JP4505672B2 - Pressure wave generator and manufacturing method thereof - Google Patents

Pressure wave generator and manufacturing method thereof Download PDF

Info

Publication number
JP4505672B2
JP4505672B2 JP2005132120A JP2005132120A JP4505672B2 JP 4505672 B2 JP4505672 B2 JP 4505672B2 JP 2005132120 A JP2005132120 A JP 2005132120A JP 2005132120 A JP2005132120 A JP 2005132120A JP 4505672 B2 JP4505672 B2 JP 4505672B2
Authority
JP
Japan
Prior art keywords
heating element
pressure wave
insulating layer
thermal
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005132120A
Other languages
Japanese (ja)
Other versions
JP2005341554A (en
Inventor
祥文 渡部
由明 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005132120A priority Critical patent/JP4505672B2/en
Publication of JP2005341554A publication Critical patent/JP2005341554A/en
Application granted granted Critical
Publication of JP4505672B2 publication Critical patent/JP4505672B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Description

本発明は、例えば、スピーカを対象とした音波や超音波や単パルス的な粗密波などの圧力波を発生する圧力波発生装置及びその製造方法に関するものである。   The present invention relates to a pressure wave generating apparatus that generates pressure waves such as sound waves, ultrasonic waves, and monopulse dense waves targeted at a speaker, and a method for manufacturing the same.

従来から、圧電効果による機械的振動を利用した超音波発生装置が広く知られている。機械的振動を利用した超音波発生装置では、例えば、チタン酸バリウムのような圧電材料の結晶の両面に電極が設けられており、両電極間に電気エネルギを与えて機械的振動を発生させ、空気などの媒体を振動させて超音波を発生させている。しかしながら、機械的振動を利用した超音波発生装置は、固有の共振周波数を有するため周波数帯域が狭く、かつ、外部の振動や外気圧の変動の影響を受けやすい。   2. Description of the Related Art Conventionally, an ultrasonic generator using mechanical vibration due to a piezoelectric effect is widely known. In an ultrasonic generator using mechanical vibration, for example, electrodes are provided on both sides of a crystal of a piezoelectric material such as barium titanate, and electrical vibration is applied between both electrodes to generate mechanical vibration. An ultrasonic wave is generated by vibrating a medium such as air. However, an ultrasonic generator using mechanical vibration has a unique resonance frequency, so that the frequency band is narrow, and it is easily affected by external vibration and fluctuations in external pressure.

一方、例えば、特許文献1又は特許文献2に記載されているように、機械的振動を伴わずに超音波を発生させることが可能な装置として、媒体に熱を与え、熱誘起により空気の粗密を形成する方法を利用した圧力波発生装置が提案されている。   On the other hand, for example, as described in Patent Document 1 or Patent Document 2, as a device capable of generating ultrasonic waves without mechanical vibration, heat is applied to a medium, and air density is increased by heat induction. There has been proposed a pressure wave generator using a method of forming the.

熱誘起を利用した圧力波発生装置は、図14及び図15に示すように、単結晶のシリコン基板の半導体基板1と、半導体基板1の厚さ方向の一表面から半導体基板1の内側に向けて所定深さに形成された熱絶縁層2と、熱絶縁層2上に形成された金属薄膜(例えば、Al薄膜など)の発熱体3とを備えている。熱絶縁層2は、多孔質シリコン層で形成され、半導体基板1に比べて十分に小さい熱伝導率及び体積熱容量を有している。   As shown in FIG. 14 and FIG. 15, the pressure wave generator using thermal induction is directed to the inside of the semiconductor substrate 1 from the semiconductor substrate 1 of a single crystal silicon substrate and one surface in the thickness direction of the semiconductor substrate 1. And a heat insulating layer 2 formed at a predetermined depth and a heating element 3 of a metal thin film (for example, an Al thin film) formed on the heat insulating layer 2. The thermal insulating layer 2 is formed of a porous silicon layer and has a sufficiently low thermal conductivity and volumetric heat capacity as compared with the semiconductor substrate 1.

交流電源Vsから発熱体3に交流電流を通電すると、発熱体3が発熱すると共に、発熱体3の温度(又は発熱量)が通電される交流電流の周波数に応じて変化する。一方、発熱体3の直下には熱絶縁層2が形成され、発熱体3が半導体基板1から熱的に絶縁されているので、発熱体3とその近傍の空気との間で効率的な熱交換が起こる。そして、発熱体3の温度変化(又は発熱量の変化)に応じて、空気が膨張と収縮を繰り返し、その結果として、超音波などの圧力波が発生する(図14中の上向きの矢印は圧力波の進行方向を示している)。   When an alternating current is applied to the heating element 3 from the AC power source Vs, the heating element 3 generates heat, and the temperature (or the amount of generated heat) of the heating element 3 changes according to the frequency of the alternating current to be supplied. On the other hand, since the heat insulating layer 2 is formed immediately below the heat generating element 3 and the heat generating element 3 is thermally insulated from the semiconductor substrate 1, efficient heat is generated between the heat generating element 3 and the air in the vicinity thereof. An exchange occurs. Then, the air repeatedly expands and contracts in accordance with the temperature change of the heating element 3 (or the change in the heat generation amount), and as a result, a pressure wave such as an ultrasonic wave is generated (the upward arrow in FIG. 14 indicates the pressure). Shows the direction of wave travel).

このような熱誘起を利用した圧力波発生装置は、発熱体3に印加する交流電圧(駆動電圧)の周波数を変化させることにより、発生される超音波の周波数を広範囲にわたって変化させることができる。そのため、例えば、超音波音源やスピーカの音源として用いることができる。   The pressure wave generator using such heat induction can change the frequency of the generated ultrasonic wave over a wide range by changing the frequency of the AC voltage (drive voltage) applied to the heating element 3. Therefore, for example, it can be used as an ultrasonic sound source or a sound source of a speaker.

上記特許文献1によれば、熱絶縁層2の熱伝導度及び体積熱容量を半導体基板1の熱伝導度及び体積熱容量に比べて小さくすることが望ましく、また、熱絶縁層2の熱伝導度と体積熱容量との積を半導体基板1の熱伝導度と体積熱容量との積に比べて十分に小さくすることが好ましい。例えば、半導体基板1が単結晶のシリコン基板により形成され、熱絶縁層2が多孔質シリコン層により形成されている場合、熱絶縁層2の熱伝導度と体積熱容量との積が、半導体基板1の熱伝導度と体積熱容量との積の約1/400の値となる。   According to Patent Document 1, it is desirable to make the thermal conductivity and volumetric heat capacity of the thermal insulating layer 2 smaller than the thermal conductivity and volumetric heat capacity of the semiconductor substrate 1, and the thermal conductivity of the thermal insulating layer 2 and It is preferable to make the product of the volume heat capacity sufficiently smaller than the product of the thermal conductivity of the semiconductor substrate 1 and the volume heat capacity. For example, when the semiconductor substrate 1 is formed of a single crystal silicon substrate and the thermal insulating layer 2 is formed of a porous silicon layer, the product of the thermal conductivity and the volumetric heat capacity of the thermal insulating layer 2 is the semiconductor substrate 1. This value is about 1/400 of the product of the thermal conductivity and the volumetric heat capacity.

単結晶のシリコン基板の半導体基板1の一表面側に、多孔質シリコン層の熱絶縁層2を形成するには、例えば図16に示すように、半導体基板1の一表面上に、熱絶縁層2が形成される予定の領域に対応する部位が開孔されたマスク層を形成する。そして、半導体基板1の他の表面の全面に形成した通電用電極4を陽極として用い、電解液中で、半導体基板1の一表面に対向するように配置された陰極との間に通電し、陽極酸化処理を行う。
特開平11−300274号公報 特開2002−186097号公報
In order to form the thermal insulating layer 2 of the porous silicon layer on the one surface side of the semiconductor substrate 1 of the single crystal silicon substrate, for example, as shown in FIG. A mask layer in which a portion corresponding to a region where 2 is to be formed is opened is formed. Then, the current-carrying electrode 4 formed on the entire other surface of the semiconductor substrate 1 is used as an anode, and an electric current is passed between the cathode disposed so as to face one surface of the semiconductor substrate 1 in the electrolytic solution, Anodizing is performed.
Japanese Patent Laid-Open No. 11-3000274 JP 2002-186097 A

ところで、上記従来の熱誘起を利用した圧力波発生装置では、図15(a)に示すように、発熱体3の長手方向の両端部間に交流電流が印加されるが、印加される電圧のオン/オフに伴って発熱体3が膨張収縮を繰り返す。発熱体3が半導体基板1から熱的に絶縁されているので、発熱体3の急激な温度変化により発熱体3に生じる熱応力に起因して発熱体3が破損してしまう可能性がある。   By the way, in the pressure wave generator using the conventional thermal induction, an alternating current is applied between both longitudinal ends of the heating element 3 as shown in FIG. The heating element 3 repeats expansion and contraction as it is turned on / off. Since the heating element 3 is thermally insulated from the semiconductor substrate 1, there is a possibility that the heating element 3 is damaged due to a thermal stress generated in the heating element 3 due to a rapid temperature change of the heating element 3.

熱誘起を利用した圧力波発生装置を設計するに当たり、圧力波発生装置のサイズを、従来から広く使用されている機械的振動を利用した超音波発生装置の一般的なサイズである15mm×15mm程度とし、機械的振動を利用した超音波発生装置と同等の音圧(例えば、周波数が40kHzで30cm離れた位置において20Pa程度)を発生させるようにして、発熱体3の温度について検討した。その結果、発熱体3の温度が瞬間的に1000度を超える非常に高い温度となることがわかった。   In designing a pressure wave generator using thermal induction, the size of the pressure wave generator is about 15 mm × 15 mm, which is a general size of an ultrasonic generator using mechanical vibration that has been widely used conventionally. The temperature of the heating element 3 was examined by generating a sound pressure equivalent to that of an ultrasonic generator using mechanical vibration (for example, about 20 Pa at a frequency of 40 kHz and 30 cm away). As a result, it was found that the temperature of the heating element 3 instantaneously became a very high temperature exceeding 1000 degrees.

本発明の目的は、熱応力に起因する発熱体の破損が生じにくい熱誘起を利用した圧力波発生装置及びその製造方法を提供することにある。   An object of the present invention is to provide a pressure wave generator utilizing thermal induction that hardly causes damage to a heating element due to thermal stress, and a method for manufacturing the same.

請求項1の発明は、基板と、基板の厚さ方向の一表面に形成された多孔体の熱絶縁層と、熱絶縁層上に形成された薄膜の発熱体とを備え、発熱体への電気入力の波形に応じて発熱体の温度が変化し、発熱体と媒体との間の熱交換により圧力波を発生させる圧力波発生装置であって、基板の厚さ方向の一表面から基板の内側に向けて熱絶縁層の幅方向の中央部の基準厚さで規定した幅方向の範囲内において、発熱体の外周よりも内側部分の厚さ方向の平均熱伝導率をαin、平均体積熱容量をCinとし、発熱体の外周よりも外側部分の厚さ方向の平均熱伝導率をαout、平均体積熱容量をCoutとして、αin×Cin<αout×Coutの条件を満足し、かつ、前記内側部分と前記外側部分との境界付近ではαin×Cinの値が外側ほど大きくなっていることを特徴とする   The invention of claim 1 includes a substrate, a porous thermal insulation layer formed on one surface in the thickness direction of the substrate, and a thin film heating element formed on the thermal insulation layer. A pressure wave generator that generates a pressure wave by heat exchange between a heating element and a medium, in which the temperature of the heating element changes according to a waveform of an electric input, Within the range in the width direction defined by the reference thickness of the center portion in the width direction of the heat insulating layer toward the inside, the average thermal conductivity in the thickness direction of the inner portion from the outer periphery of the heating element is αin, the average volumetric heat capacity And Cin, the average thermal conductivity in the thickness direction of the outer part of the outer periphery of the heating element is αout, the average volumetric heat capacity is Cout, and the condition of αin × Cin <αout × Cout is satisfied, In the vicinity of the boundary with the outer portion, the value of αin × Cin increases toward the outer side.

請求項2の発明は、請求項1の圧力波発生装置において、αin×Cinの値が変化する領域の境界を、発熱体の外周と略一致させ、又は発熱体の外周よりも内側に位置させていることを特徴とする。   According to a second aspect of the present invention, in the pressure wave generating device of the first aspect, the boundary of the region where the value of αin × Cin changes is substantially coincided with the outer periphery of the heating element, or is located inside the outer periphery of the heating element. It is characterized by.

請求項3の発明は、請求項1又は2の圧力波発生装置において、αin×Cinの値が変化する領域において、熱絶縁層を形成する材料自体の熱伝導率と熱容量との少なくとも一方を外側に向かって大きくなるように連続的に変化させたことを特徴とする。   According to a third aspect of the present invention, in the pressure wave generating device according to the first or second aspect, in the region where the value of αin × Cin changes, at least one of the thermal conductivity and the heat capacity of the material forming the thermal insulating layer itself is outside. It is characterized by being continuously changed so as to increase toward.

請求項4の発明は、請求項3の圧力波発生装置において、αin×Cin=αout×Coutとなる熱絶縁層と基板の境界において、材料組成がほぼ一致することを特徴とする。   According to a fourth aspect of the present invention, in the pressure wave generating device according to the third aspect, the material composition substantially coincides at the boundary between the thermal insulating layer and the substrate where αin × Cin = αout × Cout.

本発明は、下記の関係式から、熱絶縁層の熱伝導率と体積熱容量との積を大きくすることにより、単位時間当たりの放熱量を大きくすることができるという観点に基づき、発熱体の周部の温度上昇を抑制するように放熱量を増大させることで、発熱体の外周部の温度勾配を緩和するという技術思想に基づく。   The present invention is based on the following relational expression, based on the viewpoint that the heat radiation amount per unit time can be increased by increasing the product of the thermal conductivity and the volumetric heat capacity of the thermal insulation layer. This is based on the technical idea of relaxing the temperature gradient of the outer peripheral portion of the heating element by increasing the heat radiation amount so as to suppress the temperature rise of the portion.

Figure 0004505672
Figure 0004505672

なお、上記式において、αは熱絶縁層の熱伝導率、Cは熱絶縁層の体積熱容量、ωは発熱体の両端間に入力される交流電圧の角周波数、q(ω)は発熱体へ入力される電気エネルギ、T(ω)は発熱体の温度である。   In the above equation, α is the thermal conductivity of the thermal insulation layer, C is the volumetric heat capacity of the thermal insulation layer, ω is the angular frequency of the AC voltage input across the heating element, and q (ω) is the heating element. The input electric energy, T (ω), is the temperature of the heating element.

請求項1の発明によれば、発熱体の外周よりも内側部分の厚さ方向の平均熱伝導率をαin、平均体積熱容量をCinとし、発熱体の外周よりも外側部分の厚さ方向の平均熱伝導率をαout、平均体積熱容量をCoutとして、αin×Cin<αout×Coutの条件を満足し、かつ、前記内側部分と前記外側部分との境界付近ではαin×Cinの値が外側ほど大きくなっているので、発熱体の外周部では、基板の厚さ方向に沿って放熱される熱量が発熱体の中央部で放熱される熱量に比べて大きくなるので、従来の圧力波発生装置に比べて、発熱体にかかる熱応力を低減することができる。そのため、従来の圧力波発生装置に比べて、熱応力に起因した発熱体の破損が起こりにくくなり、圧力波発生装置の長寿命化を図ることができる。すなわち、圧力波発生装置を駆動する際、発熱体の温度上昇及び温度降下に伴う発熱体の膨張及び収縮により熱応力が発生しても、発熱体はほとんど破損することがなく、長期間にわたって、安定して超音波を発生させることができる。   According to the invention of claim 1, the average thermal conductivity in the thickness direction of the inner part from the outer periphery of the heating element is αin, the average volumetric heat capacity is Cin, and the average of the outer part in the thickness direction from the outer periphery of the heating element. Assuming that the thermal conductivity is αout and the average volumetric heat capacity is Cout, the condition of αin × Cin <αout × Cout is satisfied, and the value of αin × Cin increases near the boundary between the inner part and the outer part. Therefore, in the outer periphery of the heating element, the amount of heat radiated along the thickness direction of the substrate is larger than the amount of heat radiated in the central part of the heating element, so that compared to the conventional pressure wave generator The thermal stress applied to the heating element can be reduced. Therefore, compared with the conventional pressure wave generator, the heating element is less likely to be damaged due to thermal stress, and the life of the pressure wave generator can be extended. That is, when driving the pressure wave generator, even if thermal stress occurs due to expansion and contraction of the heating element accompanying the temperature rise and temperature drop of the heating element, the heating element is hardly damaged, and over a long period of time, Ultrasound can be generated stably.

請求項2の発明によれば、請求項1の圧力波発生装置において、αin×Cinの値が変化する領域の境界を、発熱体の外周と略一致させることにより、発熱体の外主部から基板へ放熱される熱量の増大による圧力波の振幅の低下を抑制することができる。また、発熱体の外周よりも内側に位置させることにより、発熱体の外周部における温度勾配をより緩やかにすることができ、従来の圧力波発生装置に比べて発熱体にかかる熱応力をより低減することができる。   According to the invention of claim 2, in the pressure wave generator of claim 1, the boundary of the region where the value of αin × Cin changes substantially coincides with the outer periphery of the heating element, so that the outer main portion of the heating element A decrease in the amplitude of the pressure wave due to an increase in the amount of heat radiated to the substrate can be suppressed. In addition, the temperature gradient at the outer periphery of the heating element can be made gentler by positioning it inside the outer periphery of the heating element, and the thermal stress applied to the heating element is further reduced compared to the conventional pressure wave generator. can do.

請求項3の発明によれば、請求項1又は2の圧力波発生装置において、αin×Cinの値が変化する領域において、熱絶縁層を形成する材料自体の熱伝導率と熱容量との少なくとも一方を外側に向かって大きくなるように変化させているので、熱膨張係数及び体積熱容量のいずれか一方を連続的に変化させることによって、材料組成又は厚さの不連続点をなくすことができ、機械的強度の不連続点をなくして、経時変化による破損を防止することができる。   According to the invention of claim 3, in the pressure wave generator of claim 1 or 2, in the region where the value of αin × Cin changes, at least one of the thermal conductivity and the heat capacity of the material itself forming the thermal insulation layer Therefore, the discontinuity of the material composition or thickness can be eliminated by continuously changing either the thermal expansion coefficient or the volumetric heat capacity. It is possible to prevent discontinuities due to changes with time by eliminating discontinuous points in the mechanical strength.

請求項4の発明によれば、請求項3の圧力波発生装置において、αin×Cin=αout×Coutとなる熱絶縁層と基板の境界において、材料組成をほぼ一致させているので、αin×Cin=αout×Coutとなる部分での熱膨張係数の不連続箇所がなくなる。発熱体の温度上昇に伴い、熱絶縁層にも幾分かの熱の伝導による温度上昇が生じる。そのため、αin×Cin=αout×Coutとなる熱絶縁層と基板に温度差が生じ、熱絶縁層と基板の熱膨張係数の差によっては、境界における熱応力が大きくなることもあり得る。しかしながら、このように熱膨張係数の不連続箇所をなくすことにより、熱膨張係数差に起因した熱絶縁層と基板の境界での破損を防止することができる。   According to the invention of claim 4, in the pressure wave generator of claim 3, the material composition is made to substantially coincide at the boundary between the thermal insulating layer and the substrate where αin × Cin = αout × Cout, so αin × Cin There is no discontinuous portion of the thermal expansion coefficient in the portion where = αout × Cout. As the temperature of the heating element rises, the temperature of the heat insulation layer also rises due to some heat conduction. Therefore, a temperature difference occurs between the thermal insulating layer and the substrate where αin × Cin = αout × Cout, and the thermal stress at the boundary may increase depending on the difference in thermal expansion coefficient between the thermal insulating layer and the substrate. However, by eliminating the discontinuous portion of the thermal expansion coefficient in this way, it is possible to prevent damage at the boundary between the thermal insulating layer and the substrate due to the difference in thermal expansion coefficient.

(第1実施形態)
本発明の第1実施形態について説明する。図1(a)は第1実施形態に係る圧力波発生装置の平面図であり、(b)は図1(a)におけるA−A断面図である。
(First embodiment)
A first embodiment of the present invention will be described. Fig.1 (a) is a top view of the pressure wave generator concerning 1st Embodiment, (b) is AA sectional drawing in Fig.1 (a).

図1(b)に示すように、第1実施形態の圧力波発生装置は、単結晶のp形シリコン基板の半導体基板(基板)1と、半導体基板1の厚さ方向の一表面(第1面)1aから半導体基板1の内側に向けて形成された多孔質シリコン層(多孔体)の熱絶縁層2と、熱絶縁層2上に形成された薄膜(例えば、アルミニウム薄膜のような金属薄膜など)の発熱体3とを備えている。図1(a)に示すように、半導体基板1の平面形状は矩形状(例えば、長方形状)であり、熱絶縁層2及び発熱体3の平面形状も矩形状(例えば、長方形状)に形成されている。一例として、発熱体3は、長辺の長さ12mm、短辺の長さ10mmに設定されている。また、半導体基板1の厚さは525μm、熱絶縁層2の厚さは10μm、発熱体3の厚さは50nmに設定されている。なお、これらの寸法は特に限定されるものではない。   As shown in FIG. 1B, the pressure wave generator of the first embodiment includes a semiconductor substrate (substrate) 1 of a single crystal p-type silicon substrate, and one surface (first surface) of the semiconductor substrate 1 in the thickness direction. Surface) 1a, a heat insulating layer 2 of a porous silicon layer (porous body) formed toward the inside of the semiconductor substrate 1, and a thin film (for example, a metal thin film such as an aluminum thin film) formed on the heat insulating layer 2 And the like. As shown in FIG. 1A, the planar shape of the semiconductor substrate 1 is rectangular (for example, rectangular), and the planar shapes of the heat insulating layer 2 and the heating element 3 are also rectangular (for example, rectangular). Has been. As an example, the heating element 3 has a long side length of 12 mm and a short side length of 10 mm. Further, the thickness of the semiconductor substrate 1 is set to 525 μm, the thickness of the thermal insulating layer 2 is set to 10 μm, and the thickness of the heating element 3 is set to 50 nm. These dimensions are not particularly limited.

なお、図1(b)に示すように、熱絶縁層2は、半導体基板1の厚さ方向に直交する幅方向(上記長方形の長辺方向及び短辺方向の両方を含む)において、発熱体3の外周部に対向する部分を除いて、所定深さに達するようにほぼ均一な厚さに形成されている。また、発熱体3の外周部に対向する部分では、熱絶縁層2の厚さが外側ほど徐々に小さくなるように傾斜部2aが形成されている。   As shown in FIG. 1B, the heat insulating layer 2 has a heating element in the width direction (including both the long side direction and the short side direction of the rectangle) perpendicular to the thickness direction of the semiconductor substrate 1. 3 is formed to have a substantially uniform thickness so as to reach a predetermined depth except for a portion facing the outer peripheral portion. In addition, in the portion facing the outer peripheral portion of the heating element 3, the inclined portion 2 a is formed so that the thickness of the heat insulating layer 2 gradually decreases toward the outside.

圧力波発生装置では、発熱体3に対して電圧及び/又は電流が時間的に変化する電気入力(例えば、交流電流)を通電(電気エネルギの供給)することにより発熱体3を発熱させると共に、発熱体3の温度(又は発熱量)を時間的に変化させる。そして、発熱体3と媒体(例えば、空気)との熱交換により圧力波(例えば、超音波など)を発生させる。交流電源(図14のVs参照)から発熱体3の長手方向の両端部間に、例えば図3(a)に示すような正弦波状の交流電圧を印加した場合には、発熱体3の温度がジュール熱の発生によって図3(b)に示すように変化する。また、発熱体3の温度変化に伴って図3(c)に示すような波形の圧力波(音波)が発生される。   In the pressure wave generator, the heating element 3 is caused to generate heat by energizing (supplying electrical energy) an electrical input (for example, alternating current) whose voltage and / or current changes with time. The temperature (or heat generation amount) of the heating element 3 is changed with time. And a pressure wave (for example, an ultrasonic wave etc.) is generated by heat exchange with exothermic body 3 and a medium (for example, air). When, for example, a sinusoidal AC voltage as shown in FIG. 3A is applied between the AC power source (see Vs in FIG. 14) and the longitudinal ends of the heating element 3, the temperature of the heating element 3 is increased. It changes as shown in FIG. 3B by the generation of Joule heat. Further, a pressure wave (sound wave) having a waveform as shown in FIG.

熱絶縁層2を構成する多孔質シリコン層は、後述の製造方法において説明するように、半導体基板1としてのp形シリコン基板の一部を電解液中で陽極酸化処理することにより形成される。また、陽極酸化処理の条件を適宜変化させることにより、熱絶縁層2の多孔度を変化させることができる。多孔質シリコン層は、多孔度が高くなるにつれて熱伝導率及び熱容量が小さくなる。従って、多孔度を適宜設定することにより、多孔質シリコン層の熱伝導率を単結晶シリコンに比べて十分に小さくすることができる。   The porous silicon layer constituting the heat insulating layer 2 is formed by anodizing a part of a p-type silicon substrate as the semiconductor substrate 1 in an electrolytic solution, as will be described later in the manufacturing method. Moreover, the porosity of the heat insulating layer 2 can be changed by appropriately changing the conditions of the anodizing treatment. The porous silicon layer has a lower thermal conductivity and heat capacity as the porosity increases. Therefore, by setting the porosity appropriately, the thermal conductivity of the porous silicon layer can be made sufficiently smaller than that of single crystal silicon.

発熱体3の直下の熱絶縁層2の熱伝導率をα、体積熱容量をC、発熱体3へ印加する正弦波状の交流電圧の角周波数をω、発熱体3の温度をT(ω)(温度Tをωの関数とする)として、半導体基板1の厚さ方向における熱絶縁層2の表面からの距離(深さ)に関して、熱絶縁層2の表面の温度の1/e倍(eは自然対数の底)になる距離を熱拡散長Lと定義すると、

Figure 0004505672

となる。熱絶縁層2の厚さは、熱拡散長Lの0.5〜3倍程度の厚さであることが望ましい。 The thermal conductivity of the thermal insulating layer 2 immediately below the heating element 3 is α, the volumetric heat capacity is C, the angular frequency of the sinusoidal AC voltage applied to the heating element 3 is ω, and the temperature of the heating element 3 is T (ω) ( The temperature T is a function of ω, and the distance (depth) from the surface of the thermal insulation layer 2 in the thickness direction of the semiconductor substrate 1 is 1 / e times the temperature of the surface of the thermal insulation layer 2 (e is If the distance that becomes the base of the natural logarithm is defined as the thermal diffusion length L,
Figure 0004505672

It becomes. The thickness of the thermal insulating layer 2 is desirably about 0.5 to 3 times the thermal diffusion length L.

第1実施形態の圧力波発生装置では、図1(b)に示すように、熱絶縁層2のうち、発熱体3の外周部近傍に対向する部分の厚さが外側ほど薄くなるように、傾斜部2aが形成されている。この圧力波発生装置において、発熱体3への通電を行った場合(電気エネルギを与えた場合)の発熱体3の外周近傍における熱絶縁層2の表面(熱絶縁層2と発熱体3との境界)と半導体基板1の第1面1aを含む平面の温度分布を、有限要素法によりシミュレーションを行った。その結果を図7の曲線Aに示す。また、図14に示す従来例について同様のシミュレーションを行った結果を図7の曲線Bに示す。   In the pressure wave generator of the first embodiment, as shown in FIG. 1 (b), in the thermal insulating layer 2, the thickness of the portion facing the vicinity of the outer peripheral portion of the heating element 3 becomes thinner toward the outside. An inclined portion 2a is formed. In this pressure wave generator, when the heating element 3 is energized (when electric energy is applied), the surface of the thermal insulating layer 2 in the vicinity of the outer periphery of the heating element 3 (the thermal insulating layer 2 and the heating element 3 The temperature distribution in the plane including the boundary) and the first surface 1a of the semiconductor substrate 1 was simulated by the finite element method. The result is shown by curve A in FIG. Moreover, the result of having performed the same simulation about the prior art example shown in FIG. 14 is shown in the curve B of FIG.

図7における曲線A及びBは、それぞれ図1(c)及び図15(c)に示すように、発熱体3の短辺方向の断面(A−A断面)における熱絶縁層2と発熱体3の外周との接点を原点Oとし、熱絶縁層2から離れる方向(図1(c)及び図15(c)の右方向)をX軸の正方向として、半導体基板1の第1面1aを含む平面の温度分布のシミュレーションを行った結果である。なお、シミュレーションを行う際の熱伝導率及び体積熱容量のデータとしては、上記特許文献1に開示されている数値データを用い、単結晶のシリコン基板からなる半導体基板1の熱伝導率を168W/(m・K)、熱容量を1.67×10J/(m3・K)とし、多孔度が60%の多孔質シリコン層からなる熱絶縁層2の熱伝導率を1W/(m・K)、熱容量を0.7×10J/(m・K)とした。 Curves A and B in FIG. 7 indicate the heat insulating layer 2 and the heat generating element 3 in the cross section in the short side direction (A-A cross section) of the heat generating element 3, respectively, as shown in FIGS. 1 (c) and 15 (c). The first surface 1a of the semiconductor substrate 1 is defined as the origin O and the direction away from the thermal insulation layer 2 (the right direction in FIGS. 1C and 15C) as the positive direction of the X axis. It is the result of having performed the simulation of the temperature distribution of the plane containing. In addition, as data of thermal conductivity and volumetric heat capacity at the time of simulation, the numerical data disclosed in Patent Document 1 is used, and the thermal conductivity of the semiconductor substrate 1 made of a single crystal silicon substrate is 168 W / ( m · K), the heat capacity is 1.67 × 10 6 J / (m3 · K), and the thermal conductivity of the thermal insulating layer 2 made of a porous silicon layer having a porosity of 60% is 1 W / (m · K). The heat capacity was set to 0.7 × 10 6 J / (m 3 · K).

図7からわかるように、第1本実施形態の圧力波発生装置及び従来の圧力波発生装置のいずれにおいても、X軸方向に沿って温度勾配(−dT/dx)が存在するが、第1実施形態の圧力波発生装置の方が、従来の圧力波発生装置に比べて温度勾配が緩やかになっている。その理由は、第1実施形態の圧力波発生装置の発熱体3の外周部に対向する部分では、熱絶縁層2の厚さが外側ほど薄くなるように傾斜部2aが形成されているため、半導体基板1の厚さ方向に沿って放熱される熱量が、発熱体3の中央部に比べて大きくなるからである。   As can be seen from FIG. 7, in both the pressure wave generator of the first embodiment and the conventional pressure wave generator, there is a temperature gradient (−dT / dx) along the X-axis direction. The pressure wave generator of the embodiment has a gentler temperature gradient than the conventional pressure wave generator. The reason is that, in the portion facing the outer peripheral portion of the heating element 3 of the pressure wave generating device of the first embodiment, the inclined portion 2a is formed so that the thickness of the heat insulating layer 2 becomes thinner toward the outside. This is because the amount of heat radiated along the thickness direction of the semiconductor substrate 1 is larger than that of the central portion of the heating element 3.

換言すれば、第1実施形態の圧力波発生装置では、図2に示すように、半導体基板1の厚さ方向Dの一表面(第1面)1aから半導体基板1の内側に向けて熱絶縁層2の幅方向の中央部の基準厚さtで規定した幅方向Wの範囲内において、発熱体3の外周3eよりも内側部分、すなわち、図1(b)における熱絶縁層2の厚さ方向の平均熱伝導率をαin、平均体積熱容量をCinとし、発熱体3の外周よりも外側部分、すなわち、半導体基板1の厚さ方向の平均熱伝導率をαout、平均体積熱容量をCoutとして、αin×Cin<αout×Coutの条件を満足し、かつ、内側部分と外側部分との境界付近ではαin×Cinの値が外側ほど大きくなっている。要するに、熱伝導率と体積熱容量との積が大きいほど放熱性が高くなり、単位時間当たりの放熱量を多くすることができるので、第1実施形態では、発熱体3の外周部近傍の直下における熱絶縁層2の放熱性を発熱体3の中央部の直下における熱絶縁層2の放熱性よりも大きくすることによって、発熱体3の外周部近傍における温度勾配を緩やかにしている。   In other words, in the pressure wave generator of the first embodiment, as shown in FIG. 2, thermal insulation is performed from one surface (first surface) 1 a in the thickness direction D of the semiconductor substrate 1 toward the inside of the semiconductor substrate 1. Within the range of the width direction W defined by the reference thickness t at the center of the layer 2 in the width direction, the thickness of the heat insulating layer 2 in FIG. The average thermal conductivity in the direction is αin, the average volumetric heat capacity is Cin, the outer part of the outer periphery of the heating element 3, that is, the average thermal conductivity in the thickness direction of the semiconductor substrate 1 is αout, and the average volumetric heat capacity is Cout. The condition of αin × Cin <αout × Cout is satisfied, and the value of αin × Cin increases toward the outside near the boundary between the inner part and the outer part. In short, the greater the product of thermal conductivity and volumetric heat capacity, the higher the heat dissipation and the greater the amount of heat dissipation per unit time. In the first embodiment, in the immediate vicinity of the outer periphery of the heating element 3. By making the heat dissipation property of the heat insulating layer 2 greater than the heat dissipation property of the heat insulating layer 2 immediately below the central portion of the heat generating element 3, the temperature gradient in the vicinity of the outer peripheral portion of the heat generating element 3 is made gentle.

このように、第1実施形態の圧力波発生装置では、発熱体3の外周部において半導体基板1の厚さ方向に沿って放熱される熱量が、発熱体3中央部において放熱される熱量に比べて大きくなるので、従来の圧力波発生装置に比べて発熱体3にかかる熱応力を低減することができ、熱応力に起因した発熱体3の破損が起こりにくくなり、圧力波発生装置を長寿命化することができる。   Thus, in the pressure wave generator of the first embodiment, the amount of heat radiated along the thickness direction of the semiconductor substrate 1 in the outer peripheral portion of the heating element 3 is larger than the amount of heat radiated in the central portion of the heating element 3. Therefore, the thermal stress applied to the heating element 3 can be reduced as compared with the conventional pressure wave generator, and the heating element 3 is less likely to be damaged due to the thermal stress. Can be

また、上記基準厚さtで規定した幅方向Wの範囲内で、αin×Cinの値が変化する領域の境界(すなわち、傾斜部2aの外周端)を発熱体3の外周とほぼ一致させてあるので、熱絶縁層2の外周部の物性値と中央部の物性値とをほぼ同じにしたまま、すなわち、熱絶縁層2を形成する多孔質シリコン層の物性を均一にしたまま、発熱体3の外周部から半導体基板1へ放熱される熱量をあまり増大させることなく、圧力波の振幅の低下を抑制することができる。   Further, within the range of the width direction W defined by the reference thickness t, the boundary of the region where the value of αin × Cin changes (that is, the outer peripheral end of the inclined portion 2a) is made to substantially coincide with the outer periphery of the heating element 3. Therefore, while maintaining the physical property value of the outer peripheral portion of the thermal insulating layer 2 and the physical property value of the central portion, that is, while maintaining the physical properties of the porous silicon layer forming the thermal insulating layer 2 uniform, the heating element The decrease in the amplitude of the pressure wave can be suppressed without increasing the amount of heat radiated from the outer peripheral portion 3 to the semiconductor substrate 1 so much.

次に、第1実施形態における圧力波発生装置の製造方法について、図4〜図6を参照しつつ説明する。図4(a)に示すように、p形シリコン基板の半導体基板1の厚さ方向の他表面(第2面)1bに、陽極酸化時に用いられる平面形状が矩形状の通電用電極4を形成する。図5に示すように、通電用電極4の中心は、半導体基板1の第1面1aに平行な面内において、矩形状の発熱体3が形成される予定の領域(発熱体形成領域)3aの中心とほぼ一致している。また、通電用電極4の各辺の長さは、発熱体形成領域3aの対応する各辺の長さよりも所定の縮小寸法分だけ短くなるように設定されている。   Next, the manufacturing method of the pressure wave generator in 1st Embodiment is demonstrated, referring FIGS. 4-6. As shown in FIG. 4A, a current-carrying electrode 4 having a rectangular planar shape used during anodization is formed on the other surface (second surface) 1b in the thickness direction of the semiconductor substrate 1 of a p-type silicon substrate. To do. As shown in FIG. 5, the center of the energizing electrode 4 is a region (heating element forming region) 3 a where the rectangular heating element 3 is to be formed in a plane parallel to the first surface 1 a of the semiconductor substrate 1. It almost coincides with the center of. Further, the length of each side of the energizing electrode 4 is set to be shorter than the length of each corresponding side of the heating element forming region 3a by a predetermined reduction dimension.

通電用電極4の形成工程においては、例えば導電性層を半導体基板1の第2面1b上にスパッタ法や蒸着法などによって成膜し、フォトリソグラフィ技術及びエッチング技術を利用して、導電性層のうち通電用電極4に用いられる部分以外の不要部分を除去すればよい。なお、第1実施形態では、発熱体形成領域3aの長辺を12mm、短辺を10mmとし、上記縮小寸法を1mmに設定されている。すなわち、通電用電極4は発熱体形成領域3aよりも小さく、長辺を11mm、短辺を9mmに設定されている。なお、これらの数値は特に限定されない。   In the process of forming the energizing electrode 4, for example, a conductive layer is formed on the second surface 1b of the semiconductor substrate 1 by sputtering or vapor deposition, and the conductive layer is utilized by using photolithography technology and etching technology. Of these, unnecessary portions other than the portion used for the energizing electrode 4 may be removed. In the first embodiment, the long side of the heating element forming region 3a is 12 mm, the short side is 10 mm, and the reduction dimension is set to 1 mm. That is, the energizing electrode 4 is smaller than the heating element forming region 3a, and the long side is set to 11 mm and the short side is set to 9 mm. These numerical values are not particularly limited.

通電用電極4の形成後、通電用電極4に通電用のリード線(図示せず)の一端を取り付け、通電用電極4とリード線の一端部の取り付け部位を、陽極酸化処理に用いる電解液に触れないように耐フッ酸性を有するシール材により被覆する。その後、図6に示すような陽極酸化処理装置を用いて陽極酸化処理を行うことにより、図4(b)に示すような多孔質シリコン層からなる熱絶縁層2が半導体基板1上に形成される。その後、半導体基板1の第1面1aの発熱体形成領域3aに発熱体形成工程を行うことにより、図4(c)に示すような発熱体3を有する構造が得られる。   After the energization electrode 4 is formed, one end of an energization lead wire (not shown) is attached to the energization electrode 4, and the attachment portion of the energization electrode 4 and one end of the lead wire is used for an anodizing treatment. It is covered with a sealing material having hydrofluoric acid resistance so as not to touch. Thereafter, an anodizing process is performed using an anodizing apparatus as shown in FIG. 6 to form a thermal insulating layer 2 made of a porous silicon layer as shown in FIG. 4B on the semiconductor substrate 1. The Thereafter, a heating element forming step is performed on the heating element forming region 3a of the first surface 1a of the semiconductor substrate 1 to obtain a structure having the heating element 3 as shown in FIG.

第1実施形態の圧力波発生装置の製造方法では、上記のように、陽極酸化処理によって熱絶縁層2が形成される。陽極酸化処理にあたっては、図6に示すように、半導体基板1を主構成とする被処理物24を処理槽22中の電解液23に浸漬する。次に、電解液23中において、白金電極21を半導体基板1の第1面1aに対向するように配置する。さらに、通電用電極4に取り付けられたリード線を電流源20のプラス側に、白金電極21を電流源20のマイナス側にそれぞれ接続する。そして、通電用電極4を陽極、白金電極21を陰極として、電流源20から通電用電極4と白金電極21との間に所定の電流密度(例えば、20mA/cm)の電流を所定の通電時間(例えば、8分)だけ流す。 In the manufacturing method of the pressure wave generator of the first embodiment, as described above, the thermal insulating layer 2 is formed by anodizing. In the anodic oxidation process, as shown in FIG. 6, an object to be processed 24 mainly composed of the semiconductor substrate 1 is immersed in an electrolytic solution 23 in a processing tank 22. Next, in the electrolytic solution 23, the platinum electrode 21 is disposed so as to face the first surface 1 a of the semiconductor substrate 1. Further, the lead wire attached to the energizing electrode 4 is connected to the plus side of the current source 20, and the platinum electrode 21 is connected to the minus side of the current source 20. Then, with the energizing electrode 4 as an anode and the platinum electrode 21 as a cathode, a predetermined current density (for example, 20 mA / cm 2 ) is applied between the energizing electrode 4 and the platinum electrode 21 from the current source 20. Run for a time (eg, 8 minutes).

このような陽極酸化処理により、半導体基板1の第1面1a側に、外周部を除いて厚さがほぼ一定(例えば、10μm)な熱絶縁層2が形成される。その後、処理槽22から被処理物24を取り出し、被処理物24の上記シール材を剥がし、通電用電極4に接続していたリード線を外す。   By such anodizing treatment, the thermal insulating layer 2 having a substantially constant thickness (for example, 10 μm) is formed on the first surface 1 a side of the semiconductor substrate 1 except for the outer peripheral portion. Thereafter, the processing object 24 is taken out from the processing tank 22, the sealing material of the processing object 24 is peeled off, and the lead wire connected to the energizing electrode 4 is removed.

なお、陽極酸化処理時の条件は特に限定されず、電流密度は、例えば、1〜500mA/cm程度の範囲内で適宜設定すればよい。また、上記所定の通電時間も、熱絶縁層2の厚さに応じて適宜設定すればよい。 In addition, the conditions at the time of an anodizing process are not specifically limited, For example, what is necessary is just to set an electric current density within the range of about 1-500 mA / cm < 2 > suitably. The predetermined energization time may be set as appropriate according to the thickness of the heat insulating layer 2.

また、陽極酸化処理に用いる電解液としては、例えば、55wt%のフッ化水素水溶液とエタノールとを1:1で混合した混合液を用いる。また、シール材としては、例えば、テフロン(登録商標)のようなフッ素樹脂からなるシール材を用いることができる。   Moreover, as an electrolytic solution used for the anodizing treatment, for example, a mixed solution in which a 55 wt% aqueous solution of hydrogen fluoride and ethanol are mixed at a ratio of 1: 1 is used. Moreover, as a sealing material, the sealing material which consists of fluororesins like Teflon (trademark) can be used, for example.

発熱体3の形成にあたっては、半導体基板1の第1面1a上に発熱体3用の金属薄膜(例えば、Al薄膜など)をスパッタ法などによって形成する。その後、金属薄膜上にフォトレジストを塗布し、フォトリソグラフィ技術により発熱体3形成用にパターニングされたレジスト層(図示せず)を形成する。そして、レジスト層をマスクとして、金属薄膜の不要部分をドライエッチング工程により除去することにより、発熱体3が形成される。最後に、レジスト層を除去することにより、図4(c)に示す構造が得られる。   In forming the heating element 3, a metal thin film (for example, an Al thin film) for the heating element 3 is formed on the first surface 1a of the semiconductor substrate 1 by a sputtering method or the like. Thereafter, a photoresist is applied on the metal thin film, and a resist layer (not shown) patterned for forming the heating element 3 is formed by a photolithography technique. Then, by using the resist layer as a mask, unnecessary portions of the metal thin film are removed by a dry etching process, whereby the heating element 3 is formed. Finally, the structure shown in FIG. 4C is obtained by removing the resist layer.

一般的に、上記のように通電用電極4の大きさを形成すべき熱絶縁層2の大きさよりも若干小さくし、かつ、白金電極21の大きさを熱絶縁層2の大きさよりも大きくすると、形成されるべき熱絶縁層2の外周部で電界の向きが斜めになり、かつ、外側ほど電界強度が弱くなる。そのため、このような条件で陽極酸化処理を行えば、半導体基板1の第1面1a側に形成される酸化膜、すなわち熱絶縁層2の外周部に流れる電流が少なくなり、膜厚が外側ほど薄く形成される。従って、半導体基板1の第1面1a側に形成された熱絶縁層2の外周部には、図1(b)などに示すように、外側ほど厚さが徐々に小さくなるように傾斜部2aが形成される。ここで、発熱体を傾斜部2aに合わせて形成すれば、従来の圧力波発生装置に比べて、発熱体3にかかる熱応力を低減することができ、熱応力に起因した発熱体3の破損が生じにくくなる。   Generally, when the size of the heat insulating layer 2 to be formed is made slightly smaller than the size of the heat insulating layer 2 as described above, and the size of the platinum electrode 21 is made larger than the size of the heat insulating layer 2. The direction of the electric field becomes oblique at the outer peripheral portion of the heat insulating layer 2 to be formed, and the electric field strength becomes weaker toward the outer side. Therefore, if anodizing is performed under such conditions, the current flowing in the outer peripheral portion of the oxide film formed on the first surface 1a side of the semiconductor substrate 1, that is, the thermal insulating layer 2, is reduced, and the film thickness is more outward. Thinly formed. Accordingly, at the outer peripheral portion of the thermal insulating layer 2 formed on the first surface 1a side of the semiconductor substrate 1, as shown in FIG. 1B and the like, the inclined portion 2a so that the thickness gradually decreases toward the outer side. Is formed. Here, if the heating element is formed in conformity with the inclined portion 2a, the thermal stress applied to the heating element 3 can be reduced as compared with the conventional pressure wave generator, and the heating element 3 is damaged due to the thermal stress. Is less likely to occur.

なお、熱絶縁層2の断面形状を走査型電子顕微鏡により観察した結果、図2を参照して、熱絶縁層2の外周部では、半導体基板1の第1面1aを含む第1基準平面からの深さが深くなるにつれて、発熱体3の端面(外周)3eを含む第2基準平面からの幅方向の距離dが長くなるように、熱絶縁層2と半導体基板1の境界が傾斜していることがわかった。具体的には、第1基準平面からの深さが10μmの位置では、発熱体3の第2基準平面からの距離が略0.5mmとなっていることが確認された。   As a result of observing the cross-sectional shape of the thermal insulating layer 2 with a scanning electron microscope, referring to FIG. 2, the outer peripheral portion of the thermal insulating layer 2 is from the first reference plane including the first surface 1a of the semiconductor substrate 1. The boundary between the heat insulating layer 2 and the semiconductor substrate 1 is inclined so that the distance d in the width direction from the second reference plane including the end face (outer periphery) 3e of the heating element 3 increases as the depth of the heat generating element 3 increases. I found out. Specifically, it was confirmed that the distance from the second reference plane of the heating element 3 is approximately 0.5 mm at a position where the depth from the first reference plane is 10 μm.

また、上記のように、通電用電極4を発熱体形成領域3aよりも小さくすることにより、熱絶縁層2の傾斜部2aの外周を発熱体3の外周とほぼ一致させ、又は発熱体3の外周よりも内側に位置させることができる。具体的には、上記のように通電用電極4の各辺の長さを発熱体形成領域3aの各辺よりも1mmだけ短くした場合(上記縮小寸法を1mmとした場合)には、熱絶縁層2の傾斜部2aの外周が発熱体3の外周とほぼ一致する。一方、通電用電極4の各辺の長さを発熱体形成領域3aの各辺よりも2mmだけ短くした場合(上記縮小寸法を2mmとした場合)には、熱絶縁層2は発熱体3の外周よりも内側に形成される。   Further, as described above, by making the energizing electrode 4 smaller than the heating element formation region 3a, the outer periphery of the inclined portion 2a of the heat insulating layer 2 is made substantially coincident with the outer periphery of the heating element 3, or the heating element 3 It can be located inside the outer periphery. Specifically, when the length of each side of the energizing electrode 4 is shortened by 1 mm as compared with each side of the heating element forming region 3a as described above (when the reduced size is 1 mm), the thermal insulation is performed. The outer periphery of the inclined portion 2 a of the layer 2 substantially coincides with the outer periphery of the heating element 3. On the other hand, when the length of each side of the energizing electrode 4 is shorter by 2 mm than each side of the heating element formation region 3 a (when the above-mentioned reduction dimension is 2 mm), the thermal insulating layer 2 is formed of the heating element 3. It is formed inside the outer periphery.

後者の場合、発熱体3への熱絶縁層2の投影領域が発熱体3の外周よりも内側に収まるので、発熱体3の外周部が半導体基板1の第1面1aに直接的に接する。このように熱絶縁層2の外周が発熱体3の外周よりも内側に形成される場合、図8に示すように、熱絶縁層2の外周部の厚さを中央部の厚さ(上記基準厚さ)とほぼ同じになるように形成してもよい。   In the latter case, the projection region of the heat insulating layer 2 onto the heat generating element 3 is located inside the outer periphery of the heat generating element 3, so that the outer peripheral portion of the heat generating element 3 is in direct contact with the first surface 1 a of the semiconductor substrate 1. Thus, when the outer periphery of the heat insulating layer 2 is formed inside the outer periphery of the heating element 3, as shown in FIG. 8, the thickness of the outer peripheral portion of the heat insulating layer 2 is set to the thickness of the central portion (the above reference). You may form so that it may become substantially the same as (thickness).

その場合も、半導体基板1の材料である単結晶シリコンの熱伝導率及び体積熱容量がそれぞれ上述のαout、Coutとなり、熱絶縁層2の材料である多孔質シリコンの熱伝導率及び体積熱容量がそれぞれ上述のαin、Cinとなるので、熱伝導率と熱容量との積の大小関係は、αin×Cin<αout×Coutの条件を満たすこととなる。また、上記基準厚さの範囲内でαin×Cinの値が変化する領域の境界を発熱体3の外周よりも内側に位置させているので、発熱体3の外周部における温度勾配をより緩やかにすることができ、従来の圧力波発生装置に比べて発熱体3にかかる熱応力をより低減することができる。   Also in this case, the thermal conductivity and volumetric heat capacity of the single crystal silicon that is the material of the semiconductor substrate 1 are αout and Cout, respectively, and the thermal conductivity and volumetric heat capacity of the porous silicon that is the material of the thermal insulating layer 2 are respectively Since αin and Cin described above, the magnitude relationship between the products of thermal conductivity and heat capacity satisfies the condition of αin × Cin <αout × Cout. In addition, since the boundary of the region where the value of αin × Cin changes within the reference thickness range is located on the inner side of the outer periphery of the heating element 3, the temperature gradient at the outer periphery of the heating element 3 is more moderate. The thermal stress applied to the heating element 3 can be further reduced as compared with the conventional pressure wave generator.

また、図16に示すように、半導体基板1の第2面1bの全面に通電用電極4を形成しても、上記と同様に熱絶縁層2を形成することができる。その場合、陽極酸化処理により熱絶縁層2を形成する際に、半導体基板1の第1面1a上にマスク層5を設けて熱絶縁層2が形成される領域を規定すればよい。   Further, as shown in FIG. 16, even when the energizing electrode 4 is formed on the entire second surface 1b of the semiconductor substrate 1, the heat insulating layer 2 can be formed in the same manner as described above. In that case, when the thermal insulating layer 2 is formed by anodization, a mask layer 5 may be provided on the first surface 1a of the semiconductor substrate 1 to define a region where the thermal insulating layer 2 is formed.

また、第1実施形態では、半導体基板1として単結晶のp形シリコン基板を採用しているが、半導体基板1は単結晶のp形シリコン基板に限らず、多結晶あるいはアモルファスのp形シリコン基板でもよい。また、半導体基板1は、p形基板に限られず、n形基板やノンドープ基板であってもよい。そして、半導体基板1の種類に応じて、陽極酸化処理の条件を適宜変更すればよい。従って、熱絶縁層2を構成する多孔体も、多孔質シリコン層に限られず、例えば、多結晶シリコンを陽極酸化することにより形成した多孔質多結晶シリコン層や、シリコン以外の半導体材料からなる多孔質半導体層であってもよい。また、発熱体3の材料もAlに限定されるものではなく、Alに比べて耐熱性の高い金属材料(例えば、W,Mo,Pt,Irなど)を用いてもよい。   In the first embodiment, a single crystal p-type silicon substrate is used as the semiconductor substrate 1, but the semiconductor substrate 1 is not limited to a single crystal p-type silicon substrate, and is a polycrystalline or amorphous p-type silicon substrate. But you can. The semiconductor substrate 1 is not limited to a p-type substrate, and may be an n-type substrate or a non-doped substrate. Then, depending on the type of the semiconductor substrate 1, the anodizing conditions may be changed as appropriate. Therefore, the porous body constituting the heat insulating layer 2 is not limited to the porous silicon layer. For example, a porous polycrystalline silicon layer formed by anodizing polycrystalline silicon or a porous material made of a semiconductor material other than silicon is used. It may be a quality semiconductor layer. The material of the heating element 3 is not limited to Al, and a metal material (for example, W, Mo, Pt, Ir, etc.) having higher heat resistance than Al may be used.

(第2実施形態)
次に、本発明の第2実施形態について説明する。第2実施形態の圧力波発生装置の基本構成は、上記第1実施形態と同じであり、半導体基板1として単結晶のn形シリコン基板を採用している点のみが相違する。従って、圧力波発生装置の構造についての図示及び説明を省略し、製造方法についてのみ図9を参照しつつ説明する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. The basic configuration of the pressure wave generator of the second embodiment is the same as that of the first embodiment, except that a single crystal n-type silicon substrate is employed as the semiconductor substrate 1. Therefore, illustration and description of the structure of the pressure wave generator are omitted, and only the manufacturing method will be described with reference to FIG.

図9(a)に示すように、n形シリコン基板からなる半導体基板1の厚さ方向の第2面1bの全面に、陽極酸化時に用いられる通電用電極4を形成する。なお、通電用電極4として、導電性層を半導体基板1の第2面1b上に例えばスパッタ法や蒸着法などによって成膜すればよい。   As shown in FIG. 9A, a current-carrying electrode 4 used for anodization is formed on the entire second surface 1b in the thickness direction of the semiconductor substrate 1 made of an n-type silicon substrate. In addition, what is necessary is just to form a conductive layer on the 2nd surface 1b of the semiconductor substrate 1 by the sputtering method, a vapor deposition method etc. as the electrode 4 for electricity supply.

通電用電極4の形成後、通電用電極4に通電用のリード線(図示せず)の一端を取り付け、通電用電極4とリード線の一端部の取り付け部位を、陽極酸化処理に用いる電解液に触れないように耐フッ酸性を有するシール材により被覆する。その後、図10(a)に示すような陽極酸化処理装置を用いて陽極酸化処理を行うことにより、図9(b)に示すような多孔質シリコン層からなる熱絶縁層2が半導体基板1上に形成される。その後、半導体基板1の第1面1aの発熱体形成領域3aに発熱体形成工程を行うことにより、図9(c)に示すような発熱体3を有する構造が得られる。   After the energization electrode 4 is formed, one end of an energization lead wire (not shown) is attached to the energization electrode 4, and the attachment portion of the energization electrode 4 and one end of the lead wire is used for an anodizing treatment. It is covered with a sealing material having hydrofluoric acid resistance so as not to touch. Thereafter, anodization is performed using an anodizing apparatus as shown in FIG. 10A, so that the thermal insulating layer 2 made of a porous silicon layer as shown in FIG. Formed. Thereafter, a heating element forming step is performed on the heating element forming region 3a of the first surface 1a of the semiconductor substrate 1, whereby a structure having the heating element 3 as shown in FIG. 9C is obtained.

第2実施形態の圧力波発生装置の製造方法でも、上記のように、陽極酸化処理によって熱絶縁層2が形成される。陽極酸化処理にあたっては、図10(a)に示すように、半導体基板1を主構成とする被処理物24を処理槽22中の電解液23に浸漬する。次に、電解液23中において、電解液23に耐性を有する材料で形成された光遮蔽板30を半導体基板1の第1面1aに対向するように配置し、さらに、光遮蔽板30及び半導体基板1の第1面1aに対向するように、白金電極21を配置する。さらに、通電用電極4に取り付けられたリード線を電流源20のプラス側に、白金電極21を電流源20のマイナス側にそれぞれ接続する。そして、半導体基板1の第1面1aに対して、図示しない光源(例えば、タングステンランプなど)により光照射を行いながら、通電用電極4を陽極、白金電極21を陰極として、電流源20から通電用電極4と白金電極21との間に所定の電流密度(例えば、20mA/cm)の電流を所定の通電時間(例えば、8分)だけ流す。 Also in the manufacturing method of the pressure wave generator of the second embodiment, as described above, the thermal insulating layer 2 is formed by the anodizing process. In the anodizing process, as shown in FIG. 10A, an object to be processed 24 mainly composed of the semiconductor substrate 1 is immersed in an electrolytic solution 23 in a processing tank 22. Next, in the electrolytic solution 23, the light shielding plate 30 formed of a material resistant to the electrolytic solution 23 is disposed so as to face the first surface 1a of the semiconductor substrate 1, and further, the light shielding plate 30 and the semiconductor are arranged. The platinum electrode 21 is disposed so as to face the first surface 1 a of the substrate 1. Further, the lead wire attached to the energizing electrode 4 is connected to the plus side of the current source 20, and the platinum electrode 21 is connected to the minus side of the current source 20. Then, the first surface 1a of the semiconductor substrate 1 is energized from the current source 20 with the energizing electrode 4 as the anode and the platinum electrode 21 as the cathode while irradiating light with a light source (not shown) such as a tungsten lamp. A current having a predetermined current density (for example, 20 mA / cm 2 ) is allowed to flow between the working electrode 4 and the platinum electrode 21 for a predetermined energization time (for example, 8 minutes).

このような陽極酸化処理により、半導体基板1の第1面1a側に、外周部を除いて厚さがほぼ一定(例えば、10μm)な熱絶縁層2が形成される。その後、処理槽22から被処理物24を取り出し、被処理物24の上記シール材を剥がし、通電用電極4に接続していたリード線を外す。   By such anodizing treatment, the thermal insulating layer 2 having a substantially constant thickness (for example, 10 μm) is formed on the first surface 1 a side of the semiconductor substrate 1 except for the outer peripheral portion. Thereafter, the processing object 24 is taken out from the processing tank 22, the sealing material of the processing object 24 is peeled off, and the lead wire connected to the energizing electrode 4 is removed.

なお、陽極酸化処理時の条件は特に限定されず、電流密度は、例えば、1〜500mA/cm程度の範囲内で適宜設定すればよい。また、上記所定の通電時間も、熱絶縁層2の厚さに応じて適宜設定すればよい。 In addition, the conditions at the time of an anodizing process are not specifically limited, For example, what is necessary is just to set an electric current density within the range of about 1-500 mA / cm < 2 > suitably. The predetermined energization time may be set as appropriate according to the thickness of the heat insulating layer 2.

また、陽極酸化処理に用いる電解液としては、例えば、55wt%のフッ化水素水溶液とエタノールとを1:1で混合した混合液を用いる。また、シール材としては、例えば、テフロン(登録商標)のようなフッ素樹脂からなるシール材を用いることができる。   Moreover, as an electrolytic solution used for the anodizing treatment, for example, a mixed solution in which a 55 wt% aqueous solution of hydrogen fluoride and ethanol are mixed at a ratio of 1: 1 is used. Moreover, as a sealing material, the sealing material which consists of fluororesins like Teflon (trademark) can be used, for example.

光遮蔽板30は、電解液23に対して耐性を有する材料(例えば、シリコンなど)により図10(b)に示すような平面形状に形成されている。具体的には、光遮蔽板30の半導体基板1における熱絶縁層2が形成される予定の領域(熱絶縁層形成領域)の中央部に対応する部位32の開口率を100%、熱絶縁層2の外側に対応する部位31の開口率を0%とし、熱絶縁層2の外周部に対向する部位33の開口率を内側から外側に向かって小さくなるように変化させている。 The light shielding plate 30 is formed in a planar shape as shown in FIG. 10B by a material (for example, silicon) having resistance to the electrolytic solution 23. Specifically, the aperture ratio of the portion 32 corresponding to the central portion of the region (thermal insulating layer forming region) where the thermal insulating layer 2 is to be formed in the semiconductor substrate 1 of the light shielding plate 30 is set to 100%. The opening ratio of the portion 31 corresponding to the outer side of 2 is set to 0%, and the opening ratio of the portion 33 facing the outer peripheral portion of the heat insulating layer 2 is changed so as to decrease from the inside toward the outside.

発熱体3を形成する工程は、上記第1実施形態の場合と同様であり、半導体基板1の第1面1a上に発熱体3用の金属薄膜(例えば、Al薄膜など)をスパッタ法などによって形成する。その後、金属薄膜上にフォトレジストを塗布し、フォトリソグラフィ技術により発熱体3形成用にパターニングされたレジスト層(図示せず)を形成する。そして、レジスト層をマスクとして、金属薄膜の不要部分をドライエッチング工程により除去することにより、発熱体3が形成される。最後に、レジスト層を除去することにより、図9(c)に示す構造が得られる。   The process of forming the heating element 3 is the same as in the first embodiment, and a metal thin film (for example, an Al thin film) for the heating element 3 is formed on the first surface 1a of the semiconductor substrate 1 by sputtering or the like. Form. Thereafter, a photoresist is applied on the metal thin film, and a resist layer (not shown) patterned for forming the heating element 3 is formed by a photolithography technique. Then, by using the resist layer as a mask, unnecessary portions of the metal thin film are removed by a dry etching process, whereby the heating element 3 is formed. Finally, the structure shown in FIG. 9C is obtained by removing the resist layer.

第2実施形態の圧力波発生装置の製造方法によれば、熱絶縁層2の形成工程において、光遮蔽板30を用いて、半導体基板1の第1面1a上の熱絶縁層形成領域の外周部に照射される光の強度を、中央部に照射される光の強度よりも小さく、かつ外側ほど弱くなるように光を照射しながら陽極酸化処理を行う。そのため、半導体基板1の第1面1a上の熱絶縁層形成領域の外周部における多孔質化の速度が中央部における多孔質化の速度に比べて遅くなるので、図1(b)などに示すように、半導体基板1の第1面1a側に形成された熱絶縁層2の外周部には、外側ほど厚さが徐々に小さくなるように傾斜部2aが形成される。その結果、従来の圧力波発生装置に比べて、発熱体3にかかる熱応力を低減することができ、熱応力に起因した発熱体3の破損が生じにくくなる。   According to the manufacturing method of the pressure wave generating device of the second embodiment, the outer periphery of the heat insulating layer forming region on the first surface 1 a of the semiconductor substrate 1 using the light shielding plate 30 in the step of forming the heat insulating layer 2. The anodizing treatment is performed while irradiating light so that the intensity of the light applied to the part is smaller than the intensity of the light applied to the central part and becomes weaker toward the outside. For this reason, the porous formation speed in the outer peripheral portion of the heat insulating layer forming region on the first surface 1a of the semiconductor substrate 1 is slower than the porous formation speed in the central portion, and therefore, as shown in FIG. As described above, the inclined portion 2a is formed on the outer peripheral portion of the thermal insulating layer 2 formed on the first surface 1a side of the semiconductor substrate 1 so that the thickness gradually decreases toward the outer side. As a result, the thermal stress applied to the heating element 3 can be reduced as compared with the conventional pressure wave generator, and the heating element 3 is less likely to be damaged due to the thermal stress.

(第3実施形態)
次に、本発明の第3実施形態について説明する。第3実施形態の圧力波発生装置の基本構成は上記第1実施形態とほぼ同じであるが、図11に示すように、熱絶縁層2の外周部の厚さを中央部の厚さ(上記基準厚さ)と同じに設定し、熱絶縁層2を構成する多孔質シリコン層の多孔度が中央部から周部に向かって徐々に高くなるように構成されている点が相違する。なお、第1実施形態と同様の構成要素には同一の符号を付して説明を省略する。
(Third embodiment)
Next, a third embodiment of the present invention will be described. The basic configuration of the pressure wave generator of the third embodiment is almost the same as that of the first embodiment, but as shown in FIG. 11, the thickness of the outer peripheral portion of the thermal insulating layer 2 is set to the thickness of the central portion (the above-mentioned The difference is that the porous silicon layer constituting the thermal insulating layer 2 is configured so that the porosity of the porous silicon layer gradually increases from the central portion toward the peripheral portion. In addition, the same code | symbol is attached | subjected to the component similar to 1st Embodiment, and description is abbreviate | omitted.

第3実施形態の圧力波発生装置では、熱絶縁層2の外周と発熱体3の外周とがほぼ一致し(すなわち、上記基準厚さ範囲内でαin×Cinの値が変化する領域の境界が発熱体3の外周と一致し)、かつ、熱絶縁層2の厚さを中央部と外周部とでほぼ同じに設定しながら、熱絶縁層2の外周部における平均熱伝導率と平均熱容量との積を中央部における平均熱伝導率と平均体積熱容量との積よりも大きくしている。すなわち、熱絶縁層2の物性値を不均一にして、熱絶縁層2の外周部における単位体積あたりの多孔度が中央部における単位体積あたりの多孔度よりも小さくなるようにしている。   In the pressure wave generator of the third embodiment, the outer periphery of the thermal insulating layer 2 and the outer periphery of the heating element 3 are substantially coincident (that is, the boundary of the region where the value of αin × Cin varies within the reference thickness range). And the average thermal conductivity and average heat capacity at the outer peripheral portion of the thermal insulating layer 2 while setting the thickness of the thermal insulating layer 2 to be substantially the same at the central portion and the outer peripheral portion. Is made larger than the product of the average thermal conductivity and the average volumetric heat capacity at the center. That is, the physical property values of the heat insulating layer 2 are made non-uniform so that the porosity per unit volume in the outer peripheral portion of the heat insulating layer 2 is smaller than the porosity per unit volume in the central portion.

第3実施形態の圧力波発生装置においても、発熱体3の外周部から半導体基板1の厚さ方向に沿って放熱される熱量を増加させることができ、発熱体3にかかる熱応力を低減することができる。その一方で、発熱体3の外周部から半導体基板1へ放熱される熱量の増大させることなく、圧力波の振幅の低下を抑制することができる。   Also in the pressure wave generator of the third embodiment, it is possible to increase the amount of heat radiated from the outer peripheral portion of the heating element 3 along the thickness direction of the semiconductor substrate 1, and to reduce the thermal stress applied to the heating element 3. be able to. On the other hand, a decrease in the amplitude of the pressure wave can be suppressed without increasing the amount of heat radiated from the outer peripheral portion of the heating element 3 to the semiconductor substrate 1.

次に、第3実施形態の圧力波発生装置の製造方法について図12及び図13を参照しつつ説明する。まず、p形シリコン基板の半導体基板1の第1面1a上の熱絶縁層2を形成する予定の領域(熱絶縁層形成領域)に、図12(a)に示すような所定厚さ(例えば、2μm)の不純物ドーピング領域11を、イオン注入法や熱拡散法などを利用したドーピング処理により形成する。不純物ドーピング領域11は、その外周部の比抵抗が中央部の比抵抗に比べて小さくなる(第3実施形態では、中央部から外周部に向かって比抵抗が小さくなる)不純物濃度分布を有するように形成されている。   Next, the manufacturing method of the pressure wave generator of 3rd Embodiment is demonstrated, referring FIG.12 and FIG.13. First, a predetermined thickness (for example, as shown in FIG. 12A) is formed in a region (thermal insulating layer forming region) where the thermal insulating layer 2 is to be formed on the first surface 1a of the semiconductor substrate 1 of the p-type silicon substrate. 2 μm) impurity-doped regions 11 are formed by doping using an ion implantation method, a thermal diffusion method, or the like. The impurity doping region 11 has an impurity concentration distribution in which the specific resistance at the outer peripheral portion is smaller than the specific resistance at the central portion (in the third embodiment, the specific resistance decreases from the central portion toward the outer peripheral portion). Is formed.

発熱体3の平面サイズにおける長辺は12mm、短辺は10mmに設定され、不純物ドーピング領域11の中心部の比抵抗は略30Ω・cm、外周部の比抵抗はほぼ2Ω・cmに設定されている。また、中心部と外周部との間で、比抵抗が徐々に変化するようにドーピングされている。なお、これらの数値は一例であって特に限定されるものではない。   The long side in the planar size of the heating element 3 is set to 12 mm, the short side is set to 10 mm, the specific resistance of the central portion of the impurity doping region 11 is set to about 30 Ω · cm, and the specific resistance of the outer peripheral portion is set to about 2 Ω · cm. Yes. Further, doping is performed so that the specific resistance gradually changes between the central portion and the outer peripheral portion. These numerical values are merely examples and are not particularly limited.

次に、半導体基板1の第1面1aの全面に、陽極酸化時のマスク形成用のシリコン窒化膜をプラズマCVD法などにより成膜し、フォトリソグラフィ技術及びエッチング技術を利用してシリコン窒化膜のうち熱絶縁層形成領域に重なる部分を開孔する。その結果、図12(b)に示すように、半導体基板1の第1面1a上に、残りのシリコン窒化膜からなるマスク層5が形成される。   Next, a silicon nitride film for forming a mask at the time of anodization is formed on the entire first surface 1a of the semiconductor substrate 1 by a plasma CVD method or the like, and the silicon nitride film is formed by using a photolithography technique and an etching technique. Of these, a portion overlapping the heat insulating layer forming region is opened. As a result, as shown in FIG. 12B, the mask layer 5 made of the remaining silicon nitride film is formed on the first surface 1 a of the semiconductor substrate 1.

次に、図12(c)に示すように、p形シリコン基板の半導体基板1の第2面1bの全面に、陽極酸化時に用いる通電用電極4を形成する。なお、通電用電極4として、導電性層を半導体基板1の第2面1b上に、例えばスパッタ法や蒸着法などによって成膜すればよい。   Next, as shown in FIG. 12C, a current-carrying electrode 4 used for anodic oxidation is formed on the entire second surface 1b of the semiconductor substrate 1 of the p-type silicon substrate. In addition, what is necessary is just to form the electroconductive layer on the 2nd surface 1b of the semiconductor substrate 1 as the electricity supply electrode 4, for example by a sputtering method or a vapor deposition method.

通電用電極4の形成後、通電用電極4に通電用のリード線(図示せず)の一端を取り付け、通電用電極4とリード線の一端部の取り付け部位を、陽極酸化処理に用いる電解液に触れないように耐フッ酸性を有するシール材により被覆する。その後、図6に示すような陽極酸化処理装置を用いて陽極酸化処理を行うことにより、中央部と外周部の多孔度が異なる多孔質シリコン層の熱絶縁層2が形成される。続いて、マスク層5を除去することにより、図12(d)に示す構造が得られる。その後、半導体基板1の第1面1aの発熱体形成領域3aに発熱体形成工程を行うことにより、図12(e)に示すような発熱体3を有する構造が得られる。   After the energization electrode 4 is formed, one end of an energization lead wire (not shown) is attached to the energization electrode 4, and the attachment portion of the energization electrode 4 and one end of the lead wire is used for an anodizing treatment. It is covered with a sealing material having hydrofluoric acid resistance so as not to touch. Thereafter, an anodizing process is performed using an anodizing apparatus as shown in FIG. 6, thereby forming a thermal insulation layer 2 of a porous silicon layer having different porosities at the central part and the outer peripheral part. Subsequently, the structure shown in FIG. 12D is obtained by removing the mask layer 5. Thereafter, a heating element forming step is performed on the heating element forming region 3a of the first surface 1a of the semiconductor substrate 1 to obtain a structure having the heating element 3 as shown in FIG.

なお、図6に示すような陽極酸化処理装置を用いた陽極酸化処理は、基本的に第1実施形態の場合と同様である。通電用電極4を陽極、白金電極21を陰極として、電流源20から通電用電極4と白金電極21の間に所定の電流密度(例えば、20mA/cm)の電流を所定時間(例えば、2分)だけ流すことにより、半導体基板1の第1面1a側に、所定厚さ(例えば、2.5μm)の熱絶縁層2が形成される。熱絶縁層2の中心部の多孔度は略60%で、外周部の多孔度は略0%となる。 The anodizing process using the anodizing apparatus as shown in FIG. 6 is basically the same as that in the first embodiment. Using the current-carrying electrode 4 as an anode and the platinum electrode 21 as a cathode, a current having a predetermined current density (for example, 20 mA / cm 2 ) is supplied from the current source 20 between the current-carrying electrode 4 and the platinum electrode 21 for a predetermined time (for example, 2 As a result, the thermal insulating layer 2 having a predetermined thickness (for example, 2.5 μm) is formed on the first surface 1a side of the semiconductor substrate 1. The porosity of the central portion of the heat insulating layer 2 is approximately 60%, and the porosity of the outer peripheral portion is approximately 0%.

なお、陽極酸化処理時の条件は特に限定されず、電流密度は、例えば、1〜500mA/cm程度の範囲内で適宜設定すればよい。また、上記所定の通電時間も、熱絶縁層2の厚さに応じて適宜設定すればよい。 In addition, the conditions at the time of an anodizing process are not specifically limited, For example, what is necessary is just to set an electric current density within the range of about 1-500 mA / cm < 2 > suitably. The predetermined energization time may be set as appropriate according to the thickness of the heat insulating layer 2.

また、陽極酸化処理に用いる電解液としては、例えば、55wt%のフッ化水素水溶液とエタノールとを1:1で混合した混合液を用いる。また、シール材としては、例えば、テフロン(登録商標)のようなフッ素樹脂からなるシール材を用いることができる。   Moreover, as an electrolytic solution used for the anodizing treatment, for example, a mixed solution in which a 55 wt% aqueous solution of hydrogen fluoride and ethanol are mixed at a ratio of 1: 1 is used. Moreover, as a sealing material, the sealing material which consists of fluororesins like Teflon (trademark) can be used, for example.

発熱体3を形成する工程は、上記第1実施形態の場合と同様であり、半導体基板1の第1面1a上に発熱体3用の金属薄膜(例えば、Al薄膜など)をスパッタ法などによって形成する。その後、金属薄膜上にフォトレジストを塗布し、フォトリソグラフィ技術により発熱体3形成用にパターニングされたレジスト層(図示せず)を形成する。そして、レジスト層をマスクとして、金属薄膜の不要部分をドライエッチング工程により除去することにより、発熱体3が形成される。最後に、レジスト層を除去することにより、図12(e)に示す構造が得られる。   The process of forming the heating element 3 is the same as in the first embodiment, and a metal thin film (for example, an Al thin film) for the heating element 3 is formed on the first surface 1a of the semiconductor substrate 1 by sputtering or the like. Form. Thereafter, a photoresist is applied on the metal thin film, and a resist layer (not shown) patterned for forming the heating element 3 is formed by a photolithography technique. Then, by using the resist layer as a mask, unnecessary portions of the metal thin film are removed by a dry etching process, whereby the heating element 3 is formed. Finally, the structure shown in FIG. 12E is obtained by removing the resist layer.

第3実施形態の圧力波発生装置の製造方法によれば、半導体基板1に形成される熱絶縁層2の厚さをほぼ均一にしつつ、熱絶縁層2の幅方向の中央部の多孔度よりも外周部の多孔度を低くすることができる。すなわち、熱絶縁層2の外周部における平均熱伝導と平均体積熱容量との積は、中央部における平均熱伝導率と平均体積熱容量との積よりも大きくなるので、従来の圧力波発生装置に比べて、発熱体3にかかる熱応力を低減することができ、熱応力に起因した発熱体の破損が生じにくくなる。   According to the manufacturing method of the pressure wave generator of the third embodiment, the thickness of the thermal insulating layer 2 formed on the semiconductor substrate 1 is made substantially uniform, and the porosity of the central portion in the width direction of the thermal insulating layer 2 is determined. Also, the porosity of the outer peripheral portion can be lowered. That is, the product of the average thermal conductivity and the average volumetric heat capacity in the outer peripheral portion of the heat insulating layer 2 is larger than the product of the average thermal conductivity and the average volumetric heat capacity in the central portion, so that compared with the conventional pressure wave generator. Thus, the thermal stress applied to the heating element 3 can be reduced, and the heating element is less likely to be damaged due to the thermal stress.

また、幅方向において、熱絶縁層2の外周部と半導体基板1の熱絶縁層2よりも外側部分との境界で、互いの熱膨張係数が一致するように熱絶縁層2を形成すれば、熱膨張係数の不連続箇所がなくなる。要するに、αin×Cinの値が変化する領域において、熱絶縁層2を形成する材料自体の熱伝導率と熱容量との少なくとも一方を外側に向かって大きくなるように変化させ、αin×Cin=αout×Coutとなる部分で材料組成が一致するようにすれば、αin×Cin=αout×Coutとなる部分での熱膨張係数の不連続箇所がなくなる。その結果、熱絶縁層2の外周部と半導体基板1との熱膨張係数差に起因した応力により熱絶縁層2にクラックの発生が生じにくくなる。   Further, in the width direction, if the thermal insulation layer 2 is formed at the boundary between the outer peripheral portion of the thermal insulation layer 2 and the outer portion of the semiconductor substrate 1 outside the thermal insulation layer 2, the thermal expansion coefficients of the two match each other. Discontinuous parts of thermal expansion coefficient disappear. In short, in a region where the value of αin × Cin changes, at least one of the thermal conductivity and the heat capacity of the material itself forming the thermal insulating layer 2 is changed so as to increase outward, and αin × Cin = αout × If the material composition is matched in the portion where Cout, the discontinuous portion of the thermal expansion coefficient in the portion where αin × Cin = αout × Cout is eliminated. As a result, cracks are less likely to occur in the thermal insulation layer 2 due to stress resulting from the difference in thermal expansion coefficient between the outer peripheral portion of the thermal insulation layer 2 and the semiconductor substrate 1.

なお、図13に示すように、通電用電極4の平面形状を半導体基板1の第1面1aにおける発熱体形成領域3aと整合する形状に形成しておけば、半導体基板1の第1面1a上にマスク層5を設けることなく、不純物ドーピング領域11のみを多孔質化して多孔質シリコン層からなる熱絶縁層2を形成することができる。   As shown in FIG. 13, if the planar shape of the energizing electrode 4 is formed so as to match the heating element forming region 3a on the first surface 1a of the semiconductor substrate 1, the first surface 1a of the semiconductor substrate 1 is formed. Without providing the mask layer 5 on top, only the impurity doping region 11 can be made porous to form the thermal insulation layer 2 made of a porous silicon layer.

(a)は本発明の第1実施形態に係る圧力波発生装置の構成を示す平面図、(b)は(a)におけるA−A断面図、(c)は熱絶縁層の表面と半導体基板の第1面を含む平面の温度分布を有限要素法によりシミュレーションする際の基準点を示す説明図。(A) is a top view which shows the structure of the pressure wave generator concerning 1st Embodiment of this invention, (b) is AA sectional drawing in (a), (c) is the surface of a thermal insulation layer, and a semiconductor substrate Explanatory drawing which shows the reference point at the time of simulating the temperature distribution of the plane containing this 1st surface by the finite element method. 第1実施形態に係る圧力波発生装置の構成を概念的に示す図。The figure which shows notionally the structure of the pressure wave generator which concerns on 1st Embodiment. (a)は圧力波発生装置に印加される交流電圧の波形を示す波形図、(b)は発熱体の温度変化を示す波形図、(c)は圧力波発生装置により発生される圧力波(音波)の波形を示す波形図。(A) is a waveform diagram showing a waveform of an AC voltage applied to the pressure wave generator, (b) is a waveform diagram showing a temperature change of the heating element, and (c) is a pressure wave generated by the pressure wave generator ( The wave form diagram which shows the waveform of a sound wave. (a)〜(c)は第1実施形態に係る圧力波発生装置の製造方法を示す工程図。(A)-(c) is process drawing which shows the manufacturing method of the pressure wave generator which concerns on 1st Embodiment. 第1実施形態に係る圧力波発生装置の製造方法の他の工程を示す工程図。Process drawing which shows the other process of the manufacturing method of the pressure wave generator which concerns on 1st Embodiment. 第1実施形態に係る圧力波発生装置の製造方法に用いられる陽極酸化処理装置を示す図。The figure which shows the anodizing apparatus used for the manufacturing method of the pressure wave generator concerning 1st Embodiment. 第1実施形態に係る圧力波発生装置及び従来の圧力波発生装置の温度分布特性を示すグラフ。The graph which shows the temperature distribution characteristic of the pressure wave generator which concerns on 1st Embodiment, and the conventional pressure wave generator. 第1実施形態に係る圧力波発生装置の別他の構成例を示す断面図。Sectional drawing which shows another structural example of the pressure wave generator which concerns on 1st Embodiment. (a)〜(c)は本発明の第2実施形態に係る圧力波発生装置の製造方法を示す工程図。(A)-(c) is process drawing which shows the manufacturing method of the pressure wave generator which concerns on 2nd Embodiment of this invention. 第2実施形態に係る圧力波発生装置の製造方法に用いられる陽極酸化処理装置を示す図。The figure which shows the anodizing apparatus used for the manufacturing method of the pressure wave generator which concerns on 2nd Embodiment. 本発明の第3実施形態に係る圧力波発生装置の構成を示す断面図。Sectional drawing which shows the structure of the pressure wave generator which concerns on 3rd Embodiment of this invention. (a)〜(e)は第3実施形態に係る圧力波発生装置の製造方法を示す工程図。(A)-(e) is process drawing which shows the manufacturing method of the pressure wave generator concerning 3rd Embodiment. 第3実施形態に係る圧力波発生装置の製造方法の他の工程を示す工程図。Process drawing which shows the other process of the manufacturing method of the pressure wave generator which concerns on 3rd Embodiment. 従来の圧力波発生装置の構成及び動作を示す断面図。Sectional drawing which shows the structure and operation | movement of the conventional pressure wave generator. (a)は従来の圧力波発生装置の構成を示す平面図、(b)は(a)のA−A断面図、(c)は熱絶縁層の表面と半導体基板の第1面を含む平面の温度分布を有限要素法によりシミュレーションする際の基準点を示す説明図。(A) is a top view which shows the structure of the conventional pressure wave generator, (b) is AA sectional drawing of (a), (c) is a plane containing the surface of a heat insulating layer, and the 1st surface of a semiconductor substrate. Explanatory drawing which shows the reference point at the time of simulating the temperature distribution of this by the finite element method. (a)は従来の圧力波発生装置の製造方法の一工程を示す平面図、(b)は(a)のA−A断面図。(A) is a top view which shows 1 process of the manufacturing method of the conventional pressure wave generator, (b) is AA sectional drawing of (a).

符号の説明Explanation of symbols

1 半導体基板
1a 半導体基板の第1面(一表面)
1b 半導体基板の第2面(他表面)
2 熱絶縁層
2a 傾斜部
3 発熱体
3a 発熱体形成領域
3e 発熱体の外周又は端面

1 Semiconductor substrate 1a First surface (one surface) of a semiconductor substrate
1b Second surface (other surface) of semiconductor substrate
2 Thermal insulating layer 2a Inclined portion 3 Heating element 3a Heating element formation region 3e Outer periphery or end face of heating element

Claims (4)

基板と、基板の厚さ方向の一表面に形成された多孔体の熱絶縁層と、熱絶縁層上に形成された薄膜の発熱体とを備え、発熱体への電気入力の波形に応じて発熱体の温度が変化し、発熱体と媒体との間の熱交換により圧力波を発生させる圧力波発生装置であって、
基板の厚さ方向の一表面から基板の内側に向けて熱絶縁層の幅方向の中央部の基準厚さで規定した幅方向の範囲内において、発熱体の外周よりも内側部分の厚さ方向の平均熱伝導率をαin、平均体積熱容量をCinとし、発熱体の外周よりも外側部分の厚さ方向の平均熱伝導率をαout、平均体積熱容量をCoutとして、
αin×Cin<αout×Cout
の条件を満足し、かつ、前記内側部分と前記外側部分との境界付近ではαin×Cinの値が外側ほど大きくなっていることを特徴とする圧力波発生装置。
A substrate, a porous thermal insulating layer formed on one surface in the thickness direction of the substrate, and a thin film heating element formed on the thermal insulating layer, according to the waveform of electric input to the heating element A pressure wave generating device that generates a pressure wave by heat exchange between the heating element and the medium when the temperature of the heating element changes,
The thickness direction of the inner part from the outer periphery of the heating element within the range of the width direction defined by the reference thickness of the center part in the width direction of the thermal insulation layer from one surface in the thickness direction of the substrate toward the inside of the substrate The average thermal conductivity is αin, the average volumetric heat capacity is Cin, the average thermal conductivity in the thickness direction of the outer portion of the heating element is αout, the average volumetric heat capacity is Cout,
αin × Cin <αout × Cout
And a value of αin × Cin increases toward the outer side in the vicinity of the boundary between the inner part and the outer part.
αin×Cinの値が変化する領域の境界を、発熱体の外周と略一致させ、又は発熱体の外周よりも内側に位置させていることを特徴とする請求項1に記載の圧力波発生装置。   2. The pressure wave generator according to claim 1, wherein the boundary of the region where the value of αin × Cin changes is substantially coincident with the outer periphery of the heating element, or is located inside the outer periphery of the heating element. . αin×Cinの値が変化する領域において、熱絶縁層を形成する材料自体の熱伝導率と熱容量との少なくとも一方を外側に向かって大きくなるように連続的に変化させたことを特徴とする請求項1又は2に記載の圧力波発生装置。   In the region where the value of αin × Cin changes, at least one of the thermal conductivity and the heat capacity of the material forming the thermal insulation layer is continuously changed so as to increase outward. Item 3. The pressure wave generator according to Item 1 or 2. αin×Cin=αout×Coutとなる熱絶縁層と基板の境界において、材料組成がほぼ一致することを特徴とする請求項3に記載の圧力波発生装置。 In αin × Cin = αout × Cout become thermally insulating layer and the substrate of the boundary, the pressure wave generator of the mounting serial to claim 3, characterized in that the material composition substantially coincide.
JP2005132120A 2004-04-28 2005-04-28 Pressure wave generator and manufacturing method thereof Expired - Fee Related JP4505672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005132120A JP4505672B2 (en) 2004-04-28 2005-04-28 Pressure wave generator and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004134313 2004-04-28
JP2005132120A JP4505672B2 (en) 2004-04-28 2005-04-28 Pressure wave generator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005341554A JP2005341554A (en) 2005-12-08
JP4505672B2 true JP4505672B2 (en) 2010-07-21

Family

ID=35494550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005132120A Expired - Fee Related JP4505672B2 (en) 2004-04-28 2005-04-28 Pressure wave generator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4505672B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8270639B2 (en) 2008-04-28 2012-09-18 Tsinghua University Thermoacoustic device
US8259968B2 (en) 2008-04-28 2012-09-04 Tsinghua University Thermoacoustic device
CN101754080B (en) * 2008-12-05 2013-04-24 清华大学 Sound-generating device
US8452031B2 (en) 2008-04-28 2013-05-28 Tsinghua University Ultrasonic thermoacoustic device
US8259967B2 (en) 2008-04-28 2012-09-04 Tsinghua University Thermoacoustic device
US8249279B2 (en) 2008-04-28 2012-08-21 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
CN101656907B (en) 2008-08-22 2013-03-20 清华大学 Sound box
CN101715155B (en) 2008-10-08 2013-07-03 清华大学 Earphone
CN101715160B (en) 2008-10-08 2013-02-13 清华大学 Flexible sound producing device and sound producing flag
US8300855B2 (en) 2008-12-30 2012-10-30 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8325947B2 (en) 2008-12-30 2012-12-04 Bejing FUNATE Innovation Technology Co., Ltd. Thermoacoustic device
CN101922755A (en) 2009-06-09 2010-12-22 清华大学 Heating wall
CN101943850B (en) 2009-07-03 2013-04-24 清华大学 Sound-producing screen and projection system using same
CN101990152B (en) 2009-08-07 2013-08-28 清华大学 Thermal sounding device and manufacturing method thereof
CN102006542B (en) 2009-08-28 2014-03-26 清华大学 Sound generating device
CN102023297B (en) 2009-09-11 2015-01-21 清华大学 Sonar system
CN102034467B (en) 2009-09-25 2013-01-30 北京富纳特创新科技有限公司 Sound production device
CN102056064B (en) 2009-11-06 2013-11-06 清华大学 Loudspeaker
CN102056065B (en) 2009-11-10 2014-11-12 北京富纳特创新科技有限公司 Sound production device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002186097A (en) * 2000-12-15 2002-06-28 Pioneer Electronic Corp Speaker
JP2004180262A (en) * 2002-09-30 2004-06-24 Matsushita Electric Works Ltd Three-dimensional sensor
JP2005132120A (en) * 1997-07-08 2005-05-26 Seiko Epson Corp Inkjet recording device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03140100A (en) * 1989-10-26 1991-06-14 Fuji Xerox Co Ltd Electroacoustic transducing method and apparatus therefor
JP3705926B2 (en) * 1998-04-23 2005-10-12 独立行政法人科学技術振興機構 Pressure wave generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132120A (en) * 1997-07-08 2005-05-26 Seiko Epson Corp Inkjet recording device
JP2002186097A (en) * 2000-12-15 2002-06-28 Pioneer Electronic Corp Speaker
JP2004180262A (en) * 2002-09-30 2004-06-24 Matsushita Electric Works Ltd Three-dimensional sensor

Also Published As

Publication number Publication date
JP2005341554A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4505672B2 (en) Pressure wave generator and manufacturing method thereof
KR100855788B1 (en) Pressure wave generator and method for fabricating the same
KR100685684B1 (en) Thermally excited sound wave generating device
JP2007054831A (en) Ultrasonic sound source and ultrasonic sensor
WO2007049496A1 (en) Pressure wave generator and process for producing the same
JP4513546B2 (en) Pressure wave generating element and manufacturing method thereof
JP2005073197A (en) Sonic wave generating apparatus and manufacturing method therefor
JP2005269745A (en) Ultrasonic sound source and ultrasonic sensor
JP4385990B2 (en) Pressure wave generator and manufacturing method thereof
JP4466231B2 (en) Pressure wave generating element and manufacturing method thereof
JP2008161820A (en) Pressure wave producing apparatus
TW201422012A (en) Acoustic chip
JP4974672B2 (en) Pressure wave generator
JP2007144406A (en) Pressure wave generator and method for producing the same
JP4617710B2 (en) Pressure wave generator
JP4617803B2 (en) Pressure wave generator
JP4525273B2 (en) Pressure wave generator
JP4778288B2 (en) Manufacturing method of pressure wave generator
JP4396513B2 (en) Pressure wave generator
JP4682573B2 (en) Pressure wave generator
JP2024013984A (en) electroacoustic transducer
RU2545312C1 (en) Thermoacoustic radiator
TWI774550B (en) Stage and method of making the same
JP4534625B2 (en) Pressure wave generator
JP2006094399A (en) Pressure wave generation element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees