wave element and the arrangement position of each receiving element; and the sound source and the ultrasonic receiving device. Trigger signal that is provided on the sound source side and emits a light or radio trigger signal A transmitter, a trigger signal receiver provided on the ultrasonic receiver side for receiving a trigger signal, and a transmission start timing of a trigger signal from the trigger signal transmitter and a transmission start timing of an ultrasonic wave from a sound source are controlled. A distance from which the position calculation unit obtains the distance between the ultrasonic receiver and the sound source from the relationship between the time when the trigger signal is received by the trigger signal receiver and the time when the ultrasonic wave is received by the wave receiving element. Comprising computing means, comprising: a memory for storing in time series the azimuth of the sound source obtained by the position computing unit and the distance to the sound source in association with the time when the trigger signal is received by the trigger signal receiver A flow line measurement system. 建物内の床面上を移動する移動体の移動状況を追跡する動線計測を行う動線計測システムであって、前記移動体に搭載され超音波を発生可能であり共振特性のQ値が1程度である音源と、前記床面上方の施工面に設置され音源から送波された超音波を受波するとともに受波した超音波を電気信号である受波信号に変換し共振特性のQ値が3〜4程度である複数個の受波素子が同一基板上に配列された超音波アレイセンサからなる超音波受信装置と、超音波受信装置である超音波アレイセンサの各受波素子で超音波を受波した時間の時間差と各受波素子の配置位置とに基づいて超音波受信装置に対して音源の存在する方位を求める位置演算部と、音源と超音波受信装置とのうち超音波受信装置側に設けられ光もしくは電波のトリガ信号を発信するトリガ信号発信器と、音源側に設けられトリガ信号を受信するトリガ信号受信器と、トリガ信号受信器にてトリガ信号を受信したときに音源から超音波を送波させる制御部とを備え、位置演算部は、トリガ信号発信器からトリガ信号が発信された時刻と受波素子により超音波を受波した時刻との関係から超音波受信装置と音源との距離を求める距離演算手段を備え、位置演算部で求めた音源の存在する方位および音源までの距離を、トリガ信号受信器によりトリガ信号を受信した時刻と対応付けて時系列的に記憶するメモリを備えることを特徴とする動線計測システム。 A flow line measurement system that performs a flow line measurement for tracking a moving state of a moving body that moves on a floor surface in a building, is mounted on the moving body, can generate ultrasonic waves, and has a resonance characteristic Q value of 1 A sound source that is about the same level, and the ultrasonic wave transmitted from the sound source installed on the construction surface above the floor surface, and the received ultrasonic wave is converted into a received signal that is an electrical signal, and the Q value of the resonance characteristics Are received by an ultrasonic receiving device composed of an ultrasonic array sensor in which a plurality of receiving elements having a length of about 3 to 4 are arranged on the same substrate, and an ultrasonic receiving device of the ultrasonic array sensor which is an ultrasonic receiving device. A position calculation unit for obtaining an azimuth in which the sound source exists with respect to the ultrasonic receiving device based on the time difference between the time when the sound wave is received and the arrangement position of each receiving element, and the ultrasonic wave of the sound source and the ultrasonic receiving device A light or radio wave trigger signal is provided on the receiver side. A trigger signal transmitter, a trigger signal receiver provided on the sound source side for receiving the trigger signal, and a control unit for transmitting an ultrasonic wave from the sound source when the trigger signal is received by the trigger signal receiver; The calculation unit includes distance calculation means for obtaining a distance between the ultrasonic receiver and the sound source from the relationship between the time when the trigger signal is transmitted from the trigger signal transmitter and the time when the ultrasonic wave is received by the wave receiving element. the distance to the orientation and sound presence of sound sources determined by the arithmetic unit, the flow line measurement you further comprising a memory for time-sequentially stored in association with the time of receiving the trigger signal by the trigger signal receiver system. 前記音源が複数あり、前記各音源と前記超音波受信装置とのうち前記各音源側に設けられそれぞれ固有の識別情報信号を発信する複数の識別情報信号発信器と、前記超音波受信装置側に設けられ識別情報信号を受信する識別情報信号受信器とを備え、前記トリガ信号発信器として識別情報信号発信器を用いるとともに前記トリガ信号受信器として識別情報信号受信器を用いて前記トリガ信号を識別情報信号で兼用し、前記制御部は、前記音源側に設けられ識別情報信号発信器からの識別情報信号の送信開始タイミングおよび前記音源からの超音波の送波開始タイミングを制御し、前記位置演算部は、識別情報信号受信部にて受信した識別情報信号に基づいて前記各音源を個別に特定する音源特定手段を備え、前記距離演算手段は、識別情報信号受信部により識別情報信号を受信した時刻と前記受波素子により超音波を受波した時刻との関係から前記超音波受信装置と前記音源との距離を求めることを特徴とする請求項1記載の動線計測システム。 There are a plurality of sound sources, a plurality of identification information signal transmitters that are provided on the sound source side of the sound sources and the ultrasonic receiving device and transmit unique identification information signals, respectively, and the ultrasonic receiving device side An identification information signal receiver provided for receiving an identification information signal, wherein an identification information signal transmitter is used as the trigger signal transmitter and the trigger signal is identified using an identification information signal receiver as the trigger signal receiver The control unit controls the position calculation by controlling the transmission start timing of the identification information signal from the identification information signal transmitter and the transmission start timing of the ultrasonic wave from the sound source provided on the sound source side. The unit includes sound source specifying means for individually specifying each sound source based on the identification information signal received by the identification information signal receiving section, and the distance calculating means includes the identification information signal. By the receiving unit and the time of reception of the identification information signal the wave receiving element from the relationship between the time that receives ultrasonic waves according to claim 1, wherein the determining the distance between the sound source and the ultrasonic receiving device Flow line measurement system. 前記音源が複数あり、前記各音源と前記超音波受信装置とのうち前記各音源側に設けられそれぞれ固有の識別情報信号を発信する識別情報信号発信器と、前記超音波受信装置側に設けられ識別情報信号を受信する識別情報信号受信器と、前記超音波受信装置側に設けられ識別情報信号受信部にて受信した識別情報信号に基づいて前記各音源を個別に特定する音源特定手段とを備えることを特徴とする請求項1または請求項2記載の動線計測システム。 There are a plurality of the sound sources, an identification information signal transmitter that is provided on each sound source side of each of the sound sources and the ultrasonic receiving device and transmits a unique identification information signal, and provided on the ultrasonic receiving device side. An identification information signal receiver for receiving an identification information signal; and a sound source identification means for individually identifying each sound source based on the identification information signal provided on the ultrasonic receiving device side and received by the identification information signal receiver. claim 1 or claim 2 Symbol placing flow line measuring system, characterized in that it comprises. 前記音源は、支持基板と、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する熱絶縁層とを備え、発熱体層への通電に伴う発熱体層の温度変化に伴って超音波を発生する超音波発生素子からなることを特徴とする請求項1ないし請求項のいずれか1項に記載の動線計測システム。 The sound source includes a support substrate, a heating element layer formed on one surface side of the support substrate, and a heat insulating layer interposed between the support substrate and the heating element layer on the one surface side of the support substrate, The flow line according to any one of claims 1 to 4 , comprising an ultrasonic wave generating element that generates an ultrasonic wave in accordance with a temperature change of the heat generating layer accompanying energization of the heat generating layer. Measuring system. 前記受波素子は、超音波の音圧を静電容量の変化に変換する静電容量式のマイクロホンからなることを特徴とする請求項1ないし請求項5のいずれか1項に記載の動線計測システム The flow line according to any one of claims 1 to 5, wherein the wave receiving element includes a capacitance microphone that converts a sound pressure of an ultrasonic wave into a change in capacitance. Measuring system .
JP2006337379A 2005-01-12 2006-12-14 Flow line measurement system Expired - Fee Related JP4569564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337379A JP4569564B2 (en) 2005-01-12 2006-12-14 Flow line measurement system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005005639 2005-01-12
JP2006337379A JP4569564B2 (en) 2005-01-12 2006-12-14 Flow line measurement system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005145953A Division JP4100415B2 (en) 2005-01-12 2005-05-18 Position detection system

Publications (2)

Publication Number Publication Date
JP2007127663A JP2007127663A (en) 2007-05-24
JP4569564B2 true JP4569564B2 (en) 2010-10-27

Family

ID=38150392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337379A Expired - Fee Related JP4569564B2 (en) 2005-01-12 2006-12-14 Flow line measurement system

Country Status (1)

Country Link
JP (1) JP4569564B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102279382A (en) * 2010-06-09 2011-12-14 日电(中国)有限公司 Receiver system, arrangement method thereof and positioning system comprising receiver system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054075U (en) * 1991-07-05 1993-01-22 オリンパス光学工業株式会社 Range finder and transmitter for range finder
JP2002112381A (en) * 2000-10-03 2002-04-12 Melco Inc Sound source position estimate device and sound source position estimation method
JP2004180262A (en) * 2002-09-30 2004-06-24 Matsushita Electric Works Ltd Three-dimensional sensor
JP2004340881A (en) * 2003-05-19 2004-12-02 Hideo Kishimoto Three-dimensional coordinate measuring apparatus using ultrasonic wave
JP2005283473A (en) * 2004-03-30 2005-10-13 Nec Tokin Corp Ultrasonic position detector
JP2006317161A (en) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Tracking system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168512A (en) * 1983-03-15 1984-09-22 Shinko Electric Co Ltd Control method for position of traveling object
JPS6123984A (en) * 1984-07-11 1986-02-01 West Electric Co Ltd Ultrasonic wave transmitting and receiving device
JPS61170686A (en) * 1985-01-24 1986-08-01 Sanwa Denki Gijutsu Kiyouriyoku Kk Distance measuring instrument
JPS6444874A (en) * 1987-08-13 1989-02-17 Matsushita Electric Works Ltd Position detecting system
JPH04218788A (en) * 1990-12-18 1992-08-10 Chuo Denshi Kk Calculating method of coordinates of moving body using ultrasonic sensor
JPH04303216A (en) * 1991-03-30 1992-10-27 Sanyo Electric Co Ltd Position detector for unmanned carrier
JPH06118169A (en) * 1992-10-02 1994-04-28 Oki Shisutetsuku Tokai:Kk Acoustic position measuring device
JPH08136653A (en) * 1994-11-08 1996-05-31 Nippon Avionics Co Ltd Acoustic position measuring instrument
JP3337586B2 (en) * 1995-02-22 2002-10-21 株式会社間組 Moving object position detection system
JP3705926B2 (en) * 1998-04-23 2005-10-12 独立行政法人科学技術振興機構 Pressure wave generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054075U (en) * 1991-07-05 1993-01-22 オリンパス光学工業株式会社 Range finder and transmitter for range finder
JP2002112381A (en) * 2000-10-03 2002-04-12 Melco Inc Sound source position estimate device and sound source position estimation method
JP2004180262A (en) * 2002-09-30 2004-06-24 Matsushita Electric Works Ltd Three-dimensional sensor
JP2004340881A (en) * 2003-05-19 2004-12-02 Hideo Kishimoto Three-dimensional coordinate measuring apparatus using ultrasonic wave
JP2005283473A (en) * 2004-03-30 2005-10-13 Nec Tokin Corp Ultrasonic position detector
JP2006317161A (en) * 2005-05-10 2006-11-24 Matsushita Electric Ind Co Ltd Tracking system

Also Published As

Publication number Publication date
JP2007127663A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
US8254209B2 (en) Acoustic wave sensor
JP4100416B2 (en) Position detection system
JP4936199B2 (en) Moving body position detection system
JPWO2008010269A1 (en) Moving body position detection system
JP4100415B2 (en) Position detection system
JP4569584B2 (en) Flow line measurement system
JP4042769B2 (en) Position detection system
JP2008107251A (en) Position detecting system
JP4569564B2 (en) Flow line measurement system
JP5513706B2 (en) Position detection system
JP4569565B2 (en) Flow line measurement system
JP5390745B2 (en) Orientation detection system
JP4569585B2 (en) Flow line measurement system
JP3979423B2 (en) Position detection system
JP4042770B2 (en) Position detection system
JP4089710B2 (en) Position detection system
JP4569587B2 (en) Flow line measurement system
JP4569599B2 (en) Position detection system
JP4569586B2 (en) Flow line measurement system
JP2006220637A (en) Sensor system
JP4089709B2 (en) Position detection system
JP5390744B2 (en) Position detection system
JP4710855B2 (en) Flow line measurement system
JP2006220638A (en) Sensor system

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees