JP4613781B2 - Charge / discharge control method and power supply system for alkaline storage battery - Google Patents

Charge / discharge control method and power supply system for alkaline storage battery Download PDF

Info

Publication number
JP4613781B2
JP4613781B2 JP2005290944A JP2005290944A JP4613781B2 JP 4613781 B2 JP4613781 B2 JP 4613781B2 JP 2005290944 A JP2005290944 A JP 2005290944A JP 2005290944 A JP2005290944 A JP 2005290944A JP 4613781 B2 JP4613781 B2 JP 4613781B2
Authority
JP
Japan
Prior art keywords
soc
charge
storage battery
discharge
alkaline storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005290944A
Other languages
Japanese (ja)
Other versions
JP2007104803A (en
Inventor
健太 筒井
慶孝 暖水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005290944A priority Critical patent/JP4613781B2/en
Publication of JP2007104803A publication Critical patent/JP2007104803A/en
Application granted granted Critical
Publication of JP4613781B2 publication Critical patent/JP4613781B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、アルカリ蓄電池の充放電制御方法とこれを用いた電源システムに関し、より詳しくはメモリー効果の影響を最小限に留める技術に関する。   The present invention relates to a charge / discharge control method for an alkaline storage battery and a power supply system using the same, and more particularly to a technique for minimizing the influence of a memory effect.

ニッケル水素蓄電池をはじめとするアルカリ蓄電池は、ハイブリッド車(以下HEV)や産業用途(非常用電源など)を中心に需要が拡大しつつある。特にHEVにおいて、メイン電源であるアルカリ蓄電池はモータ駆動(放電)と発電機からの回生電力の貯蓄(充電)の双方を行うため、充電深さ(以下SOC、満充電時を100%、完全放電時を0%と定義して数値化)により監視・制御される。   Demand for alkaline storage batteries such as nickel metal hydride storage batteries is expanding mainly in hybrid vehicles (hereinafter referred to as HEV) and industrial applications (such as emergency power supplies). Especially in HEV, the alkaline storage battery, which is the main power source, performs both motor drive (discharge) and storage (charge) of regenerative power from the generator, so the charge depth (hereinafter SOC, 100% when fully charged, fully discharged) It is monitored and controlled by quantifying the time as 0%.

正極活物質に水酸化ニッケルを用いるアルカリ蓄電池は、完全充電(SOCがほぼ0%)や完全充電(SOCがほぼ100%)を行わないサイクルを繰り返すと、蓄電池の残容量に対する起電力値が低下し、蓄電池容量が減少する現象(以下、メモリー効果と称す)が発生する。これを避けるため、アルカリ蓄電池においては幅広いSOC領域での充放電を行うことが望ましい。   In alkaline storage batteries using nickel hydroxide as the positive electrode active material, repeated cycles without full charge (SOC is almost 0%) or full charge (SOC is almost 100%) will reduce the electromotive force relative to the remaining capacity of the storage battery. As a result, a phenomenon in which the storage battery capacity decreases (hereinafter referred to as the memory effect) occurs. In order to avoid this, it is desirable to perform charge / discharge in a wide SOC region in an alkaline storage battery.

ただしHEV用などのように、瞬時に大電流での充放電が絶え間なく行われる電源システムでは、個々に容量差を有する複数のアルカリ蓄電池を接続した際に、最も容量の小さい蓄電池が過充電や過放電に入るのを回避するために、これ以上のSOCに至る充電を禁止する上限充電深さ(以下SOCT)と、これ以下のSOCに至る放電を禁止する下限充電深さ(以下SOCB)とを設け、SOCTとSOCBとの間で充放電を制御する方法が採られる。具体的には、SOCTは80%近傍、SOCBは20%近傍に設定される場合が多い。これにより、過充電および過放電を回避しつつ、SOCが50%近傍のみで用いられるときに発生するメモリー効果を回避する提案がなされている(例えば、特許文献1)。
特開2001−69608号公報
However, in a power supply system that is continuously charged and discharged with a large current instantaneously, such as for HEV, when a plurality of alkaline storage batteries each having a capacity difference are connected, the storage battery with the smallest capacity is overcharged. In order to avoid overdischarge, an upper limit charge depth (hereinafter referred to as SOC T ) that prohibits charging to reach an SOC higher than this, and a lower limit charge depth (hereinafter referred to as SOC B ) that prohibits discharge to reach an SOC lower than this. ), And a method of controlling charging / discharging between SOC T and SOC B is employed. Specifically, SOC T is often set near 80%, and SOC B is often set near 20%. Thus, a proposal has been made to avoid the memory effect that occurs when the SOC is used only in the vicinity of 50% while avoiding overcharge and overdischarge (for example, Patent Document 1).
JP 2001-69608 A

しかしながら充放電を短時間で繰り返すHEV用電源システムでは、特許文献1のように広いSOC範囲を行き来することは稀であり、SOCが50%近傍でのみ充放電が繰り返される場合が多く、結局のところメモリー効果が発生する。メモリー効果を解消するために、民生用で使われているリフレッシュサイクル(完全充電や完全放電を意図的に行うサイクル)を活用することも考えられるが、このサイクルは時間を要するため、電源システムとして稼動する時間を減らすこととなり好ましくない。本発明は上記課題を鑑みてなされたものであり、長時間を要するリフレッシュサイクルを行うことなくメモリー効果を回避しつつ、過充電および過放電をも回避できる、アルカリ蓄電池の充放電制御方法および電源システムを提供することを目的とする。   However, in a HEV power supply system that repeats charging and discharging in a short time, it is rare to go back and forth across a wide SOC range as in Patent Document 1, and charging and discharging are often repeated only when the SOC is around 50%. However, a memory effect occurs. In order to eliminate the memory effect, it may be possible to utilize the refresh cycle (cycle that intentionally performs full charge and complete discharge) used in consumer use. However, since this cycle takes time, as a power supply system This is not preferable because it reduces the operating time. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and is capable of avoiding overcharging and overdischarging while avoiding a memory effect without performing a refresh cycle that requires a long time, and a charge / discharge control method and power supply for an alkaline storage battery The purpose is to provide a system.

上記課題を解決するために、本発明のアルカリ蓄電池の充放電制御方法は、アルカリ蓄電池を放電終止充電深さSOCと充電終止充電深さSOCとの間で使用し、このSOCおよびSOCを、下限充電深さSOCと上限充電深さSOCとの間で順次変動させるものにおいて、1サイクル目は前記SOC を前記SOC と同じ値に設定して放電を規制し、2サイクル目は、前記SOC とSOC との差は変えないで、前記SOC を1サイクル目のSOC よりも小さい値に設定し、以後のサイクルでは、この設定変更を繰返すことで、前記SOC を小さくし、前記SOC が前記SOC と同じ値にな
った時点以後のサイクルでは、前記SOC と同じ値になるまで、前記SOC を大きくするという複数サイクルで順次変動させることにより、前記SOC とSOC との間で万遍なく充放電が繰返されることを特徴とする。
In order to solve the above-described problem, the method for controlling charge / discharge of an alkaline storage battery according to the present invention uses an alkaline storage battery between the end-of-discharge charge depth SOC D and the end-of-charge charge depth SOC C, and this SOC D and SOC In the case where C is sequentially changed between the lower limit charging depth SOC B and the upper limit charging depth SOC T , in the first cycle, the SOC C is set to the same value as the SOC T, and discharge is restricted. cycle, without changing the difference between the SOC C and SOC D, sets the SOC C to a value smaller than the SOC C of first cycle, in the subsequent cycle, by repeating the setting change, the The SOC C is reduced and the SOC D becomes the same value as the SOC B.
In Tsu it was after the timing cycle, until the same value as the SOC T, by sequentially varied in multiple cycles of increasing the SOC C, is evenly charged and discharged between the SOC B and SOC T It is characterized by being repeated .

また上述した充放電制御方法に基づき、制御される電源システムは、アルカリ蓄電池からなる主電源と、主電源の電圧を検知する電圧センサと、主電源の下限充電深さSOCと上限充電深さSOCとを記憶する記憶部と、電圧センサからの情報に基づいて主電源を放電終止充電深さSOCと充電終止充電深さSOCとの間で制御しかつSOCおよびSOCをSOCとSOCとの間で順次変動させる制御部とを有すFurther, based on the charge / discharge control method described above, the controlled power supply system includes a main power source made of an alkaline storage battery, a voltage sensor for detecting the voltage of the main power source, a lower limit charging depth SOC B and an upper limit charging depth of the main power source. The main power supply is controlled between discharge end charge depth SOC D and charge end charge depth SOC C on the basis of information from the voltage sensor and a storage unit that stores SOC T , and SOC D and SOC C are set to SOC B and that having a control unit for sequentially vary between SOC T.

放電終止充電深さSOCDと充電終止充電深さSOCCとを順次変動させ、複数サイクルを経て下限充電深さSOCBと上限充電深さSOCTとの間で万遍なく充放電が繰返されるように制御することにより、過充電および過放電を避けるという本来の遵守項目を保持しつつ、メモリー効果をも回避することができるようになる。 The end-of-discharge charge depth SOC D and the end-of-charge charge depth SOC C are sequentially changed, and charge and discharge are repeated uniformly between the lower limit charge depth SOC B and the upper limit charge depth SOC T through a plurality of cycles. By controlling in this way, it is possible to avoid the memory effect while maintaining the original compliance item of avoiding overcharge and overdischarge.

以上のように本発明によれば、アルカリ蓄電池を主電源とし、HEV用途など過充電・過放電を避けつつメモリー効果をも配慮すべき電源システムに対し、効果的な充放電制御方法を提供することができる。   As described above, according to the present invention, an effective charge / discharge control method is provided for a power supply system that uses an alkaline storage battery as a main power supply and should also consider the memory effect while avoiding overcharge / overdischarge, such as HEV applications. be able to.

以下、図を用いて本発明を実施するための最良の形態について説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

請求項1に記載の発明は、アルカリ蓄電池を放電終止充電深さSOCと充電終止充電深さSOCとの間で使用し、このSOCおよびSOCを、下限充電深さSOCと上限充電深さSOCとの間で順次変動させるアルカリ蓄電池の充放電制御方法において、1サイクル目は前記SOC を前記SOC と同じ値に設定して放電を規制し、2サイクル目は、前記SOC とSOC との差は変えないで、前記SOC を1サイクル目のSOC よりも小さい値に設定し、以後のサイクルでは、この設定変更を繰返すことで、前記SOC を小さくし、前記SOC が前記SOC と同じ値になった時点以後のサイクルでは、前記SOC と同じ値になるまで、前記SOC を大きくするという複数サイクルで順次変動させることにより、前記SOC とSOC との間で万遍なく充放電が繰返されることを特徴とするアルカリ蓄電池の充放電制御方法に関する。 The invention according to claim 1 uses an alkaline storage battery between the end-of-discharge charge depth SOC D and the end-of-charge charge depth SOC C, and uses the SOC D and SOC C as the lower limit charge depth SOC B and the upper limit. in the charge and discharge control method of an alkaline storage battery Ru are sequentially varied between the charging depth SOC T, 1 cycle is regulated discharge by setting the SOC C to the same value as the SOC T, 2 cycle is without changing the difference between the SOC C and SOC D, it sets the SOC C to a value smaller than the SOC C of first cycle, in the subsequent cycle, by repeating the setting change, reduce the SOC C and, wherein at SOC D is after when it becomes the same value as the SOC B cycle, sequentially varies is in the up to the same value as the SOC T, multiple cycles of increasing the SOC C The Rukoto relates method of controlling charge and discharge of the alkaline storage battery, characterized in Rukoto evenly charging and discharging are repeated between the SOC B and SOC T.

図1は本発明の充放電制御方法の一例を示す模式図である。ここでは下限充電深さSOCを20%、上限充電深さSOCを80%としている。上述したように充放電が短時間に激しく繰返されるHEVなどの用途において、下限充電深さSOCから上限充電深さSOCに至る広範な充放電が行われることは稀であり、図4に模式的に示すように、SOC50%近傍で振幅の小さい充放電が繰返されるのが常である。そこで例えば図1では、1サイクル目は充電終止充電深さSOCを80%(SOC と同じ)に設定して放電を規制し、2サイクル目のSOCを1サイクル目のSOCよりも小さい値に設定する。これを繰返してサイクル毎にSOCを小さくしつつ、SOCに連動して小さくなる放電終止充電深さSOCが下限充電深さSOCと同値になった時点をもって、今度はSOCと同値になるまでサイクル毎にSOCを大きくする。このように複数サイクルを経てSOCとSOCとの間で万遍なく充放電が繰返されることにより、アルカリ蓄電池の課題であるメモリー効果を発生させることなく、効率的に電源システムを稼動させることができる。 FIG. 1 is a schematic diagram showing an example of the charge / discharge control method of the present invention. Here, the lower limit charging depth SOC B is 20%, and the upper limit charging depth SOC T is 80%. As described above, in applications such as HEV in which charging and discharging are repeated vigorously in a short time, it is rare that a wide range of charging / discharging from the lower limit charging depth SOC B to the upper limit charging depth SOC T is performed. As schematically shown, charging / discharging with a small amplitude is repeated in the vicinity of SOC 50%. Therefore, for example, in FIG. 1, in the first cycle, the end-of-charge charge depth SOC C is set to 80% (same as SOC T ) to control the discharge, and the second cycle SOC C is set to be higher than the first cycle SOC C. Set to a smaller value. By repeating this, the SOC C is decreased for each cycle, and at the time when the end-of-discharge charge depth SOC D that becomes smaller in conjunction with the SOC C becomes equal to the lower limit charge depth SOC B , this time, the same value as SOC T The SOC C is increased for each cycle until. In this way, the power supply system can be operated efficiently without causing the memory effect that is a problem of alkaline storage batteries by repeatedly charging and discharging between SOC B and SOC T through multiple cycles. Can do.

なおサイクル毎のSOCDについては、図2の模式図に示すように不規則(段階的に上下しない)であってもよい。これはSOCCの規制が回生効率の低下程度で留まるのに対し、SOCDの段階的な現象という規制を厳密に行うと、例えば比較的低SOC領域における瞬時の大電流放電などができなくなり、主電源としての機能が低下するからである。 Note that although the SOC D per cycle may be irregular, as shown in the schematic diagram of FIG. 2 (not stepwise up and down). This is because the regulation of SOC C remains only at the level of reduction in regeneration efficiency, but if regulation of SOC D gradual phenomenon is strictly performed, for example, instantaneous large current discharge in a relatively low SOC region cannot be performed, This is because the function as the main power source is lowered.

ここでSOCDがSOCB未満になることを規制できなかった場合、過放電による不具合(短絡発生による電圧低下など)を引き起こすので好ましくない。またSOCCがSOCTを超えることを規制できなかった場合、過充電による不具合(ガス発生に伴う電解液枯渇による短寿命化など)を引き起こすので好ましくない。 In the case where the SOC D could not regulate be less than SOC B, because it causes a problem due to over-discharge (such as a voltage drop due to a short circuit occurs) is not preferable. Further, if it is not possible to regulate SOC C to exceed SOC T , it is not preferable because it causes problems due to overcharging (shortening of life due to electrolyte depletion accompanying gas generation, etc.).

SOCは、以下の方法によって百分率による数値化が可能となる。すなわち、予めあらゆる充電深さにおける電圧電流特性(I−V値、高電流放電時の電圧低下量から算出)を把握して検量線を作成し、適宜I−V値を測定してSOCをモニタリングする方法である
。これに加え、充放電電流量を積算した値(理論的なSOCが算出可能)にて補正を行うことにより、SOCの数値化をさらに高精度化できる。
The SOC can be quantified as a percentage by the following method. That is, grasp the voltage-current characteristics (I-V value, calculated from the voltage drop during high current discharge) at any charging depth in advance, create a calibration curve, measure the IV value as appropriate, and monitor the SOC It is a method to do. In addition to this, by performing correction with a value obtained by integrating the charge / discharge current amount (a theoretical SOC can be calculated), the numerical value of the SOC can be further increased in accuracy.

請求項2に記載の発明は、請求項1に記載の内容を踏まえて、SOCBを15〜30%、SOCTを70〜85%とすることを特徴とする。上述した過放電を避けるためには、SOCBを15%未満にするのは好ましくなく、過放電を避けるためには、SOCTを85%未満にするのは好ましくない。しかしSOCBを過剰に大きくすると放電側でのメモリー効果が発生し、SOCTを過剰に小さくすると充電側でのメモリー効果が発生する。請求項2の範囲内とすることにより、本発明の効果がより明確に発揮されることとなる。 The invention described in claim 2 is characterized in that, based on the content described in claim 1, SOC B is 15 to 30% and SOC T is 70 to 85%. To avoid over-discharge described above, not preferable to the SOC B to less than 15%, in order to avoid over-discharge, it is not preferable to the SOC T below 85%. However, if SOC B is excessively increased, a memory effect on the discharge side occurs, and if SOC T is excessively decreased, a memory effect on the charge side occurs. By making it within the range of claim 2, the effect of the present invention is more clearly exhibited.

請求項3に記載の発明は、請求項1に記載の内容を踏まえて、SOCCとSOCDとの差が10〜40%の範囲内であることを特徴とする。上述したように充放電を頻繁に繰返す電源システムにおいて、メモリー効果を避けるがためにSOCCとSOCDとの差を大きく設定して充放電を冗長に規制するのは、電源システム本来の趣旨に反する。その反面、SOCCとSOCDとの差を一定間隔以上に規制しなければ、メモリー効果の抑制は困難となる。請求項3の範囲内とすることにより、本発明の効果がより明確に発揮されることとなる。 The invention described in claim 3 is characterized in that, based on the content described in claim 1, the difference between SOC C and SOC D is in the range of 10 to 40%. As described above, in a power supply system that frequently repeats charging / discharging, in order to avoid the memory effect, a large difference between SOC C and SOC D is set to restrict charging / discharging redundantly. Contrary. On the other hand, it is difficult to suppress the memory effect unless the difference between SOC C and SOC D is restricted to a certain interval or more. By making it within the range of claim 3, the effect of the present invention is more clearly exhibited.

図3は本発明の充放電制御方法に基づき、制御される電源システムの一例を示す模式図である。複数のアルカリ蓄電池からなる主電源1には、電圧を検知する電圧センサ2が接続されている。一方で記憶部3には主電源1の下限充電深さSOCと上限充電深さSOCとが記憶されており、制御部4と接続されている。制御部4には電圧センサ2によって測定された主電源1の電圧が逐次送られており、制御部4はSOCとSOCとの間で各サイクルの充放電が行われ、かつ放電終止充電深さSOCと充電終止充電深さSOCとが図1あるいは2のようにSOCとSOCとの間で順次変動するよう、常に制御している。なお主電源1の充電は発電機(図示せず)によって行われるが、HEV用途であれば発電機として内燃機関の運動エネルギーや停止時の摩擦エネルギーを充電電流に変換できるインバータを用いるのが一般的である。また放電時に電気エネルギーを運動エネルギーに変換する際にも、このインバータを用いると効率的である。 FIG. 3 is a schematic diagram showing an example of a power system controlled based on the charge / discharge control method of the present invention. A voltage sensor 2 for detecting voltage is connected to a main power source 1 composed of a plurality of alkaline storage batteries. On the other hand, the storage unit 3 stores a lower limit charging depth SOC B and an upper limit charging depth SOC T of the main power supply 1, and is connected to the control unit 4. The voltage of the main power supply 1 measured by the voltage sensor 2 is sequentially sent to the control unit 4, and the control unit 4 is charged and discharged in each cycle between SOC B and SOC T , and discharge-end charging The depth SOC D and the end-of-charge charge depth SOC C are always controlled so as to sequentially vary between SOC B and SOC T as shown in FIG. The main power supply 1 is charged by a generator (not shown), but for HEV applications, it is common to use an inverter that can convert the kinetic energy of the internal combustion engine and the frictional energy at the time of stopping into a charging current as a generator. Is. It is also efficient to use this inverter when converting electrical energy into kinetic energy during discharge.

主電源1を構成するアルカリ蓄電池には、ニッケル水素蓄電池やニッケルカドミウム蓄電池を選択することができる。正極はともに水酸化ニッケルを活物質として、適宜コバルト、コバルト化合物、軽希土類化合物、酸化亜鉛などが添加剤として加えられた上で、三次元金属多孔体に充填されるか、二次元金属多孔体に燒結されて構成される。負極はニッケル水素蓄電池の場合は水素吸蔵合金、ニッケルカドミウム蓄電池の場合はカドミウムを活物質として、炭素材料や各種結着剤が添加剤として加えられた上で、三次元金属多孔体に充填されるか、二次元金属多孔体に塗布されて構成される。この正極および負極を、ポリオレフィン不織布に代表されるセパレータを介して捲回あるいは積層することにより電極群を構成し、この電極群を円筒形あるいは矩形の電槽缶に挿入した後、アルカリ水溶液
からなる電解液を注入することにより、アルカリ蓄電池が構成される。
A nickel hydride storage battery or a nickel cadmium storage battery can be selected as the alkaline storage battery constituting the main power source 1. Both positive electrodes have nickel hydroxide as the active material, and cobalt, cobalt compounds, light rare earth compounds, zinc oxide, etc. are added as additives, and then filled into the three-dimensional metal porous body or the two-dimensional metal porous body. Constructed by sintering. The negative electrode is a hydrogen storage alloy in the case of a nickel metal hydride storage battery, and in the case of a nickel cadmium storage battery, cadmium is used as an active material, and a carbon material and various binders are added as additives and then filled into a three-dimensional metal porous body. Alternatively, it is configured by being applied to a two-dimensional metal porous body. An electrode group is formed by winding or laminating the positive electrode and the negative electrode through a separator typified by a polyolefin nonwoven fabric, and the electrode group is made of an alkaline aqueous solution after being inserted into a cylindrical or rectangular battery case. By injecting the electrolytic solution, an alkaline storage battery is configured.

以下、本発明の実施例について、詳細に説明する。なお本発明がこの実施例のみに限定されないことは云うまでもない。   Examples of the present invention will be described in detail below. Needless to say, the present invention is not limited to this embodiment.

(実施例1)
水酸化ニッケルを活物質とする長尺状の正極と、水素吸蔵合金を活物質とする長尺状の負極とを、スルホン化処理したポリプロピレン不織布からなるセパレータを介して捲回し、電極群を構成した。この電極群を内径30mm、長さ60mmの円筒型電槽缶に挿入し、水酸化カリウムを主体とする電解液を注入して封口し、公称容量6Ahのニッケル水素蓄電池を得た。このニッケル水素蓄電池を12セル直列に接続して主電源とした。
Example 1
A long positive electrode using nickel hydroxide as an active material and a long negative electrode using a hydrogen storage alloy as an active material are wound through a separator made of sulfonated polypropylene nonwoven fabric to form an electrode group did. This electrode group was inserted into a cylindrical battery case having an inner diameter of 30 mm and a length of 60 mm, and an electrolyte mainly composed of potassium hydroxide was injected and sealed to obtain a nickel hydride storage battery having a nominal capacity of 6 Ah. This nickel metal hydride storage battery was connected in series in 12 cells to serve as the main power source.

この主電源に対し、図3のように電圧センサ・記憶部および制御部を配列し、図1に示すパターンで、SOCBを20%、SOCTを80%、SOCCとSOCDとの差を30%に設定した。なおサイクル毎のSOCC(SOCD)の変動は5%とし、SOCCがSOCT(80%)に達するかSOCDがSOCB(20%)に達した時点で、変動の上下を反転させるように設定した。またSOC値は、初期状態においてあらゆる充電深さにおけるI−V値から作成した検量線((表1)参照)をベースに、充放電時のI−V値を測定してモニタリングする方法で百分率化し、制御に反映させた。この電源システムを実施例1とする。 For this main power supply, a voltage sensor / storage unit and a control unit are arranged as shown in FIG. 3, and in the pattern shown in FIG. 1, SOC B is 20%, SOC T is 80%, and the difference between SOC C and SOC D Was set to 30%. The fluctuation of SOC C (SOC D ) for each cycle is 5%, and when the SOC C reaches SOC T (80%) or the SOC D reaches SOC B (20%), the fluctuation is reversed up and down. Was set as follows. In addition, the SOC value is a percentage by a method of measuring and monitoring the IV value at the time of charging / discharging based on a calibration curve (see (Table 1)) created from the IV value at any charging depth in the initial state. And reflected in the control. This power supply system is referred to as Example 1.

(実施例2〜6)
SOCBを10、15、25、30および35%とした以外は、実施例1と同様に構成した電源システムを、実施例2〜6とする。
(Examples 2 to 6)
Examples 2 to 6 are power supply systems configured in the same manner as in Example 1 except that SOC B is set to 10, 15, 25, 30 and 35%.

(実施例7〜11)
SOCTを65、70、75、85および90%とした以外は、実施例1と同様に構成した電源システムを、実施例5〜7とする。
(Examples 7 to 11)
Except that the SOC T was set to 65, 70, 75, 85, and 90%, a power supply system configured in the same manner as in Example 1 is referred to as Examples 5 to 7.

(実施例12〜15)
SOCCとSOCDとの差を5、10、40および45%とした以外は、実施例1と同様に構成した電源システムを、実施例12〜15とする。
(Examples 12 to 15)
Except for the difference between SOC C and SOC D being 5, 10, 40, and 45%, power supply systems configured in the same manner as in Example 1 are referred to as Examples 12-15.

(実施例16)
図2に示すパターンで、SOCDを「SOCCとSOCDとの差が10〜40%の範囲内」かつ「SOCB未満とならない」の範囲内で適宜変化してもよいように緩和した以外は、実施例1と同様に構成した電源システムを、実施例16とする。
(Example 16)
In the pattern shown in FIG. 2, SOC D is relaxed so that it may be appropriately changed within the range of “the difference between SOC C and SOC D is within 10 to 40%” and “not less than SOC B ”. A power system configured in the same manner as in the first embodiment except for the above is referred to as a sixteenth embodiment.

(比較例)
図4の模式図に示すパターンで、SOC50%を中心にSOCCとSOCDとの差を30%とした以外は、実施例1と同様に構成した電源システムを、比較例とする。
(Comparative example)
In the pattern shown in the schematic diagram of FIG. 4, a power supply system configured in the same manner as in Example 1 except that the difference between SOC C and SOC D is 30% centering on SOC 50% is used as a comparative example.

以上の各電源システムを用いて、12Aの充放電電流で1000サイクルの充放電を行った。その後、以下に示す評価を行った。結果を(表2)に示す。   Using each of the above power supply systems, 1000 cycles of charge / discharge were performed with a charge / discharge current of 12A. Thereafter, the following evaluation was performed. The results are shown in (Table 2).

(メモリー効果)
メモリー効果の有無を見極めるため、1000サイクル終了時に各主電源をSOC=80%まで充電したときの充電終止電圧と、(表1)に示したSOC=80%と判定すべき電圧との差が450mVを超えて低下したものを充電側のメモリー効果が「顕著」、50
〜450mVのものを充電側のメモリー効果が「あり」、50mV未満のものを「なし」とした。また、放電側のメモリー効果については、1000サイクル終了時に各種電源をSOC=20%まで放電した後、充電側と同じ評価判定を行い、(表2)に記した。
(Memory effect)
In order to determine the presence or absence of the memory effect, the difference between the charge end voltage when each main power supply is charged to SOC = 80% at the end of 1000 cycles and the voltage to be determined as SOC = 80% shown in (Table 1) is The memory effect on the charging side is “significant” when the voltage drops below 450 mV, 50
A battery effect of ˜450 mV is “present” on the charging side, and a memory effect of less than 50 mV is “none”. Further, regarding the memory effect on the discharge side, after the various power sources were discharged to SOC = 20% at the end of 1000 cycles, the same evaluation judgment as that on the charge side was performed and described in (Table 2).

(電解液枯渇)
蓄電池の封口部にリトマス紙をあて、青色に変化した場合はガス発生による漏液があったものと判断した。即時に変色したものを「顕著」、1分以内に変色したものを「あり」、変色が見られなかったものを「なし」として(表2)に記した。
(Electrolyte depletion)
When the litmus paper was applied to the sealing part of the storage battery and the color changed to blue, it was judged that there was leakage due to gas generation. Those that immediately changed color were marked as “significant”, those that changed within 1 minute as “yes”, and those that did not show any change as “none”.

(電圧降下)
放電後の主電源の電圧をA、3日間放置後の主電源の電圧をBとし、A−Bが720mVを超えたものを「顕著」、300〜720mVのものを「あり」、300mV未満のものを「なし」として(表2)に記した。
(Voltage drop)
The voltage of the main power supply after discharge is A, and the voltage of the main power supply after being left for 3 days is B. When AB exceeds 720 mV, it is “significant”, when 300 to 720 mV is “present”, less than 300 mV The thing was described as (none) in (Table 2).

Figure 0004613781
Figure 0004613781

Figure 0004613781
従来の充放電制御方法に準じた比較例において顕著なメモリー効果が発生したのに対し、本発明の各実施例ではメモリー効果が抑制されていた。ただしSOCBがやや大きい実施例6や、SOCTがやや小さい実施例7では、比較例ほどではないものの深い充放電ができなかったことに起因するメモリー効果が見られた。またSOCBがやや小さい実施例2では比較的顕著な電圧降下が見られる一方、SOCTがやや大きい実施例11では比較的顕著な電解液の枯渇(漏液)が見られた。よってSOCBの好適範囲は15〜30%、
SOCTの好適範囲は70〜85%であることがわかる。
Figure 0004613781
In the comparative example according to the conventional charge / discharge control method, a remarkable memory effect occurred, whereas in each example of the present invention, the memory effect was suppressed. However, in Example 6 having a slightly higher SOC B and Example 7 having a slightly lower SOC T , a memory effect due to the fact that deep charge / discharge could not be achieved although not as much as the comparative example. Also while the SOC B slightly smaller in Example 2, a relatively significant voltage drop is observed, SOC T louder Example 11 relatively pronounced depletion of electrolyte in (leakage) was observed. Therefore, the preferred range of SOC B is 15-30%,
It can be seen that the preferred range of SOC T is 70-85%.

一方、SOCCとSOCDとの差が5%である実施例12は、SOCBからSOCTに至るのに多くのサイクル数を費やしたために、結果的に比較的軽度ではあるがメモリー効果を発生させるに至った。よってSOCCとSOCDとの差は10%以上であるのが好ましい。なお(表2)には評価結果として記載していないが、SOCCとSOCDとの差を45%に設定した実施例15は、放電中は回生電流の受け入れ(充電)を長時間に亘って拒絶する一方、充電中は電気エネルギーの瞬時的供給(放電)を長時間に亘って拒絶せざるを得ないので、充放電を頻繁に繰り返す本発明の充放電システムの主旨に反することになる。よってSOCCとSOCDとの差の好適範囲は、10〜40%であることがわかる。 On the other hand, Example 12 difference between the SOC C and SOC D is 5%, in order to spent large number of cycles to reach the SOC B to SOC T, resulting in some relatively mild, the memory effect It came to generate. Therefore, the difference between SOC C and SOC D is preferably 10% or more. Although not shown as an evaluation result in (Table 2), Example 15 in which the difference between SOC C and SOC D was set to 45% is that regenerative current is accepted (charged) for a long time during discharging. On the other hand, during charging, the instantaneous supply (discharge) of electrical energy must be rejected over a long period of time, which is contrary to the gist of the charge / discharge system of the present invention in which charge / discharge is frequently repeated. . Therefore, it can be seen that the preferable range of the difference between SOC C and SOC D is 10 to 40%.

さらに実施例16の結果から、SOCDを「SOCCとSOCDとの差が10〜40%の範囲内」かつ「SOCB未満とならない」の範囲内で適宜変化させても、本発明の効果は十分に得られることがわかった。 Further, from the results of Example 16, even when SOC D is appropriately changed within the range where “the difference between SOC C and SOC D is within a range of 10 to 40%” and “not less than SOC B ”, It was found that the effect was sufficiently obtained.

本発明によればメモリー効果がなく、かつ過充電および過放電を回避できる電源システムが具現化できるので、アルカリ蓄電池の利点であるタフユース(HEV、家庭用コージェネ、産業用)用途での利用可能性は高く、かつその効果は高いと考えられる。   According to the present invention, a power supply system that does not have a memory effect and that can avoid overcharge and overdischarge can be realized. Therefore, it can be used for tough use (HEV, household cogeneration, industrial), which is an advantage of alkaline storage batteries. Is high and the effect is considered high.

本発明の充放電制御方法の一例を示す模式図The schematic diagram which shows an example of the charging / discharging control method of this invention 本発明の充放電制御方法の別の例を示す模式図The schematic diagram which shows another example of the charging / discharging control method of this invention 本発明の電源システムの一例を示す模式図The schematic diagram which shows an example of the power supply system of this invention 従来の充放電制御方法の態様を示す模式図Schematic diagram showing aspects of a conventional charge / discharge control method

符号の説明Explanation of symbols

1 主電源
2 電圧センサ
3 記憶部
4 制御部

1 Main power source 2 Voltage sensor 3 Storage unit 4 Control unit

Claims (3)

アルカリ蓄電池を、放電終止充電深さSOCと充電終止充電深さSOCとの間で使用し、前記SOCおよびSOCを、下限充電深さSOCと上限充電深さSOCとの間で順次変動させるアルカリ蓄電池の充放電制御方法において、
1サイクル目は前記SOC を前記SOC と同じ値に設定して放電を規制し、2サイクル目は、前記SOC とSOC との差は変えないで、前記SOC を1サイクル目のSOC よりも小さい値に設定し、以後のサイクルでは、この設定変更を繰返すことで、前記SOC を小さくし、前記SOC が前記SOC と同じ値になった時点以後のサイクルでは、前記SOC と同じ値になるまで、前記SOC を大きくするという複数サイクルで順次変動させることにより、前記SOC とSOC との間で万遍なく充放電が繰返されることを特徴とする、アルカリ蓄電池の充放電制御方法。
An alkaline storage battery is used between the end-of-discharge charge depth SOC D and the end-of-charge charge depth SOC C, and the SOC D and SOC C are between the lower limit charge depth SOC B and the upper limit charge depth SOC T. in in method of controlling charge and discharge of the alkaline storage battery Ru is sequentially varied,
In the first cycle, the SOC C is set to the same value as the SOC T, and the discharge is restricted. In the second cycle , the difference between the SOC C and the SOC D is not changed, and the SOC C is changed to the first cycle. It is set to a value smaller than SOC C , and in the subsequent cycles, this setting change is repeated to reduce the SOC C , and in cycles after the time point when the SOC D becomes the same value as the SOC B , until the same value as the SOC T, by sequentially varied in multiple cycles of increasing the SOC C, characterized by evenly charging and discharging are repeated between the SOC B and SOC T, alkali Storage battery charge / discharge control method.
前記SOCは15〜30%、前記SOCは70〜85%であることを特徴とする、請求項1記載のアルカリ蓄電池の充放電制御方法。 The charge / discharge control method for an alkaline storage battery according to claim 1, wherein the SOC B is 15 to 30% and the SOC T is 70 to 85%. 前記SOCとSOCとの差が10〜40%の範囲内であることを特徴とする、請求項1記載のアルカリ蓄電池の充放電制御方法。 The charge / discharge control method for an alkaline storage battery according to claim 1, wherein a difference between the SOC C and the SOC D is in a range of 10 to 40%.
JP2005290944A 2005-10-04 2005-10-04 Charge / discharge control method and power supply system for alkaline storage battery Expired - Fee Related JP4613781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005290944A JP4613781B2 (en) 2005-10-04 2005-10-04 Charge / discharge control method and power supply system for alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005290944A JP4613781B2 (en) 2005-10-04 2005-10-04 Charge / discharge control method and power supply system for alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2007104803A JP2007104803A (en) 2007-04-19
JP4613781B2 true JP4613781B2 (en) 2011-01-19

Family

ID=38031180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005290944A Expired - Fee Related JP4613781B2 (en) 2005-10-04 2005-10-04 Charge / discharge control method and power supply system for alkaline storage battery

Country Status (1)

Country Link
JP (1) JP4613781B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196938B2 (en) * 2007-09-28 2013-05-15 三洋電機株式会社 Alkaline storage battery system
JP5241188B2 (en) * 2007-09-28 2013-07-17 三洋電機株式会社 Alkaline storage battery system
JP5334498B2 (en) * 2008-02-25 2013-11-06 三洋電機株式会社 Alkaline storage battery
JP5326679B2 (en) * 2009-03-09 2013-10-30 トヨタ自動車株式会社 Lithium ion secondary battery charge / discharge control method, secondary battery system, and hybrid vehicle
JP5405167B2 (en) * 2009-03-26 2014-02-05 三洋電機株式会社 Alkaline storage battery system
JP5415631B2 (en) 2011-01-06 2014-02-12 パナソニック株式会社 Charge / discharge control method and power supply system for alkaline storage battery
JP2013189026A (en) * 2012-03-12 2013-09-26 Hino Motors Ltd Control device, hybrid vehicle, and control method and program
US9859531B2 (en) * 2015-02-06 2018-01-02 Ovonic Battery Company, Inc. Alkaline and non-aqueous proton-conducting pouch-cell batteries
CN105799536B (en) * 2016-05-06 2018-11-02 重庆长安汽车股份有限公司 A kind of power battery eliminates the control method and system of memory effect
CN106042961B (en) * 2016-06-15 2018-06-05 重庆长安汽车股份有限公司 A kind of passive balance control method of power battery and system
CN110550137A (en) * 2019-08-12 2019-12-10 刘昌国 Extended range electric vehicle, power supply system and power supply charging and discharging control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069608A (en) * 1999-08-31 2001-03-16 Honda Motor Co Ltd Battery controller for hybrid car
JP2004166350A (en) * 2002-11-11 2004-06-10 Toyota Motor Corp Battery controller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001069608A (en) * 1999-08-31 2001-03-16 Honda Motor Co Ltd Battery controller for hybrid car
JP2004166350A (en) * 2002-11-11 2004-06-10 Toyota Motor Corp Battery controller

Also Published As

Publication number Publication date
JP2007104803A (en) 2007-04-19

Similar Documents

Publication Publication Date Title
JP4613781B2 (en) Charge / discharge control method and power supply system for alkaline storage battery
KR101454832B1 (en) Apparatus for Estimating Depth Of Discharge of Secondary Battery and Method thereof
JP5109619B2 (en) Battery pack system and charge / discharge control method
JP5415631B2 (en) Charge / discharge control method and power supply system for alkaline storage battery
US20110199055A1 (en) Methods for charging metal-air cells
JP2010011708A (en) Charge control method, discharge control method and charge/discharge system of battery pack
KR20140003325A (en) Battery pack having linear voltage profile, and soc algorithim applying to the battery pack
JP5326679B2 (en) Lithium ion secondary battery charge / discharge control method, secondary battery system, and hybrid vehicle
JP2009089569A (en) Power supply system
JP2009080939A (en) Power source system and control method of battery assembly
JP2012104239A (en) Lithium ion battery electricity storage amount estimation method, lithium ion battery electricity storage amount estimation program, lithium ion battery electricity storage amount correction method, and lithium ion battery electricity storage amount correction program
US20150180092A1 (en) Method and device for adjusting battery module
JP2017195732A (en) Storage battery system
JP2011130534A (en) Power supply device for vehicle
JP5137603B2 (en) Charge / discharge control method and charge / discharge control system for alkaline storage battery
US7353894B2 (en) Sealed nickel-metal hydride storage cells and hybrid electric having the storage cells
JP6575536B2 (en) Lead acid battery
JP2008113545A (en) Discharge control unit
JP2008159298A (en) Power source system
JPWO2008129698A1 (en) Power supply system and battery pack charging method
WO2021100112A1 (en) Dc power supply system
WO2013105139A1 (en) Method for controlling and device for controlling secondary battery
JP2008259260A (en) Charging method of power supply
Martin et al. Decrystallization with high current pulses technique for capacity restoration of industrial nickel-cadmium battery
JP2011233471A (en) Charging and discharging control method and system of alkali storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees