JP4534524B2 - Method for producing fine α-alumina - Google Patents

Method for producing fine α-alumina Download PDF

Info

Publication number
JP4534524B2
JP4534524B2 JP2004051177A JP2004051177A JP4534524B2 JP 4534524 B2 JP4534524 B2 JP 4534524B2 JP 2004051177 A JP2004051177 A JP 2004051177A JP 2004051177 A JP2004051177 A JP 2004051177A JP 4534524 B2 JP4534524 B2 JP 4534524B2
Authority
JP
Japan
Prior art keywords
alumina
aluminum
fine
seed crystal
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004051177A
Other languages
Japanese (ja)
Other versions
JP2005263499A (en
Inventor
一 真木
美明 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2004051177A priority Critical patent/JP4534524B2/en
Publication of JP2005263499A publication Critical patent/JP2005263499A/en
Application granted granted Critical
Publication of JP4534524B2 publication Critical patent/JP4534524B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、微粒αアルミナの製造方法に関する。 The present invention relates to a method for producing fine α-alumina.

微粒αアルミナは、主結晶相がα相のアルミナ〔Al23〕の微細な粒子であって、例えば透光管などのような焼結体を製造するための原材料として広く用いられており、その製造方法として、非特許文献1〔鉱物学会誌第19巻第1号第21頁〜第41頁〕および特許文献1〔特開昭62−128918号公報〕には、アルミナ水和物をそのまま焼成する方法(非特許文献1)や、アルミナ水和物を種晶の存在下に焼成する方法(特許文献1)が開示されている。 Fine α-alumina is a fine particle of alumina [Al 2 O 3 ] whose main crystal phase is α-phase, and is widely used as a raw material for producing sintered bodies such as light-transmitting tubes. As the production method thereof, Non-Patent Document 1 [Journal of Mineral Society, Vol. 19, No. 1, page 21 to page 41] and Patent Document 1 (Japanese Patent Laid-Open No. Sho 62-128918) disclose alumina hydrate. A method of firing as it is (Non-patent Document 1) and a method of firing alumina hydrate in the presence of seed crystals (Patent Document 1) are disclosed.

しかし、アルミナ水和物を焼成する従来の方法では、高いα化率で大きなBET比表面積を示す微粒αアルミナを製造することはできなかった。 However, the conventional method for firing alumina hydrate cannot produce fine α-alumina having a high BET specific surface area with a high α conversion rate.

特開昭62−128918号公報JP-A-62-128918 鉱物学会誌第19巻第1号第21頁〜第41頁Journal of the Mineralogical Society, Vol. 19, No. 1, pp. 21-41

そこで本発明者は、α化率が高く、大きなBET比表面積の微粒αアルミナを製造し得る方法を開発するべく鋭意検討した結果、アルニウム塩を種晶の存在下に焼成することとすれば、α化率の高い微粒αアルミナが得られ、またこの微粒αアルミナはBET比表面積が十分に大きいことを見出し、本発明に至った。 Therefore, the present inventor has intensively studied to develop a method capable of producing a fine α-alumina having a high α conversion rate and a large BET specific surface area. As a result, if the aluminium salt is fired in the presence of seed crystals, Fine α-alumina having a high α conversion rate was obtained, and the fine α-alumina was found to have a sufficiently large BET specific surface area, leading to the present invention.

すなわち本発明は、アルミニウム塩を種晶の存在下に焼成することを特徴とする微粒αアルミナの製造方法を提供するものである。 That is, the present invention provides a method for producing fine α-alumina, which comprises firing an aluminum salt in the presence of seed crystals.

本発明の製造方法によれば、高いα化率で、大きなBET比表面積を示す微粒αアルミナを製造することができる。 According to the production method of the present invention, it is possible to produce fine α-alumina having a high BET specific surface area with a high α conversion rate.

本発明の製造方法で用いられるアルミニウム塩とは、アルミニウムと塩基との塩であって、アルミニウムと無機塩基とのアルミニウム無機塩であってもよいし、アルミニウムと有機塩基とのアルミニウム有機塩であってもよい。アルミニウム無機塩としては、例えば硝酸アルミニウム、硝酸アンモニウムアルミニウム、炭酸アンモニウムアルミニウム、硫酸アルミニウム、硫酸アルミニウムアンモニウム等が挙げられる。また、アルミニウム有機塩としては、例えば蓚酸アルミニウム、酢酸アルミニウム、ステアリン酸アルミニウム、アンモニウム明礬、乳酸アルミニウム、ラウリン酸アルミニウムなどが挙げられる。 The aluminum salt used in the production method of the present invention is a salt of aluminum and a base, and may be an aluminum inorganic salt of aluminum and an inorganic base, or an aluminum organic salt of aluminum and an organic base. May be. Examples of the aluminum inorganic salt include aluminum nitrate, ammonium aluminum nitrate, ammonium aluminum carbonate, aluminum sulfate, and aluminum ammonium sulfate. Examples of the aluminum organic salt include aluminum oxalate, aluminum acetate, aluminum stearate, ammonium alum, aluminum lactate, and aluminum laurate.

種晶としては、例えばαアルミナ、ダイアスポア、酸化鉄、酸化クロム、酸化チタンなどの金属酸化物が挙げられ、かかる種晶はそれぞれ単独で、または2種以上が同時に用いられる。かかる種晶の粒子径は小さいことが好ましく通常は0.01μm以上0.5μm以下程度のものが用いられ、そのBET比表面積は好ましくは12m2/g以上、150m2/g以下程度、さらに好ましくは15m2/g以上である。 Examples of seed crystals include metal oxides such as α-alumina, diaspore, iron oxide, chromium oxide, and titanium oxide. These seed crystals are used alone or in combination of two or more. Particle size of such seed crystals is small, it is usually preferably are used is of the order or 0.5μm or less 0.01 [mu] m, BET specific surface area is preferably 12m 2 / g or more, the degree 150 meters 2 / g or less, more preferably Is 15 m 2 / g or more.

かかる種晶の使用量は、高いα化率の微粒αアルミナが容易に得られる点で、金属成分の酸化物換算で、アルミニウム塩および種晶の合計量100質量部あたり、1質量部以上、さらには2質量部以上、特には4質量部以上であることが好ましい。また種晶の使用量が50質量部を超えてもよいが、その使用量に見合ってα化率が高くならないので、通常は50質量部以下、好ましくは40質量部以下、さらに好ましくは30質量部以下程度である。 The amount of the seed crystal used is 1 part by mass or more per 100 parts by mass of the total amount of the aluminum salt and the seed crystal in terms of oxide of the metal component, in that a fine α-alumina having a high α conversion rate can be easily obtained. Further, it is preferably 2 parts by mass or more, particularly 4 parts by mass or more. The amount of seed crystals used may exceed 50 parts by mass, but since the pregelatinization rate does not increase in accordance with the amount used, it is usually 50 parts by mass or less, preferably 40 parts by mass or less, more preferably 30 parts by mass. Part or less.

アルミニウム塩を種晶の存在下に焼成するには、例えばアルミニウム塩を種晶と混合し、次いで焼成すればよい。アルミニウム塩を種晶と混合するには、例えばアルミニウム塩を溶媒と混合して溶液またはスラリーとし、種晶を加えた後、溶媒を留去すればよい。溶媒を留去することで、種晶が均一に分散された状態で、溶媒中のアルミニウム塩が析出する。種晶が均一に分散した状態で析出したアルミニウム塩を焼成することで、目的の微粒αアルミナを得ることができる。種晶は、粉末状のまま加えてもよいし、溶媒に分散させた状態で加えてもよい。 In order to fire the aluminum salt in the presence of the seed crystal, for example, the aluminum salt may be mixed with the seed crystal and then fired. In order to mix the aluminum salt with the seed crystal, for example, the aluminum salt is mixed with a solvent to form a solution or slurry, the seed crystal is added, and then the solvent is distilled off. By distilling off the solvent, the aluminum salt in the solvent is precipitated while the seed crystals are uniformly dispersed. By firing the precipitated aluminum salt in a state where the seed crystals are uniformly dispersed, the desired fine α-alumina can be obtained. The seed crystal may be added in the form of powder or may be added in a state dispersed in a solvent.

また、アルミニウム塩に種晶を加え撹拌して混合してもよい。混合後の混合物を焼成することで、目的の微粒αアルミナを得ることができる。混合には、例えばバーティカルグラニュエーター、ヘンシェルミキサーなどの混合機を用いることができる。種晶は粉末状態のまま加えてもよいし、溶媒に分散させた状態で加えてもよい。 Also, seed crystals may be added to the aluminum salt and mixed with stirring. By firing the mixture after mixing, the desired fine α-alumina can be obtained. For the mixing, for example, a mixer such as a vertical granulator or a Henschel mixer can be used. The seed crystal may be added in a powder state or may be added in a state dispersed in a solvent.

焼成は通常600℃以上、好ましくは700℃以上、通常は1000℃以下、好ましくは
950℃以下、更に好ましくは890℃以下で行なわれる。1000℃を超えると、BE
T比表面積が大きなものとならない傾向にある。また600℃未満では、α化率が低くな
る傾向にある。
Firing is usually performed at 600 ° C. or higher, preferably 700 ° C. or higher, usually 1000 ° C. or lower, preferably 950 ° C. or lower, more preferably 890 ° C. or lower. Beyond 1000 ° C, BE
The T specific surface area tends not to be large. If it is less than 600 ° C., the pregelatinization rate tends to be low.

焼成は、大気中で行なわれてもよいし、窒素ガス、アルゴンガスなどの不活性ガス中で行
なわれてもよい。また雰囲気中の水蒸気分圧を低く維持しながら焼成してもよい。
Firing may be performed in the air or in an inert gas such as nitrogen gas or argon gas. Further, it may be fired while keeping the water vapor partial pressure in the atmosphere low.

焼成は、例えば管状電気炉、箱型電気炉、トンネル炉、遠赤外線炉、マイクロ波加熱炉、
シャフト炉、反射炉、ロータリー炉、ローラーハース炉などの通常の焼成炉を用いて行な
うことができる。焼成は回分式で行なってもよいし、連続式で行なってもよい。また静置
式で行なってもよいし、流動式で行ってもよい。
Firing is, for example, a tubular electric furnace, a box-type electric furnace, a tunnel furnace, a far-infrared furnace, a microwave heating furnace,
A normal firing furnace such as a shaft furnace, a reflection furnace, a rotary furnace, or a roller hearth furnace can be used. Firing may be performed batchwise or continuously. Moreover, you may carry out by a stationary type and may carry out by a fluid type.

焼成時間はアルミニウム塩がα化して高α化率の微粒αアルミナが得られるに十分な時間
であればよく、用いるアルミニウム塩の種類、量、焼成炉の形式、焼成温度、焼成雰囲気
によって異なるが、例えば10分以上24時間以下程度である。
The firing time may be a time sufficient for the aluminum salt to be α-ized to obtain a high α-granulation fine α-alumina, and varies depending on the type, amount, type of firing furnace, firing temperature, and firing atmosphere of the aluminum salt used. For example, it is about 10 minutes or more and 24 hours or less.

かくして得られる微粒αアルミナは、粒子径が0.05μm以上1μm以下程度であり、高いα化率であると共に大きなBET比表面積を示し、例えばα化率90%以上、好ましくは95%以上で、BET比表面積は8m2/g以上、好ましくは13m2/g以上、更に好ましくは15m2/g以上であり、通常は30m2/g以下程度である。 The fine α-alumina thus obtained has a particle diameter of about 0.05 μm or more and 1 μm or less, a high α conversion rate and a large BET specific surface area, for example, an α conversion rate of 90% or more, preferably 95% or more, The BET specific surface area is 8 m 2 / g or more, preferably 13 m 2 / g or more, more preferably 15 m 2 / g or more, and usually about 30 m 2 / g or less.

得られた微粒αアルミナは、粉砕されてもよい。微粒αアルミナを粉砕するには、例えば
振動ミル、ボールミル、ジェットミルなどをの媒体粉砕機を用いることができる。また、得られた微粒αアルミナは分級してもよい。
The obtained fine α-alumina may be pulverized. In order to pulverize the fine α-alumina, a medium pulverizer such as a vibration mill, a ball mill, or a jet mill can be used. The obtained fine α-alumina may be classified.

かくして得られたαアルミナは、例えばαアルミナ焼結体を製造するための原材料として有用である。αアルミナ焼結体は、例えば切削工具、バイオセラミクス、防弾板などの高強度を要求されるものが挙げられる。ウェハーハンドラーなどの半導体製造用装置部品、酸素センサーなどの電子部品も挙げられる。ナトリウムランプ、メタルハライドランプなどの透光管も挙げられる。排ガスなどの気体に含まれる固形分除去、アルミニウム溶湯の濾過、ビールなどの食品の濾過等に用いられるセラミクスフィルターも挙げられる。セラミクスフィルターとしては、燃料電池において水素を選択的に透過させたり、石油精製時に生じるガス成分、一酸化炭素、二酸化炭素、窒素、酸素などを選択的に透過させるための選択透過フィルターも挙げられ、これらの選択透過フィルターはその表面に触媒成分を担持させる触媒担体として用いてもよい。 The α-alumina thus obtained is useful as a raw material for producing an α-alumina sintered body, for example. Examples of the α-alumina sintered body include those requiring high strength such as cutting tools, bioceramics, and bulletproof plates. Examples include semiconductor manufacturing equipment parts such as wafer handlers and electronic parts such as oxygen sensors. Light-transmitting tubes such as sodium lamps and metal halide lamps are also included. Also included are ceramic filters used for removing solids contained in gases such as exhaust gas, filtering molten aluminum, and filtering food such as beer. Examples of the ceramic filter include a selective permeation filter for selectively permeating hydrogen in a fuel cell or selectively permeating gas components generated during petroleum refining, carbon monoxide, carbon dioxide, nitrogen, oxygen, and the like. These permselective filters may be used as a catalyst carrier for supporting a catalyst component on the surface thereof.

得られた微粒αアルミナを原材料の一つとして用いて、化粧品の添加剤、ブレーキライニングの添加剤、触媒担体として使用され、また導電性焼結体、熱伝導性焼結体などの材料として使用される。 Using the resulting fine α-alumina as a raw material, it is used as a cosmetic additive, brake lining additive, catalyst carrier, and as a material for conductive sintered bodies, thermally conductive sintered bodies, etc. Is done.

得られた微粒αアルミナは、粉末のままで、通常のαアルミナ粉末と同様に、塗布型磁気メディアの塗布層に添加されてヘッドクリーニング性、体磨耗性を向上させるための添加剤として用いることができる。トナーとして用いることもできる。樹脂に添加するフィラーとして用いることもできる。また、研磨材として用いることもでき、例えば水などの溶媒に分散させたスラリーとし、半導体CMP研磨、ハードディスク基板などの研磨などに用いることができるし、テープ表面にコーティングして研磨テープとして、ハードディスク、磁気ヘッドなどの精密研磨などに用いることができる。 The obtained fine α-alumina is used as an additive to improve the head cleaning property and body wearability by adding it to the coating layer of the coating type magnetic media in the same manner as normal α-alumina powder as it is. Can do. It can also be used as a toner. It can also be used as a filler added to the resin. It can also be used as an abrasive, for example, it can be used as a slurry dispersed in a solvent such as water, and can be used for polishing semiconductor CMP, polishing a hard disk substrate, etc. It can be used for precision polishing of magnetic heads.

以下、実施例によって本発明をより詳細に説明するが、本発明はこれら実施例によって限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by these Examples.

なお、各実施例で得た微粒αアルミナのα化率は、粉末X線回折装置を用いて得た微粒αアルミナの回折スペクトルから、2θ=25.6°の位置に現れるアルミナα相(012面)のピーク高さ(I25.6)と、2θ=46°の位置に現れるγ相、η相、χ相、κ相、θ相およびδ相のピーク高さ(I46)とから、式(1)
α化率= I25.6 / (I25.6 + I46 )×100(%)・・・(1)
により算出した。
BET比表面積は窒素吸着法により求めた。
平均一次粒子径は、微細αアルミナの透過電子顕微鏡写真に写った任意の粒子20個以上について、個々の一次粒子の定方向最大径を測定し、測定値の数平均値として求めた。
Note that the alpha conversion rate of the fine α-alumina obtained in each example is the alumina α phase (012) appearing at 2θ = 25.6 ° from the diffraction spectrum of the fine α-alumina obtained using a powder X-ray diffractometer. since the peak of the surface) height and (I 25.6), 2θ = 46 ° of appearing at position γ phase, eta phase, chi-phase, kappa phase, the peak height of the θ-phase and δ-phase and (I 46), wherein ( 1)
α conversion rate = I 25.6 / (I 25.6 + I 46 ) x 100 (%) (1)
Calculated by
The BET specific surface area was determined by a nitrogen adsorption method.
The average primary particle diameter was determined as the number average value of the measured values by measuring the maximum diameter in the fixed direction of each primary particle for 20 or more arbitrary particles in a transmission electron micrograph of fine α-alumina.

実施例1
〔種晶スラリーの調製〕
BET比表面積16.0m2/gのαアルミナ粒子(粒子径は約0.1μm)20質量部を硝酸水溶液(pH=4)80質量部に添加し分散させた後、アルミナビーズ(直径2mm)を充填したボールミルを用いて3時間かけて湿式分級して、種晶スラリーを得た。
Example 1
[Preparation of seed crystal slurry]
After adding 20 parts by mass of alpha alumina particles having a BET specific surface area of 16.0 m 2 / g (particle size is about 0.1 μm) to 80 parts by mass of aqueous nitric acid (pH = 4), alumina beads (diameter 2 mm) are dispersed. Was wet-classified using a ball mill filled with 3 to obtain a seed crystal slurry.

〔微粒αアルミナの製造〕
硝酸アルミニウム九水和物〔Al(NO3)3・9H2O〕(和光純薬工業製、特級)375.13g(1モル)を純水に溶解させ、容積1dm3(1000cm3)の硝酸アルミニウム水溶液を得た。この硝酸アルミニウム水溶液100cm3に上記で得た種晶スラリー2.83g(αアルミナ粒子0.566g)を添加し、75℃の温浴中でロータリーエバポレーターにより減圧下に水を留去して、硝酸アルニウムの粉末を得た。この粉末には、金属成分の酸化物換算で100質量部あたり10質量部の種晶(αアルミナ)が含まれている。
[Production of fine α-alumina]
Aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H 2 O ] (Wako Pure Chemical Industries, Ltd., guaranteed reagent) 375.13G (1 mol) was dissolved in pure water, nitric acid volume 1 dm 3 (1000 cm 3) An aqueous aluminum solution was obtained. To 100 cm 3 of this aluminum nitrate aqueous solution, 2.83 g of the seed crystal slurry obtained above (0.566 g of α-alumina particles) was added, and water was distilled off under reduced pressure by a rotary evaporator in a 75 ° C. warm bath to obtain aluminum nitrate. Of powder was obtained. This powder contains 10 parts by mass of seed crystals (α-alumina) per 100 parts by mass in terms of oxide of the metal component.

上記で得た粉末2.8gをアルミナ製坩堝に入れ、室温(約25℃)で箱型電気炉に入れて、300℃/時間で850℃に昇温し、同温度を3時間保持することで焼成して、微粒αアルミナを得た(実施例1)。この微粒αアルミナ粉末のα化率は95%であり、BET比表面積は15.9m2/gであり、平均一次粒子径は96nmであった。 2.8 g of the powder obtained above is put in an alumina crucible, put in a box-type electric furnace at room temperature (about 25 ° C.), heated to 850 ° C. at 300 ° C./hour, and held at that temperature for 3 hours. To obtain fine α-alumina (Example 1). This fine α-alumina powder had an α conversion of 95%, a BET specific surface area of 15.9 m 2 / g, and an average primary particle size of 96 nm.

実施例2
実施例1で得た硝酸アルミニウムの粉末の使用量を3.3gとし、焼成温度を890℃とした以外は実施例1と同様に操作して焼成し、微粒αアルミナを得た。この微粒αアルミナのα化率およびBET比表面積を第1表に示す。
Example 2
A fine α-alumina was obtained by firing in the same manner as in Example 1 except that the amount of aluminum nitrate powder obtained in Example 1 was 3.3 g and the firing temperature was 890 ° C. Table 1 shows the gelatinization rate and BET specific surface area of the fine α-alumina.

実施例3
実施例1で得た硝酸アルミニウムの粉末の使用量を5.0gとし、焼成温度を925℃とした以外は実施例1と同様に操作して焼成し、微粒αアルミナを得た。この微粒αアルミナのα化率およびBET比表面積を第1表に示す。
Example 3
A fine α-alumina was obtained by firing in the same manner as in Example 1 except that the amount of aluminum nitrate powder obtained in Example 1 was 5.0 g and the firing temperature was 925 ° C. Table 1 shows the gelatinization rate and BET specific surface area of the fine α-alumina.

第 1 表
━━━━━━━━━━━━━━━━━
例 α化率 BET比表面積
(%) (m2/g)
─────────────────
実施例1 98 15.9
実施例2 97 13.3
実施例3 99 10.1
━━━━━━━━━━━━━━━━━
Table 1
━━━━━━━━━━━━━━━━━
Example α conversion rate BET specific surface area
(%) (M 2 / g)
─────────────────
Example 1 98 15.9
Example 2 97 13.3
Example 3 99 10.1
━━━━━━━━━━━━━━━━━

実施例4
硝酸アルミニウム九水和物〔Al(NO3)3・9H2O〕(和光純薬工業製、特級)100gに、BET比表面積16.0m2/gのαアルミナ粉末(粒子径は約0.1μm)1.5gを加え、乳鉢で混合した。混合後の混合物には、金属成分の酸化物換算で100質量部あたり10質量部の種晶(αアルミナ)が含まれている。
Example 4
100 g of aluminum nitrate nonahydrate [Al (NO 3 ) 3 .9H 2 O] (special grade, manufactured by Wako Pure Chemical Industries, Ltd.) and α-alumina powder having a BET specific surface area of 16.0 m 2 / g (particle size is about 0.00). 1 μm) 1.5 g was added and mixed in a mortar. The mixture after mixing contains 10 parts by mass of seed crystals (α-alumina) per 100 parts by mass in terms of oxide of the metal component.

この混合物4.5gをアルミナ製坩堝に入れ、室温(約25℃)で箱型電気炉に入れて、300℃/時間で870℃に昇温し、同温度を3時間保持することで焼成して、微粒αアルミナを得た(実施例4)。この微粒αアルミナのα化率は96%であり、BET比表面積は17.4m2/gであり、平均一次粒子径は110nmであった。 4.5 g of this mixture is placed in an alumina crucible, placed in a box-type electric furnace at room temperature (about 25 ° C.), heated to 870 ° C. at 300 ° C./hour, and calcined by maintaining the same temperature for 3 hours. Thus, fine α-alumina was obtained (Example 4). The α-alumina conversion rate of this fine α-alumina was 96%, the BET specific surface area was 17.4 m 2 / g, and the average primary particle size was 110 nm.

実施例5
実施例4で得た混合物の使用量を3.9gとし、焼成温度を850℃とした以外は実施例4と同様に操作して焼成し、微粒αアルミナを得た。この微粒αアルミナのα化率およびBET比表面積を第2表に示す。
Example 5
A fine α-alumina was obtained in the same manner as in Example 4 except that the amount of the mixture obtained in Example 4 was 3.9 g and the firing temperature was 850 ° C. Table 2 shows the gelatinization rate and BET specific surface area of the fine α-alumina.

第 2 表
━━━━━━━━━━━━━━━━━
例 α化率 BET比表面積
(%) (m2/g)
─────────────────
実施例4 96 17.4
実施例5 97 18.9
━━━━━━━━━━━━━━━━━
Table 2
━━━━━━━━━━━━━━━━━
Example α conversion rate BET specific surface area
(%) (M 2 / g)
─────────────────
Example 4 96 17.4
Example 5 97 18.9
━━━━━━━━━━━━━━━━━

比較例1
硝酸アルミニウム九水和物〔Al(NO3)3・9H2O〕(和光純薬工業製、特級、粉末状)に種晶を加えることなく、アルミナ製坩堝に入れ、室温(約25℃)で箱型電気炉に入れて、300℃/時間で870℃に諸温し、同温度を3時間保持することで焼成して、アルミナ粉末を得た。このアルミナ粉末のBET比表面積は111m2/gであったが、そのX線回折スペクトルにはアルミナα相のピークは見られず、α化率は0%であった。
Comparative Example 1
Aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H 2 O ] (manufactured by Wako Pure Chemical Industries, special grade, powdered) in without adding a seed crystal, put into an alumina crucible, room temperature (approximately 25 ° C.) Then, it was put into a box-type electric furnace, heated to 870 ° C. at 300 ° C./hour, and calcined by maintaining the same temperature for 3 hours to obtain alumina powder. The alumina powder had a BET specific surface area of 111 m 2 / g, but no peak of the alumina α phase was observed in the X-ray diffraction spectrum, and the α conversion was 0%.

比較例2
硝酸アルミニウム九水和物の使用量を7.5gとし、焼成温度を900℃とした以外は比較例1と同様に操作してアルミナ粉末を得た。このアルミナ粉末のα化率およびBET比表面積を第3表に示す。
Comparative Example 2
Alumina powder was obtained in the same manner as in Comparative Example 1 except that the amount of aluminum nitrate nonahydrate used was 7.5 g and the firing temperature was 900 ° C. Table 3 shows the alpha conversion rate and BET specific surface area of the alumina powder.

比較例3
硝酸アルミニウム九水和物の使用量を8.0gとし、焼成温度を950℃とした以外は比較例1と同様に操作してアルミナ粉末を得た。このアルミナ粉末のα化率およびBET比表面積を第3表に示す。
Comparative Example 3
Alumina powder was obtained in the same manner as in Comparative Example 1 except that the amount of aluminum nitrate nonahydrate used was 8.0 g and the firing temperature was 950 ° C. Table 3 shows the alpha conversion rate and BET specific surface area of the alumina powder.

比較例4
硝酸アルミニウム九水和物の使用量を8.1gとし、焼成温度を970℃とした以外は比較例1と同様に操作してアルミナ粉末を得た。このアルミナ粉末のα化率およびBET比表面積を第3表に示す。
Comparative Example 4
Alumina powder was obtained in the same manner as in Comparative Example 1 except that the amount of aluminum nitrate nonahydrate used was 8.1 g and the firing temperature was 970 ° C. Table 3 shows the alpha conversion rate and BET specific surface area of the alumina powder.

第 3 表
━━━━━━━━━━━━━━━━━
例 α化率 BET比表面積
(%) (m2/g)
─────────────────
比較例1 0 111
比較例2 0 107
比較例3 91 41
比較例4 98 9.9
━━━━━━━━━━━━━━━━━
Table 3
━━━━━━━━━━━━━━━━━
Example α conversion rate BET specific surface area
(%) (M 2 / g)
─────────────────
Comparative Example 1 0 111
Comparative Example 2 0 107
Comparative Example 3 91 41
Comparative Example 4 98 9.9
━━━━━━━━━━━━━━━━━

Claims (7)

アルミニウム塩と種晶を混合して混合物を得、次いで混合物を窒素ガス及びアルゴンガスからなる群より選ばれる不活性ガス中又は大気中で焼成することを特徴とする微粒αアルミナの製造方法。 A method for producing fine α-alumina, comprising mixing an aluminum salt and a seed crystal to obtain a mixture, and then firing the mixture in an inert gas or air selected from the group consisting of nitrogen gas and argon gas . アルミニウム塩がアルミニウム無機塩である請求項1に記載の製造方法。 The production method according to claim 1, wherein the aluminum salt is an aluminum inorganic salt. アルミニウム無機塩が硝酸アルミニウムである請求項2に記載の製造方法。 The production method according to claim 2, wherein the aluminum inorganic salt is aluminum nitrate. 600℃以上で焼成する請求項1〜請求項3のいずれかに記載の製造方法。 The manufacturing method in any one of Claims 1-3 baked at 600 degreeC or more. 種晶がαアルミナ、ダイアスポア、酸化鉄、酸化クロムまたは酸化チタンである請求項1に記載の製造方法。 The production method according to claim 1, wherein the seed crystal is α-alumina, diaspore, iron oxide, chromium oxide, or titanium oxide. 種晶のBET比表面積が12m2/g以上である請求項1に記載の製造方法。 The production method according to claim 1, wherein the seed crystal has a BET specific surface area of 12 m 2 / g or more. 種晶の使用量が、金属成分の酸化物換算で、アルミニウム塩および種晶の合計使用量100質量部あたり1質量部以上である請求項1に記載の製造方法。 The production method according to claim 1, wherein the amount of the seed crystal used is 1 part by mass or more per 100 parts by mass of the total amount of the aluminum salt and the seed crystal in terms of oxide of the metal component.
JP2004051177A 2003-02-26 2004-02-26 Method for producing fine α-alumina Expired - Fee Related JP4534524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004051177A JP4534524B2 (en) 2003-02-26 2004-02-26 Method for producing fine α-alumina

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003048957 2003-02-26
JP2004042585 2004-02-19
JP2004051177A JP4534524B2 (en) 2003-02-26 2004-02-26 Method for producing fine α-alumina

Publications (2)

Publication Number Publication Date
JP2005263499A JP2005263499A (en) 2005-09-29
JP4534524B2 true JP4534524B2 (en) 2010-09-01

Family

ID=35088436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004051177A Expired - Fee Related JP4534524B2 (en) 2003-02-26 2004-02-26 Method for producing fine α-alumina

Country Status (1)

Country Link
JP (1) JP4534524B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4572576B2 (en) * 2003-05-19 2010-11-04 住友化学株式会社 Method for producing fine α-alumina
JP4595383B2 (en) * 2003-05-19 2010-12-08 住友化学株式会社 Production method of fine α-alumina
JP4810828B2 (en) * 2004-09-03 2011-11-09 住友化学株式会社 Method for producing fine α-alumina
JP2007055888A (en) * 2005-07-25 2007-03-08 Sumitomo Chemical Co Ltd FINE alpha-ALUMINA PARTICLE
JP2007186379A (en) * 2006-01-13 2007-07-26 Sumitomo Chemical Co Ltd Method for manufacturing alpha alumina particle
JP5678421B2 (en) * 2009-09-09 2015-03-04 東ソー株式会社 Powder for translucent alumina, method for producing the same, and method for producing translucent alumina sintered body using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206430A (en) * 1993-04-13 1995-08-08 Sumitomo Chem Co Ltd Alpha-alumina powder and its production
JP2003040615A (en) * 2001-05-21 2003-02-13 Sumitomo Chem Co Ltd FINE alpha-ALUMINA POWDER AND ITS PRODUCING METHOD
JP2003277048A (en) * 2002-01-16 2003-10-02 Sumitomo Chem Co Ltd FIRED ALUMINA PRODUCT, METHOD FOR MANUFACTURING FIRED ALUMINA PRODUCT AND FINE alpha ALUMINA POWDER OBTAINED BY USING FIRED ALUMINA PRODUCT

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10035679A1 (en) * 2000-07-21 2002-01-31 Inst Neue Mat Gemein Gmbh Nanoscale corundum powder, sintered bodies made therefrom and process for their production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07206430A (en) * 1993-04-13 1995-08-08 Sumitomo Chem Co Ltd Alpha-alumina powder and its production
JP2003040615A (en) * 2001-05-21 2003-02-13 Sumitomo Chem Co Ltd FINE alpha-ALUMINA POWDER AND ITS PRODUCING METHOD
JP2003277048A (en) * 2002-01-16 2003-10-02 Sumitomo Chem Co Ltd FIRED ALUMINA PRODUCT, METHOD FOR MANUFACTURING FIRED ALUMINA PRODUCT AND FINE alpha ALUMINA POWDER OBTAINED BY USING FIRED ALUMINA PRODUCT

Also Published As

Publication number Publication date
JP2005263499A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP5720848B2 (en) Method for producing polyhedral α-alumina fine particles
TWI408104B (en) Process for producing fine α-alumina particles
US7351394B2 (en) Method for producing α-alumina powder
US7078010B2 (en) Method for producing α-alumina powder
JP4595383B2 (en) Production method of fine α-alumina
JP4534524B2 (en) Method for producing fine α-alumina
US7307033B2 (en) Method for producing α-alumina particulate
US7758845B2 (en) Method for producing an alpha alumina particle
JP4552454B2 (en) Method for producing fine α-alumina
JP4572576B2 (en) Method for producing fine α-alumina
TWI378073B (en) Method for producing an α-alumina powder
JP2016028993A (en) α-ALUMINA FINE PARTICLE AND PRODUCTION METHOD OF THE SAME
JP5086529B2 (en) Method for producing fine α-alumina
JP4251124B2 (en) Method for producing fine α-alumina
JP4386046B2 (en) Method for producing fine α-alumina
JP4442214B2 (en) Method for producing fine α-alumina
JP5100982B2 (en) Method for producing fine α-alumina
JP4251125B2 (en) Method for producing fine α-alumina
JP6010843B2 (en) Method for producing particulate α-alumina
JP2005314211A (en) METHOD FOR PRODUCING PARTICULATE alpha-ALUMINA
JP7480916B2 (en) Composite particles and method for producing the same
JP2007186379A (en) Method for manufacturing alpha alumina particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080130

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4534524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees