JP2010034176A - Multilayer wiring board, and method of manufacturing the same - Google Patents

Multilayer wiring board, and method of manufacturing the same Download PDF

Info

Publication number
JP2010034176A
JP2010034176A JP2008193051A JP2008193051A JP2010034176A JP 2010034176 A JP2010034176 A JP 2010034176A JP 2008193051 A JP2008193051 A JP 2008193051A JP 2008193051 A JP2008193051 A JP 2008193051A JP 2010034176 A JP2010034176 A JP 2010034176A
Authority
JP
Japan
Prior art keywords
terms
inner region
glass
region
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008193051A
Other languages
Japanese (ja)
Inventor
Shintaro Saito
愼太郎 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008193051A priority Critical patent/JP2010034176A/en
Publication of JP2010034176A publication Critical patent/JP2010034176A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multilayer wiring board having an insulating base made of glass-ceramics of high thermal expansion with high chemical resistance which has a dense principal surface, and to provide a method of manufacturing the same. <P>SOLUTION: The insulating base 1 has an inner region 12 containing Si, B, Al, Mg, Ba, Ca, Sr and Zr at a predetermined ratio, and a principal-surface nearby region 11 which contains the same components as the inner region 12, but contains 15 to 23% more Mg in terms of MgO, 3 to 6% less Si in terms of SiO<SB>2</SB>than the inner region 12, and nearly the same amounts of other components as the inner region 12, wherein the inner region 12 has a void rate A2 of 3 to 6% and a maximum void diameter B2 of 6 to 9 μm, the rate A1/A2 of the void rate A1 of the principal-surface nearby region 11 to the void rate A2 of the inner region 12 is not larger than 0.6, and the rate B1/B2 of the maximum void diameter B1 of the principal-surface nearby region 11 to the maximum void diameter B2 of the inner region 12 is not larger than 0.7. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description


本発明は、半導体素子収納用パッケージや高周波モジュール基板等に適用され、銀や銅などの低抵抗配線を有する多層配線基板およびその製造方法に関するものである。

The present invention relates to a multilayer wiring board having a low resistance wiring such as silver and copper, and a method for manufacturing the same, which are applied to a package for housing a semiconductor element, a high-frequency module substrate, and the like.

従来、移動体通信分野などで使用される多層配線基板において、配線層の材料として低抵抗の金、銀、銅あるいはそれらの混合物を用い、複数の絶縁層からなる絶縁基体の材料として配線層の材料の融点よりも低い温度で焼成が可能なガラスセラミックスを用いた多層配線基板が広く用いられている。   Conventionally, in a multilayer wiring board used in the field of mobile communication, etc., low resistance gold, silver, copper or a mixture thereof is used as a material for a wiring layer, and a wiring layer is used as a material for an insulating substrate composed of a plurality of insulating layers. A multilayer wiring board using glass ceramics that can be fired at a temperature lower than the melting point of the material is widely used.

この多層配線基板の製造に際しては、焼成後に絶縁層となるセラミックグリーンシートに貫通孔を形成し、その貫通孔に焼成後に貫通導体となる導体材料を充填するとともに、貫通孔に導体材料の充填されたセラミックグリーンシートの主面に配線層となる導体材料を塗布する。そのようにして準備したセラミックグリーンシートを複数枚積層して焼成する。そして、主面に設けられた配線層にめっき処理が施されて、多層配線基板が得られる。   When manufacturing this multilayer wiring board, a through hole is formed in the ceramic green sheet that becomes an insulating layer after firing, and the through hole is filled with a conductor material that becomes a through conductor after firing, and the through hole is filled with a conductor material. A conductive material to be a wiring layer is applied to the main surface of the ceramic green sheet. A plurality of ceramic green sheets thus prepared are stacked and fired. Then, the wiring layer provided on the main surface is plated to obtain a multilayer wiring board.

このような多層配線基板として、例えば、有機樹脂を含む高熱膨張係数のプリント配線基板(マザーボード)に実装したときに、プリント配線基板との間の熱膨張差による応力で接合部にクラックが生じたり剥離したりしないように、プリント配線基板の熱膨張係数と近い値の熱膨張係数(高熱膨張係数)のものが知られている。具体的には、多層配線基板の絶縁基体として用いられる高熱膨張の低温焼成磁器(ガラスセラミックス)として、30〜80体積%のガラス成分と20〜70体積%のフィラー成分とからなる低温焼成磁器(ガラスセラミックス)であって、ガラス成分中に25〜60モル%のSiOと25〜50モル%のBとを合量で65モル%以上含み、フィラー成分としてクォーツを含むものが提案されている(特許文献1を参照。)。
特開2004−231454号公報
As such a multilayer wiring board, for example, when it is mounted on a printed wiring board (motherboard) having a high thermal expansion coefficient containing an organic resin, a crack may occur in the joint due to a stress due to a difference in thermal expansion with the printed wiring board. A thermal expansion coefficient (high thermal expansion coefficient) having a value close to that of the printed wiring board is known so as not to peel off. Specifically, as a high thermal expansion low temperature fired ceramic (glass ceramic) used as an insulating substrate of a multilayer wiring board, a low temperature fired ceramic comprising 30 to 80% by volume of a glass component and 20 to 70% by volume of a filler component ( Glass ceramics), which includes 25 to 60 mol% of SiO 2 and 25 to 50 mol% of B 2 O 3 in the glass component in a total amount of 65 mol% or more, and includes quartz as a filler component (See Patent Document 1).
JP 2004-231454 A

ここで、上記のガラスセラミックスを絶縁基体とする多層配線基板の製造過程において、めっき処理の際に絶縁基体がめっき液によって侵食され、侵食された部分にめっき液が残留して黒い残痕が残るという問題がある。   Here, in the manufacturing process of the multilayer wiring board using the above glass ceramics as the insulating base, the insulating base is eroded by the plating solution during the plating process, and the plating solution remains in the eroded portion, leaving a black trace. There is a problem.

また、めっき液に浸す前に主面の付着物を除去するため、微粒のAl粒子を高速で発射して吹き付けるいわゆるジェットスクラブがなされるが、このときに絶縁基体の主面に傷が付き、変色するといった問題もある。 In addition, in order to remove deposits on the main surface before dipping in the plating solution, so-called jet scrub is performed in which fine Al 2 O 3 particles are ejected and sprayed at high speed. There is also a problem that the color changes.

以上のことから、ガラスセラミックスからなる絶縁基体には、少なくとも主面の緻密化および耐薬品性が要求される。   From the above, an insulating substrate made of glass ceramics is required to have at least a densified main surface and chemical resistance.

本発明は、上記事情に鑑みてなされたもので、緻密な主面を有する耐薬品性に優れた高熱膨張のガラスセラミックスからなる絶縁基体を備えた多層配線基板およびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a multilayer wiring board provided with an insulating substrate made of glass ceramics having a dense principal surface and excellent chemical resistance and high thermal expansion, and a method for manufacturing the same. Objective.

本発明者は、上記目的を達成するために鋭意検討した結果、高熱膨張を実現する組成の多層配線基板において、主面近傍領域のMg含有量およびSi含有量が内側領域とは所定の割合で異なることで、主面近傍領域のボイド率および最大ボイド径を小さくし、耐薬品性を向上させることができることを見出し、本発明に到達した。   As a result of intensive studies to achieve the above object, the present inventor, as a result, in the multilayer wiring board having a composition realizing high thermal expansion, the Mg content and the Si content in the region near the main surface are at a predetermined ratio with respect to the inner region. It has been found that the difference can reduce the void ratio and the maximum void diameter in the vicinity of the main surface and improve the chemical resistance, and the present invention has been achieved.

すなわち本発明は、クォーツを主結晶とするガラスセラミックスからなる複数の絶縁層が積層された絶縁基体と、前記絶縁層に形成された貫通導体と、前記絶縁基体の主面および内部に形成された配線層とを含む多層配線基板において、前記絶縁基体は、SiをSiO換算で65.3〜66.7質量%、BをB換算3.9〜4.1質量%、AlをAl換算で4.7〜5.5質量%、MgをMgO換算で10.9〜11.1質量%、CaをCaO換算で1.39〜1.41質量%、BaをBaO換算で9.0〜11.0質量%、SrをSrO換算で0.89〜0.91質量%およびZrをZrO換算で0.60〜0.71質量%含有する内側領域と、該内側領域と同じ成分を含み前記内側領域よりもMg含有量がMgO換算で15〜23%多くSi含有量がSiO換算で3〜6%少なく、かつ他の成分の含有量が前記内側領域とほぼ等しい主面近傍領域とを有し、前記内側領域のボイド率A2が3〜6%であるとともに前記内側領域の最大ボイド径B2が6〜9μmであり、かつ前記内側領域のボイド率A2に対する前記主面近傍領域のボイド率A1の比A1/A2が0.6以下であるとともに前記内側領域の最大ボイド径B2に対する前記主面近傍領域の最大ボイド径B1の比B1/B2が0.7以下であることを特徴とするものである。 That is, the present invention is formed on an insulating substrate in which a plurality of insulating layers made of glass ceramics having quartz as a main crystal are laminated, a through conductor formed in the insulating layer, and a main surface and an inside of the insulating substrate. In the multilayer wiring board including the wiring layer, the insulating base includes 65.3 to 66.7% by mass of Si in terms of SiO 2 , 3.9 to 4.1% by mass of B in terms of B 2 O 3 , and Al. 4.7 to 5.5% by mass in terms of Al 2 O 3 , 10.9 to 11.1% by mass in terms of MgO, 13.9 to 1.41% by mass in terms of Ca, and Ba in terms of BaO An inner region containing 9.0 to 11.0% by mass, Sr 0.89 to 0.91% by mass in terms of SrO, and Zr 0.60 to 0.71% by mass in terms of ZrO 2 , and the inner region And the Mg content is higher than that of the inner region. 15-23% Many Si content 3-6% in terms of SiO 2 reduced by calculation, and the content of the other component has a substantially equal main surface near region and the inner region, the void ratio of the inner region A2 is 3 to 6%, the maximum void diameter B2 of the inner region is 6 to 9 μm, and the ratio A1 / A2 of the void ratio A1 of the main surface vicinity region to the void ratio A2 of the inner region is 0. The ratio B1 / B2 of the maximum void diameter B1 in the region near the main surface to the maximum void diameter B2 in the inner region is not more than 6, and is 0.7 or less.

また本発明は、SiOを38〜50mol%、Bを5〜10mol%、Alを4〜9mol%、MgOを25〜38mol%、CaOを1〜3mol%、BaOを7〜11mol%、SrOを1〜4mol%およびZrOを0.5〜1.5mol%含有するガラス粉末60〜70質量%と、SiOからなるセラミックフィラー30〜40質量%とを含むガラスセラミックグリーンシートを作製し、該ガラスセラミックグリーンシートを貫通する貫通孔を形成して貫通導体用ペーストを充填するとともに前記ガラスセラミックグリーンシートの主面に配線層用導体ペーストを被着形成し、前記ガラスセラミックグリーンシートを複数積層して積層体を作製し、前記ガラス粉末15〜18質量%と前記セラミックフィラー82〜85質量%とを含むグリーンシート状のセッターで前記積層体を上下から挟持して焼成することを特徴とする多層配線基板の製造方法である。 The present invention, the SiO 2 38~50mol%, B 2 O 3 to 5~10mol%, 4~9mol% of Al 2 O 3, MgO and 25~38mol%, CaO and 1~3Mol%, a BaO 7 Glass ceramic green containing 60 to 70% by mass of glass powder containing ˜11 mol%, 1 to 4 mol% of SrO and 0.5 to 1.5 mol% of ZrO 2 , and 30 to 40% by mass of ceramic filler made of SiO 2 A sheet is formed, a through-hole penetrating the glass ceramic green sheet is formed and filled with a paste for through conductor, and a conductor paste for wiring layer is formed on the main surface of the glass ceramic green sheet, and the glass ceramic is formed. A laminate is prepared by laminating a plurality of green sheets, and 15 to 18% by mass of the glass powder and the ceramic filler. A method for manufacturing a multilayer wiring board and firing by sandwiching the laminate from above and below the green sheet setter and a 82 to 85 mass%.

本発明の多層配線基板によれば、クォーツを主結晶とするガラスセラミックスからなる複数の絶縁層が積層された絶縁基体において、SiをSiO換算で65.3〜66.7質量%、BをB換算3.9〜4.1質量%、AlをAl換算で4.7〜5.5質量%、MgをMgO換算で10.9〜11.1質量%、CaをCaO換算で1.39〜1.41質量%、BaをBaO換算で9.0〜11.0質量%、SrをSrO換算で0.89〜0.91質量%およびZrをZrO換算で0.60〜0.71質量%含有する内側領域と、該内側領域と同じ成分を含み前記内側領域よりもMg含有量がMgO換算で15〜23%多くSi含有量がSiO換算で3〜6%少なく、かつ他の成分の含有量が前記内側領域とほぼ等しい主面近傍領域とを有し、前記内側領域のボイド率A2が3〜6%であるとともに前記内側領域の最大ボイド径B2が6〜9μmであり、かつ前記内側領域のボイド率A2に対する前記主面近傍領域のボイド率A1の比A1/A2が0.6以下であるとともに前記内側領域の最大ボイド径B2に対する前記主面近傍領域の最大ボイド径B1の比B1/B2が0.7以下であることから、耐薬品性に優れた高熱膨張の絶縁基体を備えた多層配線基板を実現することができる。これにより、めっき液に浸されたとしても、ボイドに起因するめっき液による浸食が抑制され、ジェットスクラブなどによる外傷に対する耐性が向上する。 According to the multilayer wiring board of the present invention, in an insulating substrate in which a plurality of insulating layers made of glass ceramics having quartz as a main crystal are laminated, Si is converted to 65.3 to 66.7% by mass in terms of SiO 2 and B is added. terms of B 2 O 3 3.9-4.1 mass%, 4.7 to 5.5 wt% of Al in terms of Al 2 O 3, 10.9 to 11.1 wt% of Mg in terms of MgO, and Ca 1.39 to 1.41% by mass in terms of CaO, 9.0 to 11.0% by mass in terms of BaO, Sr to 0.89 to 0.91% by mass in terms of SrO, and Zr to 0 in terms of ZrO 2 The inner region containing 60 to 0.71% by mass and the same component as the inner region, the Mg content is 15 to 23% more in terms of MgO than the inner region, and the Si content is 3 to 6 in terms of SiO 2 % And the content of other components is almost equal to the inner region The inner surface has a void ratio A2 of 3 to 6%, a maximum void diameter B2 of the inner region of 6 to 9 μm, and the main area relative to the void ratio A2 of the inner region The ratio A1 / A2 of the void ratio A1 in the region near the surface is 0.6 or less, and the ratio B1 / B2 of the maximum void diameter B1 in the region near the main surface to the maximum void diameter B2 in the inner region is 0.7 or less. Therefore, it is possible to realize a multilayer wiring board provided with an insulating base with high thermal expansion and excellent chemical resistance. Thereby, even when immersed in the plating solution, erosion by the plating solution due to voids is suppressed, and resistance to trauma due to jet scrub and the like is improved.

また本発明の多層配線基板の製造方法によれば、SiOを38〜50mol%、Bを5〜10mol%、Alを4〜9mol%、MgOを25〜38mol%、CaOを1〜3mol%、BaOを7〜11mol%、SrOを1〜4mol%およびZrOを0.5〜1.5mol%含有するガラス粉末60〜70質量%と、SiOからなるセラミックフィラー30〜40質量%とを含むガラスセラミックグリーンシートを作製し、該ガラスセラミックグリーンシートを貫通する貫通孔を形成して貫通導体用ペーストを充填するとともに前記ガラスセラミックグリーンシートの主面に配線層用導体ペーストを被着形成し、前記ガラスセラミックグリーンシートを複数積層して積層体を作製し、前記ガラス粉末15〜18質量%と前記セラミックフィラー82〜85質量%とを含むグリーンシート状のセッターで前記積層体を上下から挟持して焼成することから、耐薬品性に優れた高熱膨張の絶縁基体を備えた多層配線基板を得ることができる。 According to the method for manufacturing a multilayer wiring board of the present invention, the SiO 2 38~50mol%, B 2 O 3 to 5~10mol%, Al 2 O 3 the 4~9mol%, 25~38mol% of MgO, CaO 1~3mol%, 7~11mol% of BaO, and the glass powder 60-70% by weight containing 0.5 to 1.5 mol% of 1~4Mol% and ZrO 2 SrO, the ceramic filler 30 made of SiO 2 A glass ceramic green sheet containing 40% by mass is formed, a through-hole penetrating the glass ceramic green sheet is formed and filled with a paste for through conductor, and a conductor paste for wiring layer is formed on the main surface of the glass ceramic green sheet And a plurality of the glass ceramic green sheets are laminated to produce a laminate, and the glass powders 15 to 1 are formed. Since the laminate is sandwiched and fired from above and below with a green sheet-shaped setter containing 82% by mass and 82 to 85% by mass of the ceramic filler, a multilayer wiring including an insulating substrate with high thermal expansion having excellent chemical resistance A substrate can be obtained.

以下、本発明の多層配線基板の一実施形態について説明する。   Hereinafter, an embodiment of the multilayer wiring board of the present invention will be described.

図1は本発明の多層配線基板の一実施形態の概略断面を示すとともに、焼成後の上下のセッターを取り除く状況を示す説明図である。   FIG. 1 is a schematic cross-sectional view of an embodiment of a multilayer wiring board according to the present invention, and is an explanatory view showing a situation where upper and lower setters after firing are removed.

図1に示す多層配線基板は、複数の絶縁層が積層されてなる絶縁基体1と、複数の絶縁層のそれぞれに形成された貫通導体2と、絶縁基体1の主面および内部に形成された配線層3とを含む多層配線基板である。なお、絶縁基体1の主面とは、絶縁基体1における最も広い面積の面であって図1に示す上面および下面のことをいう。   The multilayer wiring board shown in FIG. 1 is formed on an insulating substrate 1 in which a plurality of insulating layers are laminated, a through conductor 2 formed in each of the plurality of insulating layers, and a main surface and inside of the insulating substrate 1. A multilayer wiring board including the wiring layer 3. The main surface of the insulating substrate 1 is the surface of the widest area of the insulating substrate 1 and refers to the upper and lower surfaces shown in FIG.

絶縁基体1は、複数の絶縁層1a、1b、1c、1dが積層されたものである。この絶縁基体1は、高い熱膨張係数(13×10−6/℃〜15×10−6/℃)のクォーツを主結晶として有しており、プリント配線基板(マザーボード)との二次実装信頼性に優れたものとなっている。また、クォーツは誘電率が低いことから、高周波領域における伝送信号の減衰を抑制でき、信号遅延による伝送ロスを少なくすることができる。なお、絶縁基体1には、クォーツの他、BaAlSi(セルジアン)やMgSiO(エンスタタイト)などの結晶が存在している。これらの結晶の存在も、絶縁基体1の熱膨張係数向上に寄与している。 The insulating base 1 is formed by laminating a plurality of insulating layers 1a, 1b, 1c, and 1d. This insulating substrate 1 has a quartz having a high thermal expansion coefficient (13 × 10 −6 / ° C. to 15 × 10 −6 / ° C.) as a main crystal, and is reliable for secondary mounting with a printed wiring board (motherboard). It is excellent in nature. In addition, since quartz has a low dielectric constant, attenuation of a transmission signal in a high frequency region can be suppressed, and transmission loss due to signal delay can be reduced. In addition to the quartz, the insulating substrate 1 includes crystals such as BaAl 2 Si 2 O 8 (Cerdian) and MgSiO 3 (enstatite). The presence of these crystals also contributes to the improvement of the thermal expansion coefficient of the insulating substrate 1.

ここで、絶縁基体1は、内側領域12(主面近傍領域11以外の領域)と主面近傍領域11とに区分けすることができる。   Here, the insulating substrate 1 can be divided into an inner region 12 (a region other than the main surface vicinity region 11) and a main surface vicinity region 11.

内側領域12は、SiをSiO換算で65.3〜66.7質量%、AlをAl換算で4.7〜5.5質量%、MgをMgO換算で10.9〜11.1質量%、BをB換算3.9〜4.1質量%、BaをBaO換算で9.0〜11.0質量%、CaをCaO換算で1.39〜1.41質量%、ZrをZrO換算で0.60〜0.71質量%およびSrをSrO換算で0.89〜0.91質量%含有していて、高熱膨張化に適した組成となっている。一方、主面近傍領域11は、内側領域12と同じ成分を含み、内側領域12よりもMg含有量がMgO換算で15〜23%多くSi含有量がSiO換算で3〜6%少なくなっていて、その他の成分(Al、B、Ba、Ca、Zr、Sr)については主面近傍領域11と内側領域12とでほぼ等しい含有量となっている。なお、ほぼ等しいとは、Si含有量とMg含有量が異なることによる比率の相違程度であることをいう。また、主面近傍領域11のSi含有量およびMg含有量が内側領域12のSi含有量およびMg含有量よりも何%多いか少ないかは、それぞれの領域の蛍光X線分析による組成分析からそれぞれの領域のSi含有量およびMg含有量を求め、これらを対比することにより算出することができる。 The inner region 12, from 65.3 to 66.7 wt% of Si in terms of SiO 2, 4.7 to 5.5 wt% of Al in terms of Al 2 O 3, the Mg in terms of MgO 10.9 to 11. 1% by mass, B is 3.9 to 4.1% by mass in terms of B 2 O 3 , Ba is 9.0 to 11.0% by mass in terms of BaO, and Ca is 1.39 to 1.41% by mass in terms of CaO , Zr is contained in 0.60 to 0.71 mass% in terms of ZrO 2 and Sr is contained in 0.89 to 0.91 mass% in terms of SrO, which is a composition suitable for high thermal expansion. On the other hand, the main surface vicinity region 11 includes the same components as the inner region 12, 15 to 23% more Si content Mg content in terms of MgO than the inner region 12 has become 3-6% less in terms of SiO 2 The other components (Al, B, Ba, Ca, Zr, Sr) have almost equal contents in the main surface vicinity region 11 and the inner region 12. Note that “substantially equal” means that the ratio is different due to the difference between the Si content and the Mg content. Further, the percentage of the Si content and Mg content in the main surface vicinity region 11 which are higher or lower than the Si content and Mg content in the inner region 12 is determined from the composition analysis by fluorescent X-ray analysis of each region. It can calculate by calculating | requiring Si content and Mg content of this area | region, and comparing these.

そして、内側領域12のボイド率A2が3〜6%であるとともに内側領域12の最大ボイド径B2が6〜9μmであり、内側領域12のボイド率A2に対する主面近傍領域11のボイド率A1の比A1/A2が0.6以下であり、内側領域12の最大ボイド径B2に対する主面近傍領域11の最大ボイド径B1の比B1/B2が0.7以下となっている。   The void ratio A2 of the inner region 12 is 3 to 6%, the maximum void diameter B2 of the inner region 12 is 6 to 9 μm, and the void ratio A1 of the main surface vicinity region 11 with respect to the void ratio A2 of the inner region 12 is The ratio A1 / A2 is 0.6 or less, and the ratio B1 / B2 of the maximum void diameter B1 of the main surface vicinity region 11 to the maximum void diameter B2 of the inner region 12 is 0.7 or less.

このように、主面近傍領域11のボイド率および最大ボイド径が、内側領域12のボイド率および最大ボイド径よりも小さくなっていることで、耐薬品性に優れるとともに緻密な主面を有する絶縁基体1となる。主面近傍領域11のボイド率が内側領域のボイド率の0.6倍を超えたり、主面近傍領域11の最大ボイド径が内側領域12の最大ボイド径の0.7倍を超えると、主面の十分な緻密化が得られず、耐薬品性が低下してしまう。   As described above, the void ratio and the maximum void diameter in the main surface vicinity region 11 are smaller than the void ratio and the maximum void diameter in the inner region 12, so that the insulation having excellent chemical resistance and a dense main surface is achieved. The substrate 1 is obtained. When the void ratio of the main surface vicinity region 11 exceeds 0.6 times the void ratio of the inner region, or the maximum void diameter of the main surface vicinity region 11 exceeds 0.7 times the maximum void diameter of the inner region 12, Sufficient densification of the surface cannot be obtained, and chemical resistance is lowered.

なお、主面近傍領域11とは、絶縁基体1の主面から深さ20μmまでの領域のことをいい、絶縁層1層分の厚みが通常60〜120μmであるので、絶縁層1層分の厚みよりも薄い領域となっている。すなわち、主面近傍領域11は、最外層を構成する絶縁層1a、1dを形成するためのグリーンシートの組成を、内層を構成する絶縁層1b、1cを形成するためのグリーンシートの組成と異ならせることによってできたものとは異なる。もし、最外層を構成する絶縁層1a、1dを形成するためのグリーンシートの組成を、内層を構成する絶縁層1b、1cを形成するためのグリーンシートよりも焼成後に緻密になるような組成としてこれらを積層したとすると、それぞれの層の収縮挙動が異なることから、最外層と内層との間で応力による歪が発生し、これらの層の間に微小なボイドが多数発生してしまう。本発明の構成は、このように収縮挙動の異なるグリーンシートを積層して得られたものではないから、層間にボイドが発生するおそれはない。   The main surface vicinity region 11 means a region from the main surface of the insulating substrate 1 to a depth of 20 μm, and the thickness of one insulating layer is usually 60 to 120 μm. The region is thinner than the thickness. That is, in the main surface vicinity region 11, the composition of the green sheet for forming the insulating layers 1a and 1d constituting the outermost layer is different from the composition of the green sheet for forming the insulating layers 1b and 1c constituting the inner layer. It is different from what was made. If the composition of the green sheet for forming the insulating layers 1a and 1d constituting the outermost layer is such that it becomes denser after firing than the green sheet for forming the insulating layers 1b and 1c constituting the inner layer. When these layers are laminated, the shrinkage behavior of each layer is different, so that strain due to stress occurs between the outermost layer and the inner layer, and a large number of minute voids are generated between these layers. Since the structure of the present invention is not obtained by laminating green sheets having different shrinkage behaviors as described above, there is no possibility that voids are generated between the layers.

貫通導体2および配線層3は、Cu、Agなどを主成分とする低抵抗導体で形成されている。絶縁基体1(複数の絶縁層1a、1b、1c、1d)が1000℃以下の温度で焼結されたものであることから、貫通導体2および配線層3の主成分を上記の低融点であって低抵抗の導体とすることができる。なお、電気抵抗、熱伝導性を劣化させない範囲で、Cu、Ag等の主成分に対して他の金属、酸化物、ガラス、セラミックス等の無機分を含んでいてもよい。また、貫通導体2と配線層3とは、その製造方法が塗布と充填とで異なることから、例えばガラス、無機フィラー等の副成分および含有量が異なっていてもよい。   The through conductor 2 and the wiring layer 3 are formed of a low resistance conductor whose main component is Cu, Ag or the like. Since the insulating substrate 1 (the plurality of insulating layers 1a, 1b, 1c, 1d) is sintered at a temperature of 1000 ° C. or lower, the main components of the through conductor 2 and the wiring layer 3 have the low melting point. And a low-resistance conductor. In addition, inorganic components such as other metals, oxides, glasses, ceramics, and the like may be included in the main components such as Cu and Ag within a range that does not deteriorate the electrical resistance and thermal conductivity. Moreover, since the through conductor 2 and the wiring layer 3 differ in the manufacturing method by application | coating and filling, subcomponents, such as glass and an inorganic filler, and content may differ, for example.

このような多層配線基板を得るためには、以下の製造方法が採用される。   In order to obtain such a multilayer wiring board, the following manufacturing method is employed.

まず、セラミックフィラーを用意する。セラミックフィラーとしては、高熱膨張化に極めて効果的な結晶であるクォーツを絶縁基体1中に含有させるために、天然鉱物であるSiOを用いる。セラミックフィラーの平均粒径は3.5〜5.0μm、比表面積は1.5〜2.5cm/gが好ましい。 First, a ceramic filler is prepared. As the ceramic filler, SiO 2 which is a natural mineral is used in order to contain quartz, which is a crystal extremely effective for high thermal expansion, in the insulating substrate 1. The average particle size of the ceramic filler is preferably 3.5 to 5.0 μm, and the specific surface area is preferably 1.5 to 2.5 cm 2 / g.

また、ガラス粉末を用意する。ガラス粉末は、平均粒径が2.0〜5.0μmであって、SiOを38〜50mol%、Bを5〜10mol%、Alを4〜9mol%、MgOを25〜38mol%、CaOを1〜3mol%、BaOを7〜11mol%およびSrOを1〜4mol%含有している。 Moreover, a glass powder is prepared. The glass powder has an average particle size of 2.0 to 5.0 μm, 38 to 50 mol% of SiO 2 , 5 to 10 mol% of B 2 O 3, 4 to 9 mol% of Al 2 O 3 , and 25 of MgO. ˜38 mol%, CaO 1 to 3 mol%, BaO 7 to 11 mol% and SrO 1 to 4 mol%.

ここで、SiOはガラスの網目構造をつくる成分であるため、SiOの含有量が38mol%未満であると、ガラスの網目構造の安定性が悪くなり、850℃から900℃という低温での焼成が困難となる(焼結性が低下する)ことで、絶縁基体1(ガラスセラミックス)が緻密化しにくくなり耐薬品性が低下する。一方、SiOの含有量が50mol%を超えると、低熱膨張係数(3×10−6/℃〜4×10−6/℃)のMgAlSi18(コージェライト)が析出しやすくなり、コージェライトが析出するとガラスセラミックスの熱膨張係数が低下する。 Here, since SiO 2 is a component that forms a glass network structure, if the content of SiO 2 is less than 38 mol%, the stability of the glass network structure is deteriorated, and the temperature is low at 850 ° C. to 900 ° C. When firing becomes difficult (sinterability is reduced), the insulating substrate 1 (glass ceramics) is difficult to be densified and chemical resistance is reduced. On the other hand, when the content of SiO 2 exceeds 50 mol%, Mg 2 Al 4 Si 5 O 18 (cordierite) having a low thermal expansion coefficient (3 × 10 −6 / ° C. to 4 × 10 −6 / ° C.) is precipitated. When the cordierite is precipitated, the thermal expansion coefficient of the glass ceramic is lowered.

の含有量が5mol%未満であると、ガラスの粘度が高くなってガラス転移温度が高くなり、ガラスセラミックスの焼結性が低下するおそれがある。一方、Bの含有量が10mol%を超えると、ガラスの粘度が下がることによる焼結性向上の効果はあるが、焼成後の結晶化していない非結晶相中のB量が多くなるとともにガラスの結晶化が阻害されることで、熱膨張係数は低下してしまう。 If the content of B 2 O 3 is less than 5 mol%, the viscosity of the glass is increased, the glass transition temperature is increased, and the sinterability of the glass ceramic may be lowered. On the other hand, when the content of B 2 O 3 exceeds 10 mol%, there is an effect of improving the sinterability by lowering the viscosity of the glass, but the amount of B in the non-crystallized amorphous phase after firing increases. At the same time, the coefficient of thermal expansion decreases due to the inhibition of the crystallization of the glass.

Alの含有量が4mol%未満であると、ガラスを作製する工程でガラスが失透しやすくなる。失透したガラスは、ガラス転移温度、屈伏温度、結晶化開始温度などが、失透していないガラスと比較して異なることがあり、そのため、同一条件で焼成してもガラスセラミックスの密度が変動したり析出する結晶の割合が異なったりするため、できあがるガラスセラミックスの各種特性が異なってしまうことがある。一方、Alの含有量が9mol%を超えると、ガラス中の網目構造の安定性がよすぎるため、ガラスの粘度が上昇して濡れ広がりにくくなり、焼結性が低下する。 When the content of Al 2 O 3 is less than 4 mol%, the glass tends to be devitrified in the step of producing the glass. Devitrified glass may have different glass transition temperature, yielding temperature, crystallization start temperature, etc. compared to non-devitrified glass, so the density of glass ceramics fluctuates even when fired under the same conditions. Since the ratio of the crystals to be deposited differs, various characteristics of the resulting glass ceramics may differ. On the other hand, when the content of Al 2 O 3 exceeds 9 mol%, the stability of the network structure in the glass is too good, so that the viscosity of the glass is increased and it becomes difficult to spread and the sinterability is lowered.

MgOの含有量が25mol%未満であると、失透を抑制しにくくなる。一方、MgOの含有量が38mol%を超えると、結晶化開始温度が高くなることによりガラスセラミックスの緻密化を望めるが、コージェライトが析出するようになってガラスセラミックスの熱膨張係数が低下してしまうおそれがある。   When the content of MgO is less than 25 mol%, it is difficult to suppress devitrification. On the other hand, when the content of MgO exceeds 38 mol%, it is possible to expect densification of the glass ceramics due to an increase in the crystallization start temperature, but cordierite is precipitated and the thermal expansion coefficient of the glass ceramics is reduced. There is a risk that.

CaOの含有量が1mol%未満であると、粘度が高くなってガラスセラミックスの焼結性が低下する。一方、CaOの含有量が3mol%を超えると、高温域でのガラス粘度を低下させガラスセラミックスの緻密化を促進させ、電気的絶縁性を高くする効果があるが、コージェライトの析出量が多くなってガラスセラミックスの熱膨張係数が低下してしまうおそれがある。   When the content of CaO is less than 1 mol%, the viscosity increases and the sinterability of the glass ceramics decreases. On the other hand, when the content of CaO exceeds 3 mol%, there is an effect of decreasing the glass viscosity at a high temperature range and promoting densification of the glass ceramic and increasing the electrical insulation, but the amount of cordierite deposited is large. Thus, the thermal expansion coefficient of the glass ceramic may be lowered.

BaOの含有量が7mol%未満であると、焼成後の結晶化していない非結晶相のBaO量が少なくなるため、非結晶相の熱膨張係数が低くなるおそれがある。また、BaOの含有量が11mol%を超えると、結晶化開始温度が高くなることによりガラスセラミックスの緻密化が望めるが、静電容量が小さくなりガラスの誘電率が上昇してしまう恐れがある。   If the BaO content is less than 7 mol%, the BaO amount of the non-crystallized non-crystallized phase after firing is reduced, so that the thermal expansion coefficient of the amorphous phase may be lowered. Further, when the content of BaO exceeds 11 mol%, densification of the glass ceramic can be expected due to an increase in the crystallization start temperature, but there is a possibility that the capacitance decreases and the dielectric constant of the glass increases.

SrOの含有量が1mol%未満であると、SrAlSiおよびBa0.9Sr0.1Siの析出量が少なくなることで、ガラスセラミックスの高強度化が望めなくなる。また、SrOの含有量が4mol%を超えると、SrOはガラス中で修飾酸化物として働くことから、ガラスの粘度を低下させ濡れ性を向上させる効果が期待できるが、同時にガラスが発泡しやすくやり、結果的に表面に膨れとなって表れ、外観歩留まりが低下するおそれがある。 When the content of SrO is less than 1 mol%, the amount of SrAl 2 Si 2 O 8 and Ba 0.9 Sr 0.1 Si 2 O 8 deposited decreases, so that high strength of the glass ceramic cannot be expected. Further, if the SrO content exceeds 4 mol%, SrO works as a modified oxide in the glass, so that the effect of reducing the viscosity of the glass and improving the wettability can be expected. As a result, it appears as a bulge on the surface, which may reduce the appearance yield.

次に、ガラス粉末60〜70質量%とセラミックフィラー30〜40質量%とを混合してガラスセラミックグリーンシートを作製する。具体的には、ガラス粉末とセラミックフィラーとの混合物(合計100質量%)に適当な有機バインダーおよび有機溶剤を混合してスラリーを得る。得られたスラリーから、所望の成形手段、例えばドクターブレード法、カレンダーロール法、圧延法等によりガラスセラミックグリーンシートを作製する。   Next, 60 to 70% by mass of glass powder and 30 to 40% by mass of ceramic filler are mixed to produce a glass ceramic green sheet. Specifically, a suitable organic binder and organic solvent are mixed with a mixture of glass powder and ceramic filler (total 100 mass%) to obtain a slurry. From the obtained slurry, a glass ceramic green sheet is produced by a desired forming means such as a doctor blade method, a calender roll method, a rolling method or the like.

ここで、ガラス粉末の割合が60質量%未満である(セラミックフィラーの割合が40質量%を超える)と、セラミックフィラーの比表面積に対してガラス量(液相)が不足することで、焼結性が低下して絶縁基体1の緻密化(相対密度95%以上)が促進されないおそれがある。一方、ガラス粉末の割合が70質量%を超える(セラミックフフィラーの割合が30質量%未満である)と、セラミックフィラーの比表面積に対してガラス量(液相)が多くなるため、焼結性の向上が期待できるが、ガラス成分中(ガラス粉末)からMgAlSi18(コージェライト)が多く析出してしまう。これにより、相対的にクォーツの析出量が少なくなるために、絶縁基体1(ガラスセラミックス)の熱膨張係数が低下するおそれがある。 Here, when the ratio of the glass powder is less than 60% by mass (the ratio of the ceramic filler exceeds 40% by mass), the amount of glass (liquid phase) is insufficient with respect to the specific surface area of the ceramic filler, so that sintering is performed. There is a risk that the density of the insulating substrate 1 (relative density 95% or more) may not be promoted due to a decrease in the properties. On the other hand, if the ratio of the glass powder exceeds 70% by mass (the ratio of the ceramic filler is less than 30% by mass), the glass amount (liquid phase) increases with respect to the specific surface area of the ceramic filler, so that the sinterability However, a large amount of Mg 2 Al 4 Si 5 O 18 (cordierite) is precipitated from the glass component (glass powder). Thereby, since the amount of deposited quartz is relatively reduced, the thermal expansion coefficient of the insulating substrate 1 (glass ceramic) may be lowered.

次に、ガラスセラミックグリーンシートにパンチングやレーザー加工法などにより貫通孔を形成して、この貫通孔にCu粉末やAg粉末を主成分として含む導体ペーストを充填する。また、所望のガラスセラミックグリーンシート上に、Cu粉末やAg粉末を主成分として含む導体ペーストを用いて配線層用の導体パターンをスクリーン印刷法やグラビア印刷法にて形成する。   Next, a through-hole is formed in the glass ceramic green sheet by punching or laser processing, and the conductive paste containing Cu powder or Ag powder as a main component is filled in the through-hole. Moreover, a conductor pattern for a wiring layer is formed on a desired glass ceramic green sheet by a screen printing method or a gravure printing method using a conductor paste containing Cu powder or Ag powder as a main component.

このようにして作製されたガラスセラミックグリーンシートを複数積層して積層体を作製する。具体的には、熱圧着法や積層助剤を用いて加圧して積層する方法により積層体を得る。   A laminated body is produced by laminating a plurality of thus produced glass ceramic green sheets. Specifically, a laminate is obtained by a thermocompression bonding method or a method of pressurizing and laminating using a lamination aid.

そして、積層体を焼成する。ここで、焼成に際して、前記ガラスセラミックグリーンシートを構成するガラス粉末15〜18質量%と、前記ガラスセラミックグリーンシートを構成するSiOからなるセラミックフィラー82〜85質量%とを含むグリーンシート状のセッター4を準備し、このセッター4により積層体を上下から挟持して焼成することが重要である。このセッター4は、前記ガラスセラミックグリーンシートを構成するガラス粉末と前記ガラスセラミックグリーンシートを構成するSiOからなるセラミックフィラーとの混合物に有機バインダーおよび有機溶剤を添加してなるもので、これらの添加量は適宜調製される。セッター4は、例えばドクターブレード法により厚み800〜1200μm程度に形成されたものである。また、セッター4を構成するガラス粉末の平均粒径は3〜5μm程度で、セラミックフィラーの平均粒径は2〜5μm程度であり、ガラスセラミックグリーンシートほど厳しく管理されるものではない。なお、図1はセッター4で積層体を挟持して焼成した後の状態であって、焼成後に多層配線基板からセッター4を引き離す状態を表している。 And a laminated body is baked. Here, in firing, a green sheet-like setter containing 15 to 18% by mass of glass powder constituting the glass ceramic green sheet and 82 to 85% by mass of ceramic filler made of SiO 2 constituting the glass ceramic green sheet. 4 is prepared, and it is important that the laminated body is sandwiched from above and below by the setter 4 and fired. This setter 4 is formed by adding an organic binder and an organic solvent to a mixture of glass powder constituting the glass ceramic green sheet and ceramic filler made of SiO 2 constituting the glass ceramic green sheet. The amount is appropriately adjusted. The setter 4 is formed to a thickness of about 800 to 1200 μm by, for example, a doctor blade method. Moreover, the average particle diameter of the glass powder which comprises the setter 4 is about 3-5 micrometers, and the average particle diameter of a ceramic filler is about 2-5 micrometers, and it is not managed as severely as a glass ceramic green sheet. FIG. 1 shows a state after the laminate is sandwiched and fired by the setter 4 and the setter 4 is pulled away from the multilayer wiring board after firing.

このようなセッター4を用いることで、焼成後の多層配線基板の絶縁基体1において、内側領域12よりもMg含有量がMgO換算で15〜23%多くSi含有量がSiO換算3〜6%少ない主面近傍領域11を形成することができ、内側領域12のボイド率A2に対する主面近傍領域11のボイド率A1の比A1/A2を0.6以下、内側領域12の最大ボイド径B2に対する主面近傍領域11の最大ボイド径B1の比B1/B2を0.7以下とすることができる。このことは、焼成中に積層体の表層を構成するガラスセラミックグリーンシートとセッター4との間で、ガラス成分の授受が行われている(SiおよびMgが移動している)ことによるものと考えられる。 By using such a setter 4, in the insulating substrate 1 of the multilayer wiring board after firing, the Mg content is 15 to 23% higher than the inner region 12 in terms of MgO, and the Si content is 3 to 6% in terms of SiO 2. A small main surface vicinity region 11 can be formed, the ratio A1 / A2 of the void ratio A1 of the main surface vicinity region 11 to the void ratio A2 of the inner region 12 is 0.6 or less, and the maximum void diameter B2 of the inner region 12 The ratio B1 / B2 of the maximum void diameter B1 in the main surface vicinity region 11 can be set to 0.7 or less. This is considered to be due to the glass component being transferred between the glass ceramic green sheet and the setter 4 constituting the surface layer of the laminate during firing (Si and Mg are moving). It is done.

ここで、ガラス粉末の含有量が18質量%を超える場合(セラミックフィラーの含有量が82質量%未満の場合)、熱処理後のセッター4主面の緻密性が高まり、絶縁基体1と反応して付着したり、有機バインダーが焼失してなる脱バイガスの排出経路が少なくなって脱バイ性が低下したりするおそれがある。一方、ガラス粉末の含有量が15質量%未満の場合(セラミックフィラーの含有量が85質量%を超える場合)、セッター4中のガラス成分が相対的に少なくなることにより、ガラスセラミックグリーンシートとセッター4との間のガラス成分(SiおよびMg)の授受が行われなくなるおそれがある。   Here, when the content of the glass powder exceeds 18% by mass (when the content of the ceramic filler is less than 82% by mass), the denseness of the main surface of the setter 4 after the heat treatment increases and reacts with the insulating substrate 1. There is a possibility that the debye gas discharge route formed by adhesion or burning out of the organic binder may be reduced, and the devitrification property may be lowered. On the other hand, when the content of the glass powder is less than 15% by mass (when the content of the ceramic filler exceeds 85% by mass), the glass component in the setter 4 is relatively reduced, so that the glass ceramic green sheet and the setter are reduced. There is a risk that the glass component (Si and Mg) between 4 and 4 will not be exchanged.

そして、セッター4で上下から挟持された積層体は850〜900℃の温度で焼成される。焼成にあたっては、まず成形のために配合した有機バインダーなどの有機成分を除去する。有機成分の除去は、大気雰囲気中または窒素雰囲中、700〜750℃の温度で1〜5時間保持することにより行われる。次に、本焼成として、850℃〜900℃の温度で1〜2時間かけた焼成がなされる。焼成雰囲気は、配線層の金属種に応じて適宜選択される。配線層としてCuを用いる場合は非酸化性雰囲気が選択され、Agを用いる場合は酸化性雰囲気が選択される。   And the laminated body clamped from the upper and lower sides with the setter 4 is baked at the temperature of 850-900 degreeC. In firing, organic components such as an organic binder blended for molding are first removed. The removal of the organic component is performed by holding at a temperature of 700 to 750 ° C. for 1 to 5 hours in an air atmosphere or a nitrogen atmosphere. Next, as the main baking, baking is performed at a temperature of 850 ° C. to 900 ° C. for 1 to 2 hours. The firing atmosphere is appropriately selected according to the metal species of the wiring layer. A non-oxidizing atmosphere is selected when Cu is used as the wiring layer, and an oxidizing atmosphere is selected when Ag is used.

ガラス粉末として、表1に示す組成のガラス粉末とSiOからなるセラミックフィラーとを用意し、表1に示す割合となるように秤量混合した。なお、ガラス粉末の平均粒径は3.9μm、フィラー本体の平均粒径は3.5μmであった。 As the glass powder, a glass powder having the composition shown in Table 1 and a ceramic filler made of SiO 2 were prepared and weighed and mixed so as to have the ratio shown in Table 1. The average particle size of the glass powder was 3.9 μm, and the average particle size of the filler body was 3.5 μm.

この混合物に、有機バインダーとしてイソブチルメタクリレートを主鎖としてトルエンを溶媒とするバインダーを添加するとともに、有機溶剤としてジブチルフタレートを添加し十分混合してスラリーを作製した後、ドクターブレード法により厚み100μmのガラスセラミックグリーンシートを作製した。   To this mixture, a binder containing isobutyl methacrylate as a main chain and toluene as a solvent was added as an organic binder, and dibutyl phthalate was added as an organic solvent and mixed well to prepare a slurry. Then, a glass having a thickness of 100 μm was formed by a doctor blade method. A ceramic green sheet was prepared.

得られたガラスセラミックグリーンシートに、パンチングで貫通孔を形成してこの貫通孔にCuを主成分とする貫通導体用ペーストを充填し、さらにスクリーン印刷法を用いてCuを主成分とする配線層用導体ペーストを被着形成した。   A through-hole is formed in the obtained glass ceramic green sheet by punching, and the through-hole is filled with a paste for penetrating conductors containing Cu as a main component. Further, a wiring layer containing Cu as a main component using a screen printing method. A conductive paste was deposited.

こうして作製した複数のガラスセラミックグリーンシートを位置合わせして熱圧着にて14層積層して積層体を得た。   The plurality of glass ceramic green sheets thus produced were aligned and 14 layers were laminated by thermocompression bonding to obtain a laminate.

一方、ガラスセラミックグリーンシートを構成するガラス粉末と同じ組成の平均粒径4μmのガラス粉末と、平均粒径4μmのSiOからなるセラミックフィラーとを表1に示す割合となるように混合し、ドクターブレード法により厚み1000μmに形成してセッターを作製した。 On the other hand, a glass powder having the same composition as the glass powder constituting the glass ceramic green sheet and a ceramic filler composed of SiO 2 having an average particle diameter of 4 μm are mixed so as to have the ratio shown in Table 1, A setter was produced by forming a thickness of 1000 μm by a blade method.

そして、積層体をセッターで上下から挟持して、水蒸気を含有する窒素雰囲気中にて725℃の温度で3時間かけて脱バインダー処理を行った後、300℃/Hrの昇温速度で昇温し、窒素雰囲気にて860℃の温度で1時間かけて本焼成を行ない、縦45mm、横45mm、厚み5mmの大きさの多層配線基板を得た。   Then, the laminate is sandwiched from above and below by a setter, debindered at a temperature of 725 ° C. for 3 hours in a nitrogen atmosphere containing water vapor, and then heated at a rate of temperature increase of 300 ° C./Hr. Then, the main baking was performed at a temperature of 860 ° C. for 1 hour in a nitrogen atmosphere to obtain a multilayer wiring board having a length of 45 mm, a width of 45 mm, and a thickness of 5 mm.

上記の方法で得られた多層配線基板に対して、以下の測定を行なった。   The following measurements were performed on the multilayer wiring board obtained by the above method.

まず、主面近傍領域および内側領域の組成分析をそれぞれ行なった。具体的には、測定試料を研磨して主面から20μmの位置の断面(主面近傍領域)を露出させるとともに主面から100μmの位置の断面(内側領域)を露出させ、それぞれの領域の組成を蛍光X線分析にて測定した。内側領域の組成および主面近傍領域の内側領域と異なる成分についてその差(%表示)の測定結果を表1,表2に示す。なお、マイナス表示は主面近傍領域における成分量が少ないことを意味し、プラス表示は主面近傍領域における成分量が多いことを示す。   First, the composition analysis of the main surface vicinity area | region and the inner side area | region was performed, respectively. Specifically, the measurement sample is polished to expose a cross section at a position of 20 μm from the main surface (region near the main surface) and a cross section at a position of 100 μm from the main surface (inner region) to expose the composition of each region. Was measured by fluorescent X-ray analysis. Tables 1 and 2 show the measurement results of the difference (in%) for the composition of the inner region and the components different from the inner region of the main surface vicinity region. Note that the minus display means that the component amount in the main surface vicinity region is small, and the plus display indicates that the component amount in the main surface vicinity region is large.

また、絶縁基体中の結晶相の同定を行った。この同定は、X線回折(XRD)測定結果(ピーク強度比)をリートベルト法で解析して行った。リートベルト法については、日本結晶学会「結晶解析ハンドブック」編集委員会編、「結晶解析ハンドブック」、共立出版株式会社、1999年9月、p.492−499に記載されている方法を用いた。具体的には、評価対象の試料にCrの標準試料を加えて、ディフラクトメーター法で測定した2θ=10°以上80°以下の範囲のX線回折パターンに対して、RIETAN−2000プログラムを使用することにより、Crの標準試料により回折されたパターンと加えたCrの標準試料の量の相関関係から、評価対象の試料中に含まれる結晶構造と量を評価した。その結果を表1に析出結晶として示す。なお、析出結晶は左側から多い順に並べた。 In addition, the crystal phase in the insulating substrate was identified. This identification was performed by analyzing the X-ray diffraction (XRD) measurement result (peak intensity ratio) by the Rietveld method. Regarding the Rietveld method, the “Crystal Analysis Handbook” Editorial Committee edited by the Crystallographic Society of Japan, “Crystal Analysis Handbook”, Kyoritsu Publishing Co., Ltd., September 1999, p. The method described in 492-499 was used. Specifically, a standard sample of Cr 2 O 3 is added to the sample to be evaluated, and RETAN-2000 is applied to an X-ray diffraction pattern in a range of 2θ = 10 ° to 80 ° measured by a diffractometer method. by using the program, from the correlation between the amount of standard samples of Cr 2 O 3 was added and the diffraction pattern by standard sample of Cr 2 O 3, evaluate the crystal structure and the amount contained in a sample to be evaluated did. The results are shown in Table 1 as precipitated crystals. The precipitated crystals were arranged in descending order from the left side.

そして、主面近傍領域および内側領域のボイド率、最大ボイド径の測定を行なった。まず、測定試料を積層方向にて切断し、埋め込み固定して切断面を鏡面研磨した後、走査型顕微鏡(SEM)の二次電子像にてボイドの状態を観察した。具体的には、測定試料の主面から20μmの位置の断面(主面近傍領域)および100μmの位置の断面(内側領域)について、SEM(二次電子像)を切り出して、500倍のSEM写真を撮影し、画像解析装置を用いてそれぞれのボイド率および最大ボイド径を算出した。具体的には、OHPフィルムにボイドを投影し、そのボイド部を黒く塗りつぶした。塗りつぶしたOHPを、ルーゼックス(金属顕微鏡)にて、磁器中のボイド部と緻密部分の割合計算を行い、ボイド率、最大ボイド径を算出した。その結果を表2に示す。   Then, the void ratio and the maximum void diameter in the main surface vicinity region and the inner region were measured. First, the measurement sample was cut in the stacking direction, embedded and fixed, and the cut surface was mirror-polished, and then the void state was observed with a secondary electron image of a scanning microscope (SEM). Specifically, a SEM (secondary electron image) is cut out from a cross section at a position of 20 μm from the main surface of the measurement sample (region near the main surface) and a cross section at a position of 100 μm (inner region), and a 500 times SEM photograph is taken. The void ratio and the maximum void diameter were calculated using an image analyzer. Specifically, a void was projected onto the OHP film, and the void portion was painted black. The ratio of the void portion and the dense portion in the porcelain was calculated for the filled OHP with Luzex (metal microscope), and the void ratio and the maximum void diameter were calculated. The results are shown in Table 2.

次に、内側領域のボイド率A2に対する主面近傍領域のボイド率A1の比A1/A2と、内側領域の最大ボイド径B2に対する主面近傍領域の最大ボイド径B1の比B1/B2とを求めた。その結果を表2に示す。   Next, the ratio A1 / A2 of the void ratio A1 in the main surface vicinity region to the void ratio A2 in the inner region and the ratio B1 / B2 of the maximum void diameter B1 in the main surface vicinity region to the maximum void diameter B2 in the inner region are obtained. It was. The results are shown in Table 2.

さらに、得られた絶縁基体の熱膨張係数の測定を行った。熱膨脹係数を測定するための試験片は、一辺1.5mm×4.5mm×15mmの角柱とし、熱機械分析装置を用いて室温から400℃における熱膨張曲線を測定し、線膨張率を求めた。この値を熱膨脹係数とし、表2に示す。   Furthermore, the thermal expansion coefficient of the obtained insulating substrate was measured. The test piece for measuring the thermal expansion coefficient was a prism with a side of 1.5 mm × 4.5 mm × 15 mm, and the thermal expansion curve from room temperature to 400 ° C. was measured using a thermomechanical analyzer to determine the linear expansion coefficient. . Table 2 shows this value as the thermal expansion coefficient.

またさらに、得られた多層配線基板の耐薬品性を確認するため、過硫酸アンモニウム、酸性フッ化アンモニウム、硫酸などの薬品に浸し、レッドチェックの有無を確認した。その結果を表2に示す。   Furthermore, in order to confirm the chemical resistance of the obtained multilayer wiring board, it was immersed in chemicals such as ammonium persulfate, ammonium acid fluoride, and sulfuric acid, and the presence or absence of a red check was confirmed. The results are shown in Table 2.

Figure 2010034176
Figure 2010034176

Figure 2010034176
Figure 2010034176

表1に示すように、本発明範囲内にある試料(試料No.1〜No.5,No.7〜No.10,No.12〜No.15,No.17,No.18,No.20,No.21,No.23)によれば、10.5×10−6/℃以上の高い熱膨張係数を満足し、ボイドに起因するめっき液の浸食が抑制された耐薬品性に優れた多層配線基板が得られていることがわかる。 As shown in Table 1, samples within the scope of the present invention (sample No. 1 to No. 5, No. 7 to No. 10, No. 12 to No. 15, No. 17, No. 18, No. 18, 20, No. 21, No. 23) satisfying a high coefficient of thermal expansion of 10.5 × 10 −6 / ° C. or more, and excellent chemical resistance in which erosion of the plating solution due to voids is suppressed. It can be seen that a multilayer wiring board is obtained.

これに対し、本発明範囲外である試料No.6では、原料のガラス粉末におけるSiO量が少ないことから、ケイ酸塩化合物であるセルジアン(BaAlSi)およびエンスタタイト(MgSiO)の析出量が少なくなったことで、熱膨張係数が10.5×10−6/℃未満となった。 On the other hand, sample No. which is outside the scope of the present invention. In No. 6, since the amount of SiO 2 in the raw glass powder is small, the amount of precipitation of Serdian (BaAl 2 Si 2 O 8 ) and enstatite (MgSiO 3 ), which are silicate compounds, is reduced. The coefficient was less than 10.5 × 10 −6 / ° C.

また、本発明範囲外である試料No.11は、原料のガラス粉末におけるMgO量が多いことから、コージェライト(MgAlSiO1)が析出し、熱膨張係数が10.5×10−6/℃未満となった。また、主面近傍領域のSi含有量が内側領域より3%以上少なくなく、主面近傍領域のMg含有量が内側領域より15%以上多くないことから、主面近傍領域のボイド率および最大ボイド径も本発明範囲外となり、めっき後の耐薬品性が良くない結果(レッドチェックによる判定が×)となった。 In addition, sample No. which is outside the scope of the present invention. No. 11 had a large amount of MgO in the raw glass powder, so cordierite (Mg 2 Al 4 Si 5 O 1 8 ) was precipitated and the thermal expansion coefficient was less than 10.5 × 10 −6 / ° C. Further, since the Si content in the region near the main surface is not less than 3% less than the inner region, and the Mg content in the region near the main surface is not more than 15% more than the inner region, the void ratio and the maximum void in the region near the main surface The diameter was also outside the scope of the present invention, and the chemical resistance after plating was poor (determination by red check was x).

また、本発明範囲外である試料No.16は、原料のガラス粉末におけるBaO量が少ないことから、ガラスセラミックスにおいてケイ酸塩化合物であるセルジアン(BaAlSi)の析出量が少なくなったことで、熱膨張係数が10.5×10−6/℃未満となった。 In addition, sample No. which is outside the scope of the present invention. In No. 16, since the amount of BaO in the raw glass powder is small, the amount of precipitation of Serdian (BaAl 2 Si 2 O 8 ), which is a silicate compound, in the glass ceramic is reduced, so that the thermal expansion coefficient is 10.5. It became less than x10 < -6 > / degreeC .

また、本発明範囲外である試料No.19では、原料のガラス粉末が60質量%未満であり、セラミックフィラーが40質量%を超えることから、ガラスセラミックスにおいて内側領域のボイド率A2に対する主面近傍領域のボイド率A1の比A1/A2が0.6以下を満たさず、また内側領域の最大ボイド径B2に対する主面近傍領域の最大ボイド径B1の比B1/B2が0.7以下を満たさず、めっき後の耐薬品性が良くない結果(レッドチェックによる判定が×)となった。   In addition, sample No. which is outside the scope of the present invention. 19, since the raw glass powder is less than 60% by mass and the ceramic filler exceeds 40% by mass, the ratio A1 / A2 of the void ratio A1 in the vicinity of the main surface to the void ratio A2 in the inner region in the glass ceramic is The result that the ratio of the maximum void diameter B1 in the main surface vicinity region to the maximum void diameter B2 in the inner region does not satisfy 0.7 or less does not satisfy 0.7 or less, and the chemical resistance after plating is not good. (Judgment by red check is x).

また、本発明範囲外である試料No.22では、原料のガラス粉末が70質量%を超え、セラミックフィラーが30質量%未満であることから、焼成後の内側領域の組成においてクォーツの質量が40質量%未満となり、熱膨張係数が10.5×10−6/℃未満となった。 In addition, sample No. which is outside the scope of the present invention. No. 22, the glass powder of the raw material exceeds 70% by mass, and the ceramic filler is less than 30% by mass. Therefore, in the composition of the inner region after firing, the mass of quartz is less than 40% by mass, and the thermal expansion coefficient is 10. It was less than 5 × 10 −6 / ° C.

また、本発明範囲外である試料No.24では、ガラスセラミックグリーンシートの積層体を上下から挟持するセッターにおいて、セッターのガラス量が18質量%を超え、セラミックフィラー量が82質量%未満であることから、焼成後の多層配線基板の主面の緻密化が十分ではないため、めっき後の耐薬品性が良くない結果(レッドチェックによる判定が×)となった。   In addition, sample No. which is outside the scope of the present invention. 24, in a setter that sandwiches a laminate of glass ceramic green sheets from above and below, the glass amount of the setter exceeds 18% by mass and the amount of ceramic filler is less than 82% by mass. Since the surface was not sufficiently densified, the chemical resistance after plating was not good (determination by red check was x).

また、本発明範囲外である試料No.25では、ガラスセラミックグリーンシートの積層体を上下から挟持するセッターにおいて、セッターのガラス量が15質量%未満であり、セラミックフィラー量が85質量%を超えることから、試料No.24と同様に、焼成後の多層配線基板の主面の緻密化が十分ではないため、めっき後の耐薬品性が良くない結果(レッドチェックによる判定が×)となった。   In addition, sample No. which is outside the scope of the present invention. No. 25, in a setter that sandwiches a laminated body of glass ceramic green sheets from above and below, the glass amount of the setter is less than 15% by mass, and the amount of ceramic filler exceeds 85% by mass. Similarly to 24, since the main surface of the multilayer wiring board after firing was not sufficiently densified, the chemical resistance after plating was not good (determination by red check was x).

本発明の多層配線基板の一実施形態の概略断面を示すとともに、焼成後の上下のセッターを取り除く状況を示す説明図である。It is explanatory drawing which shows the condition which removes the upper and lower setters after baking while showing the schematic cross section of one Embodiment of the multilayer wiring board of this invention.

符号の説明Explanation of symbols

1:絶縁基体
1a、1b、1c、1d:絶縁層
11:主面近傍領域
12:内側領域
2:貫通導体
3:配線層
1: Insulating substrate 1a, 1b, 1c, 1d: Insulating layer 11: Main surface vicinity region 12: Inner region 2: Through conductor 3: Wiring layer

Claims (2)

クォーツを主結晶とするガラスセラミックスからなる複数の絶縁層が積層された絶縁基体と、前記絶縁層に形成された貫通導体と、前記絶縁基体の主面および内部に形成された配線層とを含む多層配線基板において、
前記絶縁基体は、SiをSiO換算で65.3〜66.7質量%、BをB換算3.9〜4.1質量%、AlをAl換算で4.7〜5.5質量%、MgをMgO換算で10.9〜11.1質量%、CaをCaO換算で1.39〜1.41質量%、BaをBaO換算で9.0〜11.0質量%、SrをSrO換算で0.89〜0.91質量%およびZrをZrO換算で0.60〜0.71質量%含有する内側領域と、該内側領域と同じ成分を含み前記内側領域よりもMg含有量がMgO換算で15〜23%多くSi含有量がSiO換算で3〜6%少なく、かつ他の成分の含有量が前記内側領域とほぼ等しい主面近傍領域とを有し、
前記内側領域のボイド率A2が3〜6%であるとともに前記内側領域の最大ボイド径B2が6〜9μmであり、かつ前記内側領域のボイド率A2に対する前記主面近傍領域のボイド率A1の比A1/A2が0.6以下であるとともに前記内側領域の最大ボイド径B2に対する前記主面近傍領域の最大ボイド径B1の比B1/B2が0.7以下であることを特徴とする多層配線基板。
Insulating substrate in which a plurality of insulating layers made of glass ceramics having quartz as a main crystal are laminated, a through conductor formed in the insulating layer, and a wiring layer formed in the main surface and inside of the insulating substrate In multilayer wiring boards,
It said insulating substrate is 4.7 to the Si 65.3-66.7 wt% in terms of SiO 2, a B B 2 O 3 in terms of 3.9-4.1 wt%, the Al in terms of Al 2 O 3 5.5% by mass, Mg from 10.9 to 11.1% by mass in terms of MgO, Ca from 1.39 to 1.41% by mass in terms of CaO, and Ba from 9.0 to 11.0% by mass in terms of BaO , an inner region that contains 0.60 to 0.71 wt% from 0.89 to 0.91 wt% of Sr in terms of SrO and Zr in terms of ZrO 2, than the inner region comprises the same components as the interior region 15 to 23% mg content in terms of MgO many Si content 3-6% less in terms of SiO 2, and the content of the other component has a substantially equal main surface near region and the inner region,
The void ratio A2 of the inner region is 3 to 6%, the maximum void diameter B2 of the inner region is 6 to 9 μm, and the ratio of the void ratio A1 of the region near the main surface to the void ratio A2 of the inner region A multilayer wiring board, wherein A1 / A2 is 0.6 or less and a ratio B1 / B2 of a maximum void diameter B1 in the main surface vicinity region to a maximum void diameter B2 in the inner region is 0.7 or less .
SiOを38〜50mol%、Bを5〜10mol%、Alを4〜9mol%、MgOを25〜38mol%、CaOを1〜3mol%、BaOを7〜11mol%、SrOを1〜4mol%およびZrOを0.5〜1.5mol%含有するガラス粉末60〜70質量%と、SiOからなるセラミックフィラー30〜40質量%とを含むガラスセラミックグリーンシートを作製し、該ガラスセラミックグリーンシートを貫通する貫通孔を形成して貫通導体用ペーストを充填するとともに前記ガラスセラミックグリーンシートの主面に配線層用導体ペーストを被着形成し、前記ガラスセラミックグリーンシートを複数積層して積層体を作製し、前記ガラス粉末15〜18質量%と前記セラミックフィラー82〜85質量%とを含むグリーンシート状のセッターで前記積層体を上下から挟持して焼成することを特徴とする多層配線基板の製造方法。 The SiO 2 38~50mol%, B 2 O 3 to 5~10mol%, Al 2 O 3 the 4~9mol%, MgO of 25~38mol%, 1~3mol% of CaO, 7~11mol% of BaO, SrO was prepared and 1~4Mol% and 60-70 wt% glass powder of ZrO 2 containing 0.5 to 1.5 mol%, the glass-ceramic green sheet containing a 30 to 40 wt% ceramic filler composed of SiO 2, A through hole penetrating the glass ceramic green sheet is formed and filled with a paste for through conductor, and a conductor paste for wiring layer is formed on the main surface of the glass ceramic green sheet, and a plurality of the glass ceramic green sheets are laminated. To produce a laminated body, and the glass powder 15 to 18% by mass and the ceramic filler 82 to 85 quality. % And a method for manufacturing a multilayer wiring board and firing by sandwiching the laminate from above and below the green sheet setter including.
JP2008193051A 2008-07-28 2008-07-28 Multilayer wiring board, and method of manufacturing the same Pending JP2010034176A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008193051A JP2010034176A (en) 2008-07-28 2008-07-28 Multilayer wiring board, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008193051A JP2010034176A (en) 2008-07-28 2008-07-28 Multilayer wiring board, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010034176A true JP2010034176A (en) 2010-02-12

Family

ID=41738332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008193051A Pending JP2010034176A (en) 2008-07-28 2008-07-28 Multilayer wiring board, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010034176A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8231961B2 (en) 2009-10-20 2012-07-31 Murata Manufacturing Co., Ltd. Low temperature co-fired ceramic material, low temperature co-fired ceramic body, and multilayer ceramic substrate
JP2012162445A (en) * 2011-01-18 2012-08-30 Nippon Electric Glass Co Ltd High-expansive crystalline glass composition
CN110024498A (en) * 2016-12-08 2019-07-16 株式会社村田制作所 Multilayer ceramic substrate and electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8231961B2 (en) 2009-10-20 2012-07-31 Murata Manufacturing Co., Ltd. Low temperature co-fired ceramic material, low temperature co-fired ceramic body, and multilayer ceramic substrate
JP2012162445A (en) * 2011-01-18 2012-08-30 Nippon Electric Glass Co Ltd High-expansive crystalline glass composition
CN110024498A (en) * 2016-12-08 2019-07-16 株式会社村田制作所 Multilayer ceramic substrate and electronic device
US11011441B2 (en) * 2016-12-08 2021-05-18 Murata Manufacturing Co., Ltd. Multilayer ceramic substrate and electronic device
CN110024498B (en) * 2016-12-08 2021-12-31 株式会社村田制作所 Multilayer ceramic substrate and electronic device

Similar Documents

Publication Publication Date Title
JP4994052B2 (en) Board and circuit board using the same
JP5158040B2 (en) Glass ceramic substrate
JP2008270741A (en) Wiring board
JPWO2020129945A1 (en) Laminates and electronic components
JP2010034176A (en) Multilayer wiring board, and method of manufacturing the same
JP4606115B2 (en) Multilayer substrate and manufacturing method thereof
JP2001342063A (en) Low temperature-baked ceramic composition, low temperature ceramic, its production method, wiring board using the same and its production method
JP4959950B2 (en) Sintered body and wiring board
JP2008030995A (en) Multilayered ceramic substrate and its manufacturing method as well as composite green sheet for manufacturing multilayered ceramic substrate
JP5004548B2 (en) Low-temperature fired porcelain, method for producing the same, and wiring board using the same
JP2005093546A (en) Wiring board and its producing method
JP2012250903A (en) Glass-ceramic composite material
JP5363887B2 (en) Multilayer wiring board
JP2005347674A (en) Method for manufacturing multi-layer ceramic substrate and multi-layer ceramic substrate
JP5213477B2 (en) Manufacturing method of glass ceramics
JP2009181987A (en) Method of manufacturing ceramic multilayer substrate
JP2010278117A (en) Method of manufacturing wiring board
JP5201903B2 (en) Multilayer wiring board, method for producing the same, and composition for via-hole conductor
JP2009231542A (en) Glass ceramic multilayer wiring board and method for manufacturing the same
JP3944839B2 (en) COMPOSITE CERAMIC COMPONENT AND MANUFACTURING METHOD THEREOF
JP2010034273A (en) Multilayer circuit board, and method of manufacturing the same
JP4035046B2 (en) Wiring board manufacturing method
JP2004056148A (en) Copper paste and wiring substrate using same
JP2009010141A (en) Ceramic multilayer substrate
JP5499766B2 (en) Glass ceramic substrate, method for manufacturing the same, and wiring substrate