JP4432263B2 - Steel continuous casting method - Google Patents

Steel continuous casting method Download PDF

Info

Publication number
JP4432263B2
JP4432263B2 JP2001009164A JP2001009164A JP4432263B2 JP 4432263 B2 JP4432263 B2 JP 4432263B2 JP 2001009164 A JP2001009164 A JP 2001009164A JP 2001009164 A JP2001009164 A JP 2001009164A JP 4432263 B2 JP4432263 B2 JP 4432263B2
Authority
JP
Japan
Prior art keywords
molten steel
mold
magnetic field
nozzle
straight nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001009164A
Other languages
Japanese (ja)
Other versions
JP2002210547A (en
Inventor
陽一 伊藤
祐司 三木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001009164A priority Critical patent/JP4432263B2/en
Publication of JP2002210547A publication Critical patent/JP2002210547A/en
Application granted granted Critical
Publication of JP4432263B2 publication Critical patent/JP4432263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ストレートノズルから鋳型内に供給される溶鋼の流動を制御しながら連続鋳造を行なう方法に関する。
【0002】
【従来の技術】
連続鋳造によって鋳片を製造する場合、溶鋼をタンディッシュから鋳型内に供給する。鋳型内に供給された溶鋼は鋳型と接触して冷却され、薄い凝固層(以下、凝固シェルという)を形成する。また、鋳型と凝固シェルとの潤滑,鋳型内の溶鋼の保温,溶鋼浴面の酸化防止等を目的として、鋳型内の溶鋼の浴面にモールドパウダーを投入する。こうして溶鋼を鋳型内に供給しながら凝固シェルを下方へ引き抜いて鋳片を製造する。
【0003】
タンディッシュから鋳型へ溶鋼を供給する際に、溶鋼が空気によって酸化されるのを防止し、かつ介在物やモールドパウダーが溶鋼中へ巻き込まれるのを防止するために、浸漬ノズルを使用する。
浸漬ノズルは、先端部に配設された吐出口を鋳型内の溶鋼に浸漬した状態で使用され、吐出口が鉛直下方へ向かって開口して溶鋼を鉛直下方へ吐出する浸漬ノズル(以下、ストレートノズルという)、あるいは吐出口が鋳型の短辺方向に対向して両側に1個ずつ開口して溶鋼を鋳型の短辺面に向かう方向に吐出する浸漬ノズル(以下、2孔ノズルという)等が知られている。
【0004】
ストレートノズルを用いる場合は、吐出口から鉛直下方へ向かって吐出する溶鋼が、凝固シェル内の未凝固の溶鋼に侵入する深さが深くなる。そのため、溶鋼に巻き込まれた介在物やモールドパウダーが、凝固シェル内の未凝固の溶鋼中に深く侵入するので、鋳片に表面欠陥や内部欠陥が発生しやすい。
それに対して2孔ノズルを用いる場合は、溶鋼が吐出口から鋳型の短辺面に向かう方向に吐出するので、凝固シェル内の未凝固の溶鋼に侵入する深さは浅い。したがって鋳片の表面欠陥や内部欠陥は抑制される。このような理由から、通常の連続鋳造では2孔ノズルを使用するのが一般的である。
【0005】
図2および図3は、浸漬ノズルとして2孔ノズル3を用いた場合の溶鋼の流れを示す断面図であり、図2は溶鋼が水平方向より下方に向けて吐出される例、図3は溶鋼が水平方向より上方に向けて吐出される例である。
図2においては、2孔ノズル3の吐出口から鋳型2の短辺面に向かう方向に吐出された溶鋼は、凝固シェル6に衝突して、矢印aと矢印bに示すような2種類の流れに分岐する。矢印bの流れはメニスカス7まで上昇した後、メニスカス7の下側を2孔ノズル3の方向へ流れ、さらに2孔ノズル3の近傍で下方へ下降する。このとき、メニスカス7下側の2孔ノズル3の周辺では溶鋼4が流動せず、溶鋼停滞領域5が生じる。
【0006】
図3においては、2孔ノズル3の吐出口から鋳型2の短辺面に向かう方向に吐出された溶鋼は、矢印cで示すようにメニスカス7まで上昇した後、メニスカス7の下側を鋳型1の短辺面に向かう方向に流れ、さらに凝固シェル6の近傍で下方へ下降する。このとき、メニスカス7下側の2孔ノズル3の周辺では溶鋼4が流動せず、溶鋼停滞領域5が生じる。
【0007】
いずれの場合も、溶鋼停滞領域5では溶鋼4が停滞するため、下記のような問題が発生し、鋳片に種々の欠陥が生じる原因になっている。
▲1▼溶鋼停滞領域5では溶鋼4温度が低下し、デッケルと呼ばれる不沈塊が発生する。
▲2▼溶鋼4中へのモールドパウダー9の溶融が不均一となる。
▲3▼溶鋼停滞領域5で捕捉された介在物や気泡が残留する。
【0008】
そこで溶鋼停滞領域5を解消することを目的として種々の技術が提案されている。
たとえば特開昭60-37251号公報には、連続鋳造鋳型内溶鋼の電磁撹拌方法が開示されている。この方法は、リニアモータ型スターラを複数個に分割し、2孔ノズルから吐出される溶鋼の吐出流に撹拌流動を生じさせる際に、鋼種や操業条件に応じた撹拌パターンを選択することによって、鋳片の品質を改善しようとするものでる。しかしこの方法では、設備上の制約からリニアモータ型スターラを分割する個数に限界があり、溶鋼停滞領域を十分に解消できないという問題があった。
【0009】
また特開平7-9098号公報には、連続鋳造方法が開示されている。この方法は、メニスカス近傍に電磁撹拌装置を配設して、メニスカス部に均一な溶鋼流を形成することによって高品位の鋳片を製造しようとするものである。しかしこの方法では、ストレートノズルから鉛直下方に吐出される溶鋼の下降流には電磁撹拌力が及ばないので、溶鋼の下降流に巻き込まれた介在物やモールドパウダーが凝固シェル内の未凝固の溶鋼中に深く侵入して、鋳片に表面欠陥や内部欠陥が発生する原因になるという問題があった。
【0010】
【発明が解決しようとする課題】
本発明は上記のような問題を解消し、溶鋼停滞領域が生じるのを防止して、表面品質および内部品質の優れた高品質の鋳片を製造する連続鋳造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、種々の浸漬ノズルについて、鋳型内の溶鋼流動と単位時間あたりの溶鋼供給量(以下、スループットという)や溶鋼の吐出角度との関係を調査した。その結果、2孔ノズルを用いる場合には溶鋼停滞領域を十分に解消できなかったが、ストレートノズルを使用して、鉛直下方に吐出される溶鋼の下降流に移動磁界を印加して上昇流を形成させ、ストレートノズルから鉛直下方に吐出される溶鋼の下降流が凝固シェル内の未凝固の溶鋼に侵入する深さを浅くし、かつ移動磁界による上昇流とストレートノズルからの下降流とを干渉させることによって溶鋼停滞領域を解消できることを見出した。
【0012】
本発明は、浸漬ノズルとしてストレートノズルを用いる鋼の連続鋳造方法において、ストレートノズルの両側の鋳型長辺面とストレートノズルとの間のメニスカスから鋳型下端までの領域に上向きの移動磁界を印加し、移動磁界を発生する装置の鉄芯の鋳型長辺面に平行な方向の幅Lとストレートノズルの外径dが下記の (1)式を満足し、ストレートノズルから鉛直下向きに吐出する溶鋼の下降流と移動磁界によって上向きに流動する溶鋼の上昇流とを干渉させる鋼の連続鋳造方法である。
【0013】
前記した発明においては、好適態様として、鋳型長辺面に平行な方向に流動する溶鋼の表面流速が0.15〜0.40m/sec の範囲内を満足することが好ましい
【0014】
2d≦L≦4d ・・・ (1)
L:移動磁界発生装置の鉄芯の鋳型長辺面に平行な方向の幅(mm)
d:ストレートノズルの外径(mm)
【0015】
【発明の実施の形態】
図1は、本発明を適用する連続鋳造鋳型の要部を示す断面図であり、(a) は縦断面図、(b) はA−A視の横断面図である。
ストレートノズル2を介して溶鋼4が鋳型1内に供給され、鋳型1内の溶鋼4浴面にモールドパウダー9が投入される。鋳型1の長辺の外壁に鉄芯8を有する移動磁界発生装置が設けられ、ストレートノズル2の両側の鋳型1長辺面とストレートノズル2との間の溶鋼4に上向きの移動磁界を印加する。移動磁界を印加する領域は、メニスカス7の下方50mmにおける溶鋼4の流速(以下、表面流速という)を制御できるようにするために、メニスカス7の位置を上限とする。また、ストレートノズル2から鉛直下方に吐出される溶鋼4の下降流に上向きの移動磁界を印加して、溶鋼4の上昇流を形成するために、移動磁界を印加する領域の下限は、鋳型1下端の位置とする。
【0016】
こうしてストレートノズル2から鉛直下方に吐出される溶鋼4の下降流と、移動磁界によって溶鋼4が上向きに流動する上昇流とを干渉させる。
なお、溶鋼4に移動磁界を印加する移動磁界発生装置の鉄芯8の鋳型1長辺面に平行な方向の幅L(mm)は、ストレートノズル2の外径d(mm)の約3倍程度とするのが好ましい。具体的には、移動磁界発生装置の鉄芯8の幅Lが、ストレートノズル2の外径dの2倍未満では、移動磁界の強さが不足して、ストレートノズル2から鉛直下方に吐出される溶鋼4を上昇流にできない。移動磁界発生装置の鉄芯8の幅Lが、ストレートノズル2の外径dの4倍を超えると、移動磁界発生装置のサイズが過大で鋳型1の長辺の外壁に設置するのが困難となるばかりでなく、電力消費量が増加して経済的に不利である。したがって、移動磁界発生装置の鉄芯8の鋳型1長辺面に平行な方向の幅Lは、ストレートノズル2の外径dに対して下記の (1)式を満足する値とする
【0017】
2d≦L≦4d ・・・ (1)
L:移動磁界発生装置の鉄芯の鋳型長辺面に平行な方向の幅(mm)
d:ストレートノズルの外径(mm)
移動磁界を印加する領域は、ストレートノズル2の両側の鋳型1長辺面とストレートノズル1との間で、かつストレートノズル2を挟んでその両側に、互いに対向する位置に設ける。したがって、鋳型1長辺面に平行な方向(すなわち鋳型1短辺面に向かう方向あるいはストレートノズル2に向かう方向)の溶鋼4の流動には移動磁界の効果は及ばない。
【0018】
その結果、ストレートノズル2から鉛直下方に吐出される溶鋼4の下降流と、移動磁界によって溶鋼4が上向きに流動する上昇流とが干渉すると、溶鋼4は鋳型1長辺面に平行な方向に流動する。こうして、鋳型1長辺面とストレートノズル1との間では、溶鋼4は上向きの移動磁界によって流動し、鋳型1短辺面とストレートノズル1との間では、溶鋼4は下降流と上昇流との干渉によって流動するので、鋳型1内の溶鋼4の局所的な温度低下が防止できる。したがって、溶鋼滞留領域は解消され、デッケルの生成も防止できる。
【0019】
しかも、ストレートノズル2から鉛直下方に吐出される溶鋼4の下降流が、移動磁界によって上向きの流れに変化するので、溶鋼4の下降流が凝固シェル内の未凝固の溶鋼4に侵入する深さが浅くなる。したがって、鋳片の表面欠陥や内部欠陥が抑制され、鋳片の品質が向上する。
次に、本発明の連続鋳造方法を適用してストレートノズル2を用いた場合の、溶鋼4の表面流速(m/sec )と鋳片の欠陥発生状況について説明する。
【0020】
図1に示す装置を用いて、移動磁界発生装置によって溶鋼4に印加する上向きり移動磁界の強さを種々変更して、連続鋳造を行なった。その際、歪ゲージ式流速プローブを用いて、メニスカス7の下方50mmにおける溶鋼4の流速(すなわち表面流速)を測定した。さらに得られた鋳片の縦割れ,パウダー欠陥および介在物性欠陥の発生状況を調査した。溶鋼4の表面流速と縦割れ発生指数,パウダー欠陥発生指数,介在物性欠陥発生指数との関係を図4に示す。
【0021】
なお、縦割れ発生指数は下記の (2)式で算出される値であり、算出された値が小さいほど、鋳片の品質が優れている。
縦割れ発生指数=5×F/N ・・・ (2)
F:縦割れが発生したスラブ数(枚)
N:調査したスラブ数(枚)
パウダー欠陥とは、モールドパウダー9が溶鋼4に巻き込まれることによって発生する欠陥を指し、パウダー欠陥発生指数は下記の (3)式で算出される値であり、算出された値が小さいほど、鋳片の品質が優れている。
【0022】
パウダー欠陥発生指数=5×P/N ・・・ (3)
P:パウダー欠陥が発生したスラブ数(枚)
N:調査したスラブ数(枚)
介在物性欠陥とは、酸化物等の介在物が溶鋼4に巻き込まれることによって発生する欠陥を指し、介在物性欠陥発生指数は下記の (4)式で算出される値であり、算出された値が小さいほど、鋳片の品質が優れている。
【0023】
介在物性欠陥発生指数=5×I/M ・・・ (4)
I:介在物性欠陥が発生した製品数(枚)
M:調査した製品数(枚)
図4から明らかなように、溶鋼4の表面流速が0.15m/sec 未満では縦割れや介在物性欠陥を防止できない。また溶鋼4の表面流速が0.4 m/sec を超えるとパウダー欠陥を防止できない。すなわち、0.15〜0.40m/sec の範囲内では、縦割れ発生指数,パウダー欠陥発生指数および介在物性欠陥発生指数は、いずれもほぼ0であり、極めて優れた品質の鋳片が得られる。したがって、溶鋼4の表面流速が0.15〜0.40m/sec の範囲内を満足することが好ましい。
【0024】
なお本発明においては、ストレートノズル2の形状は特に規定しない。ただしスループットの大きい連続鋳造を行なう際には、ストレートノズル2から鉛直下方に吐出される溶鋼4の下降流の速度が大きくなるので、移動磁界を印加して上昇流を形成するのは困難である。そこで下降流と上昇流の干渉によって生じる溶鋼4の表面流速が0.15〜0.40m/sec の範囲内を満足するように吐出口の断面積を調整するのが好ましい。また、ストレートノズル2の閉塞防止を目的として不活性ガス(たとえばArガス)の吹込みを行なっても良いし、不活性ガスの吹込みを停止しても良い。
【0025】
【実施例】
図1に示す装置を用いて、表1に示す成分の溶鋼の連続鋳造を行なった。鋳片の幅は2400mm,厚さは260mm とし、ストレートノズル2の浸漬深さ(すなわちメニスカス7からストレートノズル2の吐出口先端までの距離)は200mm ,鋳造速度は0.60m/min とした。
【0026】
【表1】

Figure 0004432263
【0027】
移動磁界発生装置は、鋳型1の長辺の両方の外壁に設けられ、その鉄芯8の上端はメニスカス7の位置に合わせて、下端は鋳型1下端の位置に合わせた。その結果、鉄芯の長さは800mm であった。移動磁界発生装置の鉄芯8の鋳型1長辺面に平行な方向の幅Lは、ストレートノズル2の外径dの3倍に相当する400mm とした。この鉄芯8の周囲に巻かれたコイルに周波数1〜5Hzの電流を流して、上向きの移動磁界を発生させた。移動磁界の磁束密度は、鋳型1の下端位置で0.07〜0.4 Tであった。
【0028】
こうして移動磁界を印加しながら連続鋳造を行ない、鋳型1内の溶鋼4の流速を、歪ゲージ式流速プローブで測定した。また凝固シェル6近傍の溶鋼4の流速は、鋳片のデンドライト組織の傾き角度から算出する方法を用いて計算した(算出方法は、鉄と鋼,第61年(1975)第14号,2982〜2990ページ参照)。これを発明例として、各測定点における流速の分布を図5に示す。図5中の矢印は、各測定点における溶鋼4の流れる方向と流速の大きさを示す。
【0029】
また比較例1として、移動磁界を印加せずに2孔ノズルを用いて連続鋳造を行なった場合の、鋳型1内の溶鋼4の流速分布を図6に示す。さらに比較例2として、移動磁界を印加せずにストレートノズルを用いて連続鋳造を行なった場合の、鋳型1内の溶鋼4の流速分布を図7に示す。その他の操業条件は発明例と同じである。
【0030】
図5に示した発明例では、溶鋼4の表面流速は 0.2m/sec で一定であり、しかも鋳型1長辺面に平行な方向(すなわち鋳型1の短辺面に向かう方向)に均一に流れた。さらにストレートノズル2の周辺でも 0.2m/sec の流速が維持された。
図6に示した比較例1では、溶鋼4の表面流速のばらつきは大きく、しかも流れの方向も不均一であった。さらに2孔ノズル3の周辺では、溶鋼4の流速が小さくなり、溶鋼停滞領域が生じた。さらに図7に示した比較例2では、ストレートノズル2の周辺で溶鋼4の流速は小さくなり、溶鋼停滞領域が生じた。
【0031】
つまり、本発明を適用することによって、鋳型1内の溶鋼4が均一に流動して溶鋼停滞領域が解消されることが確かめられた。
なお図5には、発明例として、溶鋼4の表面流速が 0.2m/sec であり、鋳型1長辺面に平行で、鋳型1短辺面に向かう方向に流れる例を示したが、溶鋼4がストレートノズル2に向かう方向に流れる場合でも、表面流速が0.15〜0.40m/sec で、かつ鋳型1長辺面に平行な方向に流れると同様の効果が得られる。
【0032】
【発明の効果】
本発明では、鋳型内の溶鋼を均一に流動させて溶鋼停滞領域が解消し、表面品質および内部品質の優れた高品質の鋳片を製造できる。
【図面の簡単な説明】
【図1】本発明を適用する連続鋳造の鋳型の要部を示す断面図であり、 (a)は縦断面図、 (b)はA−A視の横断面図である。
【図2】2孔ノズルを用いた場合の溶鋼の流れを示す断面図である。
【図3】2孔ノズルを用いた場合の溶鋼の流れを示す断面図である。
【図4】鋳型内溶鋼の表面流速と鋳片の縦割れ発生指数、パウダー欠陥発生指数、介在物欠陥発生指数との関係を示すグラフである。
【図5】本発明を適用した場合の鋳型内溶鋼の流速分布を示す断面図である。
【図6】移動磁界を印加せず2孔ノズルを用いた場合の鋳型内溶鋼の流速分布を示す断面図である。
【図7】移動磁界を印加せずストレートノズルを用いた場合の鋳型内溶鋼の流速分布を示す断面図である。
【符号の説明】
1 鋳型
2 ストレートノズル
3 2孔ノズル
4 溶鋼
5 溶鋼停滞領域
6 凝固シェル
7 メニスカス
8 移動磁界発生装置の鉄芯
9 モールドパウダー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for performing continuous casting while controlling the flow of molten steel supplied into a mold from a straight nozzle.
[0002]
[Prior art]
When producing a slab by continuous casting, molten steel is supplied from a tundish into a mold. The molten steel supplied into the mold is cooled in contact with the mold to form a thin solidified layer (hereinafter referred to as a solidified shell). In addition, mold powder is poured into the molten steel bath surface in the mold for the purpose of lubricating the mold and the solidified shell, keeping the molten steel in the mold warm, preventing oxidation of the molten steel bath surface, and the like. In this manner, the solidified shell is drawn downward while supplying molten steel into the mold to produce a slab.
[0003]
When supplying the molten steel from the tundish to the mold, an immersion nozzle is used in order to prevent the molten steel from being oxidized by air and to prevent inclusions and mold powder from being caught in the molten steel.
The immersion nozzle is used in a state where the discharge port disposed at the tip is immersed in the molten steel in the mold, and the discharge port opens downward in the vertical direction to discharge the molten steel in the downward vertical direction (hereinafter, straight) Nozzle), or an immersion nozzle (hereinafter referred to as a two-hole nozzle) that discharges molten steel in a direction toward the short side of the mold by opening one on each side facing the short side of the mold. Are known.
[0004]
When the straight nozzle is used, the depth at which the molten steel discharged vertically downward from the discharge port penetrates into the unsolidified molten steel in the solidified shell is increased. For this reason, inclusions and mold powder entrained in the molten steel penetrate deeply into the unsolidified molten steel in the solidified shell, so that surface defects and internal defects are likely to occur in the slab.
On the other hand, when a two-hole nozzle is used, the molten steel is discharged from the discharge port in the direction toward the short side surface of the mold, so that the depth of penetration into the unsolidified molten steel in the solidified shell is shallow. Therefore, surface defects and internal defects of the slab are suppressed. For these reasons, it is common to use a two-hole nozzle in normal continuous casting.
[0005]
2 and 3 are cross-sectional views showing the flow of molten steel when a two-hole nozzle 3 is used as an immersion nozzle, FIG. 2 is an example in which the molten steel is discharged downward from the horizontal direction, and FIG. 3 is molten steel. Is an example in which the liquid is discharged upward from the horizontal direction.
In FIG. 2, the molten steel discharged in the direction from the discharge port of the two-hole nozzle 3 toward the short side surface of the mold 2 collides with the solidified shell 6 and has two kinds of flows as indicated by arrows a and b. Branch to The flow of the arrow b rises to the meniscus 7, then flows below the meniscus 7 in the direction of the two-hole nozzle 3, and further descends in the vicinity of the two-hole nozzle 3. At this time, the molten steel 4 does not flow around the two-hole nozzle 3 below the meniscus 7, and a molten steel stagnation region 5 is generated.
[0006]
In FIG. 3, the molten steel discharged in the direction from the discharge port of the two-hole nozzle 3 toward the short side surface of the mold 2 rises to the meniscus 7 as indicated by the arrow c, and then the lower side of the meniscus 7 is moved to the mold 1. It flows in a direction toward the short side surface, and further descends in the vicinity of the solidified shell 6. At this time, the molten steel 4 does not flow around the two-hole nozzle 3 below the meniscus 7, and a molten steel stagnation region 5 is generated.
[0007]
In any case, since the molten steel 4 stagnates in the molten steel stagnation region 5, the following problems occur, causing various defects in the slab.
(1) In the molten steel stagnation region 5, the temperature of the molten steel 4 is lowered, and an unsettled mass called deckle is generated.
(2) Melting of the mold powder 9 in the molten steel 4 becomes uneven.
(3) Inclusions and bubbles trapped in the molten steel stagnation region 5 remain.
[0008]
Therefore, various techniques have been proposed for the purpose of eliminating the molten steel stagnation region 5.
For example, JP-A-60-37251 discloses an electromagnetic stirring method for molten steel in a continuous casting mold. This method divides the linear motor type stirrer into a plurality of pieces, and when a stirring flow is generated in the discharge flow of the molten steel discharged from the two-hole nozzle, by selecting a stirring pattern according to the steel type and operating conditions, It is intended to improve the quality of the slab. However, in this method, there is a limit to the number of linear motor type stirrers that can be divided due to equipment limitations, and there is a problem that the molten steel stagnation region cannot be solved sufficiently.
[0009]
JP-A-7-9098 discloses a continuous casting method. In this method, an electromagnetic stirrer is disposed in the vicinity of the meniscus so as to produce a high-quality slab by forming a uniform molten steel flow in the meniscus portion. However, in this method, since the magnetic stirring force does not reach the downward flow of the molten steel discharged vertically downward from the straight nozzle, inclusions and mold powder caught in the downward flow of the molten steel are not solidified molten steel in the solidified shell. There was a problem that it penetrated deeply and caused surface defects and internal defects in the slab.
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide a continuous casting method that solves the above problems, prevents the occurrence of a stagnation region of molten steel, and produces a high-quality slab having excellent surface quality and internal quality. .
[0011]
[Means for Solving the Problems]
The present inventors investigated the relationship between molten steel flow in a mold, molten steel supply amount per unit time (hereinafter referred to as throughput), and molten steel discharge angle for various immersion nozzles. As a result, when the 2-hole nozzle was used, the molten steel stagnation region could not be solved sufficiently, but using a straight nozzle, a moving magnetic field was applied to the downward flow of the molten steel discharged vertically downward to generate an upward flow. The depth of penetration of the molten steel discharged vertically from the straight nozzle into the unsolidified molten steel in the solidified shell is made shallow, and the upward flow caused by the moving magnetic field interferes with the downward flow from the straight nozzle. It was found that the molten steel stagnation region can be eliminated by making it.
[0012]
In the continuous casting method of steel using a straight nozzle as an immersion nozzle, the present invention applies an upward moving magnetic field to a region from the meniscus between the long side surface of the mold on both sides of the straight nozzle and the straight nozzle to the lower end of the mold, Lowering of the molten steel discharged vertically downward from the straight nozzle , the width L in the direction parallel to the mold long side of the iron core of the device that generates the moving magnetic field and the outer diameter d of the straight nozzle satisfy the following formula (1) This is a continuous casting method of steel in which a flow and an upward flow of molten steel flowing upward by a moving magnetic field interfere with each other.
[0013]
In the invention described above, as a good suitable embodiment, it is preferable that the surface velocity of molten steel flowing in a direction parallel to the mold long sides surfaces should satisfy the range of 0.15~0.40m / sec.
[0014]
2d ≦ L ≦ 4d (1)
L: Width in the direction parallel to the mold long side of the iron core of the moving magnetic field generator (mm)
d: Straight nozzle outer diameter (mm)
[0015]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view showing a main part of a continuous casting mold to which the present invention is applied, wherein (a) is a vertical cross-sectional view, and (b) is a cross-sectional view taken along line AA.
Molten steel 4 is supplied into the mold 1 through the straight nozzle 2, and mold powder 9 is introduced into the molten steel 4 bath surface in the mold 1. A moving magnetic field generator having an iron core 8 is provided on the outer wall of the long side of the mold 1, and an upward moving magnetic field is applied to the molten steel 4 between the long side surface of the mold 1 on both sides of the straight nozzle 2 and the straight nozzle 2. . The region where the moving magnetic field is applied has an upper limit on the position of the meniscus 7 so that the flow velocity of the molten steel 4 (hereinafter referred to as surface flow velocity) 50 mm below the meniscus 7 can be controlled. Further, in order to form an upward flow of the molten steel 4 by applying an upward moving magnetic field to the downward flow of the molten steel 4 discharged vertically downward from the straight nozzle 2, the lower limit of the region to which the moving magnetic field is applied is the mold 1. The lower end position.
[0016]
In this way, the downward flow of the molten steel 4 discharged vertically downward from the straight nozzle 2 interferes with the upward flow in which the molten steel 4 flows upward by the moving magnetic field.
The width L (mm) in the direction parallel to the long side surface of the mold 1 of the iron core 8 of the moving magnetic field generator for applying the moving magnetic field to the molten steel 4 is about three times the outer diameter d (mm) of the straight nozzle 2. It is preferable to set the degree. Specifically, if the width L of the iron core 8 of the moving magnetic field generator is less than twice the outer diameter d of the straight nozzle 2, the strength of the moving magnetic field is insufficient and the straight magnetic nozzle 2 is discharged vertically downward. The molten steel 4 cannot be made upward flow. If the width L of the iron core 8 of the moving magnetic field generator exceeds four times the outer diameter d of the straight nozzle 2, the size of the moving magnetic field generator is excessive and difficult to install on the long side outer wall of the mold 1. In addition, the power consumption is increased, which is economically disadvantageous. Therefore, the width L in the direction parallel to the long side surface of the mold 1 of the iron core 8 of the moving magnetic field generator is a value satisfying the following expression (1) with respect to the outer diameter d of the straight nozzle 2.
[0017]
2d ≦ L ≦ 4d (1)
L: Width in the direction parallel to the mold long side of the iron core of the moving magnetic field generator (mm)
d: Straight nozzle outer diameter (mm)
The area to which the moving magnetic field is applied is provided between the long side surface of the mold 1 on both sides of the straight nozzle 2 and the straight nozzle 1 and on both sides of the straight nozzle 2 at positions facing each other. Therefore, the effect of the moving magnetic field does not affect the flow of the molten steel 4 in the direction parallel to the long side surface of the mold 1 (that is, the direction toward the short side surface of the mold 1 or the direction toward the straight nozzle 2).
[0018]
As a result, when the downward flow of the molten steel 4 discharged vertically downward from the straight nozzle 2 interferes with the upward flow in which the molten steel 4 flows upward by the moving magnetic field, the molten steel 4 is in a direction parallel to the long side surface of the mold 1. To flow. Thus, the molten steel 4 flows by the upward moving magnetic field between the long side surface of the mold 1 and the straight nozzle 1, and the molten steel 4 flows downward and upward between the short side surface of the mold 1 and the straight nozzle 1. Therefore, the local temperature drop of the molten steel 4 in the mold 1 can be prevented. Therefore, the molten steel staying region is eliminated, and the generation of deckle can be prevented.
[0019]
Moreover, since the downward flow of the molten steel 4 discharged vertically downward from the straight nozzle 2 is changed to an upward flow by the moving magnetic field, the depth at which the downward flow of the molten steel 4 enters the unsolidified molten steel 4 in the solidified shell. Becomes shallower. Therefore, surface defects and internal defects of the slab are suppressed, and the quality of the slab is improved.
Next, the surface flow velocity (m / sec) of the molten steel 4 and the occurrence of defects in the slab when the straight nozzle 2 is used by applying the continuous casting method of the present invention will be described.
[0020]
Using the apparatus shown in FIG. 1, continuous casting was performed by changing the strength of the upward moving magnetic field applied to the molten steel 4 by the moving magnetic field generator. At that time, the flow velocity (namely, surface flow velocity) of the molten steel 4 at 50 mm below the meniscus 7 was measured using a strain gauge flow velocity probe. Furthermore, the occurrence of vertical cracks, powder defects and inclusion physical defects in the obtained slab was investigated. FIG. 4 shows the relationship between the surface flow velocity of molten steel 4 and the longitudinal crack occurrence index, powder defect generation index, and inclusion physical defect generation index.
[0021]
The longitudinal crack occurrence index is a value calculated by the following equation (2). The smaller the calculated value, the better the quality of the slab.
Longitudinal crack occurrence index = 5 x F / N (2)
F: Number of slabs with vertical cracks (sheets)
N: Number of slabs surveyed (sheets)
The powder defect refers to a defect that occurs when the mold powder 9 is caught in the molten steel 4, and the powder defect occurrence index is a value calculated by the following equation (3). The quality of the pieces is excellent.
[0022]
Powder defect occurrence index = 5 × P / N (3)
P: Number of slabs with powder defects (sheets)
N: Number of slabs surveyed (sheets)
Inclusion physical defect refers to a defect that occurs when inclusions such as oxides are involved in molten steel 4, and the inclusion physical defect occurrence index is a value calculated by the following equation (4). The smaller the is, the better the quality of the slab.
[0023]
Inclusion property defect index = 5 × I / M (4)
I: Number of products with inclusion property defects (sheets)
M: Number of products surveyed (sheets)
As apparent from FIG. 4, when the surface flow velocity of the molten steel 4 is less than 0.15 m / sec, vertical cracks and inclusion property defects cannot be prevented. Moreover, if the surface flow velocity of the molten steel 4 exceeds 0.4 m / sec, powder defects cannot be prevented. That is, within the range of 0.15 to 0.40 m / sec, the longitudinal crack occurrence index, the powder defect occurrence index, and the inclusion property defect occurrence index are almost 0, and an extremely excellent quality slab can be obtained. Therefore, it is preferable that the surface flow velocity of the molten steel 4 satisfies the range of 0.15 to 0.40 m / sec.
[0024]
In the present invention, the shape of the straight nozzle 2 is not particularly defined. However, when performing continuous casting with a high throughput, the speed of the downward flow of the molten steel 4 discharged vertically downward from the straight nozzle 2 increases, so it is difficult to form an upward flow by applying a moving magnetic field. . Therefore, it is preferable to adjust the cross-sectional area of the discharge port so that the surface flow velocity of the molten steel 4 generated by the interference between the downward flow and the upward flow satisfies the range of 0.15 to 0.40 m / sec. In addition, an inert gas (for example, Ar gas) may be blown in order to prevent the straight nozzle 2 from being blocked, or the blowing of the inert gas may be stopped.
[0025]
【Example】
Using the apparatus shown in FIG. 1, molten steel having the components shown in Table 1 was continuously cast. The width of the slab was 2400 mm, the thickness was 260 mm, the immersion depth of the straight nozzle 2 (that is, the distance from the meniscus 7 to the discharge nozzle tip of the straight nozzle 2) was 200 mm, and the casting speed was 0.60 m / min.
[0026]
[Table 1]
Figure 0004432263
[0027]
The moving magnetic field generator was provided on both outer walls of the long side of the mold 1, and the upper end of the iron core 8 was aligned with the position of the meniscus 7 and the lower end was aligned with the position of the lower end of the mold 1. As a result, the length of the iron core was 800 mm. The width L in the direction parallel to the long side surface of the mold 1 of the iron core 8 of the moving magnetic field generator was set to 400 mm corresponding to three times the outer diameter d of the straight nozzle 2. A current with a frequency of 1 to 5 Hz was passed through a coil wound around the iron core 8 to generate an upward moving magnetic field. The magnetic flux density of the moving magnetic field was 0.07 to 0.4 T at the lower end position of the mold 1.
[0028]
Thus, continuous casting was performed while applying a moving magnetic field, and the flow rate of the molten steel 4 in the mold 1 was measured with a strain gauge flow rate probe. The flow velocity of the molten steel 4 in the vicinity of the solidified shell 6 was calculated using a method of calculating from the inclination angle of the dendrite structure of the slab (calculation method is iron and steel, 61st (1975) No. 14, 2982- (See page 2990). Using this as an example of the invention, the distribution of the flow velocity at each measurement point is shown in FIG. The arrows in FIG. 5 indicate the flowing direction of the molten steel 4 and the magnitude of the flow velocity at each measurement point.
[0029]
As Comparative Example 1, the flow velocity distribution of the molten steel 4 in the mold 1 when continuous casting is performed using a two-hole nozzle without applying a moving magnetic field is shown in FIG. Furthermore, as Comparative Example 2, the flow velocity distribution of the molten steel 4 in the mold 1 when continuous casting is performed using a straight nozzle without applying a moving magnetic field is shown in FIG. Other operating conditions are the same as in the invention example.
[0030]
In the example of the invention shown in FIG. 5, the surface flow velocity of the molten steel 4 is constant at 0.2 m / sec and flows uniformly in the direction parallel to the long side surface of the mold 1 (that is, the direction toward the short side surface of the mold 1). It was. In addition, a flow velocity of 0.2 m / sec was maintained around the straight nozzle 2.
In the comparative example 1 shown in FIG. 6, the dispersion | variation in the surface flow velocity of the molten steel 4 was large, and also the direction of the flow was non-uniform | heterogenous. Further, in the vicinity of the two-hole nozzle 3, the flow rate of the molten steel 4 is reduced, and a molten steel stagnation region is generated. Furthermore, in the comparative example 2 shown in FIG. 7, the flow velocity of the molten steel 4 became small around the straight nozzle 2, and the molten steel stagnation region was generated.
[0031]
That is, by applying the present invention, it has been confirmed that the molten steel 4 in the mold 1 flows uniformly and the molten steel stagnation region is eliminated.
FIG. 5 shows an example of the invention in which the molten steel 4 has a surface flow velocity of 0.2 m / sec, flows parallel to the long side surface of the mold 1 and flows in the direction toward the short side surface of the mold 1. Even when the gas flows in the direction toward the straight nozzle 2, the same effect can be obtained if the surface flow velocity is 0.15 to 0.40 m / sec and the gas flows in a direction parallel to the long side surface of the mold 1.
[0032]
【The invention's effect】
In this invention, the molten steel in a casting_mold | template is made to flow uniformly, a molten steel stagnation area | region is eliminated, and the high quality slab excellent in surface quality and internal quality can be manufactured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a main part of a continuous casting mold to which the present invention is applied, wherein (a) is a vertical cross-sectional view, and (b) is a cross-sectional view taken along line AA.
FIG. 2 is a cross-sectional view showing the flow of molten steel when a two-hole nozzle is used.
FIG. 3 is a cross-sectional view showing the flow of molten steel when a two-hole nozzle is used.
FIG. 4 is a graph showing the relationship between the surface flow velocity of molten steel in a mold and the longitudinal crack occurrence index, powder defect occurrence index, and inclusion defect occurrence index of a slab.
FIG. 5 is a cross-sectional view showing a flow velocity distribution of molten steel in a mold when the present invention is applied.
FIG. 6 is a cross-sectional view showing a flow velocity distribution of molten steel in a mold when a two-hole nozzle is used without applying a moving magnetic field.
FIG. 7 is a cross-sectional view showing a flow velocity distribution of molten steel in a mold when a straight nozzle is used without applying a moving magnetic field.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Mold 2 Straight nozzle 3 2-hole nozzle 4 Molten steel 5 Molten steel stagnation area 6 Solidified shell 7 Meniscus 8 Iron core 9 of moving magnetic field generator 9 Mold powder

Claims (2)

浸漬ノズルとしてストレートノズルを用いる鋼の連続鋳造方法において、前記ストレートノズルの両側の鋳型長辺面と前記ストレートノズルとの間のメニスカスから鋳型下端までの領域に上向きの移動磁界を印加し、前記移動磁界を発生する装置の鉄芯の前記鋳型長辺面に平行な方向の幅Lと前記ストレートノズルの外径dが下記の (1)式を満足し、前記ストレートノズルから鉛直下向きに吐出する溶鋼の下降流と前記移動磁界によって上向きに流動する溶鋼の上昇流とを干渉させることを特徴とする鋼の連続鋳造方法。
2d≦L≦4d ・・・ (1)
L:移動磁界発生装置の鉄芯の鋳型長辺面に平行な方向の幅(mm)
d:ストレートノズルの外径(mm)
In the continuous casting method of steel using a straight nozzle as an immersion nozzle, an upward moving magnetic field is applied to a region from the meniscus to the lower end of the mold between the long side surface of the mold on both sides of the straight nozzle and the straight nozzle, and the movement Molten steel that discharges vertically downward from the straight nozzle , with the width L in the direction parallel to the long side of the mold and the outer diameter d of the straight nozzle satisfying the following equation (1): A continuous casting method of steel, characterized in that a downward flow of steel and an upward flow of molten steel flowing upward by the moving magnetic field interfere with each other.
2d ≦ L ≦ 4d (1)
L: Width in the direction parallel to the mold long side of the iron core of the moving magnetic field generator (mm)
d: Straight nozzle outer diameter (mm)
前記鋳型長辺面に平行な方向に流動する溶鋼の表面流速が 0.15〜0.40m/sec の範囲内を満足することを特徴とする請求項1に記載の鋼の連続鋳造方法 2. The continuous casting method of steel according to claim 1, wherein a surface flow velocity of the molten steel flowing in a direction parallel to the long side surface of the mold satisfies a range of 0.15 to 0.40 m / sec . 3.
JP2001009164A 2001-01-17 2001-01-17 Steel continuous casting method Expired - Fee Related JP4432263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001009164A JP4432263B2 (en) 2001-01-17 2001-01-17 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001009164A JP4432263B2 (en) 2001-01-17 2001-01-17 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2002210547A JP2002210547A (en) 2002-07-30
JP4432263B2 true JP4432263B2 (en) 2010-03-17

Family

ID=18876693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001009164A Expired - Fee Related JP4432263B2 (en) 2001-01-17 2001-01-17 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP4432263B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070734B2 (en) * 2006-05-18 2012-11-14 Jfeスチール株式会社 Steel continuous casting method

Also Published As

Publication number Publication date
JP2002210547A (en) 2002-07-30

Similar Documents

Publication Publication Date Title
KR100741403B1 (en) Method for Controlling Flow of Molten Steel in Mold, and Method for Producing Continuous Castings
EP2500120B1 (en) Method of continuous casting of steel
EP2500121A1 (en) Method of continuous casting of steel
EP3597328B1 (en) Continuous casting method for steel
JP2015080792A (en) Continuous casting method of steel
JP4432263B2 (en) Steel continuous casting method
JP4728724B2 (en) Continuous casting slab and manufacturing method thereof
KR20090073500A (en) Method for controlling flow of moltensteen in mold and method for producing continuous castings
JP4912945B2 (en) Manufacturing method of continuous cast slab
JP2633764B2 (en) Method for controlling molten steel flow in continuous casting mold
JP4427429B2 (en) Method and apparatus for controlling flow in strand pool
JPH06606A (en) Controller for flow of molten steel in continuous casting mold
KR102257856B1 (en) Apparatus for controlling the molten metal flows in continuous casting process
JP4932985B2 (en) Steel continuous casting method
JP5549346B2 (en) Steel continuous casting apparatus and continuous casting method
JP4441384B2 (en) Continuous casting method and flow control device in strand pool
JP3505142B2 (en) Casting method of high clean steel
JP4492333B2 (en) Steel continuous casting method
JP4300955B2 (en) Steel continuous casting method
JP2009535216A (en) Stirrer
JPH06605A (en) Controller for flow of molten steel in continuous casting mold
JPH06607A (en) Controller for flow of molten steel in continuous casting mold
JP2005246387A (en) Method for continuously casting steel
JP2010000518A (en) Method and apparatus for controlling flow of molten steel in continuous casting mold
JPH06604A (en) Controller for flow of molten steel in continuous casting mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Ref document number: 4432263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees