JP4430123B1 - Cell culture substrate and method for producing the same - Google Patents

Cell culture substrate and method for producing the same Download PDF

Info

Publication number
JP4430123B1
JP4430123B1 JP2009040569A JP2009040569A JP4430123B1 JP 4430123 B1 JP4430123 B1 JP 4430123B1 JP 2009040569 A JP2009040569 A JP 2009040569A JP 2009040569 A JP2009040569 A JP 2009040569A JP 4430123 B1 JP4430123 B1 JP 4430123B1
Authority
JP
Japan
Prior art keywords
cell culture
polymer
inorganic material
culture substrate
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009040569A
Other languages
Japanese (ja)
Other versions
JP2010193743A (en
Inventor
哲生 高田
和敏 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
Original Assignee
Kawamura Institute of Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research filed Critical Kawamura Institute of Chemical Research
Priority to JP2009040569A priority Critical patent/JP4430123B1/en
Priority to PCT/JP2009/059507 priority patent/WO2009150931A1/en
Priority to KR1020107019212A priority patent/KR101327297B1/en
Priority to EP09762361.5A priority patent/EP2292691B1/en
Priority to CN2009801217484A priority patent/CN102056983B/en
Priority to US12/997,198 priority patent/US8530564B2/en
Application granted granted Critical
Publication of JP4430123B1 publication Critical patent/JP4430123B1/en
Publication of JP2010193743A publication Critical patent/JP2010193743A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/02Membranes; Filters

Landscapes

  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Sustainable Development (AREA)
  • Polymerisation Methods In General (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Clinical Laboratory Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】 基材中に含まれる下限臨界溶解温度を有する重合体(B)が架橋していない細胞培養基材であり、支持体との接着性が良好であり、更に、環境温度に対する疎水性と親水性の変化が敏速で、迅速に培養した細胞を培養基材表面から容易に剥離、回収できる細胞培養基材及びその製造方法を提供する。
【解決手段】 下記式(1)で表すモノマー(a)の重合体(A)と、下限臨界溶解温度を有する重合体(B)と、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料(C)とを含有する細胞培養基材。

Figure 0004430123
(式中、Rは水素原子またはメチル基、Rは炭素原子数2〜3のアルキレン基、Rは水素原子または炭素原子数1〜2のアルキル基を表し、nは1〜9の整数を表す。)
【選択図】図1PROBLEM TO BE SOLVED: To provide a cell culture substrate in which a polymer (B) having a lower critical solution temperature contained in the substrate is not cross-linked, has good adhesion to a support, and is hydrophobic with respect to environmental temperature. A cell culture substrate and a method for producing the same are provided. The cell culture substrate can be easily detached from the surface of the culture substrate and collected.
One or more selected from a polymer (A) of a monomer (a) represented by the following formula (1), a polymer (B) having a lower critical solution temperature, a water-swellable clay mineral and silica. A cell culture substrate containing the inorganic material (C).
Figure 0004430123
Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group having 2 to 3 carbon atoms, R 3 represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, and n represents 1 to 9 Represents an integer.)
[Selection] Figure 1

Description

本発明は、細胞培養の技術に関し、具体的には、培養した細胞を容易に剥離、回収できる細胞培養基材、及びその製造方法に関する。   The present invention relates to a cell culture technique, and specifically to a cell culture substrate that can easily peel and collect cultured cells, and a method for producing the same.

従来、動物組織等の細胞培養基材としては、主にプラスチック(例えばポリスチレン)製容器が使用されてきた。これら容器は、細胞培養を有効に行わせるために、その表面にプラズマ処理や、シリコンや細胞接着因子等のコーティングなどの表面処理が施されている。これら細胞培養容器を培養基材として用いた場合には、培養(増殖)した細胞が容器表面に接着しており、細胞を単離・回収するためには、トリプシ等のタンパク質加水分解酵素や化学薬品を用いて、容器表面から剥離する必要があった。このような酵素や化学薬品により細胞を剥離する操作は工程が煩雑であるほか、雑菌やDNAあるいはRNA等の不純物が混入する恐れがあった。また、細胞と基材の結合部分が切断されるだけではなく、細胞同士の結合も切断されるため、細胞を増殖している形状(例えばシート状)のままで取り出すことができなかったり、細胞の性質が変化してしまう問題があった。   Conventionally, plastic (for example, polystyrene) containers have been mainly used as cell culture substrates for animal tissues and the like. These containers are subjected to surface treatment such as plasma treatment or coating of silicon, cell adhesion factor, or the like in order to effectively perform cell culture. When these cell culture vessels are used as a culture substrate, cultured (growth) cells adhere to the vessel surface, and in order to isolate and recover the cells, trypsin or other protein hydrolase or chemical It was necessary to peel from the container surface using chemicals. The operation of detaching cells with such enzymes and chemicals is not only complicated, but there is a risk that impurities such as bacteria and DNA or RNA may be mixed. In addition, not only the binding part of the cell and the base material is cut, but also the bond between the cells is cut, so that the cell cannot be taken out in a proliferating shape (for example, a sheet shape) There has been a problem that the properties of the material will change.

近年、細胞培養容器の表面にポリN−イソプロピルアクリルアミドのような下限臨界溶解温度を有するポリマーを極薄く被覆した基材を使用して、細胞培養温度ではポリマーが疎水性状態を示し細胞がポリマーに接着し、培養後にポリマーを低温処理して親水性状態にすることにより、細胞とポリマーとの接着性を低下させ、細胞を加水分解酵素や化学薬品を使用せずに基材から細胞をシート状に剥離する技術が報告されている(例えば特許文献1及び2、非特許文献1参照)。   In recent years, using a base material in which a polymer having a lower critical solution temperature such as poly-N-isopropylacrylamide is coated on the surface of a cell culture vessel very thinly, the polymer shows a hydrophobic state at the cell culture temperature, and the cell becomes a polymer. Adhesion and low temperature treatment of the polymer after culturing to make it hydrophilic, reducing the adhesion between the cell and the polymer, making the cell a sheet from the substrate without using hydrolytic enzymes or chemicals A technique for peeling is reported (for example, see Patent Documents 1 and 2 and Non-Patent Document 1).

しかし、ポリN−イソプロピルアクリルアミドのようなポリマーはポリスチレンのようなプラスチック表面との間に接着性が低く、水に触れると、塗布されたポリマー層が容易に剥離してしまう。このようなポリマー層を水に触れてもプラスチック表面から剥離させないためには、ポリマーを固定する必要がある。その方法の一つとしては、N−イソプロピルアクリルアミド(モノマー)の溶液を細胞培養基材表面に塗布して電子線照射によるグラフト重合を行う方法がある(例えば、特許文献3参照)。   However, a polymer such as poly-N-isopropylacrylamide has low adhesiveness with a plastic surface such as polystyrene, and when applied to water, the applied polymer layer easily peels off. In order to prevent such a polymer layer from being peeled off from the plastic surface even when it is exposed to water, it is necessary to fix the polymer. As one of the methods, there is a method in which a solution of N-isopropylacrylamide (monomer) is applied to the surface of a cell culture substrate and graft polymerization is performed by electron beam irradiation (see, for example, Patent Document 3).

電子線照射によるグラフト重合は、重合と同時に、ポリマー間の架橋反応も必ず起こり、ポリマーの温度応答速度が架橋度合の進行につれ大きく低下してしまい、ポリマーを親水性にするために低温を保持する時間を長く要する問題があり、且つ、その間、細胞も低温状態に長時間晒され、ダメージを受ける問題があった。また、この方法で製造された細胞培養基材は、放射線(例えばγ線)滅菌処理を行うと、ポリマーの温度応答性が大きく低下してしまい、本来の細胞の剥離しやすさが無くなる問題があった。   Graft polymerization by electron beam irradiation always causes a cross-linking reaction between the polymers at the same time as the polymerization, and the temperature response speed of the polymer greatly decreases as the degree of cross-linking progresses, and the low temperature is maintained to make the polymer hydrophilic. There is a problem that it takes a long time, and in the meantime, the cells are also exposed to a low temperature state for a long time and damaged. In addition, when the cell culture substrate produced by this method is subjected to radiation (eg, γ-ray) sterilization treatment, the temperature responsiveness of the polymer is greatly reduced, and the original cells are not easily detached. there were.

一方、水に均一に分散した水膨潤性粘土鉱物の存在下で、水溶性有機モノマーを放射線の照射により重合させてなる高分子ヒドロゲルからなり、水溶性有機モノマーの重合体(ポリN−イソプロピルアクリルアミドのような下限臨界溶解温度を有するポリマー)と水膨潤性粘土鉱物とから構成される三次元網目構造を有する細胞培養基材が開示されている(例えば特許文献4参照)。   On the other hand, it comprises a polymer hydrogel obtained by polymerizing a water-soluble organic monomer by irradiation with radiation in the presence of a water-swellable clay mineral uniformly dispersed in water. A cell culture substrate having a three-dimensional network structure composed of a water-swellable clay mineral and a polymer having a lower critical solution temperature as described above is disclosed (for example, see Patent Document 4).

生化学分野では、細胞培養操作等の点において、細胞培養基材がプラスチック製培養ディッシュのような容器と一体化するものが求められていた。しかしながら、上記従来文献においては、このような一体化した細胞培養容器の具体的手段は開示されていない。   In the field of biochemistry, there has been a demand for a cell culture substrate in which a cell culture substrate is integrated with a container such as a plastic culture dish in terms of cell culture operations and the like. However, the above-mentioned conventional literature does not disclose specific means for such an integrated cell culture container.

特公平6−104061公報Japanese Patent Publication No. 6-104061 特開平5−192138公報JP-A-5-192138 特開平5−192130公報JP-A-5-192130 特開2006−288251公報JP 2006-288251 A

大和雅之、岡野光夫「ナノバイオテクノロジーの最前線」第6章、P.340−P.347、シーエムシー出版(2003年出版)Masayuki Yamato, Mitsuo Okano, “Frontiers of Nanobiotechnology”, Chapter 6, P.A. 340-P. 347, CMC Publishing (published in 2003)

本発明が解決しようとする課題は、基材中に含まれる下限臨界溶解温度を有する重合体(B)が架橋していない細胞培養基材であり、更に、環境温度に対する疎水性と親水性の変化が敏速で、培養した細胞を分離回収する際にトリプシン等のタンパク質加水分解酵素などを使用することなく、細胞へのダメージがなく、迅速に培養した細胞を培養基材表面から容易に剥離、回収できる細胞培養基材を提供することにある。   The problem to be solved by the present invention is a cell culture substrate in which the polymer (B) having a lower critical solution temperature contained in the substrate is not crosslinked, and further has hydrophobicity and hydrophilicity with respect to environmental temperature. Rapid change, without using a protease such as trypsin when separating and recovering cultured cells, without damaging the cells, quickly cultivating rapidly cultured cells from the culture substrate surface, The object is to provide a cell culture substrate that can be recovered.

また、本発明の他の課題は、上記の細胞培養基材を製造する方法であって、基材中に含まれる下限臨界溶解温度を有する重合体(B)が架橋されることがなく、且つ電子線照射のような方法を使用することなく、該細胞培養基材をプラスチック製容器の表面に容易に接着させることができ、更に、培養される細胞の種類(接着性)に応じて、重合体(B)の長さ、密度も容易に調節することができる、簡便な装置と工程とによる製造方法を提供することにある。   Another object of the present invention is a method for producing the above cell culture substrate, wherein the polymer (B) having a lower critical solution temperature contained in the substrate is not crosslinked, and Without using a method such as electron beam irradiation, the cell culture substrate can be easily adhered to the surface of a plastic container. Further, depending on the type (adhesiveness) of cells to be cultured, An object of the present invention is to provide a production method using a simple apparatus and process, in which the length and density of the combined body (B) can be easily adjusted.

本発明者等は、上記課題を解決すべく鋭意研究した結果、(メタ)アクリル酸エステル系モノマー(a)の重合体(A)と、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料(C)と、下限臨界溶解温度を有する重合体(B)とを含有する細胞培養基材が各種細胞に対する良好な培養性、及び培養された細胞を、環境温度を低下させることにより容易に剥離できる特性、更に、細胞種類に応じて、その培養性と剥離性を容易に調製できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that the polymer (A) of the (meth) acrylic acid ester monomer (a), one or more selected from water-swellable clay minerals and silica The cell culture substrate containing the inorganic material (C) and the polymer (B) having a lower critical solution temperature has good culturing properties for various cells, and reduces the temperature of the cultured cells. The inventors have found that the properties that can be easily peeled and the culturing properties and the peelability can be easily prepared according to the cell type, and the present invention has been completed.

即ち、本発明は、下記式(1)で表されるモノマー(a)の重合体(A)と、下限臨界溶解温度を有する重合体(B)と、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料(C)とを含有し、
前記重合体(A)と前記無機材料(C)との質量比((C)/(A))が、0.01〜10の範囲にあり、
細胞培養基材全体に対する前記重合体(B)の含有率が0.0001質量%〜40質量%である細胞培養基材を提供する。
That is, the present invention is a polymer of monomers (a) which is the table by the following formula (1) and (A), a polymer having a lower critical solution temperature (B), and is selected from water-swellable clay mineral and silica containing one or more inorganic materials (C) and that,
The mass ratio ((C) / (A)) between the polymer (A) and the inorganic material (C) is in the range of 0.01 to 10,
Provided is a cell culture substrate in which the content of the polymer (B) in the whole cell culture substrate is 0.0001% by mass to 40% by mass .

Figure 0004430123
(式中、Rは水素原子またはメチル基、Rは炭素原子数2〜3のアルキレン基、Rは水素原子または炭素原子数1〜2のアルキル基を表し、nは1〜9の整数を表す。)
Figure 0004430123
Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group having 2 to 3 carbon atoms, R 3 represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, and n represents 1 to 9 Represents an integer.)

また、本発明は、前記式(1)で表されるモノマー(a)の重合体(A)と、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料(C)とが相互作用することにより形成された複合体と、
下限臨界溶解温度を有する重合体(B)とを含有し、
前記重合体(A)と前記無機材料(C)との質量比((C)/(A))が、0.01〜10の範囲にあり、
細胞培養基材全体に対する前記重合体(B)の含有率が0.0001質量%〜40質量%である細胞培養基材であって、
該細胞培養基材の細胞培養面に前記重合体(B)が露出していることを特徴とする細胞培養基材を提供する。
In the present invention, the polymer (A) of the monomer (a) represented by the formula (1) and at least one inorganic material (C) selected from water-swellable clay mineral and silica are mutually A complex formed by acting;
Containing a polymer (B) having a lower critical solution temperature ,
The mass ratio ((C) / (A)) between the polymer (A) and the inorganic material (C) is in the range of 0.01 to 10,
A cell culture substrate having a content of the polymer (B) of 0.0001% by mass to 40% by mass with respect to the entire cell culture substrate ,
Provided is a cell culture substrate characterized in that the polymer (B) is exposed on the cell culture surface of the cell culture substrate.

また、本発明は、上記重合体(B)が、N−置換(メタ)アクリルアミド誘導体及びN,N−ジ置換(メタ)アクリルアミド誘導体からなる群から選ばれる少なくとも一種のモノマー(b)の重合体である細胞培養基材の製造方法であって、
前記水媒体(W)中の前記水膨潤性無機材料(C)の濃度が下記式(2)又は式(3)で表される範囲となるように、前記モノマー(a)と前記無機材料(C)と重合開始剤(D)とを水媒体(W)に混合した後、前記モノマー(a)を重合させることにより重合体(A)と前記無機材料(C)との複合体(X)の分散液(L)を製造する第1工程、
前記分散液(L)を支持体に塗布し、その後乾燥することにより前記複合体(X)の薄層を形成する第2工程、
非水溶性の重合開始剤(D)を溶媒(E)に溶解させた溶液を前記複合体(X)の薄層の表面(S)に塗布し、前記溶媒(E)を揮発させる第3工程、
前記表面(S)に前記モノマー(b)の水溶液を塗布した後、紫外線の照射により前記モノマー(b)を重合させる第4工程を順次行なうことを特徴とする細胞培養基材の製造方法を提供する。
式(2) Ra<0.19のとき
無機材料(C)の濃度(質量%)<12.4Ra+0.05

式(3) Ra≧0.19のとき
無機材料(C)の濃度(質量%)<0.87Ra+2.17
(式中、無機材料(C)の濃度(質量%)は、無機材料(C)の質量を水媒体(W)と無機材料(C)の合計質量で除して100を掛けた数値、Raは無機材料(C)と重合体(A)との質量比((C)/(A))である。)
In the present invention, the polymer (B) is a polymer of at least one monomer (b) selected from the group consisting of N-substituted (meth) acrylamide derivatives and N, N-disubstituted (meth) acrylamide derivatives. A method for producing a cell culture substrate,
The monomer (a) and the inorganic material (so that the concentration of the water-swellable inorganic material (C) in the aqueous medium (W) falls within the range represented by the following formula (2) or formula (3): C) and a polymerization initiator (D) are mixed in an aqueous medium (W), and then the monomer (a) is polymerized to form a composite (X) of the polymer (A) and the inorganic material (C). A first step of producing a dispersion (L) of
A second step of forming a thin layer of the composite (X) by applying the dispersion (L) to a support and then drying;
A third step in which a solution obtained by dissolving a water-insoluble polymerization initiator (D) in a solvent (E) is applied to the surface (S) of the thin layer of the composite (X), and the solvent (E) is volatilized. ,
Provided is a method for producing a cell culture substrate, comprising: applying an aqueous solution of the monomer (b) to the surface (S), and then sequentially performing a fourth step of polymerizing the monomer (b) by ultraviolet irradiation. To do.
Formula (2) When Ra <0.19
Concentration (% by mass) of inorganic material (C) <12.4Ra + 0.05

Formula (3) When Ra ≧ 0.19
Concentration (% by mass) of inorganic material (C) <0.87Ra + 2.17
(In the formula, the concentration (% by mass) of the inorganic material (C) is a value obtained by dividing the mass of the inorganic material (C) by the total mass of the aqueous medium (W) and the inorganic material (C) and multiplying by 100, Ra Is a mass ratio ((C) / (A)) between the inorganic material (C) and the polymer (A).)

