JP4617803B2 - Pressure wave generator - Google Patents

Pressure wave generator Download PDF

Info

Publication number
JP4617803B2
JP4617803B2 JP2004280393A JP2004280393A JP4617803B2 JP 4617803 B2 JP4617803 B2 JP 4617803B2 JP 2004280393 A JP2004280393 A JP 2004280393A JP 2004280393 A JP2004280393 A JP 2004280393A JP 4617803 B2 JP4617803 B2 JP 4617803B2
Authority
JP
Japan
Prior art keywords
layer
heating element
heat
support substrate
element layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004280393A
Other languages
Japanese (ja)
Other versions
JP2006088124A (en
Inventor
祥文 渡部
由明 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2004280393A priority Critical patent/JP4617803B2/en
Publication of JP2006088124A publication Critical patent/JP2006088124A/en
Application granted granted Critical
Publication of JP4617803B2 publication Critical patent/JP4617803B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Resistance Heating (AREA)
  • Transducers For Ultrasonic Waves (AREA)

Description

本発明は、例えば、スピーカを対象とした音波や、超音波や単パルス的な粗密波などの圧力波を発生する圧力波発生素子に関するものである。   The present invention relates to a pressure wave generating element that generates a pressure wave such as a sound wave targeted for a speaker, an ultrasonic wave, or a monopulse density wave.

従来から、圧電効果による機械的振動を利用した超音波発生素子が広く知られている。この種の超音波発生素子としては、例えば、チタン酸バリウムのような圧電材料からなる結晶の両面に電極を設けた構成のものが知られており、この超音波発生素子では、両電極間に電気エネルギを与えて機械的振動を発生させることにより、空気などの媒体を振動させて超音波を発生させることができる。   2. Description of the Related Art Conventionally, an ultrasonic wave generating element using mechanical vibration due to a piezoelectric effect is widely known. As this type of ultrasonic generating element, for example, one having a structure in which electrodes are provided on both sides of a crystal made of a piezoelectric material such as barium titanate is known. By applying mechanical energy to generate electrical vibration, a medium such as air can be vibrated to generate ultrasonic waves.

上述のような機械的振動を利用した超音波発生素子は、固有の共振周波数をもつので周波数帯域が狭い、外部の振動や外気圧の変動の影響を受けやすい、などの問題があった。   The ultrasonic generating element using the mechanical vibration as described above has a problem that the frequency band is narrow because it has a specific resonance frequency, and it is easily affected by external vibration and fluctuations in external pressure.

一方、近年、機械的振動を伴わずに超音波を発生させることができる素子として、媒体に熱を与える熱励起により空気の粗密を形成する方法を利用した圧力波発生素子が提案されている(例えば、特許文献1)。   On the other hand, in recent years, a pressure wave generating element using a method of forming air density by thermal excitation that applies heat to a medium has been proposed as an element that can generate ultrasonic waves without mechanical vibration ( For example, Patent Document 1).

この種の圧力波発生素子は、図4に示すように、単結晶のシリコン基板からなる半導体基板1と、半導体基板1の厚み方向の一表面から所定深さまで形成された多孔質シリコン層からなり半導体基板1に比べて熱伝導率および熱容量が十分に小さな熱絶縁層2と、熱絶縁層2上に形成されたアルミニウム薄膜からなる発熱体層3とを備え、発熱体層3への交流電流の通電に伴う発熱体層3と媒体(例えば、空気)との熱交換により圧力波を発生するものである。   As shown in FIG. 4, this type of pressure wave generating element comprises a semiconductor substrate 1 made of a single crystal silicon substrate and a porous silicon layer formed from one surface in the thickness direction of the semiconductor substrate 1 to a predetermined depth. A heat insulating layer 2 having a sufficiently small thermal conductivity and heat capacity compared to the semiconductor substrate 1 and a heat generating layer 3 made of an aluminum thin film formed on the heat insulating layer 2, and an alternating current to the heat generating layer 3 The pressure wave is generated by heat exchange between the heating element layer 3 and the medium (for example, air) accompanying energization.

ところで、上述の圧力波発生素子では、発熱体層3の膜厚が30nm程度に設定されており、発熱体層3への通電を行うためには、図5に示すように、発熱体層3の両端部それぞれに接する一対のパッド4,4を設け、各パッド4,4へ金属細線(ボンディングワイヤ)をワイヤボンディングすればよい。   Incidentally, in the pressure wave generating element described above, the thickness of the heating element layer 3 is set to about 30 nm, and in order to energize the heating element layer 3, as shown in FIG. A pair of pads 4, 4 that are in contact with both ends of each of the two pads 4, 4 may be provided, and a fine metal wire (bonding wire) may be wire bonded to each pad 4, 4.

なお、図5に示した構成の圧力波発生素子は、発熱体層3に印加する交流電圧(駆動電圧)の周波数を調整することにより、発生する圧力波の周波数を広範囲にわたって変化させることができ、例えば、超音波音源やスピーカの音源として期待されている。
特開平11−300274号公報
The pressure wave generating element having the configuration shown in FIG. 5 can change the frequency of the generated pressure wave over a wide range by adjusting the frequency of the alternating voltage (drive voltage) applied to the heating element layer 3. For example, it is expected as a sound source of an ultrasonic sound source or a speaker.
Japanese Patent Laid-Open No. 11-3000274

しかしながら、本願発明者らは鋭意研究の結果、上述の圧力波発生素子を強力な超音波が必要な用途に用いる場合には、発熱体層3への通電時に発熱体層3の温度が1000℃を超える非常に高い温度になるという知見を得た。その知見の一例を図6に示す。図6のグラフの横軸は、周波数が60kHzの正弦波電圧を一対のパッド4,4間に印加するにあたって正弦波電圧のピーク値を種々変化させた場合の入力電力の最大値、左側の縦軸は、発熱体層3の表面から30cmだけ離れた位置で測定した出力音圧、右側の縦軸は、発熱体層3の表面の温度となっており、図6中の「イ」が音圧、「ロ」が温度を示している。   However, as a result of diligent research, the inventors of the present application have found that the temperature of the heating element layer 3 is 1000 ° C. when the heating element layer 3 is energized when the pressure wave generating element described above is used for an application that requires strong ultrasonic waves. We obtained the knowledge that the temperature would be very high. An example of the findings is shown in FIG. The horizontal axis of the graph of FIG. 6 shows the maximum value of the input power when the sine wave voltage having a frequency of 60 kHz is applied between the pair of pads 4 and 4 and the peak value of the sine wave voltage is variously changed. The axis is the output sound pressure measured at a position 30 cm away from the surface of the heating element layer 3, and the vertical axis on the right side is the temperature of the surface of the heating element layer 3. The pressure, “B”, indicates the temperature.

そこで、本願発明者らは、発熱体層3の材料としてタングステンなどの高融点金属を採用した圧力波発生素子について検討したが、上述の圧力波発生素子を強力な超音波が必要な用途に用いる場合には、タングステンを構成材料とする発熱体層3とアルミニウムを構成材料とするパッド4とが反応して部分的な凝集による欠落部が発生したり高抵抗部が発生したりして、電流集中により発熱体層3が断線してしまう問題があるという知見を得た。さらに、発熱体層3と反応したパッド4の材料が熱絶縁層2と反応して熱絶縁層2の一部が破壊されやすくなるという知見を得た。   Therefore, the inventors of the present invention have examined a pressure wave generating element that employs a refractory metal such as tungsten as the material of the heating element layer 3. However, the above pressure wave generating element is used for applications that require strong ultrasonic waves. In this case, the heating element layer 3 made of tungsten and the pad 4 made of aluminum react with each other to cause a missing portion due to partial aggregation or a high resistance portion, It has been found that there is a problem that the heating element layer 3 is disconnected due to concentration. Furthermore, it has been found that the material of the pad 4 that reacts with the heating element layer 3 reacts with the thermal insulating layer 2 and part of the thermal insulating layer 2 is easily destroyed.

本発明は上記事由に鑑みて為されたものであり、その目的は、発熱体層の温度上昇に起因した発熱体層の断線を防止でき長期間にわたって超音波域の圧力波を安定して発生可能な圧力波発生素子を提供することにある。   The present invention has been made in view of the above-mentioned reasons, and its purpose is to stably prevent generation of pressure waves in the ultrasonic region over a long period of time by preventing disconnection of the heating element layer due to temperature rise of the heating element layer. The object is to provide a possible pressure wave generating element.

請求項1の発明は、支持基板と、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する熱絶縁層と、支持基板の前記一表面側で発熱体層に接する形で形成された一対のパッドとを備え、一対のパッドを介した発熱体層への通電に伴う発熱体層と媒体との熱交換により圧力波を発生する圧力波発生素子であって、発熱体層への通電時に高融点金属からなる発熱体層と反応せず且つ各パッドとは異なる材料からなりパッドの熱を放熱させる放熱層を発熱体層と各パッドそれぞれとが接した露出部分それぞれを覆う形で形成させてなることを特徴とする。 The invention of claim 1 includes a support substrate, a heating element layer formed on one surface side of the support substrate, and a heat insulating layer interposed between the support substrate and the heating element layer on the one surface side of the support substrate. A pair of pads formed in contact with the heating element layer on the one surface side of the support substrate, and by heat exchange between the heating element layer and the medium accompanying energization of the heating element layer via the pair of pads a pressure wave generating device for generating a pressure wave, heat radiation to dissipate the heat of the pad consists of a different material than the and the pad does not react with fever body layer made of a refractory metal upon energization of the heat generating layer The layer is formed so as to cover each exposed portion where the heating element layer and each pad are in contact with each other.

この発明によれば、発熱体層への通電時に発熱体層と反応せず且つ各パッドとは異なる材料からなりパッドの熱を放熱させる放熱層を備えているので、発熱体層と各パッドとの境界付近の温度上昇を抑制することができ、発熱体層への通電時に発熱体層と各パッドとが反応することなく各パッドの熱を放熱層を通して外部へ放熱させることができるから、発熱体層の温度上昇に起因した発熱体層の断線を防止でき長期間にわたって超音波域の圧力波を安定して発生可能となり、長寿命化を図ることができるとともに、通電時に発熱体層へ与える電力を増加させることによる圧力波の振幅の増大を図れる。   According to the present invention, since the heat-dissipating layer that does not react with the heat-generating element layer when energized to the heat-generating element layer and is made of a material different from each pad and dissipates the heat of the pad is provided, The temperature rise near the boundary of the heating element can be suppressed, and the heat of the heating element layer and each pad can be dissipated outside through the heat dissipation layer without reaction between the heating element layer and each pad when the heating element layer is energized. It is possible to prevent disconnection of the heating element layer due to the temperature rise of the body layer and to stably generate pressure waves in the ultrasonic range over a long period of time, and to extend the life, and to the heating element layer when energized The amplitude of the pressure wave can be increased by increasing the electric power.

この発明によれば、前記発熱体層と前記各パッドそれぞれとの接触抵抗を増大させることなく、前記各パッドの熱を外部へ放熱させることができるとともに放熱面積を比較的広くすることができる。また、前記放熱層を設けたことによる前記発熱体層の温度低下に伴う出力低下を抑制することが可能となる。   According to the present invention, the heat of each pad can be radiated to the outside and the heat radiation area can be made relatively wide without increasing the contact resistance between the heating element layer and each pad. Moreover, it becomes possible to suppress the output fall accompanying the temperature fall of the said heat generating body layer by providing the said thermal radiation layer.

請求項2の発明は、支持基板と、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する熱絶縁層と、支持基板の前記一表面側で発熱体層に接する形で形成された一対のパッドとを備え、一対のパッドを介した発熱体層への通電に伴う発熱体層と媒体との熱交換により圧力波を発生する圧力波発生素子であって、発熱体層への通電時に高融点金属からなる発熱体層と反応せず且つ各パッドとは異なる材料からなりパッドの熱を放熱させる放熱層を発熱体層と各パッドそれぞれとの間に一部が介在し残りの部分の表面が露出する形で形成されてなることを特徴とする。 The invention according to claim 2 is a support substrate, a heating element layer formed on one surface side of the support substrate, and a heat insulating layer interposed between the support substrate and the heating element layer on the one surface side of the support substrate, A pair of pads formed in contact with the heating element layer on the one surface side of the support substrate, and by heat exchange between the heating element layer and the medium accompanying energization of the heating element layer via the pair of pads A pressure wave generating element that generates a pressure wave, a heat dissipation layer that does not react with a heating element layer made of a refractory metal when energizing the heating element layer and is made of a material different from each pad and dissipates heat from the pad. some between each respective and fever body layer pad characterized by comprising formed in a manner to expose the surface of the remaining part interposed.

この発明によれば、発熱体層への通電時に発熱体層と反応せず且つ各パッドとは異なる材料からなりパッドの熱を放熱させる放熱層を備えているので、発熱体層と各パッドとの境界付近の温度上昇を抑制することができ、発熱体層への通電時に発熱体層と各パッドとが反応することなく各パッドの熱を放熱層を通して外部へ放熱させることができるから、発熱体層の温度上昇に起因した発熱体層の断線を防止でき長期間にわたって超音波域の圧力波を安定して発生可能となり、長寿命化を図ることができるとともに、通電時に発熱体層へ与える電力を増加させることによる圧力波の振幅の増大を図れる。また、この発明によれば、前記発熱体層と前記各パッドそれぞれとの界面付近の熱を前記放熱層の露出した表面を通して外部へ放熱させることができるので、請求項1の発明に比べて前記発熱体層と前記各パッドそれぞれとの反応がより発生しにくくなる。また、請求項1の発明に比べて、前記発熱体層と前記各パッドそれぞれとの接触面積を小さくすることができ、無効電力の低減を図れる。 According to the present invention, since the heat-dissipating layer that does not react with the heat-generating element layer when energized to the heat-generating element layer and is made of a material different from each pad and dissipates the heat of the pad is provided, The temperature rise near the boundary of the heating element can be suppressed, and the heat of the heating element layer and each pad can be dissipated outside through the heat dissipation layer without reaction between the heating element layer and each pad when the heating element layer is energized. It is possible to prevent disconnection of the heating element layer due to the temperature rise of the body layer and to stably generate pressure waves in the ultrasonic range over a long period of time, and to extend the life, and to the heating element layer when energized The amplitude of the pressure wave can be increased by increasing the electric power. Further, according to this invention, since the vicinity of the interface heat between said respective pads and said heat generating layer can be radiated to the outside through the exposed surface of the heat dissipation layer, as compared to the first aspect of the present invention Reaction between the heating element layer and each pad is less likely to occur. Further, as compared with the invention of claim 1, the contact area between the heating element layer and each of the pads can be reduced, and the reactive power can be reduced.

請求項3の発明は、請求項1または請求項2の発明において、前記放熱層の材料は、絶縁材料であることを特徴とする。 According to a third aspect of the present invention, in the first or second aspect of the present invention, the material of the heat dissipation layer is an insulating material.

この発明によれば、前記発熱体層への通電時に前記放熱層へ電流が流れないので、前記各パッドの熱を効果的に放熱させることができるとともに、前記放熱層へ電流が流れることによる電力損失の発生を防止できる。   According to the present invention, since no current flows to the heat dissipation layer when the heating element layer is energized, it is possible to effectively dissipate the heat of each pad, and the power generated by the current flowing to the heat dissipation layer. Loss can be prevented from occurring.

請求項4の発明は、請求項1ないし請求項3の発明において、前記支持基板がシリコン基板からなり、前記熱絶縁層が多孔質シリコン層からなることを特徴とする。 According to a fourth aspect of the present invention, in the first to third aspects of the invention, the support substrate is a silicon substrate, and the thermal insulation layer is a porous silicon layer.

この発明によれば、前記熱絶縁層の熱伝導率と熱容量との積が前記支持基板の熱伝導率と熱容量との積に比べて十分に小さく且つ前記熱絶縁層の耐熱性が高いので、発生させる圧力波の高出力化を図れる。   According to this invention, the product of the thermal conductivity and the heat capacity of the thermal insulating layer is sufficiently smaller than the product of the thermal conductivity and the thermal capacity of the support substrate, and the heat resistance of the thermal insulating layer is high. The output of the generated pressure wave can be increased.

請求項1または請求項2の発明では、発熱体層の温度上昇に起因した発熱体層の断線を防止でき長期間にわたって超音波域の圧力波を安定して発生可能になるという効果がある。 In the invention of claim 1 or claim 2, there is an effect that it is possible to prevent disconnection of the heating element layer due to the temperature rise of the heating element layer and to stably generate pressure waves in the ultrasonic region over a long period of time.

(実施形態1)
本実施形態の圧力波発生素子は、図1(a),(b)に示すように、半導体基板1と、半導体基板1の一表面(図1(b)における上面)側に形成された熱絶縁層2と、熱絶縁層2上に形成された発熱体層3と、半導体基板1の上記一表面側で発熱体層3の両端部(図1(a)における左右両端部)それぞれと接する形で形成された一対のパッド4,4と、発熱体層3への通電時に発熱体層3と反応せず且つ各パッド4,4とは異なる材料からなりパッド4,4の熱を放熱させる一対の放熱層5,5とを備えている。本実施形態では、半導体基板1が支持基板を構成している。
(Embodiment 1)
As shown in FIGS. 1A and 1B, the pressure wave generating element of this embodiment includes a semiconductor substrate 1 and heat formed on one surface (the upper surface in FIG. 1B) of the semiconductor substrate 1. The insulating layer 2, the heating element layer 3 formed on the thermal insulating layer 2, and both ends of the heating element layer 3 on the one surface side of the semiconductor substrate 1 (left and right ends in FIG. 1A) are in contact with each other. The pair of pads 4 and 4 formed in a shape and the heating element layer 3 do not react with the heating element layer 3 when energized, and the pads 4 and 4 are made of a different material and radiate the heat of the pads 4 and 4. A pair of heat radiation layers 5 and 5 are provided. In the present embodiment, the semiconductor substrate 1 constitutes a support substrate.

なお、本実施形態の圧力波発生素子は、発熱体層3への通電(電気エネルギの供給)に伴う発熱体層3と媒体(例えば、空気)との熱交換により圧力波(例えば、超音波など)を発生する。例えば、交流電源から一対のパッド4,4を介して発熱体層3へ正弦波状の交流電圧を印加した場合には、発熱体層3の温度がジュール熱の発生によって変化し、発熱体層3の温度変化に伴って圧力波(音波)が発生する。   Note that the pressure wave generating element of the present embodiment has a pressure wave (for example, an ultrasonic wave) by heat exchange between the heating element layer 3 and a medium (for example, air) accompanying energization (supply of electric energy) to the heating element layer 3. Etc.). For example, when a sinusoidal AC voltage is applied from the AC power source to the heating element layer 3 via the pair of pads 4 and 4, the temperature of the heating element layer 3 changes due to the generation of Joule heat, and the heating element layer 3. A pressure wave (sound wave) is generated along with the temperature change.

本実施形態の圧力波発生素子では、半導体基板1としてp形のシリコン基板を用いており、熱絶縁層2を多孔質シリコン層により構成している。ここで、熱絶縁層2を構成する多孔質シリコン層は、半導体基板1としてのp形シリコン基板の一部を電解液中で陽極酸化処理することにより形成されており、陽極酸化処理の条件を適宜変化させることにより、多孔度を変化させることができる。多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率および熱容量が小さくなり、多孔度を適宜設定することにより熱伝導率を単結晶シリコンに比べて十分に小さくすることができる。上記特許文献1には、熱伝導率が168W/(m・K)、熱容量が1.67×10J/(m・K)の単結晶のシリコン基板を陽極酸化処理して形成される多孔度が60%の多孔質シリコン層は、熱伝導率が1W/(m・K)、熱容量が0.7×10J/(m・K)となることが報告されている。なお、熱絶縁層2は、多孔質シリコン層に限らず、例えば、SiO膜やSi膜などにより構成してもよい。 In the pressure wave generating element of the present embodiment, a p-type silicon substrate is used as the semiconductor substrate 1, and the thermal insulating layer 2 is composed of a porous silicon layer. Here, the porous silicon layer constituting the heat insulating layer 2 is formed by anodizing a part of a p-type silicon substrate as the semiconductor substrate 1 in an electrolytic solution. By changing appropriately, the porosity can be changed. The porous silicon layer has a smaller thermal conductivity and heat capacity as the porosity increases, and the thermal conductivity can be made sufficiently smaller than that of single crystal silicon by appropriately setting the porosity. In Patent Document 1, a single crystal silicon substrate having a thermal conductivity of 168 W / (m · K) and a heat capacity of 1.67 × 10 6 J / (m 3 · K) is formed by anodizing. It has been reported that a porous silicon layer having a porosity of 60% has a thermal conductivity of 1 W / (m · K) and a heat capacity of 0.7 × 10 6 J / (m 3 · K). The heat insulating layer 2 is not limited to the porous silicon layer, and may be formed of, for example, a SiO 2 film or a Si 3 N 4 film.

ここに、半導体基板1は単結晶のp形シリコン基板に限らず、多結晶あるいはアモルファスのp形シリコン基板でもよいし、また、p形に限らず、n形あるいはノンドープであってもよく、半導体基板1の種類に応じて陽極酸化処理の条件を適宜変更すればよい。したがって、熱絶縁層2を構成する多孔質半導体層も多孔質シリコン層に限らず、例えば、多結晶シリコンを陽極酸化処理することにより形成した多孔質多結晶シリコン層や、シリコン以外の半導体材料からなる多孔質半導体層でもよい。   Here, the semiconductor substrate 1 is not limited to a single-crystal p-type silicon substrate, but may be a polycrystalline or amorphous p-type silicon substrate, and is not limited to a p-type, and may be n-type or non-doped. What is necessary is just to change the conditions of an anodizing process suitably according to the kind of board | substrate 1. FIG. Therefore, the porous semiconductor layer constituting the heat insulating layer 2 is not limited to the porous silicon layer. For example, a porous polycrystalline silicon layer formed by anodizing polycrystalline silicon or a semiconductor material other than silicon is used. It may be a porous semiconductor layer.

また、発熱体層3の材料としては、高融点金属の一種であるタングステンを採用しているが、発熱体層3の材料は、タングステンに限らず、融点が1000℃よりも比較的高い高融点の金属であればよく、例えば、タンタル、モリブデンなどの高融点金属や、イリジウムなどの貴金属を採用してもよい。   In addition, tungsten, which is a kind of high melting point metal, is used as the material of the heating element layer 3, but the material of the heating element layer 3 is not limited to tungsten, and the melting point is relatively higher than 1000 ° C. For example, a refractory metal such as tantalum or molybdenum or a noble metal such as iridium may be employed.

また、各パッド4,4は、発熱体層3の端部上と半導体基板1の上記一表面上とに跨るように形成されている。ここに、各パッド4の材料としては、Alを採用している。   Each pad 4, 4 is formed so as to straddle the end of the heating element layer 3 and the one surface of the semiconductor substrate 1. Here, Al is adopted as the material of each pad 4.

また、各放熱層5は、発熱体層3と各パッド4,4それぞれとが接した露出部分それぞれを覆う形で形成されている。言い換えれば、放熱層5は、パッド4の一表面(図1(b)における上面)の一部上と発熱体層3の表面の一部上とに跨る形で形成されている。ここに、各放熱層5の材料としては、SiOを採用している。ただし、放熱層5の材料は、SiOに限らず、発熱体層3およびパッド4それぞれの材料と反応しない材料であればよく、例えば、Si、TaN、HfN、TiN、BNなどの窒化物、TaC、HfC、NbC、ZrC、TiC、VC、WC、ThC、SiCなどの炭化物、AlなどのSiO以外の酸化物でもよい。 Each heat dissipation layer 5 is formed so as to cover each exposed portion where the heating element layer 3 and each of the pads 4 and 4 are in contact with each other. In other words, the heat dissipation layer 5 is formed so as to straddle a part of one surface (the upper surface in FIG. 1B) of the pad 4 and a part of the surface of the heating element layer 3. Here, as a material of each heat radiation layer 5, SiO 2 is adopted. However, the material of the heat dissipation layer 5 is not limited to SiO 2 , and may be any material that does not react with the materials of the heating element layer 3 and the pad 4. For example, Si 3 N 4 , TaN, HfN, TiN, BN, etc. Nitride, carbides such as TaC, HfC, NbC, ZrC, TiC, VC, WC, ThC, SiC, and oxides other than SiO 2 such as Al 2 O 3 may be used.

なお、本実施形態の圧力波発生素子では、熱絶縁層2の厚さを10μm、発熱体層3の厚さを50nm、パッド4の厚さを0.5μm、放熱層5の厚さを1.5μmとしてあるが、これらの厚さは一例であって特に限定するものではない。また、パッド4,4の並設方向における放熱層5の幅は0.5mmとしてあり、上記並設方向においてパッド4上に形成される部位の幅と発熱体層3上に形成される部位の幅とが略同じになるようにしてあるが、これらの幅も一例であって特に限定するものではない。   In the pressure wave generating element of this embodiment, the thickness of the thermal insulating layer 2 is 10 μm, the thickness of the heating element layer 3 is 50 nm, the thickness of the pad 4 is 0.5 μm, and the thickness of the heat dissipation layer 5 is 1. However, these thicknesses are only examples and are not particularly limited. In addition, the width of the heat dissipation layer 5 in the juxtaposed direction of the pads 4 and 4 is 0.5 mm, and the width of the part formed on the pad 4 and the part formed on the heating element layer 3 in the juxtaposed direction are as follows. The widths are substantially the same, but these widths are also examples and are not particularly limited.

以下、本実施形態の圧力波発生素子の製造方法について簡単に説明する。   Hereinafter, the manufacturing method of the pressure wave generating element of this embodiment will be briefly described.

まず、単結晶のp形シリコン基板からなる半導体基板1の他表面(図1(b)における下面)側に陽極酸化処理時に用いる通電用電極(図示せず)を形成した後、図2に示すような陽極酸化処理装置にて陽極酸化処理を行うことで多孔質シリコン層からなる熱絶縁層2を形成する。ここにおいて、陽極酸化処理の工程が熱絶縁層形成工程となっており、陽極酸化処理にあたっては、図2に示すように、半導体基板1を主構成とする被処理物Cを処理槽Aに入れられた電解液(例えば、55wt%のフッ化水素水溶液とエタノールとを1:1で混合した混合液)Bに浸漬し、その後、電流源20のマイナス側に配線を介して接続された白金電極21を電解液B中において半導体基板1の上記一表面側に対向するように配置する。続いて、通電用電極を陽極、白金電極21を陰極として、電流源20から陽極と陰極21との間に所定の電流密度(ここでは、20mA/cm)の電流を所定時間(ここでは、8分)だけ流す陽極酸化処理を行うことにより半導体基板1の上記一表面側に周部以外の部位の厚さが一定の所定厚さ(ここでは、10μm)となる熱絶縁層2を形成する。なお、陽極酸化処理時の条件は特に限定するものではなく、電流密度は例えば1〜500mA/cm程度の範囲内で適宜設定すればよいし、上記所定時間も熱絶縁層2の上記所定厚さに応じて適宜設定すればよい。 First, a current-carrying electrode (not shown) used for anodizing is formed on the other surface (the lower surface in FIG. 1B) of the semiconductor substrate 1 made of a single crystal p-type silicon substrate, and then shown in FIG. The thermal insulation layer 2 made of a porous silicon layer is formed by anodizing with such an anodizing apparatus. Here, the anodizing process is a thermal insulating layer forming process, and in the anodizing process, as shown in FIG. A platinum electrode immersed in the resulting electrolyte (for example, a mixture of 55 wt% aqueous hydrogen fluoride and ethanol mixed 1: 1) B, and then connected to the negative side of the current source 20 via a wiring 21 is arranged in the electrolytic solution B so as to face the one surface side of the semiconductor substrate 1. Subsequently, using a current-carrying electrode as an anode and a platinum electrode 21 as a cathode, a current having a predetermined current density (in this case, 20 mA / cm 2 ) is supplied from the current source 20 to the anode and the cathode 21 for a predetermined time (here, The thermal insulating layer 2 is formed on the one surface side of the semiconductor substrate 1 so that the thickness of the portion other than the peripheral portion is a predetermined thickness (here, 10 μm). . The conditions during the anodic oxidation treatment are not particularly limited, and the current density may be appropriately set within a range of, for example, about 1 to 500 mA / cm 2 , and the predetermined thickness of the thermal insulating layer 2 may be set for the predetermined time. What is necessary is just to set suitably according to it.

上述の熱絶縁層形成工程の後、発熱体層3を形成する発熱体層形成工程、パッド4,4を形成するパッド形成工程、放熱層5を形成する放熱層形成工程を順次行うことによって、圧力波発生素子が完成する。なお、発熱体層形成工程およびパッド形成工程および放熱層形成工程では、例えば、各種のスパッタ法、各種の蒸着法、各種のCVD法などによって膜形成を行えばよい。   By sequentially performing the heating element layer forming process for forming the heating element layer 3, the pad forming process for forming the pads 4 and 4, and the heat dissipation layer forming process for forming the heat dissipation layer 5 after the above-described thermal insulation layer forming process, A pressure wave generating element is completed. In the heating element layer forming step, the pad forming step, and the heat dissipation layer forming step, for example, the film may be formed by various sputtering methods, various vapor deposition methods, various CVD methods, and the like.

以上説明した本実施形態の圧力波発生素子では、発熱体層3への通電時に発熱体層3と反応せず且つ各パッド4,4とは異なる材料からなりパッド4,4の熱を放熱させる放熱層5,5を備えているので、発熱体層3と各パッド4,4との境界(界面)付近の温度上昇を抑制することができ、発熱体層3への通電時に発熱体層3と各パッド4,4とが反応することなく各パッド4,4の熱を放熱層5,5を通して外部へ放熱させることができるから、発熱体層3の温度上昇に起因した発熱体層3の断線を防止でき長期間にわたって超音波域の圧力波を安定して発生可能となり、長寿命化を図ることができるとともに、通電時に発熱体層3へ与える電力を増加させることによる圧力波の振幅の増大を図れる。ここにおいて、本実施形態では、放熱層5,5を、発熱体層3と各パッド4,4それぞれとが接した露出部分それぞれを覆う形で形成してあるので、発熱体層3と各パッド4,4それぞれとの接触抵抗を増大させることなく、各パッド4,4の熱を外部へ放熱させることができるとともに放熱面積を比較的広くすることができる。また、放熱層5,5を設けたことによる発熱体層3の温度低下に伴う出力低下を抑制することが可能となる。   In the pressure wave generating element according to the present embodiment described above, the heating element layer 3 does not react with the heating element layer 3 and is made of a material different from that of the pads 4 and 4 to dissipate heat from the pads 4 and 4. Since the heat dissipating layers 5 and 5 are provided, a temperature rise in the vicinity of the boundary (interface) between the heat generating layer 3 and each of the pads 4 and 4 can be suppressed. Since the heat of each pad 4, 4 can be radiated to the outside through the heat radiation layers 5, 5 without reacting with each pad 4, 4, It is possible to prevent disconnection and to stably generate a pressure wave in the ultrasonic range over a long period of time, to extend the life, and to increase the power applied to the heating element layer 3 during energization, the amplitude of the pressure wave Increase. In this embodiment, since the heat radiation layers 5 and 5 are formed so as to cover the exposed portions where the heat generating layer 3 and the pads 4 and 4 are in contact with each other, the heat generating layer 3 and each pad are formed. The heat of each pad 4, 4 can be radiated to the outside without increasing the contact resistance with each of 4, 4, and the heat radiation area can be made relatively wide. Moreover, it becomes possible to suppress the output fall accompanying the temperature fall of the heat generating body layer 3 by having provided the thermal radiation layers 5 and 5. FIG.

また、各放熱層5の材料として上述のSiOなどの絶縁材料を採用することにより、発熱体層3への通電時に各放熱層5へ電流が流れないので、各パッド4の熱を効果的に放熱させることができるとともに、各放熱層5へ電流が流れることによる電力損失の発生を防止できる。 Further, by adopting an insulating material such as the above-described SiO 2 as the material of each heat dissipation layer 5, current does not flow to each heat dissipation layer 5 when the heating element layer 3 is energized. Heat dissipation, and it is possible to prevent the occurrence of power loss due to the current flowing to each heat dissipation layer 5.

ところで、本実施形態では、支持基板としての半導体基板1がシリコン基板により構成され、熱絶縁層2が多孔質シリコン層により構成されており、熱絶縁層2の熱伝導率と熱容量との積が支持基板の熱伝導率と熱容量との積に比べて十分に小さく(約1/400)且つ熱絶縁層2の耐熱性が高いので、発生させる圧力波の高出力化を図れるが、上述の放熱層5,5を設けていることで高出力の超音波を長期間にわたって安定して出力させることができる。   By the way, in this embodiment, the semiconductor substrate 1 as a support substrate is comprised by the silicon substrate, the heat insulation layer 2 is comprised by the porous silicon layer, and the product of the heat conductivity and heat capacity of the heat insulation layer 2 is obtained. Although it is sufficiently smaller than the product of the thermal conductivity and the heat capacity of the support substrate (about 1/400) and the heat insulation layer 2 has high heat resistance, it is possible to increase the output of the generated pressure wave. By providing the layers 5 and 5, high output ultrasonic waves can be output stably over a long period of time.

(実施形態2)
本実施形態の圧力波発生素子の基本構成は実施形態1と略同じであり、図3に示すように、各放熱層5,5の形成位置が異なる。すなわち、本実施形態における各放熱層5,5は、発熱体層3の各端部と各パッド4,4それぞれとの間に一部が介在し残りの部分の表面が露出する形で形成されている。言い換えれば、本実施形態では、放熱層5,5が発熱体層3上で発熱体層3の両端からやや離間した位置に形成され、各パッド4,4が各放熱層5,5の上記一部の上および発熱体層3の両端近傍部分の上および半導体基板1上に跨って形成されている。なお、実施形態1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
The basic configuration of the pressure wave generating element of the present embodiment is substantially the same as that of the first embodiment, and the formation positions of the heat radiation layers 5 and 5 are different as shown in FIG. That is, each of the heat dissipation layers 5 and 5 in the present embodiment is formed in such a manner that a part is interposed between each end of the heating element layer 3 and each pad 4 and 4 and the surface of the remaining part is exposed. ing. In other words, in the present embodiment, the heat radiation layers 5 and 5 are formed on the heat generating body layer 3 at positions slightly separated from both ends of the heat generating body layer 3, and the pads 4 and 4 are arranged on the heat radiation layers 5 and 5. And over the semiconductor substrate 1 and over the vicinity of both ends of the heating element layer 3. In addition, the same code | symbol is attached | subjected to the component similar to Embodiment 1, and description is abbreviate | omitted.

しかして、本実施形態の圧力波発生素子では、各放熱層5,5が発熱体層3と各パッド4,4それぞれとの間に一部が介在し残りの部分の表面が露出する形で形成されているので、発熱体層3と各パッド4,4それぞれとの界面付近の熱を放熱層5,5の露出した表面を通して外部へ放熱させることができるので、実施形態1に比べて発熱体層3と各パッド4,4それぞれとの反応がより発生しにくくなる。また、実施形態1に比べて、発熱体層3と各パッド4,4それぞれとの接触面積を小さくすることができ、無効電力の低減を図れる。   Thus, in the pressure wave generating element of the present embodiment, each of the heat dissipation layers 5 and 5 is partially interposed between the heating element layer 3 and each of the pads 4 and 4 and the surface of the remaining portion is exposed. Since it is formed, heat in the vicinity of the interface between the heating element layer 3 and each of the pads 4 and 4 can be radiated to the outside through the exposed surfaces of the heat dissipation layers 5 and 5. The reaction between the body layer 3 and each of the pads 4 and 4 is less likely to occur. Compared with the first embodiment, the contact area between the heating element layer 3 and each of the pads 4 and 4 can be reduced, and the reactive power can be reduced.

実施形態1を示し、(a)は概略平面図、(b)は(a)のD−D’断面図である。Embodiment 1 is shown, (a) is a schematic plan view, and (b) is a sectional view taken along the line D-D ′ of (a). 同上の製造方法の説明図である。It is explanatory drawing of a manufacturing method same as the above. 実施形態2を示し、(a)は概略平面図、(b)は(a)のD−D’断面図である。Embodiment 2 is shown, (a) is a schematic plan view, (b) is a D-D 'cross-sectional view of (a). 従来例を示し、(a)は概略平面図、(b)は(a)のD−D’断面図である。A prior art example is shown, (a) is a schematic plan view, and (b) is a sectional view taken along the line D-D 'of (a). 他の従来例を示し、(a)は概略平面図、(b)は(a)のD−D’断面図である。Another example is shown, (a) is a schematic plan view, (b) is a D-D 'cross-sectional view of (a). 同上の特性説明図である。It is characteristic explanatory drawing same as the above.

符号の説明Explanation of symbols

1 半導体基板
2 熱絶縁層
3 発熱体層
4 パッド
5 放熱層
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Thermal insulation layer 3 Heat generating body layer 4 Pad 5 Heat radiation layer

Claims (4)

支持基板と、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する熱絶縁層と、支持基板の前記一表面側で発熱体層に接する形で形成された一対のパッドとを備え、一対のパッドを介した発熱体層への通電に伴う発熱体層と媒体との熱交換により圧力波を発生する圧力波発生素子であって、発熱体層への通電時に高融点金属からなる発熱体層と反応せず且つ各パッドとは異なる材料からなりパッドの熱を放熱させる放熱層を発熱体層と各パッドそれぞれとが接した露出部分それぞれを覆う形で形成させてなることを特徴とする圧力波発生素子。 A support substrate, a heating element layer formed on one surface side of the support substrate, a heat insulating layer interposed between the support substrate and the heating element layer on the one surface side of the support substrate, and the one surface of the support substrate Pressure waves that generate a pressure wave by heat exchange between the heating element layer and the medium when the heating element layer is energized through the pair of pads. a generating element, a heat radiation layer dissipating the heat of the pad consists of a different material than the and the pad does not react with fever body layer made of a refractory metal upon energization of the heat generating layer and the heat generating layer each A pressure wave generating element characterized by being formed so as to cover each exposed portion in contact with each pad . 支持基板と、支持基板の一表面側に形成された発熱体層と、支持基板の前記一表面側で支持基板と発熱体層との間に介在する熱絶縁層と、支持基板の前記一表面側で発熱体層に接する形で形成された一対のパッドとを備え、一対のパッドを介した発熱体層への通電に伴う発熱体層と媒体との熱交換により圧力波を発生する圧力波発生素子であって、発熱体層への通電時に高融点金属からなる発熱体層と反応せず且つ各パッドとは異なる材料からなりパッドの熱を放熱させる放熱層を発熱体層と各パッドそれぞれとの間に一部が介在し残りの部分の表面が露出する形で形成されてなることを特徴とする圧力波発生素子。 A support substrate, a heating element layer formed on one surface side of the support substrate, a heat insulating layer interposed between the support substrate and the heating element layer on the one surface side of the support substrate, and the one surface of the support substrate Pressure waves that generate a pressure wave by heat exchange between the heating element layer and the medium when the heating element layer is energized through the pair of pads. A heat generating layer that is a generating element and does not react with a heating element layer made of a refractory metal when energized to the heating element layer and is made of a material different from each pad, and dissipates the heat of the pad. pressure wave generating element, wherein a portion is formed in a manner to expose the surface of the remaining portion interposed between. 前記放熱層の材料は、絶縁材料であることを特徴とする請求項1または請求項2に記載の圧力波発生素子。 The material of the heat dissipation layer, the pressure wave generator of the mounting serial to claim 1 or claim 2, characterized in that an insulating material. 前記支持基板がシリコン基板からなり、前記熱絶縁層が多孔質シリコン層からなることを特徴とする請求項1ないし請求項3のいずれかに記載の圧力波発生素子 4. The pressure wave generating element according to claim 1, wherein the support substrate is made of a silicon substrate, and the thermal insulation layer is made of a porous silicon layer .
JP2004280393A 2004-09-27 2004-09-27 Pressure wave generator Expired - Fee Related JP4617803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004280393A JP4617803B2 (en) 2004-09-27 2004-09-27 Pressure wave generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004280393A JP4617803B2 (en) 2004-09-27 2004-09-27 Pressure wave generator

Publications (2)

Publication Number Publication Date
JP2006088124A JP2006088124A (en) 2006-04-06
JP4617803B2 true JP4617803B2 (en) 2011-01-26

Family

ID=36229599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004280393A Expired - Fee Related JP4617803B2 (en) 2004-09-27 2004-09-27 Pressure wave generator

Country Status (1)

Country Link
JP (1) JP4617803B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649929B2 (en) * 2004-09-27 2011-03-16 パナソニック電工株式会社 Pressure wave generator
JP2010045430A (en) * 2008-08-08 2010-02-25 Panasonic Electric Works Co Ltd Electrostatic transducer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300274A (en) * 1998-04-23 1999-11-02 Japan Science & Technology Corp Pressure wave generation device
JP2002172781A (en) * 2000-12-08 2002-06-18 Casio Comput Co Ltd Ink jet head
JP2002186097A (en) * 2000-12-15 2002-06-28 Pioneer Electronic Corp Speaker
JP2002331665A (en) * 2001-05-08 2002-11-19 Casio Comput Co Ltd Thermal ink jet head
JP2004216360A (en) * 2002-11-20 2004-08-05 Yamatake Corp Pressure wave producing device and method of producing the same
JP2004259777A (en) * 2003-02-24 2004-09-16 Tokyo Electron Ltd Method for manufacturing semiconductor device, film forming apparatus and vacuum treatment system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11300274A (en) * 1998-04-23 1999-11-02 Japan Science & Technology Corp Pressure wave generation device
JP2002172781A (en) * 2000-12-08 2002-06-18 Casio Comput Co Ltd Ink jet head
JP2002186097A (en) * 2000-12-15 2002-06-28 Pioneer Electronic Corp Speaker
JP2002331665A (en) * 2001-05-08 2002-11-19 Casio Comput Co Ltd Thermal ink jet head
JP2004216360A (en) * 2002-11-20 2004-08-05 Yamatake Corp Pressure wave producing device and method of producing the same
JP2004259777A (en) * 2003-02-24 2004-09-16 Tokyo Electron Ltd Method for manufacturing semiconductor device, film forming apparatus and vacuum treatment system

Also Published As

Publication number Publication date
JP2006088124A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4505672B2 (en) Pressure wave generator and manufacturing method thereof
KR100855788B1 (en) Pressure wave generator and method for fabricating the same
JP3808493B2 (en) Thermally excited sound wave generator
JP4672597B2 (en) Substrate processing equipment
JP2006217059A (en) Pressure wave generator
JP4513546B2 (en) Pressure wave generating element and manufacturing method thereof
JP2007054831A (en) Ultrasonic sound source and ultrasonic sensor
JP6580244B2 (en) Semiconductor laser light source device
JP3865736B2 (en) Ultrasonic sound source and ultrasonic sensor
JP4617803B2 (en) Pressure wave generator
JP4974672B2 (en) Pressure wave generator
JP4466231B2 (en) Pressure wave generating element and manufacturing method thereof
JP4525273B2 (en) Pressure wave generator
JP4682573B2 (en) Pressure wave generator
JP2008161820A (en) Pressure wave producing apparatus
JP4617710B2 (en) Pressure wave generator
JP4649889B2 (en) Pressure wave generator
JP4396513B2 (en) Pressure wave generator
JP4534625B2 (en) Pressure wave generator
JP4649929B2 (en) Pressure wave generator
JP4534620B2 (en) Infrared radiation element
JP4385990B2 (en) Pressure wave generator and manufacturing method thereof
JP2005119094A (en) Thermal head
JP2024013984A (en) electroacoustic transducer
JP2006180083A (en) Pressure wave generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees