JP4680411B2 - Arterial blood pressure measuring method and arterial blood pressure measuring device - Google Patents

Arterial blood pressure measuring method and arterial blood pressure measuring device Download PDF

Info

Publication number
JP4680411B2
JP4680411B2 JP2001129369A JP2001129369A JP4680411B2 JP 4680411 B2 JP4680411 B2 JP 4680411B2 JP 2001129369 A JP2001129369 A JP 2001129369A JP 2001129369 A JP2001129369 A JP 2001129369A JP 4680411 B2 JP4680411 B2 JP 4680411B2
Authority
JP
Japan
Prior art keywords
blood pressure
arterial
waveform
beat
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001129369A
Other languages
Japanese (ja)
Other versions
JP2002320593A (en
JP2002320593A5 (en
Inventor
定夫 尾股
Original Assignee
株式会社 タウザー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 タウザー研究所 filed Critical 株式会社 タウザー研究所
Priority to JP2001129369A priority Critical patent/JP4680411B2/en
Publication of JP2002320593A publication Critical patent/JP2002320593A/en
Publication of JP2002320593A5 publication Critical patent/JP2002320593A5/ja
Application granted granted Critical
Publication of JP4680411B2 publication Critical patent/JP4680411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、動脈の血圧を測定する動脈血圧測定方法および動脈血圧測定装置に係り、特に人体に非侵襲、リアルタイムで測定する動脈血圧測定方法および動脈血圧測定装置に関するものである。
【0002】
【従来の技術】
動脈血圧を非侵襲で測定するものとして、現在ではほとんどがRiva-rocci法に基づいて、体の部位に変形可能なマンシェットを取り付け、マンシェット内の圧力の変更時すなわちマンシェットから圧力を抜くときに、この圧力の二つの値を収縮期圧力と拡張期圧力に対応させる手段がとられている。この際に収縮期圧力と拡張期圧力に対応させるには、動脈を流れるときに血液によって血管に生ずる血管音(コロトコフ音)に基づいている。しかしこの方法では、例えば運動時などリアルタイムに動脈血圧を測定することが出来ない。そこで、種々のセンサ技術を応用して、非侵襲でリアルタイムで動脈血圧を測定する方法が試みられている。たとえば、特許公報第2750023号には、一本の動脈血管を含む体の測定範囲内に音波または光波を放射し、動脈の血液から散乱した音波または光波を受信するために、センサ手段が設けられている。
【0003】
【発明が解決しようとする課題】
これら従来の音波、光波を用いたセンサを体に取付け、動脈血圧の変化を観察する方法では確かに非侵襲でリアルタイムに動脈血圧の変化が測定できる。しかしながら、これらの測定方法は直接圧力を測定できず、電圧や周波数等の電気信号の変化を測定しているので、センサの種類、測定原理によりその単位表現が異なり、マンシェット法やあるいは直接動脈内に圧力センサを(侵襲で)挿入する観血法で得た圧力値と校正をとる必要がある。またリアルタイムで測定するには、これらのセンサはマンシェット法に比べて体への固定が不安定となり、ちょっとした体の動きなどでノイズが乗ってその測定データが変化してしまうという課題があった。
【0004】
本発明の目的は、従来の非侵襲、リアルタイムの動脈血圧測定方法、測定装置の課題を解決して、センサの種類によらず、被検体へのセンサ固定方法などによる測定結果へのノイズの発生を防ぐ、非侵襲、リアルタイムの動脈血圧測定方法および動脈血圧測定装置を提供することである。
【0005】
【課題を解決するための手段】
本発明は、一般に物質の振動の振幅はその周波数特性で記述されることから、血管系の物質の振動においても、最大血圧、最低血圧はその振幅、脈拍数はその振動数であるので、同様の考察が可能であるとの観点に立脚して、動脈血圧の最大血圧、最小血圧が、動脈波形の一周期およびその一周期における最大値、最低値に関係する時間関数で表すことが出来ることを見出したことの知見に基づく。図1は、体の動脈内に圧力センサを(侵襲で)挿入して動脈内圧力を直接測定する観血法によって得られた動脈波形から、動脈波形の一拍ごとの一周期の時間T、その一拍の動脈波形における最低値の点から最大値の点までの時間Ta、前記TからTaを差し引いた時間Tb、前記Tを一分間の振動数に換算したいわゆる一分間脈拍数nを求め、動脈波形の最大値である最大血圧Ph、最低値である最低血圧Plとこれらの関係について示したものである。図1(a)において最大血圧Phとnの積で求められる値とTaとTbの積との間、(b)においてnの二乗を最低血圧Plで除した値とTbの二乗との間にそれぞれ強い関係が認められる。すなわち、適切な関数を選ぶことで、動脈血圧の最大血圧、最小血圧が、動脈波形の一周期およびその一周期における最大値、最低値に関係する時間関数で表すことが出来る。
【0006】
そこで、本発明に係る動脈血圧測定方法は、動脈の最大血圧、最低血圧を測定する血圧測定方法において、検査対象に取り付られた動脈波形検出センサにより得られた動脈波形を取り込む動脈波形取り込み工程と、前記取り込まれた動脈波形を時間微分して動脈微分波形を得る動脈波形微分演算工程と、その一拍ごとの動脈微分波形のゼロクロス点を用いて、その一拍における動脈微分波形の一周期の時間Tと、動脈波形の最低値に対応するゼロクロス点から最大値に対応するゼロクロス点までの時間Taと、前記時間Tから前記Taを差し引いた時間Tbを求めるゼロクロス演算工程と、前記演算により求めたTとTaとTbの値を用いて、一分間脈拍数nをn=(60/T)で求め、一拍ごとの最大血圧Phについて、A、Bを定数、LOGは常用対数を示すものとして、{Ph*n=−A*LOG(Ta*Tb)−B}の関係式から算出し、一拍ごとの最低血圧Plについて、C、Dを定数として、{n*n/Pl=C*(Tb*Tb)― D }の関係式から算出する血圧演算工程を有することを特徴とする
【0008】
本発明に係る動脈血圧測定方法は、動脈の最大血圧、最低血圧を測定する血圧測定方法において、検査対象に取り付けられた動脈波形検出センサにより得られた動脈波形を取り込む動脈波形取り込み工程と、前記取り込まれた一拍ごとの動脈波形について、その最低値から最大値までの時間TAと、その一拍における動脈波形の一周期の時間Tから前記TAを差し引いた時間TBを求めるTATB演算工程と、前記演算により求めたTA、TBの値を用いて、一分間脈拍数nをn=(60/T)で求め、一拍ごとの最大血圧Phについて、A、Bを定数、LOGは常用対数を示すものとして、{Ph*n=−A*LOG(TA*TB)−B}の関係式から算出し、一拍ごとの最低血圧Plについて、C、Dを定数として、{n*n/Pl=C*(TA*TB)― D }の関係式から算出する血圧演算工程を有することを特徴とする。
【0009】
本発明に係る動脈血圧測定装置は、動脈の最大血圧、最低血圧を測定する血圧測定装置において、検査対象の動脈波形を検出するセンサ手段と、前記センサ手段により得られた動脈波形を取り込む動脈波形取り込み手段と、前記取り込まれた一拍ごとの前記動脈波形を時間微分して動脈微分波形を得る動脈波形微分演算手段と、その一拍ごとの動脈微分波形のゼロクロス点を用いて、その一拍における動脈微分波形の一周期の時間Tと、動脈波形の最低値に対応するゼロクロス点から最大値に対応するゼロクロス点までの時間Taと、前記時間Tから前記Taを差し引いた時間Tbを求めるゼロクロス演算手段と、前記演算により求めたTとTaとTbの値を用いて、一分間脈拍数nをn=(60/T)で求め、一拍ごとの最大血圧Phについて、A、Bを定数、LOGは常用対数を示すものとして、Ph*n=−A*LOG(Ta*Tb)−B}の関係式から算出し、一拍ごとの最低血圧Plについて、C、Dを定数として、{n*n/Pl=C*(Tb*Tb)― D }の関係式から算出する血圧演算手段を有することを特徴とする。
【0011】
本発明に係る動脈血圧測定装置は、動脈の最大血圧、最低血圧を測定する血圧測定装置において、検査対象の動脈波形を検出するセンサ手段と、前記センサ手段により得られた動脈波形を取り込む動脈波形取り込み手段と、前記取り込まれた一拍ごとの動脈波形について、その最低値から最大値までの時間TAと、その一拍における動脈波形の一周期の時間Tから前記TAを差し引いた時間TBを求めるTATB演算手段と、前記演算により求めたTA、TBの値を用いて、一分間脈拍数nをn=(60/T)で求め、一拍ごとの最大血圧Phについて、A、Bを定数、LOGは常用対数を示すものとして、{Ph*n=−A*LOG(TA*TB)−B}の関係式から算出し、一拍ごとの最低血圧Plについて、C、Dを定数として、{n*n/Pl=C*(TB*TB)― D }の関係式から算出する血圧演算手段を有することを特徴とする。
【0012】
本発明に係る動脈血圧測定方法および動脈血圧測定装置は、検査対象に動脈波形を検出するセンサを取付け、前記センサから動脈波形を取り込み、その動脈波形を時間微分して動脈微分波形を得、その一拍ごとの動脈微分波形においてゼロクロスの各点間の時間Tiと、その一拍における動脈微分波形の一周期の時間Tを求め、そのTiとTの値を用いて、このとき好ましくは動脈波形の最低値に対応するゼロクロス点から最大値に対応するゼロクロス点までの時間Taと、その一拍における動脈微分波形の一周期の時間Tから前記Taを差し引いた時間Tbを用いて、一拍ごとの最大血圧、最低血圧を求める関数を演算することを特徴とするので、その時間測定はセンサの種類によらず安定した測定が可能となり、また動脈微分波形のゼロクロス点の測定を用いることで、センサの体への固定方法などによる測定結果へのノイズの発生を防ぎ、より安定した測定が可能となる。
【0013】
【発明の実施の形態】
以下図面を用いて本発明の実施の形態について詳細に説明する。図2は本発明の実施の形態を示すブロック図である。図2において被検体1の体表面で動脈波形を検出できる適切な部位、例えば人体で言えば手首や腕などにセンサ2が取り付けられる。センサ2の端子は動脈波形取り込み手段3と結び付けられ、さらに動脈波形微分演算手段4、ゼロクロス演算手段5を経て血圧演算手段6へ結ばれ、その結果が出力される。かかるセンサ2の例を図3に示す。図3(a)は、センサとして赤外センサを用いた場合の断面図である。赤外センサ2は直径がおよそ3mmの発光素子12と、ほぼ同じ大きさの受光素子13が並べられて、基板の上に配置される。その基板の背面には例えばウレタンなどのクッション材14が取り付けられる。図3(b)はその平面図であり、発光素子12を両側に二個、その中央に受光素子13を一個配置したものを、四組並べてある。図3(c)は、センサとして、触覚センサ2を用いたもので、3個の圧電変換素子15が基板上に配置される。
【0014】
図2の構成に係る作用について説明する。被検体1の体表面にセンサ2が取り付けられる。図3に示すセンサ2を例にとると、図3(a)において赤外センサ2は発光素子12、受光素子13を被検体1に対向するようにして、背面のクッション材14の上から例えば、マジックテープまたは適切なテープ材などで被検体1に押し付けて止める。赤外センサ2の図示されていないコントロール回路から発光素子12に電流が流れると発光素子12が点灯し、例えば赤外波長の光が被検体1の内部の動脈11にむけて送波され、動脈11に到達して動脈の運動すなわち脈波の影響を受けつつ反射され、受光素子13で受波し、図示していないコントロール回路で増幅が行なわれる。このときの周波数変化により動脈波形を得ることが出来る。図3(a)において、一個の受光素子13の両側に発光素子12を二個並べ、図3(b)においてかかる発光素子12と受光素子13の組を四組並べてあるので、被検体1内部の動脈の運動を幅広く受波することが出来る。図3(c)の触覚センサ2について、圧電変換素子15が三個取り付けられているのも同様の配慮である。したがってその個数は必要に応じて増減できる。図4の上段に、かかる赤外センサの周波数変化の波形と、下段に、同時に被検体1の動脈内に圧力センサを挿入して直接動脈内の圧力を測定(観血法)した結果を、時間軸を合わせて比較して示す。図4から明らかなように、体表面に適切に取り付けられたセンサ2が検出する動脈波形は、縦軸の単位の問題を別にすればきわめて良い対応を示す。この波形の「縦軸の単位の問題を別にすれば」とは、言い換えれば横軸の時間軸はセンサ2によらず同じであることである。
【0015】
センサ2により検出された信号のデータは、動脈波形取り込み手段3に取り込まれて、連続した動脈波形のデータに処理される。ついで取り込まれた動脈波形は動脈波形微分演算手段4により、動脈微分波形が演算される。このような手段としては、一般的なデータアクイジョンシステム(DAS)、デジタル信号微分ソフトを用いることが出来る。図5(a)に赤外センサ法により得られた動脈波形、(b)にその動脈微分波形を示す。いずれも波形にはスムージング処理を施してある。
【0016】
次にゼロクロス演算手段5は、前記動脈微分波形についてのゼロクロス点の間の時間Tiと、前記動脈微分波形の一周期の時間Tを、動脈微分波形一周期ごとに演算する。Tiは複数あり得る。例えば先ほどの図5(b)において説明すると、動脈微分波形一周期においてゼロクロス点は数点認められる。その中で図5(a)における最低血圧から最大血圧に至る前後の二つの変曲点に対応するゼロクロス点が最も重要と考えられ、ついで、最大血圧から徐々に最低血圧に至る過程でのやや大きな血圧の上昇期における二つの変曲点に対応するゼロクロス点がそれに次ぐ。ここで、最も重要と考えられる最低血圧から最大血圧に至る前後の二つの変曲点に対応するゼロクロス点の間の時間をTaとする。このTaはまた、図5(a)において、動脈波形の最低血圧点から最大血圧点までの時間TAと対応するものであるから、動脈波形から直接演算することも出来る。また動脈微分波形の一周期Tを一分間の振動数に換算したいわゆる一分間脈拍数nは次の数式(1)により求めることが出来る。
【数1】
n=60/T ・・・(1)
ただしTの単位はsecである。
【0017】
血圧演算手段6は、ゼロクロス演算手段5によって得られた複数のTiと、動脈微分波形の一周期Tを用いて、一拍ごとの最大血圧Ph、最低血圧Plを求める関数を演算する。その関数形の例を図6に示す。図6は、3種類の実験結果から関数形を求めたもので、第一の実験結果は、動脈内に圧力センサを挿入して直接動脈波形を得る観血法によって、最大血圧Ph、最低血圧Plとともに前述のn、T、Taを求め、Tb=T−Taを計算するもので、図1のデータそのものである。第二の実験は、人体表面の動脈血圧の脈動が検出できる適当な部位に赤外センサを取り付け、その赤外センサにより観測される動脈波形から、前述のn、T、Ta、Tbを求め、同時にマンシェット法で最大血圧、最低血圧を測定したもので、第三の実験は赤外センサの代わりに触覚センサを用いて、第二の実験と同様に行ったものである。図6には、第一の実験結果を黒丸で、第二の実験結果を白丸で、第三の実験結果を三角マークで区別してある。この図6(a)の結果から一拍ごとの最大血圧Phは式(2)で、図6(b)の結果から一拍ごとの最低血圧Plは式(3)で表される。
【数2】
Ph*n=−A*LOG(Ta*Tb)−B ・・・(2)
ただし、A、Bは定数、Tb=T−Ta、LOGは常用対数を示す。
【数3】
n*n/Pl=C*(Tb*Tb)―D ・・・(3)
ただし、C、Dは定数である。
式(2)、(3)に従って演算された結果は、一拍ごとの動脈波形の最大血圧Ph、最低血圧Plとして表示される。
【0018】
また、図6の結果から、本発明に係る動脈血圧測定方法および動脈血圧測定装置が、センサの種類によらず安定して測定できることがわかる。すなわち、図6においては、LEDをセンサとしたときの結果と、触覚センサを用いたときの結果の間に有意差は認められず、また、マンシェット法と観血法の二つの方法を用いても一つの演算式を用いることができる。このことは、本発明に係る動脈血圧測定方法および動脈血圧測定装置が時間測定法であるため、赤外センサ法と触覚センサ法のセンサの差がなく、きわめて安定して測定できることを示している。
【0019】
なお、図6は、Tiのうち、最も顕著なTa、Tbを用いた数式(2)、(3)で表される関数形の適用結果であるが、このことは、動脈波形が第一次近似として最低血圧点、最大血圧点、最低血圧点の3点を一周期としたからであって、さらに適切なTiを選ぶことで、第二次近似、第三次近似の関数形を用いて本発明を実施できる。また、血管系の物質の持つ振動特性の振幅値と周波数特性の考察から、動脈波形について種々のモデルの考え方が導き出せるが、その場合でもT、Tiを含む関数形であれば、本発明を実施できる。すなわち動脈波形のモデルのバリエーションにおいても、動脈微分波形のゼロクロス点を利用し、センサの種類で定まる動脈波形の出力値(縦軸)に依存しない、T、Tiの関数を演算して、そのモデルにしたがった最大血圧、最低血圧を表して本発明を実施できる。
【0020】
【発明の効果】
本発明に係る動脈血圧測定方法および動脈血圧測定装置は、検査対象に動脈波形を検出するセンサを取付け、前記センサから動脈波形を取り込み、その動脈波形を時間微分して動脈微分波形を得、その一拍ごとの動脈微分波形においてゼロクロスの各点間の時間Tiと、その一拍における動脈微分波形の一周期の時間Tを求め、そのTiとTの値を用いて、このとき好ましくは動脈波形の最低値に対応するゼロクロス点から最大値に対応するゼロクロス点までの時間Taと、その一拍における動脈微分波形の一周期の時間Tから前記Taを差し引いた時間Tbを用いて、一拍ごとの最大血圧、最低血圧を求める関数を演算することを特徴とするので、センサの種類によらず安定した測定が可能となった。また動脈微分波形のゼロクロス点の測定を用いることで、センサの体への固定方法などによる測定結果へのノイズの発生を防ぎ、より安定した測定が可能となった。
【図面の簡単な説明】
【図1】 本発明の知見である、観血法の動脈波形のTa、Tbと、その最大血圧、最低血圧とのを関係を示す図である。
【図2】 本発明に係る動脈血圧測定装置の実施の形態を示すブロック図である。
【図3】 本発明の実施の形態におけるセンサの例である。(a)は、赤外センサの断面図、(b)はその平面図、(c)は触覚センサを示す図である。
【図4】 赤外センサの周波数変化の波形(上段)と、観血法による圧力波形(下段)を示す図である。
【図5】 本発明に係る動脈血圧測定装置の実施の形態において、(a)は赤外センサ法により得られた動脈波形、(b)はその動脈微分波形を示す。
【図6】 本発明に係る動脈血圧測定装置の実施の形態において、種々の実験結果と、それらから導かれる関数形を示す図である。
【符号の説明】
1 被検体、2 センサ、3 動脈波形取り込み手段、4 動脈波形微分演算手段、5 ゼロクロス演算手段、6 血圧演算手段、11 動脈、12 発光素子、13 受光素子、14 クッション材、15 圧電変換素子、Ph 最大血圧、Pl 最低血圧、T 動脈波形の一周期の時間、Ta 最低血圧点から最大血圧点に対応するゼロクロス点間の時間、Tb T−Taである時間、Ti 動脈微分波形においてゼロクロスの各点間の時間、n 一分間脈拍数。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an arterial blood pressure measuring method and an arterial blood pressure measuring apparatus for measuring arterial blood pressure, and more particularly to an arterial blood pressure measuring method and an arterial blood pressure measuring apparatus for measuring in real time in a non-invasive manner.
[0002]
[Prior art]
As a non-invasive measurement of arterial blood pressure, currently, a deformable manchette is attached to the body part based on the Riva-rocci method, and when the pressure in the manchette is changed, that is, when the pressure is released from the manchette, Means are taken to correlate the two values of this pressure with systolic pressure and diastolic pressure. In this case, in order to correspond to the systolic pressure and the diastolic pressure, it is based on the blood vessel sound (Korotkoff sound) generated in the blood vessel by the blood when flowing through the artery. However, this method cannot measure arterial blood pressure in real time, for example, during exercise. Therefore, various sensor technologies have been applied to attempt a method for measuring arterial blood pressure non-invasively in real time. For example, in Japanese Patent Publication No. 2750023, sensor means is provided for radiating sound waves or light waves within the measurement range of a body including a single arterial blood vessel and receiving sound waves or light waves scattered from the blood of the artery. ing.
[0003]
[Problems to be solved by the invention]
By attaching these conventional sensors using sound waves and light waves to the body and observing changes in arterial blood pressure, it is possible to measure changes in arterial blood pressure in real time in a non-invasive manner. However, these measurement methods cannot directly measure pressure and measure changes in electrical signals such as voltage and frequency, so the unit representation differs depending on the type of sensor and measurement principle, and the Manchette method or directly in the artery. It is necessary to calibrate the pressure value obtained by the open blood method in which a pressure sensor is inserted (by invasiveness). Also, in order to measure in real time, these sensors are unstable to be fixed to the body as compared with the Manchette method, and there is a problem that the measurement data changes due to noise due to a slight movement of the body.
[0004]
An object of the present invention is to solve the problems of conventional non-invasive, real-time arterial blood pressure measurement methods and measurement devices, and to generate noise in measurement results by a sensor fixing method to a subject, regardless of the type of sensor. It is to provide a non-invasive, real-time arterial blood pressure measuring method and arterial blood pressure measuring device which prevent the above.
[0005]
[Means for Solving the Problems]
In the present invention, since the vibration amplitude of a substance is generally described by its frequency characteristics, the maximum blood pressure and the minimum blood pressure are also the amplitude and the pulse rate is the vibration frequency even in the vibration of a vascular system substance. Based on the viewpoint that it can be considered, the maximum and minimum arterial blood pressure can be expressed by a time function related to one cycle of the arterial waveform and the maximum and minimum values in that cycle. Based on the finding that FIG. 1 shows a period T of each cycle of an arterial waveform, from an arterial waveform obtained by a blood pressure method in which a pressure sensor is inserted (invasively) into an artery of a body to directly measure the intraarterial pressure. The time Ta from the lowest point to the maximum point in the one-beat arterial waveform, the time Tb obtained by subtracting Ta from the T, and the so-called one-minute pulse rate n obtained by converting the T into the vibration frequency per minute are obtained. The maximum blood pressure Ph which is the maximum value of the arterial waveform, the minimum blood pressure Pl which is the minimum value, and their relationship are shown. In FIG. 1A, between the value obtained by the product of the maximum blood pressure Ph and n and the product of Ta and Tb, in FIG. 1B, between the value obtained by dividing the square of n by the minimum blood pressure Pl and the square of Tb. Each has a strong relationship. That is, by selecting an appropriate function, the maximum blood pressure and the minimum blood pressure of the arterial blood pressure can be expressed by a time function related to one period of the arterial waveform and the maximum value and the minimum value in the one period.
[0006]
Therefore, the arterial blood pressure measuring method according to the present invention is an arterial waveform capturing step for capturing an arterial waveform obtained by an arterial waveform detection sensor attached to a test object in the blood pressure measuring method for measuring a maximum blood pressure and a minimum blood pressure of an artery. And using a zero-cross point of the arterial differential waveform for each beat , and one cycle of the arterial differential waveform in one beat The time T from the zero cross point corresponding to the minimum value of the arterial waveform to the zero cross point corresponding to the maximum value, the time Tb obtained by subtracting the Ta from the time T, and the above calculation. using the value of the obtained T, Ta and Tb, seek one minute pulse rate n by n = (60 / T), the maximum blood pressure Ph of each one heartbeat, a, and B constants, L G is as an indication of common logarithm, the {Ph * n = -A * LOG (Ta * Tb) -B} is calculated from the relational expression, diastolic blood pressure Pl of each one heartbeat, C, as a constant and D, { It has a blood pressure calculation step calculated from a relational expression of n * n / Pl = C * (Tb * Tb) −D }.
The arterial blood pressure measuring method according to the present invention is an arterial waveform capturing step for capturing an arterial waveform obtained by an arterial waveform detection sensor attached to a test object in the blood pressure measuring method for measuring a maximum blood pressure and a minimum blood pressure of an artery, A TATB calculation step for obtaining a time TA from the lowest value to the maximum value of the captured arterial waveform for each beat and a time TB obtained by subtracting the TA from a time T of one cycle of the arterial waveform in the one beat; Using the values of TA and TB obtained by the above calculation, the pulse rate n per minute is obtained by n = (60 / T), and A and B are constants, and LOG is a common logarithm for the maximum blood pressure Ph per beat. As shown , {n * n / Pl is calculated from a relational expression of {Ph * n = −A * LOG (TA * TB) −B} , and C and D are constants for the minimum blood pressure Pl for each beat. = C (TA * TB) - characterized by having a blood pressure calculation step of calculating the relational expression of D}.
[0009]
An arterial blood pressure measurement device according to the present invention is a blood pressure measurement device for measuring arterial maximum blood pressure and minimum blood pressure, sensor means for detecting an arterial waveform to be examined , and arterial waveform for taking in the arterial waveform obtained by the sensor means Using the capturing means, the arterial waveform differentiation calculating means for obtaining an arterial differential waveform by time-differentiating the captured arterial waveform for each beat, and using the zero cross point of the arterial differential waveform for each beat, Zero- cross to obtain a time T of one cycle of the arterial differential waveform at time T , a time Ta from a zero-cross point corresponding to the minimum value of the arterial waveform to a zero-cross point corresponding to the maximum value, and a time Tb obtained by subtracting Ta from the time T by using the operation means, the values of T and Ta and Tb obtained by the calculation to obtain the one minute pulse rate n by n = (60 / T), the maximum blood pressure Ph Nitsu per one heartbeat Te, A, B constants, LOG is as an indication of common logarithm, is calculated from the relational expression of Ph * n = -A * LOG ( Ta * Tb) -B}, the diastolic blood pressure Pl of each one heartbeat, C , D is a constant, and has a blood pressure calculation means for calculating from a relational expression of {n * n / Pl = C * (Tb * Tb) −D } .
[0011]
An arterial blood pressure measurement device according to the present invention is a blood pressure measurement device for measuring arterial maximum blood pressure and minimum blood pressure, sensor means for detecting an arterial waveform to be examined , and arterial waveform for taking in the arterial waveform obtained by the sensor means For the captured arterial waveform for each beat, the time TA from the minimum value to the maximum value, and the time TB obtained by subtracting the TA from the time T of one cycle of the arterial waveform in the single beat are obtained. TATB calculation means and TA and TB values obtained by the above calculation are used to obtain a pulse rate n per minute by n = (60 / T), and A and B are constants for the maximum blood pressure Ph for each beat. , LOG indicates the common logarithm, and is calculated from the relational expression {Ph * n = −A * LOG (TA * TB) −B} , and C and D are constants for the diastolic blood pressure Pl for each beat , {N n / Pl = C * (TB * TB) - characterized by having a blood pressure calculating means for calculating the relational expression of D}.
[0012]
An arterial blood pressure measuring method and an arterial blood pressure measuring device according to the present invention are provided with a sensor for detecting an arterial waveform in a test object, taking the arterial waveform from the sensor, obtaining the arterial differential waveform by time differentiation of the arterial waveform, The time Ti between zero-cross points in the arterial differential waveform for each beat and the time T of one cycle of the arterial differential waveform for that beat are obtained, and the values of Ti and T are preferably used at this time. Using a time Ta from the zero cross point corresponding to the lowest value to the zero cross point corresponding to the maximum value and a time Tb obtained by subtracting the Ta from the time T of one cycle of the arterial differential waveform at one beat. The function to calculate the maximum blood pressure and the minimum blood pressure is calculated, so that the time measurement can be performed stably regardless of the sensor type, and the arterial differential waveform is zero. By using the measurement of the loss point, preventing the generation of noise on the measurement results due to the method of fixing to the body of the sensor, thereby enabling more stable measurement.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 2 is a block diagram showing an embodiment of the present invention. In FIG. 2, the sensor 2 is attached to an appropriate part capable of detecting an arterial waveform on the body surface of the subject 1, for example, a wrist or an arm in the case of a human body. The terminal of the sensor 2 is connected to the arterial waveform capturing means 3, and further connected to the blood pressure calculating means 6 via the arterial waveform differential calculating means 4 and the zero cross calculating means 5, and the result is output. An example of such a sensor 2 is shown in FIG. Fig.3 (a) is sectional drawing at the time of using an infrared sensor as a sensor. In the infrared sensor 2, a light emitting element 12 having a diameter of about 3 mm and a light receiving element 13 having substantially the same size are arranged on a substrate. A cushion material 14 such as urethane is attached to the back surface of the substrate. FIG. 3B is a plan view thereof, in which four sets of two light emitting elements 12 arranged on both sides and one light receiving element 13 in the center are arranged. FIG. 3C uses the tactile sensor 2 as a sensor, and three piezoelectric conversion elements 15 are arranged on the substrate.
[0014]
The effect | action which concerns on the structure of FIG. 2 is demonstrated. A sensor 2 is attached to the body surface of the subject 1. Taking the sensor 2 shown in FIG. 3 as an example, in FIG. 3A, the infrared sensor 2 has a light-emitting element 12 and a light-receiving element 13 facing the subject 1 so that, for example, from above the cushion material 14 on the back surface. Then, press against the subject 1 with Velcro or an appropriate tape material and stop. When a current flows from the control circuit (not shown) of the infrared sensor 2 to the light emitting element 12, the light emitting element 12 is turned on. For example, infrared wavelength light is transmitted toward the artery 11 inside the subject 1, and the artery 11 is reflected while being influenced by arterial motion, that is, pulse wave, received by the light receiving element 13, and amplified by a control circuit (not shown). An arterial waveform can be obtained by the frequency change at this time. 3A, two light emitting elements 12 are arranged on both sides of one light receiving element 13, and four sets of such light emitting elements 12 and light receiving elements 13 are arranged in FIG. Can receive a wide range of arterial movements. It is the same consideration that three piezoelectric transducers 15 are attached to the tactile sensor 2 in FIG. Therefore, the number can be increased or decreased as necessary. In the upper part of FIG. 4, the waveform of the frequency change of the infrared sensor, and in the lower part, the pressure sensor is inserted into the artery of the subject 1 and the pressure in the artery is directly measured (open blood method). The comparison is shown by matching the time axis. As is clear from FIG. 4, the arterial waveform detected by the sensor 2 appropriately attached to the body surface shows a very good response except for the problem of the unit of the vertical axis. “Apart from the problem of the unit of the vertical axis” in this waveform means that the time axis of the horizontal axis is the same regardless of the sensor 2.
[0015]
The signal data detected by the sensor 2 is captured by the arterial waveform capturing means 3 and processed into continuous arterial waveform data. Next, the arterial waveform differential calculation means 4 calculates the arterial differential waveform of the captured arterial waveform. As such means, a general data acquisition system (DAS) and digital signal differentiation software can be used. FIG. 5A shows the arterial waveform obtained by the infrared sensor method, and FIG. 5B shows the arterial differential waveform. In both cases, the waveform is smoothed.
[0016]
Next, the zero cross calculation means 5 calculates the time Ti between the zero cross points for the arterial differential waveform and the time T of one cycle of the arterial differential waveform for each cycle of the arterial differential waveform. There can be a plurality of Ti. For example, referring to FIG. 5B, several zero cross points are recognized in one cycle of the arterial differential waveform. Among them, the zero-cross point corresponding to the two inflection points before and after the minimum blood pressure to the maximum blood pressure in FIG. 5 (a) is considered to be the most important, and then a little in the process of gradually reaching the minimum blood pressure from the maximum blood pressure. This is followed by a zero cross point corresponding to two inflection points in the period of increased blood pressure. Here, let Ta be the time between zero cross points corresponding to two inflection points before and after the lowest blood pressure considered to be the most important and the highest blood pressure. In addition, since Ta corresponds to the time TA from the lowest blood pressure point to the highest blood pressure point of the arterial waveform in FIG. 5A, it can be directly calculated from the arterial waveform. Also, a so-called one-minute pulse rate n obtained by converting one period T of the arterial differential waveform into a one-minute vibration frequency can be obtained by the following equation (1).
[Expression 1]
n = 60 / T (1)
However, the unit of T is sec.
[0017]
The blood pressure calculation means 6 calculates a function for obtaining the maximum blood pressure Ph and the minimum blood pressure Pl for each beat by using the plurality of Ti obtained by the zero cross calculation means 5 and one period T of the arterial differential waveform. An example of the function form is shown in FIG. FIG. 6 shows a function form obtained from three types of experimental results. The first experimental result shows that the maximum blood pressure Ph and the minimum blood pressure are obtained by a method of blood pressure in which a pressure sensor is inserted into an artery to directly obtain an arterial waveform. The above-described n, T, and Ta are calculated together with Pl, and Tb = T−Ta is calculated, which is the data itself of FIG. In the second experiment, an infrared sensor is attached to an appropriate site where pulsation of arterial blood pressure on the human body surface can be detected, and the above-mentioned n, T, Ta, and Tb are obtained from the arterial waveform observed by the infrared sensor, At the same time, the maximum blood pressure and the minimum blood pressure were measured by the Manchette method, and the third experiment was performed in the same manner as the second experiment using a tactile sensor instead of the infrared sensor. In FIG. 6, the first experimental result is distinguished by a black circle, the second experimental result by a white circle, and the third experimental result by a triangular mark. From the result of FIG. 6A, the maximum blood pressure Ph for each beat is expressed by Expression (2), and from the result of FIG. 6B, the minimum blood pressure Pl for each beat is expressed by Expression (3).
[Expression 2]
Ph * n = −A * LOG (Ta * Tb) −B (2)
However, A and B are constants, Tb = T-Ta, and LOG indicates a common logarithm.
[Equation 3]
n * n / Pl = C * ( Tb * Tb) −D (3)
However, C and D are constants.
The results calculated according to the equations (2) and (3) are displayed as the maximum blood pressure Ph and the minimum blood pressure Pl of the arterial waveform for each beat.
[0018]
Moreover, it can be seen from the results of FIG. 6 that the arterial blood pressure measurement method and the arterial blood pressure measurement device according to the present invention can stably measure regardless of the type of sensor. That is, in FIG. 6, there is no significant difference between the result when the LED is used as the sensor and the result when the tactile sensor is used, and the two methods of the Manchette method and the open blood method are used. Can also use one arithmetic expression. This indicates that the arterial blood pressure measurement method and the arterial blood pressure measurement device according to the present invention are time measurement methods, so that there is no difference between the sensor of the infrared sensor method and the tactile sensor method, and measurement can be performed extremely stably. .
[0019]
FIG. 6 shows the application results of the function forms represented by the mathematical expressions (2) and (3) using the most prominent Ta and Tb among Ti. This is because the three points of the minimum blood pressure point, the maximum blood pressure point, and the minimum blood pressure point are set as one cycle as an approximation. By selecting an appropriate Ti, the function forms of the second and third approximations are used. The present invention can be implemented. In addition, various models of arterial waveforms can be derived from consideration of amplitude values and frequency characteristics of vibration characteristics of vascular substances. However, even in this case, the present invention is implemented as long as it is a functional form including T and Ti. it can. That is, even in the variation of the arterial waveform model, the function of T, Ti that does not depend on the output value (vertical axis) of the arterial waveform determined by the type of sensor is calculated using the zero-cross point of the arterial differential waveform, and the model Therefore, the present invention can be implemented by representing the maximum blood pressure and the minimum blood pressure.
[0020]
【The invention's effect】
An arterial blood pressure measuring method and an arterial blood pressure measuring device according to the present invention are provided with a sensor for detecting an arterial waveform in a test object, taking the arterial waveform from the sensor, obtaining the arterial differential waveform by time differentiation of the arterial waveform, The time Ti between zero-cross points in the arterial differential waveform for each beat and the time T of one cycle of the arterial differential waveform for that beat are obtained, and the values of Ti and T are preferably used at this time. Using a time Ta from the zero cross point corresponding to the lowest value to the zero cross point corresponding to the maximum value and a time Tb obtained by subtracting the Ta from the time T of one cycle of the arterial differential waveform at one beat. Since the function for calculating the maximum blood pressure and the minimum blood pressure is calculated, stable measurement can be performed regardless of the type of sensor. In addition, the measurement of the zero-cross point of the arterial differential waveform can be used to prevent the generation of noise in the measurement result due to the method of fixing the sensor to the body, and more stable measurement is possible.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between Ta and Tb of arterial waveform of open blood method and the maximum blood pressure and minimum blood pressure, which is the knowledge of the present invention.
FIG. 2 is a block diagram showing an embodiment of an arterial blood pressure measurement device according to the present invention.
FIG. 3 is an example of a sensor according to an embodiment of the present invention. (A) is sectional drawing of an infrared sensor, (b) is the top view, (c) is a figure which shows a tactile sensor.
FIG. 4 is a diagram showing a waveform of the frequency change of the infrared sensor (upper stage) and a pressure waveform (lower stage) by the blood-opening method.
5A shows an arterial waveform obtained by an infrared sensor method, and FIG. 5B shows an arterial differential waveform in the embodiment of the arterial blood pressure measuring device according to the present invention.
FIG. 6 is a diagram showing various experimental results and function forms derived therefrom in the embodiment of the arterial blood pressure measurement device according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Subject, 2 Sensor, 3 Arterial waveform acquisition means, 4 Arterial waveform differentiation calculating means, 5 Zero cross calculating means, 6 Blood pressure calculating means, 11 Arteries, 12 Light emitting element, 13 Light receiving element, 14 Cushion material, 15 Piezoelectric conversion element, Ph Maximum blood pressure, Pl diastolic blood pressure, time of one cycle of T arterial waveform, Ta time between zero crossing point corresponding to maximal blood pressure point, time of Tb T-Ta, each of zero crossing in Ti arterial differential waveform Time between points, n 1 minute pulse rate.

Claims (4)

動脈の最大血圧、最低血圧を測定する血圧測定方法において、
検査対象に取り付られた動脈波形検出センサにより得られた動脈波形を取り込む動脈波形取り込み工程と、
前記取り込まれた動脈波形を時間微分して動脈微分波形を得る動脈波形微分演算工程と、
その一拍ごとの動脈微分波形のゼロクロス点を用いて、その一拍における動脈微分波形の一周期の時間Tと、動脈波形の最低値に対応するゼロクロス点から最大値に対応するゼロクロス点までの時間Taと、前記時間Tから前記Taを差し引いた時間Tbを求めるゼロクロス演算工程と、
前記演算により求めたTとTaとTbの値を用いて、
一分間脈拍数nをn=(60/T)で求め、
一拍ごとの最大血圧Phについて、A、Bを定数、LOGは常用対数を示すものとして、{Ph*n=−A*LOG(Ta*Tb)−B}の関係式から算出し、
一拍ごとの最低血圧Plについて、C、Dを定数として、{n*n/Pl=C*(Tb*Tb)― D }の関係式から算出する血圧演算工程を有することを特徴とする動脈血圧測定方法。
In the blood pressure measurement method for measuring the maximum blood pressure and the minimum blood pressure of the artery,
An arterial waveform capturing step for capturing an arterial waveform obtained by an arterial waveform detection sensor attached to a test object;
Arterial waveform differentiation calculation step of obtaining the arterial differential waveform by time differentiation of the captured arterial waveform,
Using the zero-cross point of the arterial differential waveform for each beat, the period T of one cycle of the arterial differential waveform in that beat and the zero-cross point corresponding to the minimum value of the arterial waveform to the zero-cross point corresponding to the maximum value A zero cross operation step for obtaining a time Ta and a time Tb obtained by subtracting the Ta from the time T ;
Using the values of T, Ta, and Tb obtained by the above calculation,
Obtain the pulse rate n per minute by n = (60 / T),
With respect to the maximum blood pressure Ph for each beat , A and B are constants, LOG is a common logarithm, and is calculated from the relational expression {Ph * n = −A * LOG (Ta * Tb) −B},
An arterial characterized by having a blood pressure calculation step for calculating a minimum blood pressure Pl for each beat from a relational expression {n * n / Pl = C * (Tb * Tb) −D } , where C and D are constants. Blood pressure measurement method.
動脈の最大血圧、最低血圧を測定する血圧測定方法において、
検査対象に取り付けられた動脈波形検出センサにより得られた動脈波形を取り込む動脈波形取り込み工程と、
前記取り込まれた一拍ごとの動脈波形について、その最低値から最大値までの時間TAと、その一拍における動脈波形の一周期の時間Tから前記TAを差し引いた時間TBを求めるTATB演算工程と、
前記演算により求めたTA、TBの値を用いて、
一分間脈拍数nをn=(60/T)で求め、
一拍ごとの最大血圧Phについて、A、Bを定数、LOGは常用対数を示すものとして、{Ph*n=−A*LOG(TA*TB)−B}の関係式から算出し、
一拍ごとの最低血圧Plについて、C、Dを定数として、{n*n/Pl=C*(TB*TB)― D }の関係式から算出する血圧演算工程を有することを特徴とする動脈血圧測定方法。
In the blood pressure measurement method for measuring the maximum blood pressure and the minimum blood pressure of the artery,
An arterial waveform capturing step for capturing an arterial waveform obtained by an arterial waveform detection sensor attached to a test object;
A TATB calculation step for obtaining a time TA from the lowest value to the maximum value of the captured arterial waveform for each beat and a time TB obtained by subtracting the TA from a time T of one cycle of the arterial waveform in one beat; ,
Using the values of TA and TB obtained by the above calculation,
Obtain the pulse rate n per minute by n = (60 / T),
With respect to the maximum blood pressure Ph for each beat, A and B are constants, LOG is a common logarithm, and is calculated from the relational expression {Ph * n = −A * LOG (TA * TB) −B},
For diastolic blood pressure Pl of each one heartbeat, C, as a constant and D, - and wherein Rukoto to have a blood pressure calculation step of calculating the relational expression of {n * n / Pl = C * (TB * TB) D} To measure arterial blood pressure.
動脈の最大血圧、最低血圧を測定する血圧測定装置において、
検査対象の動脈波形を検出するセンサ手段と、
前記センサ手段により得られた動脈波形を取り込む動脈波形取り込み手段と、
前記取り込まれた一拍ごとの前記動脈波形を時間微分して動脈微分波形を得る動脈波形微分演算手段と、
その一拍ごとの動脈微分波形のゼロクロス点を用いて、その一拍における動脈微分波形の一周期の時間Tと、動脈波形の最低値に対応するゼロクロス点から最大値に対応するゼロクロス点までの時間Taと、前記時間Tから前記Taを差し引いた時間Tbを求めるゼロクロス演算手段と、
前記演算により求めたTとTaとTbの値を用いて、
一分間脈拍数nをn=(60/T)で求め、
一拍ごとの最大血圧Phについて、A、Bを定数、LOGは常用対数を示すものとして、{Ph*n=−A*LOG(Ta*Tb)−B}の関係式から算出し、
一拍ごとの最低血圧Plについて、C、Dを定数として、{n*n/Pl=C*(Tb*Tb)― D }の関係式から算出する血圧演算手段を有することを特徴とする動脈血圧測定装置
In a blood pressure measurement device that measures the maximum and minimum blood pressure of arteries,
Sensor means for detecting an arterial waveform to be examined;
And arterial waveform capture means for capturing the resulting arterial waveform by said sensor means,
Arterial waveform differentiation calculation means for obtaining an arterial differential waveform by differentiating the arterial waveform for each captured beat with respect to time,
Using the zero-cross point of the arterial differential waveform for each beat, the period T of one cycle of the arterial differential waveform in that beat and the zero-cross point corresponding to the minimum value of the arterial waveform to the zero-cross point corresponding to the maximum value Zero cross calculation means for obtaining a time Ta and a time Tb obtained by subtracting Ta from the time T ;
Using the values of T, Ta, and Tb obtained by the above calculation,
Obtain the pulse rate n per minute by n = (60 / T),
With respect to the maximum blood pressure Ph for each beat , A and B are constants, LOG is a common logarithm, and is calculated from the relational expression {Ph * n = −A * LOG (Ta * Tb) −B},
An artery having a blood pressure calculating means for calculating a minimum blood pressure Pl for each beat from a relational expression {n * n / Pl = C * (Tb * Tb) −D } with C and D as constants Blood pressure measurement device .
動脈の最大血圧、最低血圧を測定する血圧測定装置において、
検査対象の動脈波形を検出するセンサ手段と、
前記センサ手段により得られた動脈波形を取り込む動脈波形取り込み手段と
記取り込まれた一拍ごとの動脈波形について、その最低値から最大値までの時間TAと、その一拍における動脈波形の一周期の時間Tから前記TAを差し引いた時間TBを求めるTATB演算手段と、
前記演算により求めたTA、TBの値を用いて、
一分間脈拍数nをn=(60/T)で求め、
一拍ごとの最大血圧Phについて、A、Bを定数、LOGは常用対数を示すものとして、{Ph*n=−A*LOG(TA*TB)−B}の関係式から算出し、
一拍ごとの最低血圧Plについて、C、Dを定数として、{n*n/Pl=C*(TB*TB)― D }の関係式から算出する血圧演算手段を有することを特徴とする動脈血圧測定装置。
In a blood pressure measurement device that measures the maximum and minimum blood pressure of arteries,
Sensor means for detecting an arterial waveform to be examined;
Arterial waveform capturing means for capturing the arterial waveform obtained by the sensor means ;
The arterial waveform for each one-heartbeat captured before SL, TATB calculating means for calculating the time TA to a maximum value from the minimum value, the time TB minus the TA from a period of time T of the arterial waveform at its one beat When,
Using the values of TA and TB obtained by the above calculation,
Obtain the pulse rate n per minute by n = (60 / T),
With respect to the maximum blood pressure Ph for each beat , A and B are constants, LOG is a common logarithm, and is calculated from the relational expression {Ph * n = −A * LOG (TA * TB) −B},
An artery having a blood pressure calculating means for calculating a minimum blood pressure Pl for each beat from a relational expression {n * n / Pl = C * (TB * TB) −D } , where C and D are constants. Blood pressure measurement device.
JP2001129369A 2001-04-26 2001-04-26 Arterial blood pressure measuring method and arterial blood pressure measuring device Expired - Fee Related JP4680411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001129369A JP4680411B2 (en) 2001-04-26 2001-04-26 Arterial blood pressure measuring method and arterial blood pressure measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001129369A JP4680411B2 (en) 2001-04-26 2001-04-26 Arterial blood pressure measuring method and arterial blood pressure measuring device

Publications (3)

Publication Number Publication Date
JP2002320593A JP2002320593A (en) 2002-11-05
JP2002320593A5 JP2002320593A5 (en) 2008-05-29
JP4680411B2 true JP4680411B2 (en) 2011-05-11

Family

ID=18977902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001129369A Expired - Fee Related JP4680411B2 (en) 2001-04-26 2001-04-26 Arterial blood pressure measuring method and arterial blood pressure measuring device

Country Status (1)

Country Link
JP (1) JP4680411B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6887207B2 (en) * 2003-02-26 2005-05-03 Medtronic, Inc. Methods and apparatus for estimation of ventricular afterload based on ventricular pressure measurements
EP1898781A2 (en) * 2005-06-27 2008-03-19 Sense A/S A method and an apparatus for determination of blood pressure
JP5071768B2 (en) * 2006-12-08 2012-11-14 学校法人日本大学 Blood flow velocity measuring device
US20090326386A1 (en) * 2008-06-30 2009-12-31 Nellcor Puritan Bennett Ireland Systems and Methods for Non-Invasive Blood Pressure Monitoring
JP6107045B2 (en) 2012-10-19 2017-04-05 富士通株式会社 Portable information terminal
JP6221346B2 (en) * 2013-05-21 2017-11-01 トヨタ自動車株式会社 Object displacement detection device and object displacement detection method
JP6268193B2 (en) * 2013-12-25 2018-01-24 旭化成株式会社 Pulse wave measuring device, portable device, medical device system, and biological information communication system
WO2015151132A1 (en) * 2014-04-01 2015-10-08 Cyberdyne株式会社 Blood pressure measurement device
JP6525138B2 (en) 2014-05-14 2019-06-05 国立大学法人信州大学 Blood pressure measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155826A (en) * 1997-12-02 1999-06-15 Matsushita Electric Ind Co Ltd Blood pressure measurement device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11155826A (en) * 1997-12-02 1999-06-15 Matsushita Electric Ind Co Ltd Blood pressure measurement device

Also Published As

Publication number Publication date
JP2002320593A (en) 2002-11-05

Similar Documents

Publication Publication Date Title
US7361148B2 (en) Cuff volumetric pulse wave obtaining apparatus, cuff volumetric pulse wave analyzing apparatus, pressure pulse wave obtaining apparatus, and pressure pulse wave analyzing apparatus
KR100877753B1 (en) Apparatus and method for measuring hemodynamic parameters
US9538927B2 (en) Optical measurement device and a method for an optical measurement
US6659958B2 (en) Augmentation-index measuring apparatus
US7029449B2 (en) Arteriosclerosis inspecting apparatus
WO2004103185A1 (en) Ultrasonograph
US6976966B2 (en) Arteriosclerosis evaluating apparatus
JP4680411B2 (en) Arterial blood pressure measuring method and arterial blood pressure measuring device
US20090012411A1 (en) Method and apparatus for obtaining electronic oscillotory pressure signals from an inflatable blood pressure cuff
US6786872B2 (en) Augmentation-index measuring apparatus
US6923770B2 (en) Pulse-wave-characteristic-point determining apparatus, and pulse-wave-propagation-velocity-related-information obtaining apparatus employing the pulse-wave-characteristic-point determining apparatus
JP2001008909A (en) Electric sphygmomanometer
US20040171941A1 (en) Blood flow amount estimating apparatus
US6746405B2 (en) Blood pressure measuring apparatus with pulse wave detecting function
JP2010207344A (en) Blood pressure/blood velocity state determination device and method for determining the same
Seo et al. Non-Invasive evaluation of a carotid arterial pressure waveform using motion-tolerant ultrasound measurements during the valsalva maneuver
KR20200125045A (en) Apparatus and method for measuring blood pressure
JP2018130227A (en) Vascular pulse wave measuring system
JP6059669B2 (en) Sleep state monitoring system
JP5683759B1 (en) Blood pressure measuring device and method
JP3533122B2 (en) Pulse wave monitor
KR20060078207A (en) The system and method for a cardiovascular diagnosis monitoring
JPH08257002A (en) Measuring device for pulse wave propagation velocity
EP4221578B1 (en) Estimating central blood pressure
Xu et al. Online continuous measurement of arterial pulse pressure and pressure waveform using ultrasound

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

R150 Certificate of patent or registration of utility model

Ref document number: 4680411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees