JP4606115B2 - Multilayer substrate and manufacturing method thereof - Google Patents

Multilayer substrate and manufacturing method thereof Download PDF

Info

Publication number
JP4606115B2
JP4606115B2 JP2004305633A JP2004305633A JP4606115B2 JP 4606115 B2 JP4606115 B2 JP 4606115B2 JP 2004305633 A JP2004305633 A JP 2004305633A JP 2004305633 A JP2004305633 A JP 2004305633A JP 4606115 B2 JP4606115 B2 JP 4606115B2
Authority
JP
Japan
Prior art keywords
crystallized glass
multilayer substrate
firing
glass
shrinkage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004305633A
Other languages
Japanese (ja)
Other versions
JP2006120779A (en
Inventor
辰治 古瀬
誠一郎 平原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004305633A priority Critical patent/JP4606115B2/en
Publication of JP2006120779A publication Critical patent/JP2006120779A/en
Application granted granted Critical
Publication of JP4606115B2 publication Critical patent/JP4606115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、積層成形体、多層基板及びその製造方法に関するものであり、特に、強度が高く、寸法精度に優れ、回路基板に適した多層基板及びその製造方法に関する。   The present invention relates to a laminated molded body, a multilayer substrate, and a method for producing the same, and more particularly, to a multilayer substrate having high strength, excellent dimensional accuracy, and suitable for a circuit board, and a method for producing the same.

従来より、セラミックスを絶縁基板とする多層基板が用いられているが、近年、多層基板に対して種々の機能の付加が求められ、異種セラミックスを組み合わせた多層基板が提案されている。例えば、強度の弱いセラミック絶縁層を強度の強い絶縁層で補強したり、多層基板の中に容量値の高いキャパシタを内臓するために、低誘電率のセラミック絶縁層中に高誘電率のセラミック絶縁層などを積層した多層基板が知られている。   Conventionally, a multilayer substrate using ceramics as an insulating substrate has been used, but in recent years, addition of various functions to the multilayer substrate has been demanded, and a multilayer substrate combining different ceramics has been proposed. For example, in order to reinforce a weak ceramic insulating layer with a strong insulating layer or to incorporate a capacitor with a high capacitance value in a multilayer substrate, a high dielectric constant ceramic insulating layer is incorporated in a low dielectric constant ceramic insulating layer. A multilayer substrate in which layers are laminated is known.

このような多層基板では、セラミックスのクラックやデラミネーション(層間剥離)を防止するために、異種のセラミック絶縁層間で焼成収縮率および熱膨張係数を一致させるように絶縁層材料の特性を選択、制御することが通常行われている。   In such a multilayer substrate, in order to prevent ceramic cracks and delamination (delamination), the characteristics of the insulating layer material are selected and controlled so that the firing shrinkage rate and thermal expansion coefficient match between different types of ceramic insulating layers. It is usually done.

しかし、近年においては、多層基板の低コスト化や、多層基板上に形成された電極の寸法精度向上のため、焼成時のX−Y方向における多層基板の収縮率を小さくすることが要求されており、上記従来の多層基板では、この要求を達成することができなかった。   However, in recent years, in order to reduce the cost of the multilayer substrate and improve the dimensional accuracy of the electrodes formed on the multilayer substrate, it is required to reduce the shrinkage rate of the multilayer substrate in the XY direction during firing. Therefore, this requirement cannot be achieved by the conventional multilayer substrate.

このような要求を満足するため、近年では、積層体の表面に、該積層体の焼成温度では焼結しない未焼成絶縁層によって拘束し、厚み方向にのみ収縮させた後、未焼成絶縁層を取り除く方法が開発されたが(例えば、特許文献1参照)、未焼成絶縁層によって収縮を抑制する特許文献1の方法では、焼成終了後に未焼成絶縁層を取り除く必要があるために、製造工程が増える、あるいは複雑になるとともに、製造コストが高くなった。   In order to satisfy such requirements, in recent years, the surface of the laminate is constrained by a non-sintered insulating layer that is not sintered at the firing temperature of the laminate, and after shrinking only in the thickness direction, Although a method of removing has been developed (see, for example, Patent Document 1), the method of Patent Document 1 in which shrinkage is suppressed by an unfired insulating layer requires removal of the unfired insulating layer after completion of firing. Increased or complicated, and the manufacturing cost increased.

そこで、焼成収縮開始温度の異なる2種のセラミック成形体を積層して同時焼成することによって焼成の収縮による寸法変化を抑制することが提案された(例えば、特許文献2参照)。   Accordingly, it has been proposed to suppress dimensional changes due to shrinkage of firing by laminating two types of ceramic molded bodies having different firing shrinkage start temperatures and firing them simultaneously (for example, see Patent Document 2).

ところが、特許文献2に記載の製造方法では、寸法変化の抑制が可能ではあるものの、焼成収縮開始温度のみを制御するため、収縮抑制の挙動にばらつきが大きく、また、収縮率自体も大きく、焼成における寸法精度がばらつくという問題があった。   However, in the manufacturing method described in Patent Document 2, although the dimensional change can be suppressed, only the firing shrinkage start temperature is controlled, so that the behavior of shrinkage suppression is large, and the shrinkage rate itself is large. There has been a problem that the dimensional accuracy in the case varies.

そこで、結晶化ガラス粉末及びセラミック粉末を含む2種類の絶縁シートを、一方に含まれる結晶化ガラス粉末の結晶化温度が、他方に含まれる結晶化ガラス粉末の軟化点よりも低くなるように作製し、これらを積層した積層体を同時焼成して多層基板を作製する方法が提案されており(例えば、特許文献3参照)、これによって、寸法精度に優れ、平面方向の収縮率が0に近く、その収縮率のばらつきが小さい多層基板を作製している。
特許第2554415号 特開平2001−15875号公報 特願2003−418485
Therefore, two types of insulating sheets containing crystallized glass powder and ceramic powder are prepared so that the crystallization temperature of the crystallized glass powder contained in one is lower than the softening point of the crystallized glass powder contained in the other. In addition, a method has been proposed in which a multilayer substrate is manufactured by simultaneously firing a laminate obtained by laminating these layers (see, for example, Patent Document 3), whereby the dimensional accuracy is excellent and the shrinkage in the plane direction is close to zero. A multilayer substrate with a small variation in shrinkage rate is manufactured.
Japanese Patent No. 2554415 Japanese Patent Laid-Open No. 2001-15875 Japanese Patent Application No. 2003-418485

しかしながら、特許文献2に記載の多層基板は、2種類の絶縁シートが異なる温度で収縮するため、お互いに収縮を制限することから、寸法精度が大幅に改善されたものの、磁器の強度が低く、落下時やリフローによる実装時にクラックが発生し、最悪の場合には破壊するという問題があった。   However, in the multilayer substrate described in Patent Document 2, since the two kinds of insulating sheets shrink at different temperatures, the shrinkage is limited to each other. Therefore, although the dimensional accuracy is greatly improved, the strength of the porcelain is low, There was a problem that cracks occurred when dropped or mounted by reflow, and in the worst case, they were broken.

従って、本発明は、基板強度を改善した寸法精度の高い多層基板及びその製造方法を提供することを目的とするものである。   Accordingly, an object of the present invention is to provide a multilayer substrate with improved substrate strength and high dimensional accuracy, and a method for manufacturing the same.

本発明は、焼成収縮開始温度が異なる少なくとも2種のガラス粉末を用いているため、お互いに平面方向の収縮を抑制するため、高寸法精度を改善するとともに、ガラス粉末の結晶化度を高めることにより、焼成後の積層体の抗折強度を向上させることができるという新規な知見に基づくもので、焼成時の寸法精度を改善し、高強度の多層基板を実現したものである。   Since the present invention uses at least two kinds of glass powders having different firing shrinkage start temperatures, in order to suppress the shrinkage in the planar direction, the high dimensional accuracy is improved and the crystallinity of the glass powder is increased. This is based on the novel knowledge that the bending strength of the laminated body after firing can be improved, which improves the dimensional accuracy during firing and realizes a high-strength multilayer substrate.

即ち、本発明の多層基板は、第1の結晶化ガラスを含む第1の絶縁層と、前記第1の結晶化ガラスとは結晶化温度が異なる第2の結晶化ガラスを含む第2の絶縁層とを積層してなるセラミック積層基板の表面及び内部に電極を配設してなり、前記結晶化ガラスの結晶化度がそれぞれ80%以上であり、前記第1の結晶化ガラスの結晶化温度が、前記第2の結晶化ガラスの軟化点よりも低く、前記第1の結晶化ガラスの熱膨張係数と、第2の結晶化ガラスの熱膨張係数との差が2×10 −6 /℃以下であることを特徴とする。
That is, the multilayer substrate of the present invention includes a first insulating layer containing a first crystallized glass and a second insulation containing a second crystallized glass having a crystallization temperature different from that of the first crystallized glass. will be a layer disposed surface and inside the electrode of the ceramic laminated substrate formed by laminating state, and are a crystallinity of 80% or more each of the crystallized glass, the crystallization of the first crystallized glass The temperature is lower than the softening point of the second crystallized glass, and the difference between the coefficient of thermal expansion of the first crystallized glass and the coefficient of thermal expansion of the second crystallized glass is 2 × 10 −6 / ℃ characterized der Rukoto below.

記第1の結晶化ガラスの結晶化温度が、前記第2の結晶化ガラスの軟化点よりも低いことにより、前記第1の絶縁層が前記第2の絶縁層より先に焼結が開始し、かつ終了するため、密着した面で互いに収縮を抑制しあうことで高寸法精度をより得やすく、反りをより低減できる。
Before SL crystallization temperature of the first crystallized glass, the second more low this than the softening point of the crystallized glass, sintering the first dielectric layer is earlier than the second insulating layer Since this starts and ends, high dimensional accuracy can be more easily obtained and warpage can be further reduced by suppressing the shrinkage between the closely contacting surfaces.

前記第1の結晶化ガラスの熱膨張係数と、前記第2の結晶化ガラスの熱膨張係数との差が2×10−6/℃以下であることにより、焼成時の層間応力の発生を抑制するため、相間剥離の発生を抑制することがより容易になる。
The thermal expansion coefficient of the first crystallized glass, the occurrence of the second difference between the thermal expansion coefficient of the crystallized glass is more and this is 2 × 10 -6 / ° C. or less, during firing interlayer stress Since it suppresses, it becomes easier to suppress generation | occurrence | production of interphase peeling.

また、さらに前記第1及び第2とは異なる結晶化ガラスを含む第3の絶縁層を含むことが好ましい。これにより、さらに寸法制度を高めることができる。   Further, it is preferable that a third insulating layer containing crystallized glass different from the first and second is included. Thereby, a dimension system can be raised further.

前記絶縁層が、それぞれガラス粉末を30質量%以上含むことが好ましい。これにより、ガラスの軟化流動により、低温焼結が容易になる。   The insulating layers preferably each contain 30% by mass or more of glass powder. This facilitates low temperature sintering due to the softening flow of the glass.

前記結晶化ガラスが、ディオプサイド、ハーディストナイト、セルシアン、コージェライト、アノーサイト、ガーナイト、ウィレマイト、スピネル、ムライト、フォルステライト及びスーアナイトのうち少なくとも1種を含むことが好ましい。これにより、高強度化と誘電損失の低減が容易になる。   The crystallized glass preferably contains at least one of diopside, hardistonite, celsian, cordierite, anorthite, garnite, willemite, spinel, mullite, forsterite and sourite. This facilitates increasing the strength and reducing the dielectric loss.

また、本発明の多層基板の製造方法は、第1の結晶化ガラスからなる第1のガラス粉末を含む第1のグリーンシート及び前記第1の結晶化ガラスの結晶化温度よりも結晶化温度及び軟化点が高い第2の結晶化ガラスからなる第2のガラス粉末を含み、前記第1グリーンシートよるも焼成収縮開始温度が高い第2のグリーンシートを作製する成形工程と、前記第1及び第2のグリーンシートの少なくとも一部の表面及び内部に導体ペーストを用いて導体パターンを形成する導体形成工程と、前記導体パターンが形成されたものを含む前
記第1及び第2のグリーンシートを積層し、積層体を作製する積層工程と、該積層体を焼成して、前記第1及び第2の結晶化ガラスの結晶化度を80%以上にするとともに、前記第1及び第2の結晶化ガラスの熱膨張係数の差を2×10 −6 /℃以下とする焼成工程を具備することを特徴とする。
A method for manufacturing a multilayer substrate of the present invention, the first glass powder including first the green sheet and the first crystallization temperature than the crystallization temperature of the crystallized glass consisting of a first crystallized glass and wherein the second glass powder consisting of high softening point second crystallized glass, a forming step of the first even the firing shrinkage initiation temperature by the green sheets to produce a high second green sheet, the first and before including a conductor forming step that forms the shape of the conductive pattern by using at least a part of the surface and inside the conductor paste of the second green sheet, what the conductor pattern is formed
Laminating the serial first and second green sheets, and laminating steps to produce a product layer body, and firing the laminate, the crystallinity of the first and second crystallized glass to 80% or more In addition, the method includes a firing step in which a difference in thermal expansion coefficient between the first and second crystallized glasses is 2 × 10 −6 / ° C. or less .

このような製造方法を採用することにより、焼成時におけるグリーンシートの平面方向の収縮を抑制して焼成収縮ばらつきを低減して寸法制度を高め、且つ各グリーンシートに高結晶化度の結晶化ガラスを含ませることにより、強度を改善することができる。   By adopting such a manufacturing method, it is possible to suppress shrinkage in the planar direction of the green sheet during firing, reduce variation in firing shrinkage, increase the dimensional system, and crystallized glass with high crystallinity on each green sheet. By including, strength can be improved.

前記第1の結晶化ガラスの結晶化温度が、前記第2の結晶化ガラスの軟化点よりも低いことにより、前記第1のグリーンシートの層が前記第2のグリーンシートの層より先に焼結が開始し、かつ終了するため、密着した面で互いに収縮を抑制しあうことで高寸法精度をより得やすく、反りをより低減できる。
The crystallization temperature of the first crystallized glass, the second more low this than the softening point of the crystallized glass, before the layer of the first green layer of the sheet is the second green sheet Since the sintering starts and ends at the same time, it is easier to obtain high dimensional accuracy and warpage can be further reduced by suppressing the shrinkage between the closely contacting surfaces.

前記第1の結晶化ガラスと前記第2の結晶化ガラスとの熱膨張係数の差が、2×10−6/℃以下であることにより、焼成時の層間応力の発生を抑制するため、相間剥離の発生を抑制することがより容易になる。
Since the difference in thermal expansion coefficient between the second crystallized glass and the first crystallized glass, more and 2 × 10 -6 / ° C. or less this, to suppress the occurrence of sintering during the interlayer stress, It becomes easier to suppress the occurrence of phase separation.

前記第1及び第2のグリーンシートとして、それぞれ前記第1及び第2のガラス粉末を30質量%以上含むものを用いることが好ましい。これにより、焼結性向上る。
As the first and second green sheets, it is preferable to use those each comprising the first and second glass powder 30% by weight or more. As a result, it improves the sintering property.

前記焼成工程後に、前記第1及び第2の結晶化ガラスが、ディオプサイド、ハーディストナイト、セルシアン、コージェライト、アノーサイト、ガーナイト、ウィレマイト、スピネル、ムライト、フォルステライト及びスーアナイトのうち少なくとも1種を形成するものであることが好ましい。これにより、高強度化が容易になる。 After the firing step, the first and second crystallized glass, diopside, hardystonite, celsian, cordierite, anorthite, gahnite, willemite, spinel, mullite, at least one of forsterite and Suanaito it is preferable that form the. This makes it easy to increase the strength.

本発明は、高強度で寸法制度の高い多層基板に関するものであり、第1の結晶化ガラスを含む第1の絶縁層と、前記第1の結晶化ガラスとは結晶化温度が異なる第2の結晶化ガラスを含む第2の絶縁層と、を積層してなるセラミック積層基板の表面及び内部に電極を配設したものである。   The present invention relates to a multilayer substrate having a high strength and a high dimensional system. The first insulating layer including the first crystallized glass and the first crystallized glass have different crystallization temperatures. Electrodes are provided on the surface and inside of a ceramic laminated substrate formed by laminating a second insulating layer containing crystallized glass.

以下に、本発明の多層基板について、具体的に図を用いて説明する。   Hereinafter, the multilayer substrate of the present invention will be specifically described with reference to the drawings.

図1は、本発明の一実施様態である多層基板の構造の概略断面図である。図1によれば、多層基板10は、セラミック絶縁層1a〜1gが積層されたセラミック絶縁基板1と、セラミック絶縁基板1の表面及び裏面に形成された表面導体層2、セラミック絶縁基板1の内部に形成された内部導体層3、内部導体層3間の電気的接続又は表面導体層2と内部導体層3の電気的接続を行うためのビアホール導体4を有する。   FIG. 1 is a schematic sectional view of the structure of a multilayer substrate according to an embodiment of the present invention. According to FIG. 1, the multilayer substrate 10 includes a ceramic insulating substrate 1 on which ceramic insulating layers 1 a to 1 g are laminated, a surface conductor layer 2 formed on the front and back surfaces of the ceramic insulating substrate 1, and the interior of the ceramic insulating substrate 1. The inner conductor layer 3 is formed on the inner conductor layer 3, and the via-hole conductor 4 is used for electrical connection between the inner conductor layers 3 or between the surface conductor layer 2 and the inner conductor layer 3.

本発明によれば、多層基板10は、結晶化温度が異なる2種類以上のガラス粉末を含み、それらの粉末の焼成収縮開始温度が異なるグリーンシートをそれぞれ複数ずつ積層した積層体を焼成してなり、例えば、図1において、後で詳述するように、多層基板10を構成する絶縁層1a〜1gのうち、絶縁層1a、1gとなるグリーンシートの収縮終了温度を、他の絶縁層1b〜1fとなるグリーンシートとの収縮開始温度よりも低くなるようにすれば良い。また、絶縁層1a、1gに含まれるグリーンシートの収縮開始温度を、他の絶縁層1b〜1fに含まれるグリーンシートの収縮終了温度よりも高くなるようにしても良い。   According to the present invention, the multilayer substrate 10 includes two or more kinds of glass powders having different crystallization temperatures, and is obtained by firing a laminate in which a plurality of green sheets having different firing shrinkage start temperatures are laminated. For example, in FIG. 1, as will be described in detail later, among the insulating layers 1 a to 1 g constituting the multilayer substrate 10, the shrinkage end temperatures of the green sheets to be the insulating layers 1 a and 1 g are set to the other insulating layers 1 b to 1 g. What is necessary is just to make it become lower than shrinkage | contraction start temperature with the green sheet used as 1f. Moreover, you may make it the shrinkage | contraction start temperature of the green sheet contained in the insulating layers 1a and 1g become higher than the shrinkage end temperature of the green sheet contained in the other insulating layers 1b-1f.

絶縁層1a、1g、及び絶縁層1b〜1fに含まれるガラスの結晶化度については、80%以上とすることが重要であり、積層体の抗折強度の改善が容易になる。とりわけ、より高強度化とするためには、各絶縁層に含まれる全てのガラスの結晶化度を85%以上、更には90%以上とすることが望ましい。   The crystallinity of the glass contained in the insulating layers 1a and 1g and the insulating layers 1b to 1f is important to be 80% or more, and the bending strength of the laminate is easily improved. In particular, in order to achieve higher strength, it is desirable that the crystallinity of all the glass contained in each insulating layer is 85% or more, and more preferably 90% or more.

セラミック積層基板の抗折強度は、落下時やリフローによる実装時等に磁器に応力や衝撃が加わった際にクラックが発生することを防止するため、250MPa以上であることが重要であり、製造時の不良率を低減し、製品の安定供給を図るために、特に270MPa以上、更には300MPa以上、より好適には320MPa以上であることが望ましい。   It is important that the bending strength of the ceramic multilayer substrate is 250 MPa or more in order to prevent cracks from being generated when stress or impact is applied to the porcelain during dropping or reflow mounting. In particular, in order to reduce the defective rate and to stably supply the product, it is desirable that the pressure be 270 MPa or more, further 300 MPa or more, and more preferably 320 MPa or more.

絶縁層1a、1gに含まれる結晶化ガラスの結晶化温度が、他の絶縁層1b〜1fに含まれる結晶化ガラスの結晶化ガラスの軟化点よりも低いことが好ましい。このような構成を採用すれば、焼成時の収縮率を3%以下にすることが容易となり、寸法制度を高めることを容易に達成することができる。   It is preferable that the crystallization temperature of the crystallized glass contained in the insulating layers 1a and 1g is lower than the softening point of the crystallized glass of the crystallized glass contained in the other insulating layers 1b to 1f. By adopting such a configuration, it becomes easy to reduce the shrinkage rate during firing to 3% or less, and it is possible to easily achieve an increase in the dimensional system.

即ち、絶縁層1a、1gとなるグリーンシートの収縮終了温度が、他の絶縁層1b〜1fとなるグリーンシートの収縮開始温度よりも低くなり、絶縁層1a、1gは絶縁層1b〜1fよりも低温で収縮が開始する。その際に、2種以上の結晶化ガラスのうち、1種の結晶化温度が、他の1種の結晶化ガラスの軟化点よりも低いため、絶縁層1b〜1fが収縮開始するときには、絶縁層1a、1gの焼成収縮はほとんど終了しており(最終焼成体積収縮量の97%以上)、お互いのX−Y方向(グリーンシートの平面方向)の収縮を抑制し合うことが可能となり、焼成の再現性も向上できる。とりわけ、X−Y方向の収縮をより効果的に抑制し、且つ再現性をより向上するために、一方のガラスの軟化点と他方のガラスの結晶化温度の差が、5℃以上、特に10℃以上、更には15℃以上であることが望ましい。   That is, the shrinkage end temperature of the green sheets to be the insulating layers 1a and 1g is lower than the shrinkage start temperature of the green sheets to be the other insulating layers 1b to 1f, and the insulating layers 1a and 1g are lower than the insulating layers 1b to 1f. Shrinkage starts at low temperatures. At that time, since the crystallization temperature of one of the two or more types of crystallized glass is lower than the softening point of the other one type of crystallized glass, the insulating layers 1b to 1f start to shrink. The firing shrinkage of the layers 1a and 1g is almost finished (97% or more of the final firing volume shrinkage amount), and it becomes possible to suppress shrinkage in the XY directions (plane direction of the green sheet) of each other, and firing. Reproducibility can be improved. In particular, in order to more effectively suppress shrinkage in the XY direction and further improve reproducibility, the difference between the softening point of one glass and the crystallization temperature of the other glass is 5 ° C. or more, particularly 10 It is desirable that the temperature be at least 15 ° C.

セラミック積層基板に含まれる2種の結晶化ガラスの熱膨張係数の差は、2×10−6/℃以下であることが好ましい。例えば、図1において、絶縁層1a、1gに含まれる結晶化ガラスの熱膨張係数と、絶縁層1b〜1fに含まれる結晶化ガラスの熱膨張係数の差を2×10−6/℃以下、特に1×10−6/℃以下にすることが望ましい。これにより、最高焼成温度からの冷却時において、熱収縮の差が生じて絶縁層と異種材料絶縁層の界面にクラックやデラミネーションの発生をより効果的に抑制することができる。 The difference in thermal expansion coefficient between the two types of crystallized glass contained in the ceramic laminated substrate is preferably 2 × 10 −6 / ° C. or less. For example, in FIG. 1, the difference between the thermal expansion coefficient of the crystallized glass contained in the insulating layers 1a and 1g and the thermal expansion coefficient of the crystallized glass contained in the insulating layers 1b to 1f is 2 × 10 −6 / ° C. or less. In particular, it is desirable to set it to 1 × 10 −6 / ° C. or less. Thereby, at the time of cooling from the maximum firing temperature, a difference in thermal shrinkage occurs, and the generation of cracks and delamination at the interface between the insulating layer and the dissimilar material insulating layer can be more effectively suppressed.

本発明によれば、絶縁層1a、1g及び絶縁層1b〜1fの2種の絶縁層が、いずれも結晶化ガラスを30質量%以上、特に35質量%以上、更には40質量%以上含むことが焼結性を高める点において好ましい。   According to the present invention, the insulating layers 1a and 1g and the insulating layers 1b to 1f each contain 30% by mass or more, particularly 35% by mass or more, and further 40% by mass or more of crystallized glass. Is preferable in terms of enhancing the sinterability.

セラミック積層基板を構成する各絶縁層1a〜1gの主成分であるセラミックスとして、Al,SiO,MgTiO,CaZrO,CaTiO,MgSiO,BaTi,ZrTiO,SrTiO,BaTiO,TiO,AlN,SiNなどを例示できる。 As the ceramic is a major component of the insulating layer 1a~1g constituting the ceramic multilayer substrate, Al 2 O 3, SiO 2 , MgTiO 3, CaZrO 3, CaTiO 3, Mg 2 SiO 4, BaTi 4 O 9, ZrTiO 4, Examples include SrTiO 3 , BaTiO 3 , TiO 2 , AlN, SiN, and the like.

また、各絶縁層1a〜1gに含まれる結晶化ガラスが、ディオプサイド、ハーディストナイト、セルシアン、コージェライト、アノーサイト、ガーナイト、ウィレマイト、スピネル、ムライト、フォルステライト及びスーアナイトから選ばれる1種以上であることが、多層基板の曲げ強度をより高め、誘電損失をより小さくする点で望ましい。   In addition, the crystallized glass contained in each of the insulating layers 1a to 1g is at least one selected from diopside, hardistonite, celsian, cordierite, anorsite, garnite, willemite, spinel, mullite, forsterite and suurite. It is desirable that the bending strength of the multilayer substrate is further increased and the dielectric loss is further decreased.

結晶化ガラスを採用し、上記のセラミック結晶を析出させることにより、1000℃以下の温度で焼成可能とすることが容易となり、その結果、導体層としてCu,Ag,Alなどの低抵抗導体を用いることができ、また、低誘電率化が容易となり、高速伝送化に適す。   By adopting crystallized glass and precipitating the above ceramic crystal, it becomes easy to be fired at a temperature of 1000 ° C. or lower, and as a result, a low resistance conductor such as Cu, Ag, Al or the like is used as the conductor layer. In addition, it is easy to reduce the dielectric constant and is suitable for high-speed transmission.

なお、以上のように2種の絶縁層の組み合わせについて説明したが、絶縁層は3種でも、更には4種以上であっても良く、絶縁層の種々組成を制御することによって、焼成収縮挙動を容易に制御、変更することができる。   As described above, the combination of the two types of insulating layers has been described. However, the number of insulating layers may be three or even four or more. By controlling various compositions of the insulating layers, the firing shrinkage behavior Can be easily controlled and changed.

次に、本発明の多層基板の製造方法は、成形工程、導体形成工程、積層工程、及び焼成工程を具備するものであり、これらの工程について、それぞれ、図1の多層基板を例として取り上げ、以下に説明する。   Next, the method for producing a multilayer substrate of the present invention comprises a molding step, a conductor formation step, a lamination step, and a firing step, and for each of these steps, the multilayer substrate of FIG. This will be described below.

まず、成形工程として、結晶化度が80%以上の結晶化ガラスからなる第1のガラス粉末に対して、焼成途中で容易に揮発する揮発性有機バインダと、有機溶剤と、必要に応じて可塑剤と、を混合し、スラリーを作製する。これらのスラリーを用いて、リップコーター法やドクターブレード法などによってテープ成形を行い、所定寸法に切断しグリーンシートAを作製する。次に、結晶化度が80%以上の結晶化ガラスからなる第2のガラス粉末に対して、焼成途中で容易に揮発する揮発性有機バインダと、有機溶剤と、必要に応じて可塑剤と、を混合し、グリーンシートAと同様にしてグリーンシートBを作製する。この場合、グリーンシートAとグリーンシートBの焼成収縮開始温度が異なるように、ガラス粉末を選定する。   First, as a molding process, a volatile organic binder that easily volatilizes during firing, an organic solvent, and plastic as needed, for the first glass powder made of crystallized glass having a crystallinity of 80% or more. The slurry is mixed with the agent. Using these slurries, tape molding is performed by a lip coater method, a doctor blade method, or the like, and cut into a predetermined size to produce a green sheet A. Next, for the second glass powder made of crystallized glass having a crystallinity of 80% or more, a volatile organic binder that easily volatilizes during firing, an organic solvent, and a plasticizer as necessary, And green sheet B is produced in the same manner as green sheet A. In this case, the glass powder is selected so that the green sheet A and the green sheet B have different firing shrinkage start temperatures.

なお、グリーンシートBを用いる代わりに、第2のガラス粉末を含むペーストを作製し、グリーンシートAの表面に塗布することも可能である。   Instead of using the green sheet B, a paste containing the second glass powder can be produced and applied to the surface of the green sheet A.

次に、導体形成工程として、成形工程で得られた複数のグリーンシートA、Bのうち、所望のグリーンシートの表面に対して、導体ペーストを用いたスクリーン印刷法などによって、表面導体層や内部導体層となる導体パターンを被着形成する。また、所望のグリーンシートに対して、パンチングやレーザー穿孔等によって貫通孔を形成し、グリーンシートの貫通孔の内部に導体ペーストを充填する。このようにして、グリーンシートの表面や内部に導体パターンを形成した導体付グリーンシートを複数作製する。   Next, as a conductor forming step, the surface conductor layer and the inside are formed by screen printing using a conductor paste on the surface of a desired green sheet among the plurality of green sheets A and B obtained in the forming step. A conductor pattern to be a conductor layer is deposited and formed. Further, a through hole is formed in a desired green sheet by punching, laser drilling, or the like, and a conductor paste is filled in the through hole of the green sheet. In this manner, a plurality of conductor-equipped green sheets in which a conductor pattern is formed on the surface or inside of the green sheet are produced.

次に、積層工程として、導体形成工程で得られた各導体付グリーンシートと、所望により導体パターンの形成されていないグリーンシートA、B等を積層する。その際に、導体パターンが所定の設計した回路となるように組み合わせることは言うまでもない。   Next, as a laminating process, each green sheet with a conductor obtained in the conductor forming process and green sheets A, B, etc., on which a conductor pattern is not formed, are laminated as desired. In this case, it goes without saying that the conductor patterns are combined so as to become a predetermined designed circuit.

本発明に寄れば、積層体において、グリーンシートの平面方向に対する収縮率を3%以下になるように設計するのが良い。   According to the present invention, it is preferable to design the laminate so that the contraction rate in the plane direction of the green sheet is 3% or less.

次に、焼成工程として、積層工程で得られた積層体を焼成する。焼成に際しては、低温側で収縮が開始するグリーンシートの収縮開始温度とそのグリーンシートに含まれるガラスの結晶化温度の中間の温度で一旦保持する多段焼成でも可能であるが、通常の単一キープ温度においても昇温速度を調整する等の手法によって、同時焼成を行うことが可能であり、このような焼成において、X−Y方向(グリーンシートの平面方向)への焼成収縮が抑制され、Z方向(グリーンシートの厚み方向)に焼成収縮した寸法精度の高い基板を作製することができる。   Next, as a firing step, the laminate obtained in the lamination step is fired. The firing can be performed by multi-stage firing which is temporarily held at a temperature intermediate between the shrinkage start temperature of the green sheet at which the shrinkage starts on the low temperature side and the crystallization temperature of the glass contained in the green sheet. It is possible to perform simultaneous firing by adjusting the temperature rising rate even at a temperature. In such firing, firing shrinkage in the XY direction (plane direction of the green sheet) is suppressed, and Z A substrate with high dimensional accuracy that is fired and contracted in the direction (the thickness direction of the green sheet) can be manufactured.

なお、焼成収縮開始温度が異なる2種のグリーンシートに含まれる主成分であるセラミックス及び副成分の結晶化ガラスは、例えば、焼結収縮挙動の相違のみならず、目的に応じて、比誘電率、曲げ強度、誘電損失、熱伝導率、嵩密度、温度係数などの他の特性が異なっていてもよいし、一層内で部分的に異なる材料の絶縁層が存在しても、本発明の手法を用いれば、反りやデラミネーションを抑制できるため、差し支えない。   In addition, the ceramics which are the main components contained in the two types of green sheets having different firing shrinkage temperatures and the crystallized glass of the subcomponent are not only different in sintering shrinkage behavior, but also have a dielectric constant depending on the purpose. The method of the present invention may be different in other properties such as bending strength, dielectric loss, thermal conductivity, bulk density, temperature coefficient, or even in the presence of an insulating layer of a partially different material in one layer. If is used, warpage and delamination can be suppressed, so there is no problem.

図1の焼成収縮挙動が異なる2種のグリーンシートA、Bの積層形態としては、ABBBBBAにて積層したが、その他に、例えばABABABA、AAABAAA、AABBBAA、AABABAA、AABBAAA、ABAAAAA、ABAAABA、ABBABBA、AABAAAA、ABBAAAA、ABBBAAA、ABBBBAA等の構成でもよく、積層数を変えても、AとBとを反対に入れ替えてもよい。   As a lamination form of two types of green sheets A and B having different firing shrinkage behaviors in FIG. 1, lamination was performed with ABBBBBBA. , ABBAAAA, ABBBAAA, ABBBBAA, and the like may be used. The number of layers may be changed, or A and B may be reversed.

さらに、焼成収縮挙動が異なる2種のグリーンシートA、B、Cを用いた場合の積層形態としては、ABCCCBA、ABBCBBA、ABBCCBBA、ABCBABCBA、AAABCBAAA等の任意の組み合わせ及び任意の積層数に設定できる。もちろん、対称性を具備するのが好ましいのは言うまでもない。   Furthermore, as a lamination form when two types of green sheets A, B, and C having different firing shrinkage behaviors are used, any combination of ABCCCBA, ABBCBBA, ABBCCCBA, ABCBABCBA, AAABCBAAA, and any number of laminations can be set. Of course, it is needless to say that symmetry is preferable.

なお、グリーンシートの種類は、焼成収縮挙動がそれぞれ異なる4種以上のグリーンシートで構成されていても良い。特に、1種のグリーンシートの焼成終了温度が、他のグリーンシートの少なくとも1種のグリーンシートの焼成開始温度よりも低くなるように設定する、即ち、1種のグリーンシートに含まれる結晶化ガラスの結晶化温度が、他のグリーンシートの少なくとも1種のグリーンシートに含まれる軟化点よりも低くなるように設定するのが好ましい。   In addition, the kind of green sheet may be comprised with the 4 or more types of green sheet from which a baking shrinkage | contraction behavior differs, respectively. In particular, the firing end temperature of one type of green sheet is set to be lower than the firing start temperature of at least one type of other green sheet, that is, crystallized glass contained in one type of green sheet. The crystallization temperature is preferably set to be lower than the softening point contained in at least one of the other green sheets.

表1の多層基板を作製した。まず、焼成収縮開始温度が異なるガラスセラミック絶縁層A,Bを形成する各組成物に対して、それぞれ有機バインダとしてエチルセルロースと有機溶剤として2−2−4−トリメチル・ペンタジオールモノイソブチレートを添加してなる2種類のスラリーを調整し、これをドクターブレード法によりそれぞれ成形してグリーンシートA、Bを作製した。   The multilayer substrate shown in Table 1 was produced. First, ethyl cellulose as an organic binder and 2-2-4-trimethylpentadiol monoisobutyrate as an organic solvent are added to the respective compositions forming the glass ceramic insulating layers A and B having different firing shrinkage starting temperatures. The two types of slurries thus prepared were prepared and formed by the doctor blade method to produce green sheets A and B, respectively.

そして、グリーンシートA、Bの所定の位置にパンチング等により貫通孔を形成し、この貫通孔にAg粉末を含む導電性ペーストを充填するとともに、またこの導電性ペーストをグリーンシートA、Bの表面の所定の位置にスクリーン印刷し、乾燥して導体付グリーンシートを作製した。   Then, through holes are formed at predetermined positions of the green sheets A and B by punching or the like, and the conductive paste containing Ag powder is filled in the through holes, and the conductive paste is applied to the surfaces of the green sheets A and B. Was printed at a predetermined position and dried to produce a conductor-equipped green sheet.

導電性ペーストが充填され、所定形状の導体層が形成されたグリーンシートA、Bを積層し、図1の構造となる積層成形体を作成した。   Green sheets A and B filled with a conductive paste and formed with a conductor layer having a predetermined shape were laminated to form a laminated molded body having the structure shown in FIG.

この後、大気中400℃で脱バインダ処理し、さらに910℃で焼成し、図1に示す多層基板を得た。なお、焼成前の各絶縁層1a〜1gの厚みは0.2mmであり、焼成後の多層基板の大きさは、縦10mm、横10mm、厚み0.8mmであった。   Thereafter, the binder removal treatment was performed at 400 ° C. in the atmosphere, followed by baking at 910 ° C. to obtain the multilayer substrate shown in FIG. In addition, the thickness of each insulating layer 1a-1g before baking was 0.2 mm, and the magnitude | size of the multilayer board | substrate after baking was 10 mm long, 10 mm wide, and thickness 0.8mm.

なお、グリーンシート積層体と焼成後の多層基板に対して、所定のポイント間の長さを測定することにより、X−Y方向の多層基板の収縮率を測定した。なお、各試料について10個の試料を作製しそれぞれの収縮率を測定し、10個の試料の収縮率の最大収縮率と最小収縮率の差を収縮ばらつきとして評価した。また、基板を研磨して光学顕微鏡で観察することにより、基板におけるクラック、デラミネーションの有無を評価し、欠陥として表2に示した。   In addition, the shrinkage | contraction rate of the multilayer board | substrate of a XY direction was measured by measuring the length between predetermined points with respect to the green sheet laminated body and the multilayer board | substrate after baking. In addition, 10 samples were prepared for each sample, and the respective shrinkage rates were measured, and the difference between the maximum shrinkage rate and the minimum shrinkage rate of the 10 samples was evaluated as shrinkage variation. Moreover, the presence or absence of cracks and delamination in the substrate was evaluated by polishing the substrate and observing it with an optical microscope.

各絶縁層のガラスの結晶化度については、各絶縁層単体を表2に示す同時焼成した場合と同じ条件で焼成した試料のXRD回折パターンからリートベルト解析法により決定した。尚、XRD回折の測定時には、誤差を小さくするために、酸化亜鉛を標準試料として混合した。   The degree of crystallinity of the glass of each insulating layer was determined by the Rietveld analysis method from the XRD diffraction pattern of the sample fired under the same conditions as when each insulating layer was fired simultaneously as shown in Table 2. In the measurement of XRD diffraction, zinc oxide was mixed as a standard sample in order to reduce the error.

基板の抗折強度評価用の試料として、第1絶縁層となるグリーンシート(焼成前厚み0.2mm)で第2絶縁層となるグリーンシート(焼成前厚み0.2mm)5層を挟んだ構造で表2に示す焼成温度で1時間同時焼成して、5mm×40mm×0.8mmの試験片を得た。この試験片について、室温において、クロスヘッド速度0.5mm/min、下部支点間距離30mmの条件で3点曲げ強度の測定を行った。   As a sample for evaluation of the bending strength of a substrate, a structure in which five green sheets (thickness before firing 0.2 mm) serving as second insulating layers are sandwiched by green sheets (thickness 0.2 mm before firing) serving as first insulation layers Then, a test piece of 5 mm × 40 mm × 0.8 mm was obtained by simultaneous firing at the firing temperature shown in Table 2 for 1 hour. With respect to this test piece, a three-point bending strength was measured at room temperature under conditions of a crosshead speed of 0.5 mm / min and a distance between lower fulcrums of 30 mm.

また、セラミックスAを形成する組成物とセラミックスBを形成する組成物についてワックスを添加して、100MPaでプレスすることにより圧粉体を形成し、この圧粉体に対して空気中でTMA(熱機械分析)による室温〜1000℃の温度範囲により各セラミックスの収縮開始温度S、収縮終了温度E、室温〜900℃における熱膨張係数を評価した。   Further, a wax is added to the composition forming the ceramic A and the composition forming the ceramic B, and a green compact is formed by pressing at 100 MPa. The TMA (heat The shrinkage start temperature S, shrinkage end temperature E, and thermal expansion coefficient at room temperature to 900 ° C. of each ceramic were evaluated in the temperature range of room temperature to 1000 ° C. by mechanical analysis.

ガラスの軟化点と結晶化温度は、DTA(示唆熱分析)により、10℃/分で昇温して得られる曲線より評価した。結果を表1、2に示した。

Figure 0004606115
The softening point and crystallization temperature of the glass were evaluated from a curve obtained by heating at 10 ° C./min by DTA (suggested thermal analysis). The results are shown in Tables 1 and 2.
Figure 0004606115

Figure 0004606115
Figure 0004606115

本発明の試料No.1〜8は収縮率が0〜3.0%と小さく、曲げ強度が250MPa以上と大きく、焼成におけるクラックやデラミネーションが発生しない基板であった。   Sample No. of the present invention. Nos. 1 to 8 were substrates having a shrinkage rate as small as 0 to 3.0%, a bending strength as large as 250 MPa or more, and no cracks or delamination during firing.

一方、結晶化度が80%に満たない第1絶縁層で構成された試料No.9及び10は、収縮率が8.5%以上と高く、強度が230MPa以下と低く、特に、試料No.9は第1絶縁層の結晶化温度に対して、第2絶縁層の軟化点が大幅に低く、熱膨張係数差が大きいため、その結果、欠陥が観察された。   On the other hand, sample No. 2 composed of the first insulating layer having a crystallinity of less than 80%. Nos. 9 and 10 have a high shrinkage rate of 8.5% or more and a low strength of 230 MPa or less. In No. 9, the softening point of the second insulating layer was significantly lower than the crystallization temperature of the first insulating layer, and the difference in thermal expansion coefficient was large. As a result, defects were observed.

本発明のセラミック積層基板の一例を示す概略断面図を示す。The schematic sectional drawing which shows an example of the ceramic laminated substrate of this invention is shown.

符号の説明Explanation of symbols

1・・・セラミック積層基板
2・・・表面導体層
3・・・内部導体層
4・・・ビアホール導体
10・・・多層基板
DESCRIPTION OF SYMBOLS 1 ... Ceramic laminated substrate 2 ... Surface conductor layer 3 ... Internal conductor layer 4 ... Via-hole conductor 10 ... Multilayer substrate

Claims (7)

第1の結晶化ガラスを含む第1の絶縁層と、前記第1の結晶化ガラスとは結晶化温度が異なる第2の結晶化ガラスを含む第2の絶縁層とを積層してなるセラミック積層基板の表面及び内部に電極を配設してなり、前記結晶化ガラスの結晶化度がそれぞれ80%以上であり、前記第1の結晶化ガラスの結晶化温度が、前記第2の結晶化ガラスの軟化点よりも低く、前記第1の結晶化ガラスの熱膨張係数と、第2の結晶化ガラスの熱膨張係数との差が2×10−6/℃以下であることを特徴とする多層基板。 Ceramic laminate formed by laminating a first insulating layer containing a first crystallized glass and a second insulating layer containing a second crystallized glass having a crystallization temperature different from that of the first crystallized glass. Electrodes are disposed on the surface and inside of the substrate, the crystallinity of the crystallized glass is 80% or more, respectively, and the crystallization temperature of the first crystallized glass is the second crystallized glass. A difference between the thermal expansion coefficient of the first crystallized glass and the thermal expansion coefficient of the second crystallized glass is 2 × 10 −6 / ° C. or lower. substrate. さらに前記第1及び第2とは異なる結晶化ガラスを含む第3の絶縁層を含むことを特徴とする請求項1記載の多層基板。 The multilayer substrate according to claim 1, further comprising a third insulating layer including crystallized glass different from the first and second. 前記絶縁層が、それぞれ結晶化ガラスを30質量%以上含むことを特徴とする請求項1又は2記載の多層基板。 The multilayer substrate according to claim 1, wherein each of the insulating layers contains 30% by mass or more of crystallized glass. 前記結晶化ガラスが、ディオプサイド、ハーディストナイト、セルシアン、コージェライト、アノーサイト、ガーナイト、ウィレマイト、スピネル、ムライト、フォルステライト及びスーアナイトのうち少なくとも1種を含むことを特徴とする請求項1〜のいずれかに記載の多層基板。 The crystallized glass contains at least one of diopside, hardistonite, celsian, cordierite, anorthite, garnite, willemite, spinel, mullite, forsterite and sourite. 4. The multilayer substrate according to any one of 3 . 第1の結晶化ガラスからなる第1のガラス粉末を含む第1のグリーンシート及び前記第1の結晶化ガラスの結晶化温度よりも結晶化温度及び軟化点が高い第2の結晶化ガラスからなる第2のガラス粉末を含み、前記第1グリーンシートよりも焼成収縮開始温度が高い第2のグリーンシートを作製する成形工程と、前記第1及び第2のグリーンシートの少なくとも一部の表面及び内部に導体パターンを形成する導体形成工程と、前記導体パターンが形成されたものを含む前記第1及び第2のグリーンシートを積層し、積層体を作製する積層工程と、該積層体を焼成して、前記第1及び第2の結晶化ガラスの結晶化度を80%以上にするとともに、前記第1及び第2の結晶化ガラスの熱膨張係数の差を2×10−6/℃以下とする焼成工程を具備することを特徴とする多層基板の製造方法。 A first green sheet including a first glass powder made of the first crystallized glass and a second crystallized glass having a crystallization temperature and a softening point higher than the crystallization temperature of the first crystallized glass. A molding step for producing a second green sheet containing a second glass powder and having a firing shrinkage start temperature higher than that of the first green sheet; and at least a part of the surface and the inside of the first and second green sheets A conductor forming step of forming a conductor pattern on the substrate, laminating the first and second green sheets including those having the conductor pattern formed thereon, a laminate step of producing a laminate, and firing the laminate. The crystallinity of the first and second crystallized glass is set to 80% or more, and the difference in thermal expansion coefficient between the first and second crystallized glass is set to 2 × 10 −6 / ° C. or less. Equipped with a firing process A method for manufacturing a multilayer substrate. 前記第1及び第2のグリーンシートとして、それぞれ前記第1及び第2のガラス粉末を30質量%以上含むものを用いることを特徴とする請求項5記載の多層基板の製造方法。 6. The method for producing a multilayer substrate according to claim 5, wherein the first and second green sheets include those containing 30% by mass or more of the first and second glass powders, respectively. 前記焼成工程後により、前記第1及び第2の結晶化ガラスが、ディオプサイド、ハーディ
ストナイト、セルシアン、コージェライト、アノーサイト、ガーナイト、ウィレマイト、スピネル、ムライト、フォルステライト及びスーアナイトのうち少なくとも1種の結晶を形成するものであることを特徴とする請求項5又は6記載の多層基板の製造方法。
After the firing step, the first and second crystallized glasses are at least one of diopside, hardestite, celsian, cordierite, anorsite, garnite, willemite, spinel, mullite, forsterite and suurite. 7. The method for producing a multilayer substrate according to claim 5, wherein the seed crystal is formed.
JP2004305633A 2004-10-20 2004-10-20 Multilayer substrate and manufacturing method thereof Active JP4606115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004305633A JP4606115B2 (en) 2004-10-20 2004-10-20 Multilayer substrate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004305633A JP4606115B2 (en) 2004-10-20 2004-10-20 Multilayer substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006120779A JP2006120779A (en) 2006-05-11
JP4606115B2 true JP4606115B2 (en) 2011-01-05

Family

ID=36538393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004305633A Active JP4606115B2 (en) 2004-10-20 2004-10-20 Multilayer substrate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4606115B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4994052B2 (en) 2006-03-28 2012-08-08 京セラ株式会社 Board and circuit board using the same
JP4845675B2 (en) * 2006-10-27 2011-12-28 京セラ株式会社 Glass ceramic multilayer circuit board
KR101046134B1 (en) 2007-12-27 2011-07-01 삼성전기주식회사 Ceramic substrate, manufacturing method thereof and electric device using same
JP5312966B2 (en) * 2008-01-31 2013-10-09 株式会社オハラ Method for producing lithium ion secondary battery
KR100983125B1 (en) 2008-10-28 2010-09-17 삼성전기주식회사 Manufacturing method of multi-layer ceramic substrate
JP5188438B2 (en) * 2009-03-27 2013-04-24 京セラ株式会社 Wiring board and electronic module
JP5354011B2 (en) * 2009-04-21 2013-11-27 株式会社村田製作所 Manufacturing method of multilayer ceramic substrate
JP5383348B2 (en) * 2009-06-29 2014-01-08 京セラ株式会社 Electrical wiring board and optical module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046033A (en) * 2001-07-27 2003-02-14 Kyocera Corp Wiring board
JP2003069236A (en) * 2001-08-29 2003-03-07 Kyocera Corp Ceramic circuit board and manufacturing method thereof
JP2004026646A (en) * 2002-06-04 2004-01-29 E I Du Pont De Nemours & Co Tape composition and internally constrained sintering method of low-temperature co-fired ceramic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003046033A (en) * 2001-07-27 2003-02-14 Kyocera Corp Wiring board
JP2003069236A (en) * 2001-08-29 2003-03-07 Kyocera Corp Ceramic circuit board and manufacturing method thereof
JP2004026646A (en) * 2002-06-04 2004-01-29 E I Du Pont De Nemours & Co Tape composition and internally constrained sintering method of low-temperature co-fired ceramic

Also Published As

Publication number Publication date
JP2006120779A (en) 2006-05-11

Similar Documents

Publication Publication Date Title
JP5104761B2 (en) Ceramic substrate and manufacturing method thereof
US7687137B2 (en) Insulating substrate and manufacturing method therefor, and multilayer wiring board and manufacturing method therefor
JP2007294862A (en) Substrate and circuit board using the same
JP2008270741A (en) Wiring board
JP4508488B2 (en) Manufacturing method of ceramic circuit board
KR101931108B1 (en) Mid-k ltcc compositions and devices
JP2004214573A (en) Manufacturing method for multilayered ceramic substrate
JP2008053525A (en) Multilayer ceramic substrate and its manufacturing method
JP4606115B2 (en) Multilayer substrate and manufacturing method thereof
JP5071559B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
JP2006237493A (en) Wiring board
JP4301503B2 (en) Composite multilayer ceramic component and manufacturing method thereof
JP4508625B2 (en) Multilayer substrate and manufacturing method thereof
JP2006196674A (en) Method of manufacturing wiring board
JP4423025B2 (en) Multilayer substrate and manufacturing method thereof
JP2008186909A (en) Ceramic multilayer plate board
JP2010034176A (en) Multilayer wiring board, and method of manufacturing the same
JP4699769B2 (en) Manufacturing method of ceramic multilayer substrate
JP2008030995A (en) Multilayered ceramic substrate and its manufacturing method as well as composite green sheet for manufacturing multilayered ceramic substrate
JP2008031005A (en) Multilayered ceramic substrate and composite green sheet for manufacturing multilayered ceramic substrate
JP4416346B2 (en) Circuit board manufacturing method
JP2008135523A (en) Multilayered board and its manufacturing method
JP2004281924A (en) Ceramic multilayer substrate
JP2010278117A (en) Method of manufacturing wiring board
JP2009231542A (en) Glass ceramic multilayer wiring board and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101005

R150 Certificate of patent or registration of utility model

Ref document number: 4606115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3