また、本発明は、上記重合体(B)が、N−置換(メタ)アクリルアミド誘導体及びN,N−ジ置換(メタ)アクリルアミド誘導体からなる群から選ばれる少なくとも一種のモノマー(b)の重合体である細胞培養基材の製造方法であって、
前記モノマー(a)と前記無機材料(C)と重合開始剤(D)とを混合した水媒体(W)を支持体に塗布して、
前記モノマー(a)を重合させることにより、重合体(A)と前記無機材料(C)との複合体(X)の薄層を形成する第1工程、
非水溶性の重合開始剤(D)を溶媒(E)に溶解させた溶液を前記複合体(X)の薄層の表面(S)に塗布し、溶媒(E)を揮発させる第2工程、
前記モノマー(b)の水溶液を前記表面(S)に塗布した後、紫外線の照射により前記モノマー(b)を重合させる第3工程を順次行なうことを特徴とする細胞培養基材の製造方法を提供する。
In the present invention, the polymer (B) is a polymer of at least one monomer (b) selected from the group consisting of N-substituted (meth) acrylamide derivatives and N, N-disubstituted (meth) acrylamide derivatives. A method for producing a cell culture substrate,
An aqueous medium (W) in which the monomer (a), the inorganic material (C) and the polymerization initiator (D) are mixed is applied to a support,
A first step of forming a thin layer of a composite (X) of the polymer (A) and the inorganic material (C) by polymerizing the monomer (a);
A second step in which a solution in which a water-insoluble polymerization initiator (D) is dissolved in a solvent (E) is applied to the surface (S) of the thin layer of the composite (X), and the solvent (E) is volatilized;
Provided is a method for producing a cell culture substrate, comprising applying the aqueous solution of the monomer (b) to the surface (S) and then sequentially performing a third step of polymerizing the monomer (b) by ultraviolet irradiation. To do.

更に、本発明は、重合体(B)が、N−置換(メタ)アクリルアミド誘導体及びN,N−ジ置換(メタ)アクリルアミド誘導体からなる群から選ばれる少なくとも一種のモノマー(b)の重合体である細胞培養基材の製造方法であって、
前記水媒体(W)中の前記無機材料(C)の濃度が下記式(2)又は式(3)で表される範囲となるように、前記モノマー(a)と前記無機材料(C)と重合開始剤(D)とを水媒体(W)に混合した後、前記モノマー(a)を重合させることにより、重合体(A)と前記無機材料(C)との複合体(X)の分散液(L)を製造する第1工程、
前記分散液(L)に、前記モノマー(b)の重合体である重合体(B)を添加し、混合して、支持体に塗布した後、乾燥させる第2工程を順次行なうことを特徴とする細胞培養基材の製造方法を提供する。
式(2) Ra<0.19のとき
無機材料(C)の濃度(質量%)<12.4Ra+0.05
式(3) Ra≧0.19のとき
無機材料(C)の濃度(質量%)<0.87Ra+2.17
(式中、無機材料(C)の濃度(質量%)は、無機材料(C)の質量を水媒体(W)と無機材料(C)の合計質量で除して100を掛けた数値、Raは無機材料(C)と重合体(A)との質量比((C)/(A))である。)
Furthermore, the present invention provides the polymer (B) comprising at least one monomer (b) selected from the group consisting of N-substituted (meth) acrylamide derivatives and N, N-disubstituted (meth) acrylamide derivatives. A method for producing a cell culture substrate,
The monomer (a), the inorganic material (C), and the concentration of the inorganic material (C) in the aqueous medium (W) are in a range represented by the following formula (2) or formula (3): After mixing the polymerization initiator (D) with the aqueous medium (W), the monomer (a) is polymerized to disperse the complex (X) of the polymer (A) and the inorganic material (C). A first step of producing a liquid (L);
The polymer (B), which is a polymer of the monomer (b), is added to the dispersion (L), mixed, applied to a support, and then dried in order. A method for producing a cell culture substrate is provided.
Formula (2) When Ra <0.19
Concentration (% by mass) of inorganic material (C) <12.4Ra + 0.05
Formula (3) When Ra ≧ 0.19
Concentration (% by mass) of inorganic material (C) <0.87Ra + 2.17
(In the formula, the concentration (% by mass) of the inorganic material (C) is a value obtained by dividing the mass of the inorganic material (C) by the total mass of the aqueous medium (W) and the inorganic material (C) and multiplying by 100, Ra Is a mass ratio ((C) / (A)) between the inorganic material (C) and the polymer (A).)

本発明の細胞培養基材の最大の特徴は、上記重合体(A)と無機材料(C)の構成部分が細胞の増殖を担い、LCSTを有する重合体(B)は温度変化による細胞の剥離を担い、この二つの部分を細胞の種類に応じてそれぞれ単独に制御できることにある。例えば、培養時、培養温度(37℃)がポリ−N−イソプロピルアクリルアミドのLCST(32℃)より高いため、ポリ−N−イソプロピルアクリルアミドが水不溶(疎水性)状態になり、細胞が基材の表面で増殖するが、温度を32℃以下に下げると(例えば20℃)、ポリ−N−イソプロピルアクリルアミドが水溶性になり基材表面から水溶液へと伸展し、それに伴い細胞が基材表面から脱離しながら剥離していく。   The greatest feature of the cell culture substrate of the present invention is that the constituent parts of the polymer (A) and the inorganic material (C) are responsible for cell growth, and the polymer (B) having LCST peels off cells due to temperature changes. The two parts can be controlled independently according to the cell type. For example, since the culture temperature (37 ° C.) is higher than the LCST (32 ° C.) of poly-N-isopropylacrylamide at the time of culture, poly-N-isopropylacrylamide is in a water-insoluble (hydrophobic) state, and the cell is the base material. Although it grows on the surface, when the temperature is lowered to 32 ° C. or lower (for example, 20 ° C.), poly-N-isopropylacrylamide becomes water-soluble and extends from the substrate surface to the aqueous solution. Peel while releasing.

重合体(A)及び重合体(B)は主にイオン結合や水素結合などにより無機材料(C)と相互作用し結合している。この結合力は強く、容易にポリマーと無機材料(C)を引き離すことはできない。例えば、ポリ−N−イソプロピルアクリルアミドと粘土鉱物からなる三次元網目構造を有するヒドロゲル(含水率が90%)は95kPaの引っ張り破断強度を示している((特許文献4)特開2006−288251公報参照)。   The polymer (A) and the polymer (B) interact and bond with the inorganic material (C) mainly through ionic bonds and hydrogen bonds. This bonding force is strong, and the polymer and the inorganic material (C) cannot be easily separated. For example, a hydrogel having a three-dimensional network structure composed of poly-N-isopropylacrylamide and clay mineral (water content 90%) exhibits a tensile strength at break of 95 kPa (see Patent Document 4) JP-A-2006-288251. ).

本発明の細胞培養基材は、無機材料(C)と重合体(A)がほぼ均一な層状構造になっている複合体(X)の薄層と、該薄層の中から表面に向かって伸び出ている重合体(B)とから構成されている。   The cell culture substrate of the present invention comprises a thin layer of a composite (X) in which an inorganic material (C) and a polymer (A) have a substantially uniform layered structure, and from the thin layer toward the surface. It is comprised from the extending | stretching polymer (B).

重合体(B)の長さ(分子量)と密度(含有量)を適宜調整することにより、複合体(X)の薄層表面が重合体(B)に完全に覆われることなく適宜露出することで、良好な細胞増殖性と細胞剥離性を維持できる。   By appropriately adjusting the length (molecular weight) and density (content) of the polymer (B), the thin layer surface of the composite (X) is appropriately exposed without being completely covered by the polymer (B). Thus, good cell proliferation and cell detachability can be maintained.

本発明の細胞培養基材は、環境温度に対する疎水性と親水性の変化速度が速く、培養される細胞の種類(接着性)に応じて、下限臨界溶解温度を有する重合体(B)の長さや密度を容易に調節することができ、培養した細胞を、薬剤(トリプシン等)を使用することなく、迅速に培養基材表面から剥離、回収できる特徴を有する。   The cell culture substrate of the present invention has a high rate of change in hydrophobicity and hydrophilicity with respect to environmental temperature, and the length of the polymer (B) having a lower critical solution temperature depending on the type of cell to be cultured (adhesiveness). The sheath density can be easily adjusted, and the cultured cells can be quickly detached and recovered from the surface of the culture substrate without using a drug (such as trypsin).

また、本発明の製造方法は、基材中に含まれる下限臨界溶解温度を有する重合体(B)が架橋されることがなく(より敏速な温度応答性を維持できる)、且つ電子線照射のような方法を使用することなく、該細胞培養基材を(プラスチック製培養容器のような)支持体に容易に接着させることができ、更に、培養される細胞の種類(接着性)に応じて、重合体(B)の長さや密度も容易に調節することができ、装置と工程が簡便である特徴を有する。   In addition, the production method of the present invention is such that the polymer (B) having a lower critical solution temperature contained in the base material is not cross-linked (a more rapid temperature responsiveness can be maintained), and electron beam irradiation Without using such a method, the cell culture substrate can be easily adhered to a support (such as a plastic culture vessel), and further, depending on the type of cells to be cultured (adhesiveness). The length and density of the polymer (B) can be easily adjusted, and the apparatus and the process are simple.

分散液(L5)を円形のパターン状に塗布した細胞培養基材(実施例8)の光学顕微鏡にて撮影した写真である。It is the photograph image | photographed with the optical microscope of the cell-culture base material (Example 8) which apply | coated the dispersion liquid (L5) in circular pattern shape.

本発明で用いるモノマー(a)は、その重合体が粘土鉱物と相互作用し、重合により有機無機複合ヒドロゲルを形成できるものであれば、好適に使用できるが、中でも、(メタ)アクリル酸ポリプロピレングリコールやポリエチレングリコールエステル系モノマーが好ましく用いられ、特に好ましくは下記式(1)のモノマー(a)が用いられる。   The monomer (a) used in the present invention can be suitably used as long as the polymer interacts with a clay mineral and can form an organic-inorganic composite hydrogel by polymerization. Among them, (meth) acrylic acid polypropylene glycol And a polyethylene glycol ester monomer are preferably used, and a monomer (a) of the following formula (1) is particularly preferably used.

Figure 0004430123
(式中、Rは水素原子またはメチル基、Rは炭素原子数2〜3のアルキレン基、Rは水素原子または炭素原子数1〜2のアルキル基であり、nは1〜9である。)
Figure 0004430123
Wherein R 1 is a hydrogen atom or a methyl group, R 2 is an alkylene group having 2 to 3 carbon atoms, R 3 is a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, and n is 1 to 9 is there.)

これらのモノマー(a)の使用により、細胞の初期接着性を容易に調節でき、細胞増殖性と剥離性が良好な細胞培養基材が得られる。また、この細胞培養基材をポリスチレンなどのプラスチック製基材等の支持体の表面に積層させる場合は、両者間の接着性が強く、製造が簡便にできる。   By using these monomers (a), the initial cell adhesion can be easily adjusted, and a cell culture substrate having good cell growth and detachability can be obtained. Moreover, when this cell culture substrate is laminated on the surface of a support such as a plastic substrate such as polystyrene, the adhesiveness between the two is strong and the production can be simplified.

上記のモノマー(a)は、要求される力学物性や表面性質などにより、一種以上を混合して使用してもよい。また、細胞培養基材の培養性や物性に影響を及ぼさない程度に、必要に応じてその他の共重合モノマーとして、例えば、スルホン基やカルボキシル基のようなアニオン基を有するアクリル系モノマー、4級アンモニウム基のようなカチオン基を有するアクリル系モノマー、4級アンモニウム基と燐酸基とを持つ両性イオン基を有するアクリル系モノマー、カルボキシル基とアミノ基とをもつアミノ酸残基を有するアクリル系モノマー、糖残基を有するアクリル系モノマー、また、水酸基を有するアクリル系モノマー、ポリエチレングリコール、ポリプロピレングリコール鎖を有するアクリル系モノマー、更にポリエチレングリコールのような親水性鎖とノニルフェニル基のような疎水基を合わせ持つ両親媒性アクリル系モノマー、ポリエチレングリコールジアクリレート、N−置換(メタ)アクリルアミド誘導体、N,N−ジ置換(メタ)アクリルアミド誘導体、N,N’−メチレンビスアクリルアミドなどを併用することができる。   One or more of the above-mentioned monomers (a) may be mixed and used depending on required mechanical properties and surface properties. In addition, as necessary, for example, an acrylic monomer having an anion group such as a sulfone group or a carboxyl group, quaternary, etc., as long as it does not affect the culture properties and physical properties of the cell culture substrate. Acrylic monomer having a cationic group such as an ammonium group, an acrylic monomer having a zwitterionic group having a quaternary ammonium group and a phosphate group, an acrylic monomer having an amino acid residue having a carboxyl group and an amino group, sugar Acrylic monomer having a residue, acrylic monomer having a hydroxyl group, polyethylene glycol, acrylic monomer having a polypropylene glycol chain, and also having a hydrophilic chain such as polyethylene glycol and a hydrophobic group such as a nonylphenyl group Amphiphilic acrylic monomer, polyethylene Glycol diacrylate, N- substituted (meth) acrylamide derivatives, N, N-di-substituted (meth) acrylamide derivatives, N, may be used in combination such as N'- methylenebisacrylamide.

本発明に用いる無機材料(C)は、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料である。水膨潤性粘土鉱物としては、層状に剥離可能な水膨潤性粘土鉱物が挙げられ、好ましくは水または水と有機溶剤との混合溶液中で膨潤し均一に分散可能な粘土鉱物、特に好ましくは水中で分子状(単一層)またはそれに近いレベルで均一分散可能な無機粘土鉱物が用いられる。具体的にはナトリウムを層間イオンとして含む水膨潤性ヘクトライト、水膨潤性モンモリライト、水膨潤性サポナイト、水膨潤性合成雲母、等が挙げられる。これらの粘土鉱物を混合して用いても良い。   The inorganic material (C) used in the present invention is one or more inorganic materials selected from water-swellable clay minerals and silica. Examples of water-swellable clay minerals include water-swellable clay minerals that can be peeled in layers, preferably clay minerals that can swell and uniformly disperse in water or a mixed solution of water and an organic solvent, particularly preferably water. An inorganic clay mineral that can be uniformly dispersed at a molecular level (single layer) or at a level close thereto is used. Specific examples include water-swellable hectorite containing sodium as an interlayer ion, water-swellable montmorillonite, water-swellable saponite, and water-swellable synthetic mica. You may mix and use these clay minerals.

本発明に用いるシリカ(SiO)としては、コロイダルシリカが挙げられ、好ましくは水溶液中で均一に分散可能で、粒径が10nm〜500nmのコロイダルシリカ、特に好ましくは粒径が10〜50nmのコロイダルシリカが用いられる。 Examples of the silica (SiO 2 ) used in the present invention include colloidal silica, preferably colloidal silica that can be uniformly dispersed in an aqueous solution and has a particle size of 10 nm to 500 nm, and particularly preferably a colloidal particle having a particle size of 10 to 50 nm. Silica is used.

本発明の細胞培養基材において、重合体(A)と無機材料(C)との質量比((C)/(A))が、0.01〜10であることが好ましく、0.03〜5がより好ましく、0.05〜3が特に好ましい。質量比((C)/(A))がこの範囲であると、粘土鉱物またはシリカと重合体(A)との複合構造(例えば粘土鉱物が主成分として構成したシェル(殻)部分と重合体(A)が主成分として構成したコア(内部)部分からなるコアシェル構造、粘土鉱物と重合体(A)が均一に複合した均一構造など)の設計が容易であり、得られる塗膜の表面特性(例えば親疎水性度合いや細胞培養性)や塗膜物性が良好であり、均一な塗膜が得られ、支持体との接着性が良好で、脆さも無く好ましい。   In the cell culture substrate of the present invention, the mass ratio ((C) / (A)) of the polymer (A) to the inorganic material (C) is preferably 0.01 to 10, and preferably 0.03 to 0.03. 5 is more preferable, and 0.05 to 3 is particularly preferable. When the mass ratio ((C) / (A)) is within this range, a composite structure of a clay mineral or silica and a polymer (A) (for example, a shell portion composed mainly of a clay mineral and a polymer) (A) A core-shell structure consisting of a core (inner) part composed mainly of (A), a uniform structure in which clay mineral and polymer (A) are uniformly combined, etc.) can be easily designed, and the surface characteristics of the resulting coating film (For example, the degree of hydrophilicity / hydrophobicity and cell culture properties) and physical properties of the coating film are good, a uniform coating film is obtained, adhesion to the support is good, and there is no brittleness, which is preferable.

また、本発明の細胞培養基材において、基材全体に対する重合体(B)の含有率が0.0001質量%〜40質量%であることが好ましく、0.01〜30質量%であることがより好ましく、1〜20質量%であることが特に好ましい。   In the cell culture substrate of the present invention, the content of the polymer (B) with respect to the entire substrate is preferably 0.0001% by mass to 40% by mass, and preferably 0.01 to 30% by mass. More preferably, the content is 1 to 20% by mass.

重合体(B)の含有率が0.0001質量%〜40質量%であると、培養基材の細胞接着性と増殖性及び温度低下時の剥離性が良好であり、培養基材の表面平滑性もよく、また、プラスチック製基材の表面に積層するときの塗布性や基材表面との接着性がよく、好ましい。   When the content of the polymer (B) is 0.0001% by mass to 40% by mass, the cell adhesion and proliferation of the culture substrate and the peelability when the temperature is lowered are good, and the surface of the culture substrate is smooth. In addition, the coating property is good and the coating property when being laminated on the surface of the plastic substrate and the adhesion to the surface of the substrate are good.

本発明で用いられる下限臨界溶解温度(Lower Critical Solution Temperature:以下LCSTと略記する)を有する重合体(B)は、分子内にLCSTを示す部分を有するものであれば、好適に使用できるが、中でもN−置換(メタ)アクリルアミド誘導体及びN,N−ジ置換(メタ)アクリルアミド誘導体からなる群から選ばれる少なくとも一種のモノマー(b)の重合体であることが好ましい。このようなモノマー(b)の例としては、N−イソプロピル(メタ)アクリルアミド、N−n−プロピル(メタ)アクリルアミド、N−シクロプロピル(メタ)アクリルアミド、N−エトキシエチル(メタ)アクリルアミド、N−テトラヒドロフルフリル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N−エチル−N−メチル(メタ)アクリルアミド、N,N−ジエチル(メタ)アクリルアミド、N−メチル−N−n−プロピル(メタ)アクリルアミド、N−メチル−N−イソプロピル(メタ)アクリルアミド、N−(メタ)アクリロイルピペリディン、N−(メタ)アクリロイルピロリディンがあげられる。   The polymer (B) having a lower critical solution temperature (hereinafter abbreviated as LCST) used in the present invention can be suitably used as long as it has a portion showing LCST in the molecule. Among them, a polymer of at least one monomer (b) selected from the group consisting of N-substituted (meth) acrylamide derivatives and N, N-disubstituted (meth) acrylamide derivatives is preferable. Examples of such monomers (b) include N-isopropyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-cyclopropyl (meth) acrylamide, N-ethoxyethyl (meth) acrylamide, N- Tetrahydrofurfuryl (meth) acrylamide, N-ethyl (meth) acrylamide, N-ethyl-N-methyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N-methyl-Nn-propyl (meth) Examples include acrylamide, N-methyl-N-isopropyl (meth) acrylamide, N- (meth) acryloylpiperidine, and N- (meth) acryloylpyrrolidine.

上記これらのモノマー単独で用いてもよく、必要に応じて複数のモノマーを混合して用いてもよい。更に、上記モノマー(b)とそれ以外の水溶性有機モノマーまたは有機溶媒可溶性有機モノマーとの共重合体も、得られた重合体が親水性及び疎水性の両方を示すものであれば使用することが出来る。   These monomers may be used alone, or a plurality of monomers may be mixed and used as necessary. Furthermore, a copolymer of the monomer (b) and other water-soluble organic monomer or organic solvent-soluble organic monomer should also be used as long as the obtained polymer exhibits both hydrophilicity and hydrophobicity. I can do it.

上記の下限臨界溶解温度(LCST)とは、この温度以上になると、該ポリマーが水中で不溶となり(疎水性を示す)、この温度以下になると、水溶性になる(親水性を示す)温度のことである。例えば、ポリ−N−イソプロピルアクリルアミドのLCSTは32℃である。   The above-mentioned lower critical solution temperature (LCST) is a temperature at which the polymer becomes insoluble in water (indicating hydrophobicity) above this temperature, and becomes water-soluble (indicating hydrophilicity) below this temperature. That is. For example, the LCST of poly-N-isopropylacrylamide is 32 ° C.

次いで、本発明の製造方法について説明する。
本発明の細胞培養基材は、下記三つの方法で製造することができる。
即ち、第一の製造方法としては、前記水媒体(W)中の前記無機材料(C)の濃度が下記式(2)又は式(3)で表される範囲となるように、前記モノマー(a)と前記無機材料(C)と重合開始剤(D)とを水媒体(W)に混合した後、前記モノマー(a)を重合させることにより重合体(A)と前記無機材料(C)との複合体(X)の分散液(L)を製造する第1工程、
前記分散液(L)を基材に塗布し、その後乾燥することにより前記複合体(X)の薄層を形成する第2工程、
非水溶性の重合開始剤(D)を溶媒(E)に溶解させた溶液を前記複合体(X)の薄層の表面(S)に塗布し、前記溶媒(E)を揮発させる第3工程、
前記表面(S)に前記モノマー(b)の水溶液を塗布した後、紫外線の照射により前記モノマー(b)を重合させる第4工程を順次行なうことを特徴とする細胞培養基材の製造方法である。
式(2) Ra<0.19のとき
無機材料(C)の濃度(質量%)<12.4Ra+0.05
式(3) Ra≧0.19のとき
無機材料(C)の濃度(質量%)<0.87Ra+2.17
(式中、無機材料(C)の濃度(質量%)は、無機材料(C)の質量を水媒体(W)と無機材料(C)の合計質量で除して100を掛けた数値、Raは無機材料(C)と重合体(A)との質量比((C)/(A))である。)
Next, the production method of the present invention will be described.
The cell culture substrate of the present invention can be produced by the following three methods.
That is, as a first production method, the monomer (C) is adjusted so that the concentration of the inorganic material (C) in the aqueous medium (W) is in the range represented by the following formula (2) or formula (3). a), the inorganic material (C) and the polymerization initiator (D) are mixed in an aqueous medium (W), and then the monomer (a) is polymerized to polymer (A) and the inorganic material (C). A first step of producing a dispersion (L) of a complex (X) with
A second step of forming a thin layer of the composite (X) by applying the dispersion (L) to a substrate and then drying;
A third step in which a solution obtained by dissolving a water-insoluble polymerization initiator (D) in a solvent (E) is applied to the surface (S) of the thin layer of the composite (X), and the solvent (E) is volatilized. ,
A method for producing a cell culture substrate, comprising: applying an aqueous solution of the monomer (b) to the surface (S); and sequentially performing a fourth step of polymerizing the monomer (b) by irradiation with ultraviolet rays. .
Formula (2) When Ra <0.19
Concentration (% by mass) of inorganic material (C) <12.4Ra + 0.05
Formula (3) When Ra ≧ 0.19
Concentration (% by mass) of inorganic material (C) <0.87Ra + 2.17
(In the formula, the concentration (% by mass) of the inorganic material (C) is a value obtained by dividing the mass of the inorganic material (C) by the total mass of the aqueous medium (W) and the inorganic material (C) and multiplying by 100, Ra Is a mass ratio ((C) / (A)) between the inorganic material (C) and the polymer (A).)

この製造方法に用いられるモノマー(a)と無機材料(C)及びモノマー(b)は、前記細胞培養基材の説明で述べたのと同じものを使用できるので、省略する。   The monomer (a), the inorganic material (C) and the monomer (b) used in this production method can be the same as those described in the description of the cell culture substrate, and will be omitted.

本発明の製造方法に用いる水媒体(W)は、モノマー(a)や無機材料(C)などを含むことができ、重合によって、物性のよい有機無機複合体分散液が得られれば良く、特に限定されない。例えば水、または水と混和性を有する溶剤及び/またはその他の化合物を含む水溶液であってよく、その中には更に、防腐剤や抗菌剤、着色料、香料、酵素、たんぱく質、コラーゲン、糖類、アミノ酸類、細胞、DNA類、塩類、水溶性有機溶剤類、界面活性剤、高分子化合物、レベリング剤などを含むことができる。   The aqueous medium (W) used in the production method of the present invention can contain the monomer (a), the inorganic material (C), etc., and it is sufficient that an organic-inorganic composite dispersion liquid having good physical properties is obtained by polymerization. It is not limited. For example, it may be water or an aqueous solution containing a solvent miscible with water and / or other compounds, and further includes antiseptics and antibacterial agents, coloring agents, fragrances, enzymes, proteins, collagen, sugars, Amino acids, cells, DNAs, salts, water-soluble organic solvents, surfactants, polymer compounds, leveling agents and the like can be included.

本発明に用いられる重合開始剤(D)としては、公知のラジカル重合開始剤を適時選択して用いることができる。好ましくは水溶性または水分散性を有し、系全体に均一に含まれるものが好ましく用いられる。具体的には、重合開始剤として、水溶性の過酸化物、例えばペルオキソ二硫酸カリウムやペルオキソ二硫酸アンモニウム、水溶性のアゾ化合物、例えばVA−044、V−50、V−501(いずれも和光純薬工業株式会社製)の他、Fe2+と過酸化水素との混合物などが例示される。 As the polymerization initiator (D) used in the present invention, a known radical polymerization initiator can be appropriately selected and used. Preferably, those having water solubility or water dispersibility and uniformly contained in the entire system are preferably used. Specifically, as a polymerization initiator, a water-soluble peroxide such as potassium peroxodisulfate or ammonium peroxodisulfate, a water-soluble azo compound such as VA-044, V-50, V-501 (all of which are Wako Pure Chemical Industries, Ltd.) In addition to Yaku Kogyo Co., Ltd., a mixture of Fe 2+ and hydrogen peroxide is exemplified.

触媒としては、3級アミン化合物であるN,N,N’,N’−テトラメチルエチレンジアミンなどは好ましく用いられる。但し、触媒は必ずしも用いなくてもよい。重合温度は、重合触媒や開始剤の種類に合わせて例えば0℃〜100℃が用いられる。重合時間も数十秒〜数十時間の間で行うことが出来る。   As the catalyst, tertiary amine compounds such as N, N, N ′, N′-tetramethylethylenediamine are preferably used. However, the catalyst is not necessarily used. The polymerization temperature is, for example, 0 ° C. to 100 ° C. according to the type of polymerization catalyst or initiator. The polymerization time can also be carried out for several tens of seconds to several tens of hours.

一方、光重合開始剤は、酸素阻害の影響を受けにくく、重合速度が速いため、重合開始剤(D)として好適に用いられる。具体的には、p−tert−ブチルトリクロロアセトフェノンなどのアセトフェノン類、4,4’−ビスジメチルアミノベンゾフェノンなどのベンゾフェノン類、2−メチルチオキサントンなどのケトン類、ベンゾインメチルエーテルなどのベンゾインエーテル類、ヒドロキシシクロヘキシルフェニルケトンなどのα−ヒドロキシケトン類、メチルベンゾイルホルメートなどのフェニルグリオキシレート類、メタロセン類などが挙げられる。   On the other hand, the photopolymerization initiator is less susceptible to oxygen inhibition and has a high polymerization rate, and therefore is suitably used as the polymerization initiator (D). Specifically, acetophenones such as p-tert-butyltrichloroacetophenone, benzophenones such as 4,4′-bisdimethylaminobenzophenone, ketones such as 2-methylthioxanthone, benzoin ethers such as benzoin methyl ether, hydroxy Examples include α-hydroxy ketones such as cyclohexyl phenyl ketone, phenyl glyoxylates such as methyl benzoyl formate, and metallocenes.

前記光重合開始剤は非水溶性のものである。ここで言う非水溶性とは、重合開始剤の水に対する溶解量が0.5質量%以下であることを意味する。非水溶性の重合開始剤を使用することにより、開始剤がより粘土鉱物の近傍に存在しやすく、粘土鉱物近傍からの開始反応点が多くなり、得られる重合体(A)と無機材料(C)との複合体(X)の粒径分布が狭く、分散液(L)の安定性が高く、好ましい。   The photopolymerization initiator is water-insoluble. The term “water-insoluble” as used herein means that the amount of polymerization initiator dissolved in water is 0.5% by mass or less. By using a water-insoluble polymerization initiator, the initiator is more likely to be present in the vicinity of the clay mineral, the number of initiation reaction points from the vicinity of the clay mineral is increased, and the resulting polymer (A) and inorganic material (C The particle size distribution of the complex (X) with N) is narrow, and the dispersion (L) has high stability, which is preferable.

前記光重合開始剤を水媒体(W)と相溶する溶媒(E)に溶解させた溶液を前記水媒体(W)中に添加することが好ましい。この方法によって光重合開始剤がより均一に分散でき、より粒径の揃った複合体(X)が得られる。   It is preferable that a solution prepared by dissolving the photopolymerization initiator in a solvent (E) compatible with the aqueous medium (W) is added to the aqueous medium (W). By this method, the photopolymerization initiator can be more uniformly dispersed, and a composite (X) having a more uniform particle diameter can be obtained.

光重合開始剤(D)を溶媒(E)に溶解させた溶液中における光重合開始剤(D)と溶媒(E)の質量比(D)/(E)は、0.001〜0.1であることが好ましく、0.01〜0.05が更に好ましい。0.001以上であると、紫外線の照射によるラジカルの発生量が十分に得られるため好適に重合反応を進行させることができ、0.1以下であれば、開始剤による発色や、臭気を実質的に生じることがなく、またコストの低減が可能である。   The mass ratio (D) / (E) of the photopolymerization initiator (D) to the solvent (E) in the solution obtained by dissolving the photopolymerization initiator (D) in the solvent (E) is 0.001 to 0.1. Preferably, 0.01 to 0.05 is more preferable. When the amount is 0.001 or more, a sufficient amount of radicals are generated by irradiation with ultraviolet rays, so that the polymerization reaction can be suitably performed. The cost can be reduced.

光重合開始剤(D)を溶媒(E)に溶解させた溶液の添加量が、モノマー(a)、無機材料(C)、水媒体(W)、重合開始剤(D)及び溶媒(E)の総質量に対し、0.1質量%〜5質量%であることが好ましく、0.2質量%〜2質量%であることが更に好ましい。該分散量が0.1質量%以上であると、重合が十分に開始され、5質量%未満であると、複合体(X)中の重合開始剤の増加による臭気の発生、更には一旦分散された光重合開始剤が再び凝集する等の問題を低減でき、均一な複合体(X)の分散液(L)を得ることができるため好ましい。   The addition amount of the solution obtained by dissolving the photopolymerization initiator (D) in the solvent (E) is monomer (a), inorganic material (C), aqueous medium (W), polymerization initiator (D), and solvent (E). The total mass is preferably 0.1% by mass to 5% by mass, and more preferably 0.2% by mass to 2% by mass. When the dispersion amount is 0.1% by mass or more, the polymerization is sufficiently started, and when it is less than 5% by mass, odor is generated due to an increase in the polymerization initiator in the composite (X), and further, once dispersed. This is preferable because problems such as aggregation of the resulting photopolymerization initiator can be reduced and a uniform dispersion (L) of the composite (X) can be obtained.

非水溶性の重合開始剤(D)を使用することにより、第4工程では、モノマー(b)の水溶液を塗布した時に、開始剤の溶出が無く、粘土鉱物またはシリカ近傍からの開始反応点が多くなり、得られる重合体(B)と無機材料(C)間の相互作用がより強くなり、好ましい。   By using the water-insoluble polymerization initiator (D), in the fourth step, when the aqueous solution of the monomer (b) is applied, there is no elution of the initiator, and the starting reaction point from the vicinity of the clay mineral or silica is The interaction between the obtained polymer (B) and the inorganic material (C) becomes stronger, which is preferable.

無機材料(C)の水媒体に対する濃度(質量%)は式(2)又は式(3)で表される範囲であることが本発明の細胞培養基材製造の最大の特徴である。無機材料(C)の水媒体に対する濃度(質量%)が上記範囲内であると、良好な複合体(X)の分散液(L)が得られ、支持体への塗布が容易で、平滑で均一な薄い塗膜が得られ、好ましい。   The greatest characteristic of the cell culture substrate production of the present invention is that the concentration (mass%) of the inorganic material (C) in the aqueous medium is in the range represented by the formula (2) or the formula (3). When the concentration (% by mass) of the inorganic material (C) in the aqueous medium is within the above range, a good dispersion (L) of the composite (X) can be obtained, and the coating onto the support is easy and smooth. A uniform thin coating film is obtained, which is preferable.

本発明の製造方法で製造される分散液(L)は、そのまま使用してもよいし、水洗などによる精製工程を経てから使用してもよい。また該分散液(L)に更にレベリング剤や界面活性剤、ペプチド、たんぱく質、コラーゲン、アミノ酸類、高分子化合物などを添加して使用してもよい。   The dispersion (L) produced by the production method of the present invention may be used as it is, or may be used after undergoing a purification step such as washing with water. Further, a leveling agent, a surfactant, a peptide, a protein, collagen, an amino acid, a polymer compound or the like may be added to the dispersion (L).

本製造方法の第2工程における、前記分散液(L)の支持体への塗布方法は、公知慣用の方法でよい。例えば、分散液を支持体に流延させる方法や、バーコーターやスピンコーターによるコーター法、または噴霧などのスプレー法、模様のあるゴム版に分散液をつけてから支持体に転写する方法、また支持体に塗布しない部分を予め遮蔽して塗布後遮蔽部分を取り除くパターン状塗布や、インクジェットプリンター方式による分散液の塗布方法が挙げられる。   The method for applying the dispersion liquid (L) to the support in the second step of the production method may be a known and conventional method. For example, a method of casting the dispersion on a support, a coater method using a bar coater or a spin coater, or a spraying method such as spraying, a method of transferring a dispersion to a patterned rubber plate and then transferring it to the support, Examples thereof include a pattern-like coating in which a portion not coated on the support is shielded in advance and the shielded portion is removed after coating, and a dispersion coating method using an ink jet printer method.

細胞が接着や増殖しない支持体(例えばコロナ放電処理をしていないポリスチレン)表面に、分散液(L)をパターン状に塗布することにより、塗布部分間の間隔が十分狭い場合、細胞が未塗布部分を乗り越えて増殖し、最終的に支持体表面全体に渡って細胞を培養することができ、更に、培養した細胞層が支持体との間の接着点が少なく、剥離がより容易に起き、好ましい。塗布部分境界と境界間の間隔(未塗布部分の幅)が300μm以下であることが好ましい、200μm以下は更に好ましい、100μm以下は最も好ましい。300μm以下であれば、細胞がこの未塗布幅を十分超え、増殖することができ、良好な細胞層を培養することができる。   When the dispersion (L) is applied in a pattern on the surface of a support on which cells do not adhere or proliferate (for example, polystyrene that has not been subjected to corona discharge treatment), the cells are not applied when the distance between the applied parts is sufficiently narrow Can grow over the part and finally cultivate the cells across the entire surface of the support, furthermore, the cultured cell layer has less adhesion points with the support, and detachment occurs more easily, preferable. The distance between the boundary between the coated portions (the width of the uncoated portion) is preferably 300 μm or less, more preferably 200 μm or less, and most preferably 100 μm or less. If it is 300 μm or less, the cells can sufficiently grow beyond this uncoated width, and a good cell layer can be cultured.

乾燥方法も、分散液(L)中の揮発成分が揮発し、複合体(X)の薄層ができれば、任意の方法でよい。例えば、室温自然乾燥、室温の風や加熱または熱風による乾燥、遠赤外線乾燥などがあげられる。或いは分散液をスピンコーターで回転しながら熱風を当てたり加熱したりする方法も挙げられる。   The drying method may be any method as long as the volatile components in the dispersion (L) are volatilized and a thin layer of the composite (X) is formed. For example, room temperature natural drying, room temperature air or heating or hot air drying, far infrared drying, and the like can be mentioned. Alternatively, a method of applying hot air or heating the dispersion while rotating it with a spin coater can also be mentioned.

本製造方法の第3工程における、非水溶性の重合開始剤(D)を溶媒(E)に溶解させた溶液の前記複合体(X)の薄層の表面(S)への塗布や溶媒(E)の揮発方法は、第2工程に準じて公知慣用の方法を用いてよい。   In the third step of the production method, a solution obtained by dissolving the water-insoluble polymerization initiator (D) in the solvent (E) is applied to the surface (S) of the thin layer of the complex (X) or the solvent ( As the volatilization method of E), a known and commonly used method may be used according to the second step.

前記表面(S)に塗布された前記溶液(D+E)が複合体(X)の薄層中へ浸透し、溶媒(E)の揮発により、開始剤が複合体(X)の薄層全体に均一に存在する状態になる。非水溶性の重合開始剤(D)としては、前記の光重合開始剤に準じたものを使用することができる。非水溶性の重合開始剤(D)を使用することにより、第4工程での、モノマー(b)の水溶液塗布時に、開始剤の溶出が少なく、粘土鉱物またはシリカ近傍からの開始反応点が多くなり、得られる重合体(B)と無機材料(C)間の相互作用がより強くなり、好ましい。   The solution (D + E) applied to the surface (S) penetrates into the thin layer of the composite (X), and the initiator is uniformly distributed throughout the thin layer of the composite (X) by volatilization of the solvent (E). It will be in a state that exists. As the water-insoluble polymerization initiator (D), those according to the above photopolymerization initiator can be used. By using the water-insoluble polymerization initiator (D), there is little elution of the initiator when applying the aqueous solution of the monomer (b) in the fourth step, and there are many initiation reaction points from the vicinity of the clay mineral or silica. This is preferable because the interaction between the resulting polymer (B) and the inorganic material (C) becomes stronger.

非水溶性重合開始剤(D)を溶媒(E)に溶解させた溶液中における重合開始剤(D)と溶媒(E)の質量比(D)/(E)は、0.001〜0.1であることが好ましく、0.01〜0.05が更に好ましい。0.001以上であると、紫外線の照射によるラジカルの発生量が十分に得られるため好適に重合反応を進行させることができ、0.1以下であれば、開始剤による発色や、臭気を実質的に生じることがなく、またコストの低減が可能である。   The mass ratio (D) / (E) of the polymerization initiator (D) to the solvent (E) in a solution in which the water-insoluble polymerization initiator (D) is dissolved in the solvent (E) is 0.001 to 0.00. 1 is preferable, and 0.01 to 0.05 is more preferable. When the amount is 0.001 or more, a sufficient amount of radicals are generated by irradiation with ultraviolet rays, so that the polymerization reaction can be suitably performed. The cost can be reduced.

本発明の溶媒(E)としては、光重合開始剤(D)または非水溶性重合開始剤(D)を溶解できる水溶性の溶剤、または光重合開始剤(D)と非水溶性重合開始剤(D)を溶解し且つHLB(親水疎水バランス)値が8以上のアクリル系モノマー(a’)を用いることができる。ここのHLB値はデービス式(「界面活性剤−物性・応用・化学生態学」、北原文雄ら編、講談社、1979、p24−27)に従って求められた値である。例えば、トリプロピレングリコールジアクリレートのようなポリプロピレングリコールジアクリレート類、ポリエチレングリコールジアクリレート類、ペンタプロピレングリコールアクリレートのようなポリプロピレングリコールアクリレート類、ポリエチレングリコールアクリレート類、メトキシエチルアクリレート、メトキシトリエチレングリコールアクリレートのようなメキシポリエチレングリコールアクリレート類、ノニルフェノキシポリエチレングリコ−ルアクリレート類、ジメチルアクリルアミドのようなN置換アクリルアミド類、ヒドロキシエチルアクリレート、ヒドロキシプロピルアクリレート、などが挙げられる。溶媒(E)としてのアクリル系モノマーのHLB値が8以上であると、水媒体(W)への溶解性または分散性に優れるため好ましい。これらのアクリル系モノマーは、一種以上を混合して用いることができる。   As the solvent (E) of the present invention, a water-soluble solvent that can dissolve the photopolymerization initiator (D) or the water-insoluble polymerization initiator (D), or a photopolymerization initiator (D) and a water-insoluble polymerization initiator. An acrylic monomer (a ′) that dissolves (D) and has an HLB (hydrophilic / hydrophobic balance) value of 8 or more can be used. The HLB value here is a value determined according to the Davis formula (“surfactant—physical properties / application / chemical ecology”, edited by Fumio Kitahara, Kodansha, 1979, p. 24-27). For example, polypropylene glycol diacrylates such as tripropylene glycol diacrylate, polyethylene glycol diacrylates, polypropylene glycol acrylates such as pentapropylene glycol acrylate, polyethylene glycol acrylates, methoxyethyl acrylate, methoxytriethylene glycol acrylate Examples thereof include non-methyl polyethylene glycol acrylates, nonyl phenoxy polyethylene glycol acrylates, N-substituted acrylamides such as dimethyl acrylamide, hydroxyethyl acrylate, hydroxypropyl acrylate, and the like. It is preferable that the acrylic monomer as the solvent (E) has an HLB value of 8 or more because it is excellent in solubility or dispersibility in the aqueous medium (W). These acrylic monomers can be used by mixing one or more.

また、本発明の溶媒(E)としては、光重合開始剤(D)と非水溶性重合開始剤(D)を溶解でき、且つ一定以上の水溶性を有する溶剤を用いることができる。ここで言う水溶性を有する溶剤とは、水100gに対し50g以上溶解できる溶剤であることが好ましい。水への溶解性が50g以上であると、非水溶性の重合開始剤(D)の水媒体(W)への分散性が良く、得られる複合体(X)の粒径が揃いやすくなり、分散液(L)の安定性が高く好ましい。   In addition, as the solvent (E) of the present invention, a solvent that can dissolve the photopolymerization initiator (D) and the water-insoluble polymerization initiator (D) and has a certain level of water solubility can be used. The water-soluble solvent mentioned here is preferably a solvent that can dissolve 50 g or more with respect to 100 g of water. When the solubility in water is 50 g or more, the water-insoluble polymerization initiator (D) has good dispersibility in the aqueous medium (W), and the resulting composite (X) has a uniform particle size. The stability of the dispersion (L) is high and preferable.

例えば、水溶性溶剤としては、ジメチルアセトアミド、ジメチルホルムアミドなどのアミド類、メタノール、エタノール、2−プロパノールなどのアルコール類、ジメチルスルホキシド、テトラヒドロフランなどが挙げられる。これらの溶剤を混合して用いても良い
本製造方法の第4工程における、前記表面(S)への前記モノマー(b)の水溶液の塗布も第2工程に準じて公知慣用の方法を用いてよい。
For example, examples of the water-soluble solvent include amides such as dimethylacetamide and dimethylformamide, alcohols such as methanol, ethanol, and 2-propanol, dimethyl sulfoxide, and tetrahydrofuran. A mixture of these solvents may be used. In the fourth step of the production method, the aqueous solution of the monomer (b) is applied to the surface (S) using a known and conventional method according to the second step. Good.

モノマー(b)の水溶液におけるモノマー(b)の濃度は、1〜20質量%が好ましく、5〜18質量%であることが更に好ましい。1質量%以上であれば、長さ十分な重合体(B)が得られ、細胞剥離性が維持でき、また、20質量%以下であれば、十分な細胞増殖性が維持でき、性能のよい細胞培養基材を製造できる。   As for the density | concentration of the monomer (b) in the aqueous solution of a monomer (b), 1-20 mass% is preferable, and it is still more preferable that it is 5-18 mass%. If it is 1% by mass or more, a sufficiently long polymer (B) can be obtained, and the cell detachability can be maintained. If it is 20% by mass or less, sufficient cell proliferation can be maintained, and the performance is good. A cell culture substrate can be produced.

前記表面(S)に塗布されたモノマー(b)が複合体(X)の薄層中へ浸透し、紫外線の照射により重合される。この製造方法で得た細胞培養基材の表面は、モノマー(b)の重合体(重合体(B))が一層完全に覆っているものではなく、重合体(B)が複合体(X)の薄層の中から伸び出て、該薄層の表面も適宜露出しているような構造になっている。重合体(B)は、複合体(X)の薄層中から表面までイオン結合や水素結合などにより粘土鉱物に結合しており、物理的な力や水中でもその結合が切れることなく、安定な構造になっている。また、培養される細胞の種類に応じて、該重合体(B)の長さ(分子量)や密度(複合体(X)の薄層中での含有量)を、モノマー(b)の水溶液濃度や塗布量で適宜調整することができる。   The monomer (b) applied to the surface (S) penetrates into the thin layer of the composite (X) and is polymerized by irradiation with ultraviolet rays. The surface of the cell culture substrate obtained by this production method is not completely covered with the polymer of the monomer (b) (polymer (B)), and the polymer (B) is complex (X). The structure extends from the thin layer and the surface of the thin layer is appropriately exposed. The polymer (B) is bonded to the clay mineral by ionic bond or hydrogen bond from the thin layer of the complex (X) to the surface, and the bond is not broken even in physical force or water, and is stable. It has a structure. Further, depending on the type of cells to be cultured, the length (molecular weight) and density (content in the thin layer of the complex (X)) of the polymer (B) are determined depending on the aqueous solution concentration of the monomer (b). And the coating amount can be adjusted as appropriate.

本工程に用いられる光としては、電子線、γ線、X線、紫外線、可視光などを用いることができるが、中でも装置や取り扱いの簡便さやモノマー(b)の重合と同時に架橋を起こさせない観点から紫外線を用いることが好ましい。照射する紫外線の強度は10〜500mW/cmが好ましく、照射時間は一般に0.1秒〜200秒程度である。通常の加熱によるラジカル重合においては、酸素が重合の阻害因子として働くが、本発明では、必ずしも酸素を遮断した雰囲気で溶液の調製および紫外線照射による重合を行う必要がなく、空気雰囲気でこれらを行うことが可能である。但し、紫外線照射を不活性ガス雰囲気下で行うことによって、更に重合速度を速めることが可能で、望ましい場合がある。 As the light used in this step, electron beam, γ-ray, X-ray, ultraviolet ray, visible light, etc. can be used. Among them, the apparatus and handling are easy and the viewpoint of not causing crosslinking simultaneously with polymerization of the monomer (b). It is preferable to use ultraviolet rays. The intensity of the irradiated ultraviolet light is preferably 10 to 500 mW / cm 2 and the irradiation time is generally about 0.1 to 200 seconds. In radical polymerization by normal heating, oxygen works as an inhibitor of polymerization. However, in the present invention, it is not always necessary to prepare a solution in an atmosphere in which oxygen is blocked and to perform polymerization by ultraviolet irradiation, and these are performed in an air atmosphere. It is possible. However, it may be desirable that the polymerization rate can be further increased by performing ultraviolet irradiation in an inert gas atmosphere.

上記第一の製造方法は、モノマー(a)と無機材料(C)の比率を調整することにより、細胞の増殖速度を幅広く調整することができ、また、モノマー(b)の種類や濃度、塗布量を調整することにより、温度変化による細胞の剥離速度を制御できるという特徴を有する。   In the first production method, by adjusting the ratio of the monomer (a) and the inorganic material (C), the cell growth rate can be widely adjusted, and the type, concentration and application of the monomer (b) can be adjusted. By adjusting the amount, it is possible to control the cell peeling rate due to temperature change.

本発明の第二の製造方法としては、前記モノマー(a)と前記無機材料(C)と重合開始剤(D)とを混合した水媒体(W)を支持体に塗布して、前記モノマー(a)を重合させることにより、重合体(A)と前記無機材料(C)との複合体(X)の薄層を形成する第1工程、
非水溶性の重合開始剤(D)を溶媒(E)に溶解させた溶液を前記複合体(X)の薄層の表面(S)に塗布し、溶媒(E)を揮発させる第2工程、
前記モノマー(b)の水溶液を前記表面(S)に塗布した後、紫外線の照射により前記モノマー(b)を重合させる第3工程を順次行なうことを特徴とする細胞培養基材の製造方法である。
As a second production method of the present invention, an aqueous medium (W) obtained by mixing the monomer (a), the inorganic material (C) and the polymerization initiator (D) is applied to a support, and the monomer (a a first step of forming a thin layer of the composite (X) of the polymer (A) and the inorganic material (C) by polymerizing a);
A second step in which a solution in which a water-insoluble polymerization initiator (D) is dissolved in a solvent (E) is applied to the surface (S) of the thin layer of the composite (X), and the solvent (E) is volatilized;
A method for producing a cell culture substrate, comprising applying an aqueous solution of the monomer (b) to the surface (S) and then sequentially performing a third step of polymerizing the monomer (b) by irradiation with ultraviolet rays. .

本製造方法の塗布方法、紫外線、重合開始剤(D)及びモノマー(b)の濃度は、全て第1の製造方法に準ずる。この製造方法の第1工程は、反応液から直接複合体(X)の薄層を製造するため、水媒体(W)中の無機材料(C)の濃度が式(2)又は式(3)で表される範囲になる必要はない。この製造方法で得た細胞培養基材の表面構造は、第1の製造方法で得たものとほぼ同じである。   The concentration of the coating method, the ultraviolet ray, the polymerization initiator (D) and the monomer (b) in this production method is all in accordance with the first production method. In the first step of this production method, since the thin layer of the composite (X) is produced directly from the reaction solution, the concentration of the inorganic material (C) in the aqueous medium (W) is expressed by the formula (2) or the formula (3). It is not necessary to be in the range represented by. The surface structure of the cell culture substrate obtained by this production method is almost the same as that obtained by the first production method.

本発明の第三の製造方法としては、水媒体(W)中の前記無機材料(C)の濃度が下記式(2)又は式(3)で表される範囲となるように、前記モノマー(a)と前記無機材料(C)と重合開始剤(D)とを水媒体(W)に混合した後、モノマー(a)を重合させることにより、重合体(A)と前記無機材料(C)との複合体(X)の分散液(L)を製造する第1工程、
前記分散液(L)に、前記重合体(B)を添加し、均一に混合して、支持体に塗布した後、乾燥させる第2工程を順次行なうことを特徴とする細胞培養基材の製造方法である。
式(2) Ra<0.19のとき
無機材料(C)の濃度(質量%)<12.4Ra+0.05
式(3) Ra≧0.19のとき
無機材料(C)の濃度(質量%)<0.87Ra+2.17
(式中、無機材料(C)の濃度(質量%)は、無機材料(C)の質量を水媒体(W)と無機材料(C)の合計質量で除して100を掛けた数値、Raは無機材料(C)と重合体(A)との質量比((C)/(A))である。)
As a third production method of the present invention, the monomer (C) is adjusted so that the concentration of the inorganic material (C) in the aqueous medium (W) falls within the range represented by the following formula (2) or formula (3). a), the inorganic material (C), and the polymerization initiator (D) are mixed in an aqueous medium (W), and then the monomer (a) is polymerized to polymer (A) and the inorganic material (C). A first step of producing a dispersion (L) of a complex (X) with
The polymer (B) is added to the dispersion liquid (L), mixed uniformly, coated on a support, and then subjected to a second step of drying, in order to produce a cell culture substrate Is the method.
Formula (2) When Ra <0.19
Concentration (% by mass) of inorganic material (C) <12.4Ra + 0.05
Formula (3) When Ra ≧ 0.19
Concentration (% by mass) of inorganic material (C) <0.87Ra + 2.17
(In the formula, the concentration (% by mass) of the inorganic material (C) is a value obtained by dividing the mass of the inorganic material (C) by the total mass of the aqueous medium (W) and the inorganic material (C) and multiplying by 100, Ra Is a mass ratio ((C) / (A)) between the inorganic material (C) and the polymer (A).)

本製造方法における重合体(B)は、その10質量%水溶液の粘度が20〜2000mPa・s(山一電機株式会社製DIGITAL VISCOMATE MODEL VM-100A粘度計使用)のものであることが好ましく、100〜1000mPa・sの方が更に好ましく、200〜800mPa・sのポリマーの方が最も好ましい。20mPa・s以上であれば、十分な細胞剥離性が維持でき、また、1000mPa・s以下であれば、十分な細胞増殖性が維持でき、性能のよい細胞培養基材を製造できる。   The polymer (B) in this production method preferably has a 10% by mass aqueous solution having a viscosity of 20 to 2000 mPa · s (using a DIGITAL VISCOMATE MODEL VM-100A viscometer manufactured by Yamaichi Electronics Co., Ltd.). The polymer having a viscosity of ˜1000 mPa · s is more preferred, and the polymer having a viscosity of 200 to 800 mPa · s is most preferred. If it is 20 mPa · s or more, sufficient cell detachability can be maintained, and if it is 1000 mPa · s or less, sufficient cell growth can be maintained, and a cell culture substrate with good performance can be produced.

また、本製造方法における重合体(B)は、その重量平均分子量Mwが1×10〜2×10であることが好ましく、1×10〜5×10であることが更に好ましい。1×10以上であれば、十分な細胞剥離性が維持でき、また、2×10以下であれば、十分な細胞増殖性が維持でき、性能のよい細胞培養基材を製造できる。 Moreover, it is preferable that the weight average molecular weight Mw is 1 * 10 < 4 > -2 * 10 < 7 >, and, as for the polymer (B) in this manufacturing method, it is more preferable that it is 1 * 10 < 5 > -5 * 10 < 6 >. If it is 1 × 10 4 or more, sufficient cell detachability can be maintained, and if it is 2 × 10 7 or less, sufficient cell proliferation can be maintained, and a cell culture substrate with good performance can be produced.

この製造方法で得た細胞培養基材の表面は、重合体(B)が一層覆っているものではなく、複合体(X)の薄層の中から重合体(B)が伸び出て、該薄層の表面も適宜露出しているような構造になっている。重合体(B)は、複合体(X)の薄層中から表面までイオン結合や水素結合などにより粘土鉱物またはシリカに結合しており、物理的な力や水中でもその結合が切れることなく、安定な構造になっている。また、培養される細胞の種類に応じて、重合体(B)の長さ(分子量)や含有量を適宜調整することができる。   The surface of the cell culture substrate obtained by this production method is not covered with the polymer (B), but the polymer (B) extends from the thin layer of the complex (X), The surface of the thin layer is appropriately exposed. The polymer (B) is bonded to the clay mineral or silica from the thin layer of the complex (X) to the surface by ionic bond or hydrogen bond, and the bond does not break even in physical force or water. It has a stable structure. Further, the length (molecular weight) and content of the polymer (B) can be appropriately adjusted according to the type of cells to be cultured.

以下、実施例により本発明を具体的に説明するが、本発明の範囲がこれらの実施例にのみ限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, the scope of the present invention is not limited only to these Examples.

(実施例1)
この実施例は第一の製造方法で細胞培養基材を製造する例である。
[モノマー(a)、無機材料(C)、水媒体(W)を含む反応溶液の調製]
モノマー(a)としてアクリル酸2メトキシエチル(東亞合成株式会社製)0.6g、無機材料(C)として水膨潤性粘土鉱物Laponite XLG(Rockwood Additives Ltd.社製)0.3g、水媒体(W)として水20g、を均一に混合して反応溶液(1)を調製した。
Example 1
This example is an example of producing a cell culture substrate by the first production method.
[Preparation of reaction solution containing monomer (a), inorganic material (C) and aqueous medium (W)]
0.6 g of 2-methoxyethyl acrylate (manufactured by Toagosei Co., Ltd.) as monomer (a), 0.3 g of water-swellable clay mineral Laponite XLG (manufactured by Rockwood Additives Ltd.) as an inorganic material (C), aqueous medium (W The reaction solution (1) was prepared by uniformly mixing 20 g of water.

[重合開始剤(D)を溶媒(E)に溶解させた溶液の調整]
溶媒(E)として、2−プロパノール9.8g、重合開始剤(D)として1−ヒドロキシシクロヘキシルフェニルケトン「イルガキュアー184」(チバガイギー社製)0.2gを、均一に混合して溶液(2)を調製した。
[Preparation of solution in which polymerization initiator (D) is dissolved in solvent (E)]
As a solvent (E), 9.8 g of 2-propanol and 0.2 g of 1-hydroxycyclohexyl phenyl ketone “Irgacure 184” (manufactured by Ciba Geigy) as a polymerization initiator (D) are mixed uniformly to obtain a solution (2) Was prepared.

[複合体(X)の分散液(L)の調製(第1工程)]
上記反応溶液(1)全量に、溶液(2)を50μl入れ、均一に分散させた後、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し乳白色の複合体(X)の分散液(L1)を作製した。
この反応系のRa=0.5、無機材料(C)の濃度(質量%)=1.48(%)<0.87Ra+2.17=2.61
[Preparation of dispersion (L) of complex (X) (first step)]
50 μl of the solution (2) is added to the total amount of the reaction solution (1) and dispersed uniformly, and then irradiated with ultraviolet rays having an ultraviolet intensity at 365 nm of 40 mW / cm 2 for 180 seconds to give a milky white composite (X) dispersion. (L1) was produced.
Ra = 0.5 in this reaction system, concentration (mass%) of inorganic material (C) = 1.48 (%) <0.87Ra + 2.17 = 2.61

[複合体(X)の薄層の調製(第2工程)]
直径50mmのポリスチレン製シャーレ(アドバンテック東洋株式会社製、PD−50K)に、上記複合体(X)の分散液(L1)を入れ、スピンコーターを用いて2000回転で該分散液をシャーレの表面に薄く塗布した後、80℃の熱風乾燥器中で10分間乾燥させ、複合体(X)の薄層を調製した。
[Preparation of thin layer of composite (X) (second step)]
The dispersion (L1) of the composite (X) is placed in a polystyrene petri dish (Advantech Toyo Co., Ltd., PD-50K) having a diameter of 50 mm, and the dispersion is applied to the surface of the petri dish at 2000 revolutions using a spin coater. After thinly coating, it was dried in a hot air dryer at 80 ° C. for 10 minutes to prepare a thin layer of the composite (X).

[重合開始剤(D)を溶媒(E)に溶解させた溶液の塗布(第3工程)]
前記溶液(2)をシャーレに入れ、スピンコーターにより2000回転で薄く塗布して、室温で5分間静置してエタノールを揮発させ、重合開始剤(D)を複合体(X)の薄層表面に塗布した。
[Coating of solution in which polymerization initiator (D) is dissolved in solvent (E) (third step)]
The solution (2) is placed in a petri dish, thinly applied at 2000 rpm with a spin coater, allowed to stand at room temperature for 5 minutes to evaporate ethanol, and a polymerization initiator (D) is deposited on the thin layer surface of the composite (X). It was applied to.

[細胞培養基材の作製(第4工程)]
10質量%のN―イソプロピルアクリルアミド(モノマー(b)、株式会社興人製)水溶液2mlをシャーレに入れ、365nmにおける紫外線強度が40mW/cmの紫外線を60秒照射して、N−イソプロピルアクリルアミドを重合させた。次いで、滅菌水によりシャーレを洗浄した後、滅菌袋中でシャーレを40℃、5時間乾燥させて、細胞培養基材1を得た。
[Preparation of cell culture substrate (fourth step)]
2 ml of a 10% by mass aqueous solution of N-isopropylacrylamide (monomer (b), manufactured by Kojin Co., Ltd.) is placed in a petri dish and irradiated with ultraviolet rays having an ultraviolet intensity of 40 mW / cm 2 at 365 nm for 60 seconds to give N-isopropylacrylamide. Polymerized. Next, after washing the petri dish with sterilized water, the petri dish was dried in a sterile bag at 40 ° C. for 5 hours to obtain a cell culture substrate 1.

[正常ヒト真皮線維芽細胞の培養]
上記得られた細胞培養基材1に、CS-C complete medium(Cell Systems社製培地)を適量入れ、正常ヒト真皮線維芽細胞を播種して(播種濃度は1.2×10個/cm)、5%二酸化炭素中、37℃で培養を行った。細胞が十分増殖したのを確認して、その(37℃の)培地を吸い取り、4℃の培地を入れ、一定時間静置させ、増殖した細胞を自然剥離させた。剥離した細胞部分の面積と剥離前に増殖した細胞の総面積との比を求めた。またこの剥離にかかった時間を記録した。(表1、細胞の剥離回収率=93%、所要時間は18分であった)。
[Culture of normal human dermal fibroblasts]
An appropriate amount of CS-C complete medium (Cell Systems Inc. medium) is added to the obtained cell culture substrate 1, and normal human dermal fibroblasts are seeded (seeding concentration is 1.2 × 10 4 cells / cm 2). 2 ) Culture was performed at 37 ° C. in 5% carbon dioxide. After confirming that the cells had sufficiently proliferated, the medium (at 37 ° C.) was sucked up, the medium at 4 ° C. was added, and allowed to stand for a certain period of time, and the proliferated cells were naturally detached. The ratio of the area of the detached cell part and the total area of the cells grown before detachment was determined. The time taken for this peeling was recorded. (Table 1, cell peeling recovery rate = 93%, required time was 18 minutes).

(実施例2)
この実施例は第一の製造方法で細胞培養基材を製造する例である。
第4工程のモノマー(b)として、N―イソプロピルアクリルアミドの17質量%の水溶液を用いたこと以外は、実施例1と同様にして細胞培養基材2を作製した。
(Example 2)
This example is an example of producing a cell culture substrate by the first production method.
A cell culture substrate 2 was prepared in the same manner as in Example 1 except that a 17% by mass aqueous solution of N-isopropylacrylamide was used as the monomer (b) in the fourth step.

[正常ヒト真皮線維芽細胞の培養]
実施例1と同様にして、正常ヒト真皮線維芽細胞を培養した。細胞が十分増殖したのを確認して、その(37℃の)培地を4℃の培地に交換し、一定時間静置させ、増殖した細胞を自然剥離させた。剥離した細胞部分の面積と剥離前に増殖した細胞の総面積との比を求めた。またこの剥離にかかった時間を記録した。(表1、細胞の剥離回収率=98%、所要時間は10分であった)。
[Culture of normal human dermal fibroblasts]
In the same manner as in Example 1, normal human dermal fibroblasts were cultured. After confirming that the cells had sufficiently proliferated, the medium (at 37 ° C.) was replaced with a medium at 4 ° C. and allowed to stand for a certain period of time to allow the grown cells to spontaneously detach. The ratio of the area of the detached cell part and the total area of the cells grown before detachment was determined. The time taken for this peeling was recorded. (Table 1, cell peeling recovery rate = 98%, required time was 10 minutes).

上記実施例1、2より、モノマー(b)の濃度を増加させることにより、細胞剥離性の増加が見られた。   From Examples 1 and 2 above, an increase in cell detachability was observed by increasing the concentration of the monomer (b).

(実施例3)
この実施例は第二の製造方法で細胞培養基材を製造する例である。
[モノマー(a)、無機材料(C)、水媒体(W)を含む反応溶液の調製]
モノマー(a)としてアクリル酸2メトキシエチル(東亞合成株式会社製)1.28g、無機材料(C)として水膨潤性粘土鉱物Laponite XLG(Rockwood Additives Ltd.社製)0.24g、水媒体(W)として水10g、を均一に混合して反応溶液(3)を調製した。
(Example 3)
This example is an example of producing a cell culture substrate by the second production method.
[Preparation of reaction solution containing monomer (a), inorganic material (C) and aqueous medium (W)]
2.28 g of 2-methoxyethyl acrylate (manufactured by Toagosei Co., Ltd.) as monomer (a), 0.24 g of water-swellable clay mineral Laponite XLG (manufactured by Rockwood Additives Ltd.) as an inorganic material (C), aqueous medium (W ) Was mixed uniformly with 10 g of water to prepare a reaction solution (3).

[重合開始剤(D)を溶媒(E)に溶解させた溶液の調整]
実施例1と同様な溶液(2)を用いた。
[Preparation of solution in which polymerization initiator (D) is dissolved in solvent (E)]
The same solution (2) as in Example 1 was used.

[複合体(X)の薄層調製(第1工程)]
上記反応溶液(3)全量に、溶液(2)を50μl入れ、均一に分散させた後、直径50mmのポリスチレン製シャーレ(アドバンテック東洋株式会社製、PD−50K)に入れ、スピンコーターを用いて2000回転でシャーレの表面に薄く塗布した後、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射して、複合体(X)の薄層を調製した。
[Preparation of thin layer of composite (X) (first step)]
50 μl of the solution (2) is added to the total amount of the reaction solution (3) and dispersed uniformly, and then placed in a polystyrene petri dish having a diameter of 50 mm (manufactured by Advantech Toyo Co., Ltd., PD-50K) and 2000 using a spin coater. After thinly coating the surface of the petri dish by rotation, ultraviolet light having an ultraviolet intensity at 365 nm of 40 mW / cm 2 was irradiated for 180 seconds to prepare a thin layer of the composite (X).

[重合開始剤(D)を溶媒(E)に溶解させた溶液の塗布(第2工程)]
前記溶液(2)をシャーレに入れ、スピンコーターにより2000回転で薄く塗布して、室温で5分間静置してエタノールを揮発させ、重合開始剤(D)を塗布した。
[Coating of solution in which polymerization initiator (D) is dissolved in solvent (E) (second step)]
The solution (2) was put in a petri dish, thinly applied at 2000 rpm with a spin coater, allowed to stand at room temperature for 5 minutes to evaporate ethanol, and a polymerization initiator (D) was applied.

[細胞培養基材の作製(第3工程)]
15質量%のN―イソプロピルアクリルアミド(モノマー(b)、株式会社興人製)水溶液2mlをシャーレに入れ、365nmにおける紫外線強度が40mW/cmの紫外線を60秒照射して、N−イソプロピルアクリルアミドを重合させた。次いで、滅菌水によりシャーレを洗浄した後、滅菌袋中でシャーレを40℃、5時間乾燥して、細胞培養基材3を得た。
[Production of cell culture substrate (third step)]
2 ml of a 15% by weight aqueous solution of N-isopropylacrylamide (monomer (b), manufactured by Kojin Co., Ltd.) is placed in a petri dish and irradiated with ultraviolet rays having an ultraviolet intensity at 365 nm of 40 mW / cm 2 for 60 seconds to give N-isopropylacrylamide. Polymerized. Next, after washing the petri dish with sterilized water, the petri dish was dried in a sterile bag at 40 ° C. for 5 hours to obtain a cell culture substrate 3.

[正常ヒト真皮線維芽細胞の培養]
上記得られた細胞培養基材3に、実施例1と同様にして、正常ヒト真皮線維芽細胞を培養した。細胞が十分増殖したのを確認して、その(37℃の)培地を4℃の培地に交換し、一定時間静置させ、増殖した細胞を自然剥離させた。剥離した細胞部分の面積と剥離前に増殖した細胞の総面積との比を求めた。(表1、細胞の剥離回収率=100%、所要時間は12分であった)。
[Culture of normal human dermal fibroblasts]
Normal human dermal fibroblasts were cultured on the obtained cell culture substrate 3 in the same manner as in Example 1. After confirming that the cells had sufficiently proliferated, the medium (at 37 ° C.) was replaced with a medium at 4 ° C. and allowed to stand for a certain period of time to allow the grown cells to spontaneously detach. The ratio of the area of the detached cell part and the total area of the cells grown before detachment was determined. (Table 1, cell peeling recovery rate = 100%, required time was 12 minutes).

(実施例4)
この実施例は第二の製造方法で細胞培養基材を製造する例である。
第3工程のモノマー(b)として、N―イソプロピルアクリルアミドの3質量%の水溶液を用いたこと以外は、実施例3と同様にして細胞培養基材4を作製した。
Example 4
This example is an example of producing a cell culture substrate by the second production method.
A cell culture substrate 4 was prepared in the same manner as in Example 3 except that a 3% by mass aqueous solution of N-isopropylacrylamide was used as the monomer (b) in the third step.

[正常ヒト真皮線維芽細胞の培養]
上記得られた細胞培養基材4に、実施例1と同様にして、正常ヒト真皮線維芽細胞を培養した。細胞が十分増殖したのを確認して、その(37℃の)培地を4℃の培地に交換し、一定時間静置させ、増殖した細胞を自然剥離させた。剥離した細胞部分の面積と剥離前に増殖した細胞の総面積との比を求めた。(表1、細胞の剥離回収率=78%、所要時間は30分であった)。
[Culture of normal human dermal fibroblasts]
Normal human dermal fibroblasts were cultured on the obtained cell culture substrate 4 in the same manner as in Example 1. After confirming that the cells had sufficiently proliferated, the medium (at 37 ° C.) was replaced with a medium at 4 ° C. and allowed to stand for a certain period of time to allow the grown cells to spontaneously detach. The ratio of the area of the detached cell part and the total area of the cells grown before detachment was determined. (Table 1, cell peeling recovery rate = 78%, required time was 30 minutes).

上記実施例3、4より、モノマー(b)の濃度を変化させることにより、細胞剥離性の変化が見られた。   From Examples 3 and 4 above, changes in cell detachability were observed by changing the monomer (b) concentration.

(実施例5)
この実施例は第三の製造方法で細胞培養基材を製造する例である。
[モノマー(a)、無機材料(C)、水媒体(W)を含む反応溶液の調製]
モノマー(a)としてアクリル酸2メトキシエチル(東亞合成株式会社製)0.32g、無機材料(C)として水膨潤性粘土鉱物Laponite XLG(Rockwood Additives Ltd.社製)0.08g、界面活性剤として20重量%のドデシルベンゼンスルホン酸ナトリウム(和光純薬工業株式会社製)水溶液100μl、水媒体(W)として水10g、を均一に混合して反応溶液(5)を調製した。
(Example 5)
In this example, a cell culture substrate is produced by the third production method.
[Preparation of reaction solution containing monomer (a), inorganic material (C) and aqueous medium (W)]
As monomer (a), 0.32 g of 2-methoxyethyl acrylate (manufactured by Toagosei Co., Ltd.), as inorganic material (C), 0.08 g of water-swellable clay mineral Laponite XLG (manufactured by Rockwood Additives Ltd.), as surfactant A reaction solution (5) was prepared by uniformly mixing 100 μl of a 20 wt% sodium dodecylbenzenesulfonate (Wako Pure Chemical Industries, Ltd.) aqueous solution and 10 g of water as an aqueous medium (W).

[重合開始剤(D)を溶媒(E)に溶解させた溶液の調整]
実施例1と同様な溶液(2)を用いた。
[複合体(X)の分散液(L)の調製(第1工程)]
上記反応溶液(5)全量に、溶液(2)を30μl入れ、均一に分散させた後、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し乳白色の複合体(X)の分散液(L5)を作製した。
[Preparation of solution in which polymerization initiator (D) is dissolved in solvent (E)]
The same solution (2) as in Example 1 was used.
[Preparation of dispersion (L) of complex (X) (first step)]
30 μl of the solution (2) is added to the total amount of the reaction solution (5) and dispersed uniformly, and then irradiated with ultraviolet rays having an ultraviolet intensity of 40 mW / cm 2 at 365 nm for 180 seconds, and a milky white composite (X) dispersion (L5) was produced.

この反応系のRa=0.25、無機材料(C)の濃度(質量%)=0.79(%)<0.87Ra+2.17=2.39   Ra = 0.25 in this reaction system, concentration (mass%) of inorganic material (C) = 0.79 (%) <0.87 Ra + 2.17 = 2.39

[重合体(B)水溶液の調製]
モノマー(b)としてN―イソプロピルアクリルアミド(株式会社興人製)1.7g、水10g、溶液(2)140μl、を混合した後、該溶液を入れるガラス容器の周りを冷却しながら(約10℃)、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し、ポリN―イソプロピルアクリルアミドの水溶液(5)を調製した。この溶液に更に水を5g添加し、均一に混合した後、DIGITAL VISCOMATE粘度計(MODEL VM-100A、山一電機株式会社製)を用いてこの溶液の粘度を測定して、粘度は368mPa・sであった。測定時の溶液温度は24.2℃であった。
[Preparation of aqueous solution of polymer (B)]
After mixing 1.7 g of N-isopropylacrylamide (manufactured by Kojin Co., Ltd.), 10 g of water, and 140 μl of the solution (2) as the monomer (b), the surroundings of the glass container in which the solution is placed are cooled (about 10 ° C. ) Irradiation with ultraviolet rays having an ultraviolet intensity at 365 nm of 40 mW / cm 2 was carried out for 180 seconds to prepare an aqueous solution (5) of poly N-isopropylacrylamide. After adding 5 g of water to this solution and mixing it uniformly, the viscosity of this solution was measured using a DIGITAL VISCOMATE viscometer (MODEL VM-100A, manufactured by Yamaichi Electronics Co., Ltd.). The viscosity was 368 mPa · s. Met. The solution temperature at the time of measurement was 24.2 ° C.

また、Shodex GPC System−21装置(昭和電工株式会社製)で測定した結果、このポリN―イソプロピルアクリルアミドの重量平均分子量Mwは3.40×10であった。測定時の溶媒として10mmol/LのLiBrを含有するN,N−ジメチルホルムアミド(DMF)溶液を使用した。分子量の計算に使用したポリスチレン標準物質としては、STANDARD SH−75とSM−105キット(昭和電工株式会社製)を使用した。 Moreover, as a result of measuring with Shodex GPC System-21 apparatus (made by Showa Denko KK), the weight average molecular weight Mw of this poly N-isopropylacrylamide was 3.40 * 10 < 6 >. An N, N-dimethylformamide (DMF) solution containing 10 mmol / L LiBr was used as a solvent for the measurement. STANDARD SH-75 and SM-105 kit (manufactured by Showa Denko KK) were used as polystyrene standard substances used for the calculation of molecular weight.

[細胞培養基材の作製(第2工程)]
分散液(L5)全量に、上記ポリN―イソプロピルアクリルアミドの水溶液(5)を1.0g(固形分0.1g)入れ、均一に混合した後、60mmポリスチレン製シャーレ(60mm/Non−Treated Dish、旭テクノグラス株式会社製)に入れ、スピンコーターを用いて2000回転でシャーレの表面に薄く塗布し、80℃の熱風乾燥器中で10分間乾燥させた。次いで、滅菌水によりシャーレを洗浄した後、滅菌袋中でシャーレを40℃、5時乾燥して、細胞培養基材5を得た。
[Preparation of cell culture substrate (second step)]
To the total amount of the dispersion (L5), 1.0 g (0.1 g solid content) of the above poly N-isopropylacrylamide aqueous solution was added and mixed uniformly, and then a 60 mm polystyrene petri dish (60 mm / non-treated dish, Asahi Techno Glass Co., Ltd.) was applied thinly on the surface of the petri dish at 2000 revolutions using a spin coater and dried in a hot air drier at 80 ° C. for 10 minutes. Next, after washing the petri dish with sterilized water, the petri dish was dried at 40 ° C. for 5 hours in a sterilized bag to obtain the cell culture substrate 5.

[正常ヒト真皮線維芽細胞の培養]
上記得られた細胞培養基材5に、実施例1と同様にして、正常ヒト真皮線維芽細胞を培養した。細胞が十分増殖したのを確認して、その(37℃の)培地を4℃の培地に交換し、一定時間静置させ、増殖した細胞を自然剥離させた。剥離した細胞部分の面積と剥離前に増殖した細胞の総面積との比を求めた。(表1、細胞の剥離回収率=100%、所要時間7分であった)。
[Culture of normal human dermal fibroblasts]
Normal human dermal fibroblasts were cultured on the obtained cell culture substrate 5 in the same manner as in Example 1. After confirming that the cells had sufficiently proliferated, the medium (at 37 ° C.) was replaced with a medium at 4 ° C. and allowed to stand for a certain period of time to allow the grown cells to spontaneously detach. The ratio of the area of the detached cell part and the total area of the cells grown before detachment was determined. (Table 1, cell peeling recovery rate = 100%, required time 7 minutes).

(実施例6)
この実施例は第三の製造方法で細胞培養基材を製造する例である。
第2工程のポリN―イソプロピルアクリルアミドの水溶液(5)を0.7g用いたこと以外は、実施例5と同様にして細胞培養基材6を作製した。
(Example 6)
In this example, a cell culture substrate is produced by the third production method.
A cell culture substrate 6 was prepared in the same manner as in Example 5 except that 0.7 g of the aqueous solution (5) of poly N-isopropylacrylamide in the second step was used.

[正常ヒト真皮線維芽細胞の培養]
上記得られた細胞培養基材6に、実施例1と同様にして、正常ヒト真皮線維芽細胞を培養した。細胞が十分増殖したのを確認して、その(37℃の)培地を4℃の培地に交換し、一定時間静置させ、増殖した細胞を自然剥離させた。剥離した細胞部分の面積と剥離前に増殖した細胞の総面積との比を求めた。(表1、細胞の剥離回収率=100%、所要時間15分であった)。
[Culture of normal human dermal fibroblasts]
Normal human dermal fibroblasts were cultured on the obtained cell culture substrate 6 in the same manner as in Example 1. After confirming that the cells had sufficiently proliferated, the medium (at 37 ° C.) was replaced with a medium at 4 ° C. and allowed to stand for a certain period of time to allow the grown cells to spontaneously detach. The ratio of the area of the detached cell part and the total area of the cells grown before detachment was determined. (Table 1, cell peeling recovery rate = 100%, required time 15 minutes).

上記実施例5、6より、ポリN―イソプロピルアクリルアミド水溶液の添加量を変化させることにより、細胞剥離性(剥離時間)の変化が見られた。

(実施例7)
この実施例は第三の製造方法で細胞培養基材を製造する例である。
[重合体(B)水溶液の調製]
モノマー(b)としてN―イソプロピルアクリルアミド(株式会社興人製)0.57g、水100g、を混合し、真空脱気により水溶液中の酸素を十分除去した後、開始剤として0.1gのK(ペルオキソ二硫酸カリウム、和光純薬工業株式会社製)、触媒として80μlのN,N,N‘,N’−テトラメチルエチレンジアミン(花王株式会社製)を添加して、20℃、20時間静置して、ポリN―イソプロピルアクリルアミドの水溶液(6)を得た。この水溶液を50℃に加熱し、ポリN―イソプロピルアクリルアミドを沈殿させて、更に50℃の超純水で洗浄した後、80℃、6時間乾燥させて、固体状のポリN―イソプロピルアクリルアミドを作製した。
From Examples 5 and 6 above, changes in cell detachability (detachment time) were observed by changing the amount of poly N-isopropylacrylamide aqueous solution added.

(Example 7)
In this example, a cell culture substrate is produced by the third production method.
[Preparation of aqueous solution of polymer (B)]
After mixing 0.57 g of N-isopropylacrylamide (manufactured by Kojin Co., Ltd.) as a monomer (b) and 100 g of water and sufficiently removing oxygen in the aqueous solution by vacuum degassing, 0.1 g of K 2 as an initiator is used. S 2 O 8 (potassium peroxodisulfate, manufactured by Wako Pure Chemical Industries, Ltd.), 80 μl of N, N, N ′, N′-tetramethylethylenediamine (manufactured by Kao Corporation) was added as a catalyst, The solution was allowed to stand for 20 hours to obtain an aqueous solution (6) of poly N-isopropylacrylamide. This aqueous solution is heated to 50 ° C. to precipitate poly N-isopropylacrylamide, further washed with ultrapure water at 50 ° C., and then dried at 80 ° C. for 6 hours to produce solid poly N-isopropylacrylamide. did.

Shodex GPC System−21装置(昭和電工株式会社製)を用いて、このポリN―イソプロピルアクリルアミドの分子量を測定した結果、重量平均分子量Mwは6.0×10であった。測定時の溶媒として10mmol/LのLiBrを含有するN,N−ジメチルホルムアミド(DMF)溶液を使用した。分子量の計算に使用したポリスチレン標準物質としては、STANDARD SH−75とSM−105キット(昭和電工株式会社製)を使用した。 As a result of measuring the molecular weight of this poly N-isopropylacrylamide using a Shodex GPC System-21 apparatus (manufactured by Showa Denko KK), the weight average molecular weight Mw was 6.0 × 10 4 . An N, N-dimethylformamide (DMF) solution containing 10 mmol / L LiBr was used as a solvent for the measurement. STANDARD SH-75 and SM-105 kit (manufactured by Showa Denko KK) were used as polystyrene standard substances used for the calculation of molecular weight.

[細胞培養基材の作製(第2工程)]
実施例5の分散液(L5)全量に、上記固体状のポリN―イソプロピルアクリルアミドを0.1g入れ、均一に混合した後、60mmポリスチレン製シャーレ(60mm/Non−Treated Dish、旭テクノグラス株式会社製)に入れ、スピンコーターを用いて2000回転でシャーレの表面に薄く塗布し、80℃の熱風乾燥器中で10分間乾燥させた。次いで、滅菌水によりシャーレを洗浄した後、滅菌袋中でシャーレを40℃、5時乾燥して、細胞培養基材7を得た。
[Preparation of cell culture substrate (second step)]
0.1 g of the solid poly-N-isopropylacrylamide was added to the total amount of the dispersion liquid (L5) of Example 5 and mixed uniformly, and then a 60 mm polystyrene petri dish (60 mm / Non-Treated Dish, Asahi Techno Glass Co., Ltd.). And then thinly applied to the surface of the petri dish at 2000 rpm using a spin coater and dried in a hot air dryer at 80 ° C. for 10 minutes. Next, after washing the petri dish with sterilized water, the petri dish was dried at 40 ° C. for 5 hours in a sterilized bag to obtain a cell culture substrate 7.

[正常ヒト真皮線維芽細胞の培養]
上記得られた細胞培養基材7に、実施例1と同様にして、正常ヒト真皮線維芽細胞を培養した。細胞が十分増殖したのを確認して、その(37℃の)培地を4℃の培地に交換し、一定時間静置させ、増殖した細胞を自然剥離させた。剥離した細胞部分の面積と剥離前に増殖した細胞の総面積との比を求めた。(表1、細胞の剥離回収率=79%、所要時間29分であった)。
[Culture of normal human dermal fibroblasts]
Normal human dermal fibroblasts were cultured on the obtained cell culture substrate 7 in the same manner as in Example 1. After confirming that the cells had sufficiently proliferated, the medium (at 37 ° C.) was replaced with a medium at 4 ° C. and allowed to stand for a certain period of time to allow the grown cells to spontaneously detach. The ratio of the area of the detached cell part and the total area of the cells grown before detachment was determined. (Table 1, cell peeling recovery rate = 79%, required time 29 minutes).

上記実施例5、7より、ポリN―イソプロピルアクリルアミドの添加量(0.1g)が同じく、ポリN―イソプロピルアクリルアミドの分子量を変化させることにより、細胞剥離性(剥離時間)の変化が見られた。   From Examples 5 and 7, the addition amount of poly N-isopropylacrylamide (0.1 g) was the same, and the change in cell detachability (detachment time) was observed by changing the molecular weight of poly N-isopropylacrylamide. .

(実施例8)
この実施例は第三の製造方法でパターン状の細胞培養基材を製造する例である。
実施例5の分散液(L5)全量に、実施例5のポリN―イソプロピルアクリルアミドの水溶液(5)を0.1g入れ、均一に混合した後、単ノズルパルスインクジェクター(クラスターテクノロジー(株)製)を用いて、厚さ1mmのポリスチレン板に、直径30μm、間隔が約20μmになるように、円形(点)状に塗布した。次いで、80℃の熱風乾燥器中で10分間加熱処理させ、滅菌水によりこのポリスチレン板を洗浄した後、滅菌袋中でポリスチレン板を40℃、5時間乾燥して、細胞培養基材8を得た。
(Example 8)
In this example, a patterned cell culture substrate is produced by the third production method.
0.1 g of the aqueous solution (5) of poly N-isopropylacrylamide of Example 5 was added to the total amount of the dispersion (L5) of Example 5 and mixed uniformly, and then a single nozzle pulse ink injector (manufactured by Cluster Technology Co., Ltd.). ) Was applied to a 1 mm thick polystyrene plate in a circular (dot) shape with a diameter of 30 μm and a spacing of about 20 μm. Next, the polystyrene plate is heated for 10 minutes in a hot air dryer at 80 ° C., washed with sterilized water, and then dried in a sterile bag at 40 ° C. for 5 hours to obtain a cell culture substrate 8. It was.

この基材8を光学顕微鏡で観察したところ、ポリスチレン板の上に直径が約36μmの点が一面に形成されているパターンが観察された。点と点の間隔は約21μmであった(写真1参照)。   When this base material 8 was observed with the optical microscope, the pattern in which the point about 36 micrometers in diameter was formed in the whole surface on the polystyrene board was observed. The distance between the dots was about 21 μm (see Photo 1).

[Balb3T3細胞(マウス腫瘍線維芽細胞)の培養]
上記得られた細胞培養基材8を60mmポリスチレン製シャーレ(60mm/Non−Treated Dish、旭テクノグラス株式会社製)に入れ、Doulbecco's modified Eagle's Medium(DMEM)培地(FBSを10%添加)(日水製薬株式会社製)を適量入れ、Balb3T3細胞を播種して(播種濃度は1.0×10個/cm)、5%二酸化炭素中、37℃で培養を行った。46時間増殖させた細胞を顕微鏡で確認したところ、塗布部分がほぼ全面に細胞に覆われていることが観察された。次いで37℃の培地を4℃の培地に交換し、数分静置したところ、細胞が細胞培養基材8から剥離したことが観察された。剥離した細胞部分の面積と剥離前に増殖した細胞の総面積との比を求めた。またこの剥離にかかった時間を記録した。(表1、細胞の剥離回収率=98%、所要時間は9分であった)。
[Culture of Balb3T3 cells (mouse tumor fibroblasts)]
The obtained cell culture substrate 8 is placed in a 60 mm polystyrene petri dish (60 mm / Non-Treated Dish, manufactured by Asahi Techno Glass Co., Ltd.), and Doulbecco's modified Eagle's Medium (DMEM) medium (10% FBS added) (Nissui) A suitable amount was added, and Balb3T3 cells were seeded (seeding concentration was 1.0 × 10 4 cells / cm 2 ) and cultured at 37 ° C. in 5% carbon dioxide. When the cells grown for 46 hours were confirmed with a microscope, it was observed that the coated portion was almost entirely covered with cells. Subsequently, when the medium at 37 ° C. was replaced with a medium at 4 ° C. and left to stand for several minutes, it was observed that the cells were detached from the cell culture substrate 8. The ratio of the area of the detached cell part and the total area of the cells grown before detachment was determined. The time taken for this peeling was recorded. (Table 1, cell peeling recovery rate = 98%, required time was 9 minutes).

一方、上記ポリスチレン板を用いて、同様にBalb3T3細胞を培養したところ、細胞は殆ど増殖しなかった。この結果から、このポリスチレン板は播種した細胞を培養することができない基材であることが分かる。   On the other hand, when Balb3T3 cells were similarly cultured using the polystyrene plate, the cells hardly proliferated. From this result, it can be seen that this polystyrene plate is a base material on which seeded cells cannot be cultured.

上記実施例8より、少量のポリN―イソプロピルアクリルアミドを添加した分散液(L5)を点のパターン状に塗布することにより、全面に塗布した細胞培養基材5と同じように塗布面及び未塗布面全体に渡って細胞を培養することができ、更に、ポリN―イソプロピルアクリルアミドの添加量が少量でも、優れた細胞剥離性を示したことが理解できる。   From Example 8 above, by applying a dispersion (L5) to which a small amount of poly-N-isopropylacrylamide was added in a dot pattern, the coated and uncoated surfaces were applied in the same manner as the cell culture substrate 5 coated on the entire surface. It can be understood that cells can be cultured over the entire surface, and that even when the amount of poly-N-isopropylacrylamide added is small, excellent cell detachability was exhibited.

(実施例9)
この実施例は第三の製造方法で細胞培養基材を製造する例である。
[モノマー(a)、無機材料(C)、水媒体(W)を含む反応溶液の調製]
モノマー(a)としてポリオキシプロピレンモノアクリレート「ブレンマAP−400」(日本油脂株式会社製)0.91g、シリカとしてスノーテックス20(20重量%のコロイダルシリカ水溶液、日産化学工業株式会社製)0.4g(固形分0.08g)、界面活性剤として20重量%のドデシルベンゼンスルホン酸ナトリウム(和光純薬工業株式会社製100μl、水媒体(W)として水10g、を均一に混合して反応溶液(9)を調製した。
Example 9
In this example, a cell culture substrate is produced by the third production method.
[Preparation of reaction solution containing monomer (a), inorganic material (C) and aqueous medium (W)]
0.91 g of polyoxypropylene monoacrylate “Blemma AP-400” (manufactured by Nippon Oil & Fats Co., Ltd.) as monomer (a), and Snowtex 20 (20% by weight colloidal silica aqueous solution, manufactured by Nissan Chemical Industries, Ltd.) as silica 4 g (solid content 0.08 g), 20% by weight sodium dodecylbenzenesulfonate (100 μl, manufactured by Wako Pure Chemical Industries, Ltd., 10 g of water as an aqueous medium (W) as a surfactant, and uniformly mixed with the reaction solution ( 9) was prepared.

[重合開始剤(D)を溶媒(E)に溶解させた溶液の調整]
実施例1と同様な溶液(2)を用いた。
[Preparation of solution in which polymerization initiator (D) is dissolved in solvent (E)]
The same solution (2) as in Example 1 was used.

[複合体(X)の分散液(L)の調製(第1工程)]
上記反応溶液(7)全量に、溶液(2)を30μl入れ、均一に分散させた後、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し淡い乳白色の複合体(X)の分散液(L9)を作製した。
[Preparation of dispersion (L) of complex (X) (first step)]
Disperse the pale milky white complex (X) by adding 30 μl of the solution (2) to the total amount of the reaction solution (7) and uniformly dispersing it, and then irradiating it with ultraviolet light having an ultraviolet intensity at 365 nm of 40 mW / cm 2 for 180 seconds. A liquid (L9) was produced.

この反応系のRa=0.09、無機材料(C)の濃度(質量%)=0.79(%)<12.4Ra+0.05=1.17   Ra = 0.09 of this reaction system, concentration (mass%) of inorganic material (C) = 0.79 (%) <12.4Ra + 0.05 = 1.17

[細胞培養基材の作製(第2工程)]
分散液(L9)全量に、実施例5のポリN―イソプロピルアクリルアミド水溶液(5)を0.7g入れ、均一に混合した後、60mmポリスチレン製シャーレ(60mm/Non−Treated Dish、旭テクノグラス株式会社製)に入れ、スピンコーターを用いて2000回転でシャーレの表面に薄く塗布し、80℃の熱風乾燥器中で10分間乾燥させた。次いで、滅菌水によりシャーレを洗浄した後、滅菌袋中でシャーレを乾燥して、細胞培養基材(9)を得た。
[Preparation of cell culture substrate (second step)]
After adding 0.7 g of the poly N-isopropylacrylamide aqueous solution (5) of Example 5 to the total amount of the dispersion (L9) and mixing it uniformly, a Petri dish made of 60 mm polystyrene (60 mm / Non-Treated Dish, Asahi Techno Glass Co., Ltd.) And then thinly applied to the surface of the petri dish at 2000 rpm using a spin coater and dried in a hot air dryer at 80 ° C. for 10 minutes. Next, after washing the petri dish with sterilized water, the petri dish was dried in a sterile bag to obtain a cell culture substrate (9).

[正常ヒト真皮線維芽細胞の培養]
上記得られた細胞培養基材9に、実施例1と同様にして、正常ヒト真皮線維芽細胞を培養した。細胞が十分増殖したのを確認して、その(37℃の)培地を4℃の培地に交換し、増殖した細胞を自然剥離させ、剥離した細胞部分の面積と剥離前に増殖した細胞の総面積との比を求めた。(表1、細胞の剥離回収率=95%、所要時間10分であった)。
[Culture of normal human dermal fibroblasts]
Normal human dermal fibroblasts were cultured on the obtained cell culture substrate 9 in the same manner as in Example 1. After confirming that the cells grew sufficiently, the medium (37 ° C.) was replaced with a medium at 4 ° C., the proliferated cells were naturally detached, and the area of the detached cell part and the total number of cells proliferated before detachment The ratio with the area was determined. (Table 1, cell peeling recovery rate = 95%, required time 10 minutes).

(実施例10)
放射線滅菌処理した細胞培養基材の性能を示す例である。
[細胞培養基材の放射線滅菌処理]
実施例6の細胞培養基材6に、吸収線量が10kGyになるように、γ線を照射した(照射処理は日本照射サービス株式会社にて行った)。
(Example 10)
It is an example which shows the performance of the cell culture substratum which carried out the radiation sterilization process.
[Radiation sterilization treatment of cell culture substrate]
The cell culture substrate 6 of Example 6 was irradiated with γ rays so that the absorbed dose was 10 kGy (irradiation treatment was performed by Nippon Irradiation Service Co., Ltd.).

比較として、市販の細胞シート回収用温度応答性細胞培養器材UpCell(6cmディッシュ、株式会社セルシード製)を用いて、同様にしてγ線照射を施した。   For comparison, γ-irradiation was performed in the same manner using a commercially available temperature-responsive cell culture equipment UpCell (6 cm dish, manufactured by Cellseed Co., Ltd.) for cell sheet collection.

[正常ヒト臍帯静脈血管内皮細胞の培養]
上記γ線処理を施した細胞培養基材6に、10%FBSを含有するHu-media-EB2培地(Cell Systems社製)を適量入れ、正常ヒト臍帯静脈血管内皮細胞を播種して(播種濃度は1.2×10個/cm)、5%二酸化炭素中、37℃で培養を行った。細胞が十分増殖したのを確認して、その(37℃の)培地を吸い取り、4℃の培地を入れ、一定時間静置させ、増殖した細胞を自然剥離させた。剥離した細胞部分の面積と剥離前に増殖した細胞の総面積との比を求めた。またこの剥離にかかった時間を記録した。(表1、細胞の剥離回収率=96%、所要時間は13分であった)。
[Culture of normal human umbilical vein endothelial cells]
An appropriate amount of Hu-media-EB2 medium (manufactured by Cell Systems) containing 10% FBS is added to the cell culture substrate 6 subjected to the above-mentioned γ-ray treatment, and normal human umbilical vein endothelial cells are seeded (seeding concentration). Was 1.2 × 10 4 cells / cm 2 ) and cultured at 37 ° C. in 5% carbon dioxide. After confirming that the cells had sufficiently proliferated, the medium (at 37 ° C.) was sucked up, the medium at 4 ° C. was added, and allowed to stand for a certain period of time, and the proliferated cells were naturally detached. The ratio of the area of the detached cell part and the total area of the cells grown before detachment was determined. The time taken for this peeling was recorded. (Table 1, cell peeling recovery rate = 96%, required time was 13 minutes).

一方、実施例6の細胞培養基材6をそのまま用いて(放射線処理せず)、同様にして正常ヒト臍帯静脈血管内皮細胞を培養して、自然剥離を行ったところ、細胞の剥離回収率は95%、所要時間は14であった。更に、上記γ線処理を施した市販のUpCellを用いて、同様にして正常ヒト臍帯静脈血管内皮細胞を培養して、自然剥離を行ったところ、細胞の剥離回収率は30%、所要時間は40分であった。   On the other hand, using the cell culture substrate 6 of Example 6 as it is (without radiation treatment), normal human umbilical vein vascular endothelial cells were cultured in the same manner, and spontaneous detachment was performed. The required time was 14%. Furthermore, when normal human umbilical vein endothelial cells were cultured in the same manner using a commercially available UpCell subjected to the above-mentioned γ-ray treatment and spontaneous detachment was performed, the detachment recovery rate of the cells was 30%, and the required time was It was 40 minutes.

一方、放射線未処理のUpCellを用いて、同様にして正常ヒト臍帯静脈血管内皮細胞を培養して、自然剥離を行ったところ、細胞の剥離回収率は100%、所要時間は15分であった。   On the other hand, when normal human umbilical vein vascular endothelial cells were cultured in the same manner using a radiation-untreated UpCell and spontaneous detachment was performed, the detachment recovery rate of the cells was 100% and the required time was 15 minutes. .

上記実施例(10)より、細胞培養基材6に放射線滅菌処理を施しても、細胞の培養・剥性に影響を及ぼさないことが分かる。一方、市販のUpCellの場合、放射線滅菌処理を施すことにより、細胞の剥製性が大きく低下することが理解できる。   From the above Example (10), it can be seen that even if the cell culture substrate 6 is subjected to radiation sterilization treatment, the cell culture / peelability is not affected. On the other hand, in the case of a commercially available UpCell, it can be understood that the exfoliation property of the cells is greatly reduced by performing the radiation sterilization treatment.

(比較例1)
重合体(B)を含有しない細胞培養基材
[細胞培養基材の作製]
実施例1の分散液(L1)を、60mmポリスチレン製シャーレ(60mm/Non−Treated Dish、旭テクノグラス株式会社製)に入れ、スピンコーターを用いて2000回転でシャーレの表面に薄く塗布した後、80℃の熱風乾燥器中で10分間乾燥させた。次いで、滅菌水によりシャーレを洗浄した後、滅菌袋中でシャーレを乾燥して、細胞培養基材(1′)を得た。
(Comparative Example 1)
Cell culture substrate containing no polymer (B) [Preparation of cell culture substrate]
The dispersion liquid (L1) of Example 1 was placed in a petri dish made of 60 mm polystyrene (60 mm / Non-Treated Dish, manufactured by Asahi Techno Glass Co., Ltd.) and thinly applied to the surface of the petri dish at 2000 rotations using a spin coater. It dried for 10 minutes in an 80 degreeC hot-air dryer. Next, after washing the petri dish with sterilized water, the petri dish was dried in a sterilized bag to obtain a cell culture substrate (1 ′).

[正常ヒト真皮線維芽細胞の培養]
上記得られた細胞培養基材1′に、実施例1と同様にして、正常ヒト真皮線維芽細胞を培養した後、その(37℃の)培地を4℃の培地に交換し、増殖した細胞を自然剥離させ、剥離した細胞部分の面積と剥離前に増殖した細胞の総面積との比を求めた。(表1、細胞の剥離回収率=10%、所要時間は30分であった)。該細胞培養基材の細胞増殖性は、細胞培養基材1とほぼ同じであった。
[Culture of normal human dermal fibroblasts]
After culturing normal human dermal fibroblasts on the obtained cell culture substrate 1 ′ in the same manner as in Example 1, the medium (at 37 ° C.) was replaced with a medium at 4 ° C. and proliferated cells Were naturally exfoliated, and the ratio of the area of the exfoliated cell portion to the total area of cells grown before exfoliation was determined. (Table 1, cell peeling recovery rate = 10%, required time was 30 minutes). The cell growth property of the cell culture substrate was almost the same as that of the cell culture substrate 1.

この比較例から、重合体(B)を含まない場合、細胞の増殖性は変わらないが、剥離性は大きく低下したことが理解できる。   From this comparative example, it can be understood that when the polymer (B) is not included, the cell proliferation does not change, but the peelability is greatly reduced.

(比較例2)
重合体(B)を過剰に含有した細胞培養基材
[細胞培養基材の作製]
実施例1の分散液(L1)に、実施例5のポリN―イソプロピルアクリルアミド水溶液(5)を6.3g入れ(ポリN―イソプロピルアクリルアミドの全固形分に対する含有量は41質量%である)、スピンコーターを用いて2000回転でシャーレの表面に薄く塗布した後、80℃の熱風乾燥器中で10分間乾燥させた。次いで、滅菌水によりシャーレを洗浄した後、滅菌袋中でシャーレを乾燥して、細胞培養基材(2′)を得た。
(Comparative Example 2)
Cell culture substrate containing excess polymer (B) [Preparation of cell culture substrate]
6.3 g of the poly N-isopropylacrylamide aqueous solution (5) of Example 5 is added to the dispersion (L1) of Example 1 (content of poly N-isopropylacrylamide with respect to the total solid content is 41% by mass), A thin coat was applied to the surface of the petri dish at 2000 revolutions using a spin coater, and then dried in a hot air drier at 80 ° C. for 10 minutes. Next, after washing the petri dish with sterilized water, the petri dish was dried in a sterilized bag to obtain a cell culture substrate (2 ′).

[正常ヒト真皮線維芽細胞の培養]
上記得られた細胞培養基材2′に、実施例1と同様にして、正常ヒト真皮線維芽細胞の培養を行った。しかし、播種した細胞が死滅し、増殖は全く見られなかった。
[Culture of normal human dermal fibroblasts]
In the same manner as in Example 1, normal human dermal fibroblasts were cultured on the obtained cell culture substrate 2 ′. However, the seeded cells died and no growth was seen.

この比較例から、重合体(B)を過剰に含有すると、細胞の増殖が阻害され、細胞培養ができなくなることが理解できる。   From this comparative example, it can be understood that when the polymer (B) is contained excessively, cell growth is inhibited and cell culture becomes impossible.

(比較例3)
無機材料(C)の濃度が式(3)の範囲を超えた例である。
[モノマー(a)、水膨潤性無機材料(C)、水媒体(W)を含む反応液の調製]
モノマー(a)としてアクリル酸2メトキシエチル(東亞合成株式会社製)1.32g、無機材料(C)として水膨潤性粘土鉱物Laponite XLG(Rockwood Additives Ltd.社製)0.25g、非水溶性の重合開始剤(d1)として溶液(2)25μl、水媒体(W)として水10gを均一に混合して反応液(3′)を調製した。
(Comparative Example 3)
This is an example in which the concentration of the inorganic material (C) exceeds the range of the formula (3).
[Preparation of reaction liquid containing monomer (a), water-swellable inorganic material (C), and aqueous medium (W)]
As monomer (a), 1.32 g of 2-methoxyethyl acrylate (manufactured by Toagosei Co., Ltd.), as an inorganic material (C), 0.25 g of water-swellable clay mineral Laponite XLG (manufactured by Rockwood Additives Ltd.), water-insoluble 25 μl of the solution (2) as a polymerization initiator (d1) and 10 g of water as an aqueous medium (W) were uniformly mixed to prepare a reaction solution (3 ′).

上記反応液(3′)をマグネチックスターラーで攪拌しながら、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射したところ、反応液(3′)全体がゲル化した。このゲルを大量の水に入れても溶解や分散せずゲルのままであった。 When the reaction solution (3 ′) was stirred with a magnetic stirrer and irradiated with ultraviolet rays having an ultraviolet intensity at 365 nm of 40 mW / cm 2 for 180 seconds, the entire reaction solution (3 ′) was gelled. Even when this gel was placed in a large amount of water, it did not dissolve or disperse and remained as a gel.

この反応系のRa=0.19、無機材料(C)の濃度(質量%)=2.42%>0.87Ra+2.17=2.34
この比較例から、無機材料(C)の濃度(質量%)が式(3)の範囲を超えると、反応液全体がゲル化してしまい、複合体(X)の分散液(L)が得られず、(第一、第三の製造方法の)シャーレへのコーティングによる細胞培養基材の製造ができないことが理解できる。
Ra = 0.19 of this reaction system, concentration (mass%) of inorganic material (C) = 2.42%> 0.87Ra + 2.17 = 2.34
From this comparative example, when the concentration (% by mass) of the inorganic material (C) exceeds the range of the formula (3), the entire reaction solution is gelled, and a dispersion (L) of the composite (X) is obtained. First, it can be understood that the cell culture substrate cannot be produced by coating the petri dish (of the first and third production methods).

(比較例4)
ポリN―イソプロピルアクリルアミドと無機材料(C)から構成した三次元網目構造を有するヒドロゲルからなる細胞培養基材の製造例である。
[モノマー、無機材料(C)、水媒体(W)を含む反応液の調製]
モノマーとしてN―イソプロピルアクリルアミド(株式会社興人製)1.13g、無機材料(C)としてLaponite XLG(Rockwood Additives Ltd.社製)0.4g、水媒体(W)として水10gを均一に混合して反応液(4′)を調製した。
(Comparative Example 4)
This is a production example of a cell culture substrate composed of a hydrogel having a three-dimensional network structure composed of poly N-isopropylacrylamide and an inorganic material (C).
[Preparation of reaction liquid containing monomer, inorganic material (C) and aqueous medium (W)]
1.13 g of N-isopropylacrylamide (manufactured by Kojin Co., Ltd.) as a monomer, 0.4 g of Laponite XLG (manufactured by Rockwood Additives Ltd.) as an inorganic material (C), and 10 g of water as an aqueous medium (W) are uniformly mixed. Thus, a reaction solution (4 ′) was prepared.

[重合開始剤(d1)を溶媒(E)に溶解させた溶液の調整]
溶媒(E)として、ポリオキシプロピレンモノアクリレート「ブレンマAP−400」(日本油脂株式会社製)98g、重合開始剤(d)として1−ヒドロキシシクロヘキシルフェニルケトン「イルガキュアー184」(チバガイギー社製)2gを、均一に混合して溶液(3)を調製した。
[Preparation of a solution in which the polymerization initiator (d 1 ) is dissolved in the solvent (E)]
As a solvent (E), 98 g of polyoxypropylene monoacrylate “Blemma AP-400” (manufactured by NOF Corporation) and 1-hydroxycyclohexyl phenyl ketone “Irgacure 184” (manufactured by Ciba Geigy) as a polymerization initiator (d 1 ) 2 g was uniformly mixed to prepare a solution (3).

[ヒドロゲルからなる細胞培養基材の調製]
上記反応溶液(4′)全量に、溶液(3)を50μl入れ、超音波分散機で均一に分散させた後、60mmポリスチレン製シャーレ(60mm/Non−Treated Dish、旭テクノグラス株式会社製)に入れ、スピンコーターを用いて2000回転でシャーレの表面に薄く塗布し、シャーレの周りを氷で冷やしながら、365nmにおける紫外線強度が40mW/cmの紫外線を180秒照射し、N―イソプロピルアクリルアミドを重合させて、ヒドロゲルの薄層を作製した。
[Preparation of cell culture substrate comprising hydrogel]
50 μl of the solution (3) is added to the total amount of the reaction solution (4 ′), and uniformly dispersed with an ultrasonic disperser, and then placed in a 60 mm polystyrene petri dish (60 mm / non-treated dish, manufactured by Asahi Techno Glass Co., Ltd.). Put it thinly on the surface of the petri dish at 2000 revolutions using a spin coater, and irradiate UV light with an ultraviolet intensity of 40 mW / cm 2 at 365 nm for 180 seconds while cooling the area around the petri dish, polymerizing N-isopropylacrylamide. A thin layer of hydrogel was made.

次いで、滅菌水によりシャーレを洗浄したところ、該ヒドロゲルの薄層がシャーレから剥離してしまい、シャーレにヒドロゲルの薄層が積層した細胞培養基材が得られなかった。   Subsequently, when the petri dish was washed with sterilized water, the thin layer of the hydrogel peeled off from the petri dish, and a cell culture substrate in which the thin layer of hydrogel was laminated on the petri dish was not obtained.

上記洗浄中で剥離したヒドロゲルの薄層をそのままシャーレ中で乾燥し、細胞培養に供した。   The thin layer of the hydrogel peeled during the washing was dried as it was in a petri dish and subjected to cell culture.

[正常ヒト真皮線維芽細胞の培養]
上記乾燥したヒドロゲルの薄層をシャーレに入れ、CS-C complete medium(Cell Systems社製培地)を適量入れ、正常ヒト真皮線維芽細胞を播種して(播種濃度は1.2×10個/cm)、5%二酸化炭素中、37℃で培養を行った。細胞が十分増殖したのを確認して、その(37℃の)培地を4℃の培地に交換し、増殖した細胞を自然剥離させ、剥離した細胞部分の面積と剥離前に増殖した細胞の総面積との比を求めた。またこの剥離にかかった時間を記録した。(表1、細胞の剥離回収率=70%、所要時間は30分であった)。
[Culture of normal human dermal fibroblasts]
The dried thin layer of hydrogel is put in a petri dish, an appropriate amount of CS-C complete medium (Cell Systems medium) is added, and normal human dermal fibroblasts are seeded (seeding concentration is 1.2 × 10 4 cells / cell). cm 2 ) Incubation was performed at 37 ° C. in 5% carbon dioxide. After confirming that the cells grew sufficiently, the medium (37 ° C.) was replaced with a medium at 4 ° C., the proliferated cells were naturally detached, and the area of the detached cell part and the total number of cells proliferated before detachment The ratio with the area was determined. The time taken for this peeling was recorded. (Table 1, cell peeling recovery rate = 70%, required time was 30 minutes).

この比較例から、下限臨界溶解温度を有する重合体(B)と粘土鉱物との三次元網目構造を有するヒドロゲルからなる細胞培養基材は、プラスチックなどの支持体との接着性が弱く、支持体と一体化した細胞培養基材の作製はできなかったことが理解できる。   From this comparative example, the cell culture substrate made of a hydrogel having a three-dimensional network structure of the polymer (B) having a lower critical solution temperature and a clay mineral has weak adhesion to a support such as plastic, and the support It can be understood that production of a cell culture substrate integrated with was not possible.

Figure 0004430123
(注)(1)細胞F:正常ヒト真皮線維芽細胞
(2)細胞T:マウス腫瘍線維芽細胞(Balb3T3)
(3)細胞H:正常ヒト臍帯静脈血管内皮細胞
Figure 0004430123
(Note) (1) Cell F: Normal human dermal fibroblast (2) Cell T: Mouse tumor fibroblast (Balb3T3)
(3) Cell H: Normal human umbilical vein endothelial cell

(注)(1)細胞F:正常ヒト真皮線維芽細胞
(2)細胞T:マウス腫瘍線維芽細胞(Balb3T3)
(3)細胞H:正常ヒト臍帯静脈血管内皮細胞
(Note) (1) Cell F: Normal human dermal fibroblast (2) Cell T: Mouse tumor fibroblast (Balb3T3)
(3) Cell H: Normal human umbilical vein endothelial cell

上記実施例及び比較例から、本発明の細胞培養基材は、他の材質の支持体との間、良好な接着性を有し、優れた細胞培養と剥離機能を有している。
また、この細胞培養基材は、酸素を除去することなく極短時間で、容易に製造できることが明らかであった。
From the above Examples and Comparative Examples, the cell culture substrate of the present invention has good adhesiveness with a support of another material, and has an excellent cell culture and peeling function.
It was also clear that this cell culture substrate can be easily produced in a very short time without removing oxygen.

本発明の細胞培養基材は、再生医療分野で、コロニー状細胞群や2次元のシート状細胞、3次元の立体細胞増殖物の調製に利用できる。   The cell culture substrate of the present invention can be used for the preparation of colony-like cell groups, two-dimensional sheet-like cells, and three-dimensional three-dimensional cell proliferation in the field of regenerative medicine.

Claims (8)

下記式(1)で表されるモノマー(a)の重合体(A)と、下限臨界溶解温度を有する重合体(B)と、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料(C)とを含有し、
前記重合体(A)と前記無機材料(C)との質量比((C)/(A))が、0.01〜10の範囲にあり、
細胞培養基材全体に対する前記重合体(B)の含有率が0.0001質量%〜40質量%である細胞培養基材。
Figure 0004430123
(式中、Rは水素原子またはメチル基、Rは炭素原子数2〜3のアルキレン基、Rは水素原子または炭素原子数1〜2のアルキル基を表し、nは1〜9の整数を表す。)
Polymer of a monomer (a) which is the table by the following formula (1) and (A), a polymer having a lower critical solution temperature (B), 1 or more inorganic chosen from water-swellable clay mineral and silica Containing material (C) ,
The mass ratio ((C) / (A)) between the polymer (A) and the inorganic material (C) is in the range of 0.01 to 10,
The cell culture substrate whose content rate of the said polymer (B) with respect to the whole cell culture substrate is 0.0001 mass%-40 mass% .
Figure 0004430123
Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group having 2 to 3 carbon atoms, R 3 represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, and n represents 1 to 9 Represents an integer.)
下記式(1)で表されるモノマー(a)の重合体(A)と、水膨潤性粘土鉱物及びシリカから選択される1種以上の無機材料(C)とが相互作用することにより形成された複合体と、
下限臨界溶解温度を有する重合体(B)とを含有し、
前記重合体(A)と前記無機材料(C)との質量比((C)/(A))が、0.01〜10の範囲にあり、
細胞培養基材全体に対する前記重合体(B)の含有率が0.0001質量%〜40質量%である細胞培養基材であって、
該細胞培養基材の細胞培養面に前記重合体(B)が露出していることを特徴とする細胞培養基材。
Figure 0004430123
(式中、Rは水素原子またはメチル基、Rは炭素原子数2〜3のアルキレン基、Rは水素原子または炭素原子数1〜2のアルキル基を表し、nは1〜9の整数を表す。)
It is formed by the interaction of the polymer (A) of the monomer (a) represented by the following formula (1) with one or more inorganic materials (C) selected from water-swellable clay minerals and silica. And the complex
Containing a polymer (B) having a lower critical solution temperature ,
The mass ratio ((C) / (A)) between the polymer (A) and the inorganic material (C) is in the range of 0.01 to 10,
A cell culture substrate having a content of the polymer (B) of 0.0001% by mass to 40% by mass with respect to the entire cell culture substrate ,
A cell culture substrate, wherein the polymer (B) is exposed on a cell culture surface of the cell culture substrate.
Figure 0004430123
Wherein R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkylene group having 2 to 3 carbon atoms, R 3 represents a hydrogen atom or an alkyl group having 1 to 2 carbon atoms, and n represents 1 to 9 Represents an integer.)
前記水膨潤性粘土鉱物が、水膨潤性ヘクトライト、水膨潤性モンモリロナイト、水膨潤性サポナイト及び水膨潤性合成雲母から選択される、水媒体(W)中で1〜10層に層状剥離する1種以上の粘土鉱物であり、前記シリカが水分散性のコロイダルシリカである請求項1又は2に記載の細胞培養基材。 The water-swellable clay mineral is delaminated into 1 to 10 layers in an aqueous medium (W) selected from water-swellable hectorite, water-swellable montmorillonite, water-swellable saponite and water-swellable synthetic mica. 3. The cell culture substrate according to claim 1, wherein the cell culture substrate is a clay mineral of a seed or more, and the silica is water-dispersible colloidal silica. 前記重合体(B)が、N−置換(メタ)アクリルアミド誘導体及びN,N−ジ置換(メタ)アクリルアミド誘導体からなる群から選ばれる少なくとも一種のモノマー(b)の重合体である請求項1〜3のいずれかに記載の細胞培養基材。 The polymer (B) is a polymer of at least one monomer (b) selected from the group consisting of N-substituted (meth) acrylamide derivatives and N, N-disubstituted (meth) acrylamide derivatives. 4. The cell culture substrate according to any one of 3. 前記モノマー(b)が、N−イソプロピル(メタ)アクリルアミド、N−n−プロピル(メタ)アクリルアミド、N−シクロプロピル(メタ)アクリルアミド、N−エトキシエチル(メタ)アクリルアミド、N−テトラヒドロフルフリル(メタ)アクリルアミド、N−エチルアクリルアミド、N−エチル−N−メチルアクリルアミド、N,N−ジエチルアクリルアミド、N−メチル−N−n−プロピルアクリルアミド、N−メチル−N−イソプロピルアクリルアミド、N−アクリロイルピペリディン及びN−アクリロイルピロリディンからなる群から選ばれる少なくとも一種である請求項4記載の細胞培養基材。 The monomer (b) is N-isopropyl (meth) acrylamide, Nn-propyl (meth) acrylamide, N-cyclopropyl (meth) acrylamide, N-ethoxyethyl (meth) acrylamide, N-tetrahydrofurfuryl (meth) ) Acrylamide, N-ethylacrylamide, N-ethyl-N-methylacrylamide, N, N-diethylacrylamide, N-methyl-Nn-propylacrylamide, N-methyl-N-isopropylacrylamide, N-acryloylpiperidine The cell culture substrate according to claim 4, which is at least one selected from the group consisting of N-acryloylpyrrolidine. 請求項4記載の細胞培養基材の製造方法であって、
水媒体(W)中の前記無機材料(C)の濃度が下記式(2)又は式(3)で表される範囲となるように、前記モノマー(a)と前記無機材料(C)と重合開始剤(D)とを水媒体(W)に混合した後、前記モノマー(a)を重合させることにより重合体(A)と前記無機材料(C)との複合体(X)の分散液(L)を製造する第1工程、
前記分散液(L)を支持体に塗布し、その後乾燥することにより前記複合体(X)の薄層を形成する第2工程、
非水溶性の重合開始剤(D)を溶媒(E)に溶解させた溶液を前記複合体(X)の薄層の表面(S)に塗布し、前記溶媒(E)を揮発させる第3工程、
前記表面(S)に前記モノマー(b)の水溶液を塗布した後、紫外線の照射により前記モノマー(b)を重合させる第4工程を順次行なうことを特徴とする細胞培養基材の製造方法。
式(2) Ra<0.19のとき
無機材料(C)の濃度(質量%)<12.4Ra+0.05
式(3) Ra≧0.19のとき
無機材料(C)の濃度(質量%)<0.87Ra+2.17
(式中、無機材料(C)の濃度(質量%)は、無機材料(C)の質量を水媒体(W)と無機材料(C)の合計質量で除して100を掛けた数値、Raは無機材料(C)と重合体(A)との質量比((C)/(A))である。)
A method for producing a cell culture substrate according to claim 4,
The monomer (a) and the inorganic material (C) are polymerized so that the concentration of the inorganic material (C) in the aqueous medium (W) is in the range represented by the following formula (2) or formula (3). After mixing the initiator (D) with the aqueous medium (W), the monomer (a) is polymerized to thereby disperse the composite (X) of the polymer (A) and the inorganic material (C) ( L) the first step of producing
A second step of forming a thin layer of the composite (X) by applying the dispersion (L) to a support and then drying;
A third step in which a solution obtained by dissolving a water-insoluble polymerization initiator (D) in a solvent (E) is applied to the surface (S) of the thin layer of the composite (X), and the solvent (E) is volatilized. ,
A method for producing a cell culture substrate, comprising sequentially applying a fourth step of polymerizing the monomer (b) by irradiation with ultraviolet rays after applying an aqueous solution of the monomer (b) to the surface (S).
Formula (2) When Ra <0.19
Concentration (% by mass) of inorganic material (C) <12.4Ra + 0.05
Formula (3) When Ra ≧ 0.19
Concentration (% by mass) of inorganic material (C) <0.87Ra + 2.17
(In the formula, the concentration (% by mass) of the inorganic material (C) is a value obtained by dividing the mass of the inorganic material (C) by the total mass of the aqueous medium (W) and the inorganic material (C) and multiplying by 100, Ra Is a mass ratio ((C) / (A)) between the inorganic material (C) and the polymer (A).)
請求項4記載の細胞培養基材の製造方法であって、
前記モノマー(a)と前記無機材料(C)と重合開始剤(D)とを混合した水媒体(W)を支持体に塗布して、
前記モノマー(a)を重合させることにより、重合体(A)と前記無機材料(C)との複合体(X)の薄層を形成する第1工程、
非水溶性の重合開始剤(D)を溶媒(E)に溶解させた溶液を前記複合体(X)の薄層の表面(S)に塗布し、溶媒(E)を揮発させる第2工程、
前記モノマー(b)の水溶液を前記表面(S)に塗布した後、紫外線の照射により前記モノマー(b)を重合させる第3工程を順次行なうことを特徴とする細胞培養基材の製造方法。
A method for producing a cell culture substrate according to claim 4,
An aqueous medium (W) in which the monomer (a), the inorganic material (C) and the polymerization initiator (D) are mixed is applied to a support,
A first step of forming a thin layer of a composite (X) of the polymer (A) and the inorganic material (C) by polymerizing the monomer (a);
A second step in which a solution in which a water-insoluble polymerization initiator (D) is dissolved in a solvent (E) is applied to the surface (S) of the thin layer of the composite (X), and the solvent (E) is volatilized;
A method for producing a cell culture substrate, comprising applying an aqueous solution of the monomer (b) to the surface (S) and then sequentially performing a third step of polymerizing the monomer (b) by irradiation with ultraviolet rays.
請求項4記載の細胞培養基材の製造方法であって、
前記水媒体(W)中の前記無機材料(C)の濃度が下記式(2)又は式(3)で表される範囲となるように、前記モノマー(a)と前記無機材料(C)と重合開始剤(D)とを水媒体(W)に混合した後、前記モノマー(a)を重合させることにより、重合体(A)と前記無機材料(C)との複合体(X)の分散液(L)を製造する第1工程、
前記分散液(L)に、前記モノマー(b)の重合体である重合体(B)を添加し、混合して、支持体に塗布した後、乾燥させる第2工程を順次行なうことを特徴とする細胞培養基材の製造方法。
式(2) Ra<0.19のとき
無機材料(C)の濃度(質量%)<12.4Ra+0.05
式(3) Ra≧0.19のとき
無機材料(C)の濃度(質量%)<0.87Ra+2.17
(式中、無機材料(C)の濃度(質量%)は、無機材料(C)の質量を水媒体(W)と無機材料(C)の合計質量で除して100を掛けた数値、Raは無機材料(C)と重合体(A)との質量比((C)/(A))である。)
A method for producing a cell culture substrate according to claim 4,
The monomer (a), the inorganic material (C), and the concentration of the inorganic material (C) in the aqueous medium (W) are in a range represented by the following formula (2) or formula (3): After mixing the polymerization initiator (D) with the aqueous medium (W), the monomer (a) is polymerized to disperse the complex (X) of the polymer (A) and the inorganic material (C). A first step of producing a liquid (L);
The polymer (B), which is a polymer of the monomer (b), is added to the dispersion (L), mixed, applied to a support, and then dried in order. A method for producing a cell culture substrate.
Formula (2) When Ra <0.19
Concentration (% by mass) of inorganic material (C) <12.4Ra + 0.05
Formula (3) When Ra ≧ 0.19
Concentration (% by mass) of inorganic material (C) <0.87Ra + 2.17
(In the formula, the concentration (% by mass) of the inorganic material (C) is a value obtained by dividing the mass of the inorganic material (C) by the total mass of the aqueous medium (W) and the inorganic material (C) and multiplying by 100, Ra Is a mass ratio ((C) / (A)) between the inorganic material (C) and the polymer (A).)
JP2009040569A 2008-06-12 2009-02-24 Cell culture substrate and method for producing the same Active JP4430123B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2009040569A JP4430123B1 (en) 2009-02-24 2009-02-24 Cell culture substrate and method for producing the same
PCT/JP2009/059507 WO2009150931A1 (en) 2008-06-12 2009-05-25 Organic-inorganic complex dispersion, cell culture substratum manufactured by using the dispersion, and manufacturing methods for same
KR1020107019212A KR101327297B1 (en) 2008-06-12 2009-05-25 Organic-inorganic complex dispersion, cell culture substratum manufactured by using the dispersion, and manufacturing methods for same
EP09762361.5A EP2292691B1 (en) 2008-06-12 2009-05-25 Organic-inorganic complex dispersion, cell culture substratum manufactured by using the dispersion, and manufacturing methods for same
CN2009801217484A CN102056983B (en) 2008-06-12 2009-05-25 Organic-inorganic complex dispersion, cell culture substratum manufactured by using the dispersion, and manufacturing methods for same
US12/997,198 US8530564B2 (en) 2008-06-12 2009-05-25 Organic-inorganic composite dispersion, cell culture substrate manufactured using the same, and methods for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009040569A JP4430123B1 (en) 2009-02-24 2009-02-24 Cell culture substrate and method for producing the same

Publications (2)

Publication Number Publication Date
JP4430123B1 true JP4430123B1 (en) 2010-03-10
JP2010193743A JP2010193743A (en) 2010-09-09

Family

ID=42072744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009040569A Active JP4430123B1 (en) 2008-06-12 2009-02-24 Cell culture substrate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4430123B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093393A1 (en) * 2013-12-20 2015-06-25 Dic株式会社 Temperature-responsive cell culture substrate and method for producing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5935477B2 (en) * 2011-04-20 2016-06-15 Dic株式会社 Bone marrow-derived cell culture method
JP5862061B2 (en) * 2011-06-10 2016-02-16 Dic株式会社 Embryonic stem cell culture method
JP6229503B2 (en) * 2014-01-09 2017-11-15 大日本印刷株式会社 Temperature-responsive cell culture substrate and method for producing the same
JP6229502B2 (en) * 2014-01-09 2017-11-15 大日本印刷株式会社 Method for producing cell culture substrate having temperature responsiveness

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212288A (en) * 1999-01-27 2000-08-02 Dainippon Ink & Chem Inc Composite particle and its manufacture
JP2004509984A (en) * 2000-09-21 2004-04-02 ローム アンド ハース カンパニー High acid content nanocomposite aqueous dispersion

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1829896B1 (en) * 2004-12-14 2010-06-16 Kawamura Institute Of Chemical Research Process for production of organic-inorganic hybrid hydrogel, cell culture substrate comprising the same, and antifogging material comprising dried product thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000212288A (en) * 1999-01-27 2000-08-02 Dainippon Ink & Chem Inc Composite particle and its manufacture
JP2004509984A (en) * 2000-09-21 2004-04-02 ローム アンド ハース カンパニー High acid content nanocomposite aqueous dispersion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093393A1 (en) * 2013-12-20 2015-06-25 Dic株式会社 Temperature-responsive cell culture substrate and method for producing same
JP6052432B2 (en) * 2013-12-20 2016-12-27 Dic株式会社 Temperature-responsive cell culture substrate and method for producing the same
US9951308B2 (en) 2013-12-20 2018-04-24 Dic Corporation Temperature-responsive cell culture substrate and method for producing same

Also Published As

Publication number Publication date
JP2010193743A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
WO2009150931A1 (en) Organic-inorganic complex dispersion, cell culture substratum manufactured by using the dispersion, and manufacturing methods for same
JP4430124B2 (en) Organic-inorganic composite dispersion and method for producing the same
JP6052432B2 (en) Temperature-responsive cell culture substrate and method for producing the same
US8557583B2 (en) Cell culture support and manufacture thereof
JP4430123B1 (en) Cell culture substrate and method for producing the same
JP6493629B2 (en) Cell culture substrate
JP2008237088A (en) Base medium and method for cell culture
JP5460302B2 (en) Method for producing organic-inorganic composite dispersion
JP2007049918A (en) Cell culture support, cell culture method, recovery of cell, and cell
JP2006288251A (en) Cell culture substrate and method for culturing cell
JP2011072297A (en) Cell culture substrate
JP5935477B2 (en) Bone marrow-derived cell culture method
JP5929053B2 (en) Selective culture method of adherent cells from blood-derived mononuclear cells
JP2006288217A (en) Cell culture substrate and cell culture method
JP4979199B2 (en) Cell culture substrate and cell culture method
JP6024004B2 (en) Method for producing corneal cell and method for producing corneal cell sheet
JP2006280206A (en) Substrate for cell culture and method for cell culture
JP5929111B2 (en) Adherent cell culture method and cell culture substrate used therefor
JP2012050395A (en) Method for culturing retinal pigment cell, and cultured retinal pigment cell
JP6229503B2 (en) Temperature-responsive cell culture substrate and method for producing the same
JP6229502B2 (en) Method for producing cell culture substrate having temperature responsiveness
JP6024796B2 (en) Cell culture substrate and cell culture method
JP5862061B2 (en) Embryonic stem cell culture method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4430123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250