JP4374281B2 - Hot-dip galvanized steel with excellent corrosion resistance - Google Patents

Hot-dip galvanized steel with excellent corrosion resistance Download PDF

Info

Publication number
JP4374281B2
JP4374281B2 JP2004156812A JP2004156812A JP4374281B2 JP 4374281 B2 JP4374281 B2 JP 4374281B2 JP 2004156812 A JP2004156812 A JP 2004156812A JP 2004156812 A JP2004156812 A JP 2004156812A JP 4374281 B2 JP4374281 B2 JP 4374281B2
Authority
JP
Japan
Prior art keywords
phase
intermetallic compound
corrosion resistance
mass
lattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004156812A
Other languages
Japanese (ja)
Other versions
JP2005336546A (en
Inventor
和彦 本田
高橋  彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004156812A priority Critical patent/JP4374281B2/en
Publication of JP2005336546A publication Critical patent/JP2005336546A/en
Application granted granted Critical
Publication of JP4374281B2 publication Critical patent/JP4374281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)

Description

本発明は、めっき鋼材に係わり、更に詳しくは優れた加工部耐食性を有し、種々の用途、例えば家電用や自動車用、建材用鋼板として適用できるめっき鋼材に関するものである。   The present invention relates to a plated steel material, and more particularly to a plated steel material that has excellent processed portion corrosion resistance and can be applied as a steel sheet for various uses such as home appliances, automobiles, and building materials.

耐食性の良好なめっき鋼材として最も使用されるものに亜鉛系めっき鋼板がある。これらのめっき鋼板は自動車、家電、建材分野など種々の製造業において使用されている。   Zinc-based plated steel sheets are the most used as plated steel materials with good corrosion resistance. These plated steel sheets are used in various manufacturing industries such as automobiles, home appliances, and building materials.

特にAlを添加しためっきは耐食性が高いため近年使用量が増加している。   In particular, the use of Al-added plating has increased in recent years due to its high corrosion resistance.

こうした亜鉛系めっき鋼板の耐食性を向上させることを目的として本発明者らは、溶融Zn−Al−Mg−Siめっき鋼板を提案した(例えば、特許文献1参照)。   In order to improve the corrosion resistance of such a galvanized steel sheet, the present inventors have proposed a hot-dip Zn—Al—Mg—Si plated steel sheet (see, for example, Patent Document 1).

また、表面の平滑性を向上させることを目的として本発明者らは、高融点の金属間化合物を添加しためっき鋼板(例えば、特許文献2参照)、Al系金属間化合物を添加しためっき鋼板(例えば、特許文献3参照)を提案した。   Moreover, for the purpose of improving the smoothness of the surface, the present inventors have made a plated steel sheet to which a high melting point intermetallic compound is added (for example, see Patent Document 2), and a plated steel sheet to which an Al-based intermetallic compound is added ( For example, Patent Document 3) has been proposed.

特許第3179446号公報Japanese Patent No. 3179446 特開2003−293108号公報JP 2003-293108 A 特開2003−328100号公報JP 2003-328100 A

しかしながら、上記及びその他これまで開示されためっき鋼板では、加工部耐食性が十分に確保されているとはいえない。   However, in the above-mentioned and other plated steel sheets disclosed so far, it cannot be said that the corrosion resistance of the processed part is sufficiently ensured.

Mgを添加した亜鉛系めっき鋼板では、めっき中にMgZn2相が晶出する。このMgZn2相は硬くて脆いため、Mgを添加した亜鉛系めっき鋼板にT曲げのような厳しい加工を行った場合、めっきにクラックが生じ、これを原因とする加工後の耐食性劣化が起こりやすいという問題点を有している。 In the zinc-based plated steel sheet to which Mg is added, the MgZn 2 phase is crystallized during plating. Since this MgZn 2 phase is hard and brittle, when severe processing such as T-bending is performed on a zinc-based plated steel sheet to which Mg has been added, cracks occur in the plating, and corrosion resistance deterioration after processing is likely to occur due to this. Has the problem.

そこで、本発明は、上記問題点に鑑みなされたものであり、めっき中にMgZn2相を含有した亜鉛系めっき鋼材の加工部耐食性を向上させることを目的としている。 The present invention has been made in view of the above problems, and aims to improve the processing portion corrosion resistance of a galvanized steel material containing MgZn 2 phase in the plating.

本発明者らは、加工部耐食性が優れためっき鋼板の開発について鋭意研究を重ねた結果、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に〔Mg2 Si相〕と〔Al相〕が混在しためっき層の〔Al相〕の中にZn−Mg系金属間化合物を含有するめっき層を表面に有することにより加工部耐食性が向上するという新たな知見を見出し、本発明を完成するに至ったものである。 The present inventors have made intensive studies on the development of the plated steel sheet processed portion corrosion resistance was excellent, in the matrix of [Al / Zn / MgZn 2 ternary eutectic structure] and [Mg 2 Si phase] [ The present inventors have found a new finding that the corrosion resistance of a processed part is improved by having a plating layer containing a Zn-Mg intermetallic compound on the surface in the [Al phase] of the plating layer in which the [Al phase] is mixed. It has come to be completed.

すなわち、本発明の要旨とするところは、以下のとおりである。   That is, the gist of the present invention is as follows.

(1) (1)Al:4〜10質量%、Mg:2〜10質量%含有し残部がZn及び不可避的不純物よりなるZn合金めっき層を表面に有するめっき鋼材のめっき層が〔Al/Zn/MgZn2の三元共晶組織〕の素地中に〔Al相〕を含有した金属組織を有し、かつ、この〔Al相〕の中にブラベー格子の格子面を構成する格子方向の一方の面間隔が2.57Å以上3.15Å以下、他方の面間隔が3.64Å以上4.46Å以下である格子面を持つ金属間化合物とZn−Mg系金属間化合物を含有し、さらに〔Al相〕のデンドライトが[110]方向に成長した等軸晶であることを特徴とする加工部耐食性に優れる溶融めっき鋼材。 (1) (1) Al: 4-10 mass%, Mg: 2-10 mass%, and the plating layer of the plating steel material which has Zn alloy plating layer which consists of Zn and an unavoidable impurity on the surface [Al / Zn / MgZn 2 ternary eutectic structure] has a metal structure containing [Al phase], and one of the lattice directions constituting the lattice plane of the Bravay lattice in this [Al phase] lattice spacing than 2.57Å 3.15Å or less, the other surface interval containing intermetallic compound and the Zn-Mg intermetallic compound having a grating surface is less than 4.46Å than 3.64A, further [Al phase A hot-dip galvanized steel material having excellent corrosion resistance in the processed portion , wherein the dendrite is an equiaxed crystal grown in the [110] direction .

(2) Al:4〜22質量%、Mg:2〜10質量%、Si:2質量%以下含有し残部がZn及び不可避的不純物よりなるZn合金めっき層を表面に有するめっき鋼材のめっき層が〔Al/Zn/MgZn2の三元共晶組織〕の素地中に〔Mg2Si相〕と〔Al相〕が混在した金属組織を有し、かつ、この〔Al相〕の中にブラベー格子の格子面を構成する格子方向の一方の面間隔が2.57Å以上3.15Å以下、他方の面間隔が3.64Å以上4.46Å以下である格子面を持つ金属間化合物とZn−Mg系金属間化合物を含有し、さらに〔Al相〕のデンドライトが[110]方向に成長した等軸晶であることを特徴とする加工部耐食性に優れる溶融めっき鋼材。 (2) A plating layer of a plated steel material containing Al: 4 to 22% by mass, Mg: 2 to 10% by mass, Si: 2% by mass or less and the balance being Zn alloy plating layer composed of Zn and inevitable impurities. The [Al / Zn / MgZn 2 ternary eutectic structure] has a metallic structure in which [Mg 2 Si phase] and [Al phase] are mixed, and the [Al phase] has a Brabey lattice An intermetallic compound having a lattice plane in which one plane spacing in the lattice direction constituting the lattice plane is 2.57 mm to 3.15 mm and the other plane spacing is 3.64 mm to 4.46 mm, and a Zn-Mg system A hot-dip galvanized steel material excellent in corrosion resistance of a processed part, characterized in that it contains an intermetallic compound and the [Al phase] dendrite is an equiaxed crystal grown in the [110] direction .

(3) 前記(1)又は(2)に記載のZn−Mg系金属間化合物がMgZn2、Mg2Zn11のいずれかであることを特徴とする加工部耐食性に優れる溶融めっき鋼材。 (3) A hot-dip galvanized steel material excellent in corrosion resistance of a processed part, wherein the Zn-Mg intermetallic compound according to (1) or (2) is either MgZn 2 or Mg 2 Zn 11 .

上記(1)又は(2)に記載の金属間化合物の結晶系が、立方晶、正方晶、斜方晶、単斜晶、六方晶のいずれかであることを特徴とする加工部耐食性に優れる溶融めっき鋼材。 ( 4 ) The processed part, wherein the crystal system of the intermetallic compound according to (1) or (2) is any one of cubic, tetragonal, orthorhombic, monoclinic and hexagonal Hot-dip plated steel with excellent corrosion resistance.

上記(1)、(2)、(4)のいずれかに記載の金属間化合物がTiAl3、ZrAl3、HfAl3、SrAl4、CaAl4、NiAl3、TiB2のいずれかであることを特徴とする加工部耐食性に優れる溶融めっき鋼材。 (5) above (1), (2), is either the intermetallic compound according to any one of TiAl 3, ZrAl 3, HfAl 3 , SrAl 4, CaAl 4, NiAl 3, TiB 2 (4) A hot-dip galvanized steel material with excellent corrosion resistance in the machined part.

本発明により、めっき中にMgZn2相が晶出した亜鉛系めっき鋼材において、加工部耐食性が優れた溶融めっき鋼材を製造することが可能となり、工業上極めて優れた効果を奏することができる。 According to the present invention, in a zinc-based plated steel material in which an MgZn 2 phase is crystallized during plating, it is possible to produce a hot-dip plated steel material having excellent processed portion corrosion resistance, and an extremely excellent industrial effect can be achieved.

以下に本発明を詳細に説明する。   The present invention is described in detail below.

本発明の溶融めっき鋼材は、Al:4〜10質量%、Mg:2〜10質量%を含有し残部がZn及び不可避不純物からなるめっき層、或いは、Al:4〜22質量%、Mg:2〜10質量%、Si:2質量%以下含有し残部がZnおよび不可避不純物からなるめっき層のいずれかを有するめっき鋼板のめっき層が〔Al/Zn/MgZn2の三元共晶組織〕の素地中に〔Al相〕を含有し、場合によっては〔Mg2Si相〕が混在した金属組織を有し、且つ、〔Al相〕の中にZn−Mg系金属間化合物を含有することを特徴とするめっき鋼材である。 The hot-dip galvanized steel material of the present invention contains Al: 4 to 10% by mass, Mg: 2 to 10% by mass, the balance being Zn and inevitable impurities, or Al: 4 to 22% by mass, Mg: 2 10% by mass, Si: 2% by mass or less, and the plated layer of the plated steel sheet having any of the plated layers consisting of Zn and inevitable impurities is a base of [Al / Zn / MgZn 2 ternary eutectic structure] [Al phase] is contained therein, and in some cases, [Mg 2 Si phase] has a mixed metal structure, and [Al phase] contains a Zn—Mg-based intermetallic compound. It is a plated steel material.

Zn−Al−Mg系めっき層において、Alの含有量を4〜10質量%に限定した理由は、Alの含有量が10質量%を超えるとめっき密着性の低下が見られるため、Siを添加していないめっき層中のAlの含有量は10質量%以下にする必要があるためである。また、4質量%未満では初晶としてAl相が晶出しないため、Zn−Mg系金属間化合物による加工部耐食性向上効果が見られないためである。   In the Zn-Al-Mg-based plating layer, the reason for limiting the Al content to 4 to 10% by mass is that if the Al content exceeds 10% by mass, a decrease in plating adhesion is observed, so Si is added. This is because the content of Al in the plating layer that is not necessary needs to be 10% by mass or less. In addition, when the amount is less than 4% by mass, the Al phase does not crystallize as the primary crystal, and thus the effect of improving the corrosion resistance of the processed part due to the Zn—Mg intermetallic compound is not observed.

従って、本発明における溶融めっき鋼材においては、特にAl濃度が10質量%を超えるような高濃度の場合には、めっき密着性を確保するために、めっき層中にSiを添加することが必須である。   Therefore, in the hot-dip plated steel material according to the present invention, it is essential to add Si to the plating layer in order to ensure plating adhesion, particularly when the Al concentration exceeds 10% by mass. is there.

一方、Zn−Al−Mg−Si系めっき層において、Alの含有量を4〜22質量%に限定した理由は、4質量%未満では初晶としてAl相が晶出しないため、Zn−Mg系金属間化合物による加工部耐食性向上効果が見られないためであり、22質量%を超えると耐食性を向上させる効果が飽和するためである。   On the other hand, in the Zn-Al-Mg-Si-based plating layer, the reason why the Al content is limited to 4 to 22% by mass is that when less than 4% by mass, the Al phase does not crystallize as a primary crystal. This is because the effect of improving the corrosion resistance of the processed part due to the intermetallic compound is not seen, and when it exceeds 22% by mass, the effect of improving the corrosion resistance is saturated.

Siの含有量を2質量%以下(但し、0質量%を除く)に限定した理由は、Siは密着性を向上させる効果があるが、2質量%を超えてめっき浴中に溶解させるためには浴温をかなり高くする必要があり、工業的に成立し得ないためである。望ましくは0.00001〜1質量%である、さらに望ましくは0.0001〜0.5質量%である。   The reason for limiting the Si content to 2% by mass or less (excluding 0% by mass) is that Si has an effect of improving adhesion, but exceeds 2% by mass in order to dissolve in the plating bath. This is because the bath temperature needs to be considerably high and cannot be established industrially. Desirably, it is 0.00001-1 mass%, More desirably, it is 0.0001-0.5 mass%.

Siの添加はAlの含有量が10質量%を超えるめっき層には必須であるが、Alの含有量が10%以下のめっき層においてもめっき密着性向上に効果が大きいため、加工が厳しい部材に使用する等、高いめっき密着性を必要とする場合にはSiを添加することが有効である。また、Si添加によりめっき層の凝固組織中に〔Mg2 Si相〕が晶出する。この〔Mg2 Si相〕は耐食性向上に効果があるため、Siの添加量を多くし、めっき層の凝固組織中に〔Mg2 Si相〕が混在した金属組織を作製することがより望ましい。 The addition of Si is essential for plating layers with an Al content of more than 10% by mass. However, even in plating layers with an Al content of 10% or less, the effect of improving plating adhesion is great, so the parts are severely processed. It is effective to add Si when high plating adhesion is required. Moreover, [Mg 2 Si phase] crystallizes in the solidified structure of the plating layer by addition of Si. Since this [Mg 2 Si phase] is effective in improving corrosion resistance, it is more desirable to increase the amount of Si added and to produce a metal structure in which [Mg 2 Si phase] is mixed in the solidified structure of the plating layer.

Mgの含有量を2〜10質量%に限定した理由は、2質量%未満ではAl相中にZn−Mg系金属間化合物を析出させることができず、加工部耐食性を向上させる効果が不十分であるためであり、10質量%を超えるとめっき層が脆くなって密着性が低下するためである。望ましくは2〜5質量%である。   The reason why the content of Mg is limited to 2 to 10% by mass is that if it is less than 2% by mass, the Zn-Mg intermetallic compound cannot be precipitated in the Al phase, and the effect of improving the corrosion resistance of the processed part is insufficient. This is because if the amount exceeds 10% by mass, the plating layer becomes brittle and the adhesiveness decreases. Desirably, it is 2-5 mass%.

本めっき層は、〔Al/Zn/MgZn2の三元共晶組織〕の素地中に〔Zn相〕、〔Al相〕、〔MgZn2相〕、〔Mg2 Si相〕の1つ以上を含む金属組織ができる。 This plating layer has at least one of [Zn phase], [Al phase], [MgZn 2 phase], and [Mg 2 Si phase] in the [Al / Zn / MgZn 2 ternary eutectic structure] substrate. A metallographic structure can be formed.

ここで、〔Al/Zn/MgZn2の三元共晶組織〕とは、Al相と、Zn相と金属間化合物MgZn2相との三元共晶組織であり、この三元共晶組織を形成しているAl相は例えばAl−Zn−Mgの三元系平衡状態図における高温での「Al″相」(Zn相を固溶するAl固溶体であり、少量のMgを含む)に相当するものである。この高温でのAl″相は常温では通常は微細なAl相と微細なZn相に分離して現れる。また、該三元共晶組織中のZn相は少量のAlを固溶し、場合によってはさらに少量のMgを固溶したZn固溶体である。該三元共晶組織中のMgZn2相は、Zn−Mgの二元系平衡状態図のZn:約84質量%の付近に存在する金属間化合物相である。状態図で見る限りそれぞれの相にはSi、その他の添加元素を固溶していないか、固溶していても極微量であると考えられるがその量は通常の分析では明確に区別できないため、この3つの相からなる三元共晶組織を本明細書では〔Al/Zn/MgZn2の三元共晶組織〕と表す。 Here, [Al / Zn / MgZn 2 ternary eutectic structure] is an ternary eutectic structure of an Al phase, a Zn phase, and an intermetallic compound MgZn 2 phase. The formed Al phase corresponds to, for example, an "Al" phase "(Al solid solution that dissolves the Zn phase in a solid solution and contains a small amount of Mg) in an Al-Zn-Mg ternary equilibrium diagram. Is. The Al ″ phase at high temperature usually appears separated into a fine Al phase and a fine Zn phase at room temperature. The Zn phase in the ternary eutectic structure dissolves a small amount of Al, and in some cases Is a Zn solid solution in which a small amount of Mg is dissolved, and the MgZn 2 phase in the ternary eutectic structure is a metal present in the vicinity of Zn: about 84% by mass in the Zn-Mg binary equilibrium diagram. As far as the phase diagram shows, Si and other additive elements are not dissolved in each phase, or even if they are dissolved, the amount is considered to be very small, but the amount is normal analysis. In this specification, the ternary eutectic structure consisting of these three phases is expressed as [Al / Zn / MgZn 2 ternary eutectic structure].

また、〔Al相〕とは、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相であり、これは例えばAl−Zn−Mgの三元系平衡状態図における高温での「Al″相」(Zn相を固溶するAl固溶体であり、少量のMgを含む)に相当するものである。この高温でのAl″相はめっき浴のAlやMg濃度に応じて固溶するZn量やMg量が相違する。この高温でのAl″相は常温では通常は微細なAl相と微細なZn相に分離するが、常温で見られる島状の形状は高温でのAl″相の形骸を留めたものであると見てよい。状態図で見る限りこの相にはSi、その他の添加元素を固溶していないか、固溶していても極微量であると考えられるが通常の分析では明確に区別できないため、この高温でのAl″相に由来し且つ形状的にはAl″相の形骸を留めている相を本明細書では〔Al相〕と呼ぶ。この〔Al相〕は前記の三元共晶組織を形成しているAl相とは顕微鏡観察において明瞭に区別できる。   In addition, the [Al phase] is a phase that looks like an island with a clear boundary in the ternary eutectic structure, which is, for example, at a high temperature in an Al—Zn—Mg ternary equilibrium diagram. "Al" phase "(Al solid solution in which Zn phase is dissolved, and contains a small amount of Mg). The Al ″ phase at this high temperature differs in the amount of Zn and Mg dissolved depending on the Al and Mg concentrations in the plating bath. The Al ″ phase at this high temperature is usually fine Al phase and fine Zn at room temperature. Although it is separated into phases, it can be seen that the island-like shape seen at room temperature retains the shape of the Al ″ phase at high temperature. As far as the phase diagram shows, this phase contains Si and other additive elements. Although it is considered that it is not solid solution or is in very small amount even if it is in solid solution, it cannot be clearly distinguished by ordinary analysis. In this specification, the phase holding the structure is referred to as [Al phase], which can be clearly distinguished from the Al phase forming the ternary eutectic structure by microscopic observation.

また、〔Zn相〕とは、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相であり、実際には少量のAlさらには少量のMgを固溶していることもある。状態図で見る限りこの相にはSi、その他の添加元素を固溶していないか、固溶していても極微量であると考えられる。この〔Zn相〕は前記の三元共晶組織を形成しているZn相とは顕微鏡観察において明瞭に区別できる。本発明のめっき層には、製造条件により〔Zn相〕が含まれる場合も有るが、実験では加工部耐食性向上に与える影響はほとんど見られなかったため、めっき層に〔Zn相〕が含まれても特に問題はない。   In addition, the [Zn phase] is a phase that looks like an island with a clear boundary in the ternary eutectic structure, and actually contains a small amount of Al and a small amount of Mg as a solid solution. There is also. As far as the phase diagram is concerned, it is considered that Si and other additive elements are not dissolved in this phase, or even if they are dissolved. This [Zn phase] can be clearly distinguished from the Zn phase forming the ternary eutectic structure by microscopic observation. The plating layer of the present invention may contain [Zn phase] depending on the production conditions, but since the experiment hardly showed any influence on the corrosion resistance improvement of the processed part, the plating layer contained [Zn phase]. There is no particular problem.

また、〔MgZn2相〕とは、前記の三元共晶組織の素地中に明瞭な境界をもって島状に見える相であり、実際には少量のAlを固溶していることもある。状態図で見る限りこの相にはSi、その他の添加元素を固溶していないか、固溶していても極微量であると考えられる。この〔MgZn2相〕は前記の三元共晶組織を形成しているMgZn2相とは顕微鏡観察において明瞭に区別できる。本発明のめっき層には、製造条件により〔MgZn2相〕が含まれない場合も有るが、ほとんどの製造条件ではめっき層中に含まれる。 [MgZn 2 phase] is a phase that looks like an island with a clear boundary in the ternary eutectic structure, and a small amount of Al may actually be dissolved. As far as the phase diagram is concerned, it is considered that Si and other additive elements are not dissolved in this phase, or even if they are dissolved. This [MgZn 2 phase] can be clearly distinguished from the MgZn 2 phase forming the ternary eutectic structure by microscopic observation. The plating layer of the present invention may not contain [MgZn 2 phase] depending on the production conditions, but is contained in the plating layer under most production conditions.

また、〔Mg2Si相〕とは、Siを添加しためっき層の凝固組織中に明瞭な境界をもって島状に見える相である。状態図で見る限りZn、Al、その他の添加元素は固溶していないか、固溶していても極微量であると考えられる。この〔Mg2Si相〕はめっき中では顕微鏡観察において明瞭に区別できる。 The [Mg 2 Si phase] is a phase that looks like an island with a clear boundary in the solidified structure of the plating layer to which Si is added. As far as the phase diagram is concerned, it is considered that Zn, Al, and other additive elements are not dissolved, or even if they are dissolved. This [Mg 2 Si phase] can be clearly distinguished by microscopic observation during plating.

本発明の溶融めっき鋼材は、めっき中に晶出するMgZn2相やAl/Zn/MgZn2の三元共晶組織中のMgZn2が硬くて脆いため、T曲げのような厳しい加工を行った場合、めっきにクラックが生じ、これを原因とする加工後の耐食性劣化が起こりやすい。 The hot-dip plated steel of the present invention was subjected to severe processing such as T-bending because MgZn 2 phase crystallized during plating and MgZn 2 in the ternary eutectic structure of Al / Zn / MgZn 2 are hard and brittle. In this case, cracks are generated in the plating, and corrosion resistance deterioration after processing is likely to occur due to this.

この加工後耐食性を向上させるためには、〔Al相〕中にZn−Mg系金属間化合物を析出させることが有効である。   In order to improve the post-processing corrosion resistance, it is effective to deposit a Zn—Mg intermetallic compound in the [Al phase].

加工を受けていないめっき層では、〔Al/Zn/MgZn2の三元共晶組織〕が優先的に腐食し、腐食生成物は、三元共晶組織中のMgZn2の効果により、安定な塩基性塩化亜鉛や塩基性塩化亜鉛アルミニウム、塩基性炭酸亜鉛アルミニウム等になる。これらの安定な腐食生成物は強固な保護被膜として働くことにより、その後のめっき層の腐食の進行を抑制すると考えられる。一方、加工によりクラックが生じるとAl相が露出し〔Al/Zn/MgZn2の三元共晶組織〕の腐食と同時にAl相の腐食も進行する。Al相は常温では微細なAl相と微細なZn相に分離しており、このAl相中の微細なZn相が安定な腐食生成物とならないために、加工後の耐食性は加工前の耐食性に比べて劣っているものと考えられる。 In the plated layer that has not been processed, the [Al / Zn / MgZn 2 ternary eutectic structure] corrodes preferentially, and the corrosion product is stable due to the effect of MgZn 2 in the ternary eutectic structure. Basic zinc chloride, basic zinc aluminum chloride, basic zinc aluminum carbonate and the like. These stable corrosion products are considered to suppress the progress of subsequent corrosion of the plating layer by acting as a strong protective film. On the other hand, when a crack is generated by processing, the Al phase is exposed, and the corrosion of the Al phase proceeds simultaneously with the corrosion of [Al / Zn / MgZn 2 ternary eutectic structure]. The Al phase is separated into a fine Al phase and a fine Zn phase at room temperature. Since the fine Zn phase in the Al phase does not become a stable corrosion product, the corrosion resistance after processing is reduced to the corrosion resistance before processing. It is thought that it is inferior compared.

従って、Al相中にZn−Mg系金属間化合物を析出させることにより加工後耐食性が向上する理由は、Al相中にZn−Mg系金属間化合物を析出させることにより、Al相中の微細なZn相が腐食した際、Zn−Mg系金属間化合物が腐食生成物を安定な塩基性塩化亜鉛や塩基性塩化亜鉛アルミニウム、塩基性炭酸亜鉛アルミニウム等にすることにより、その後のめっき層の腐食の進行を抑制するためであると考えられる。   Accordingly, the reason why the post-processing corrosion resistance is improved by precipitating the Zn—Mg intermetallic compound in the Al phase is that the Zn—Mg intermetallic compound is precipitated in the Al phase, so that the fineness in the Al phase is reduced. When the Zn phase corrodes, the Zn-Mg intermetallic compound converts the corrosion products into stable basic zinc chloride, basic zinc aluminum chloride, basic zinc aluminum carbonate, etc. This is considered to be for suppressing the progress.

また、Zn−Mg系金属間化合物を析出させることが可能となるほど高濃度のMgをAl層中に固溶させていることも腐食生成物を安定化させることに寄与していると考えられる。   Moreover, it is thought that it is contributing to stabilizing a corrosion product that Mg-concentrated so high concentration that it becomes possible to precipitate a Zn-Mg type intermetallic compound in an Al layer.

Al相中にZn−Mg系金属間化合物を析出させるためには、高温で晶出するAl相中に過飽和にMgを固溶させておくことが必要である。具体的には、高いMg濃度のめっき浴を使用し、Al相中のMgの濃度低下を抑制する目的でAl相を2次アームの大きなデンドライト組織から等軸晶に近づけることが効果的である。凝固組織を等軸晶に近づける方法としては、冷却速度を大きくし、組織的過冷度を大きくする方法が一般的であるが、工業的に可能な冷却速度には限界があるため、Alの晶出核となる物質を添加し、Al相の核生成エネルギーを小さくすることが有効である。   In order to precipitate a Zn—Mg intermetallic compound in the Al phase, it is necessary to make Mg super-saturated in the Al phase that crystallizes at a high temperature. Specifically, it is effective to use a plating bath with a high Mg concentration and to bring the Al phase closer to an equiaxed crystal from a dendrite structure having a large secondary arm in order to suppress a decrease in Mg concentration in the Al phase. . As a method of bringing the solidified structure closer to the equiaxed crystal, a method of increasing the cooling rate and increasing the degree of systematic supercooling is general, but since there is a limit to the cooling rate that can be industrially produced, Al It is effective to add a substance that becomes a crystallization nucleus to reduce the nucleation energy of the Al phase.

具体的には、ブラベー格子の格子面を構成する格子方向の一方の面間隔が2.57Å以上3.15Å以下、他方の面間隔が3.64Å以上4.46Å以下である格子面を持つ金属間化合物をめっき層に添加する。これにより、Al相の結晶が微細で均一な等軸晶となる理由は、この格子面がAlの{110}面と整合性が良いためであると考えられる。Alは結晶構造がFCCであるため、{110}面が最も成長し易い。このAlの{110}面と整合性が良い格子面をもつ金属間化合物を添加することにより、この成長し易いAlの{110}面の核生成サイトとして働き、Al相の核生成エネルギーを小さくするため、凝固組織を等軸晶に近づけることが可能となると考えられる。   Specifically, a metal having a lattice plane in which the lattice spacing of one of the lattice directions constituting the lattice plane of the Bravais lattice is 2.57 mm to 3.15 mm and the other surface spacing is 3.64 mm to 4.46 mm. An intermetallic compound is added to the plating layer. Thereby, it is considered that the reason why the crystal of the Al phase becomes a fine and uniform equiaxed crystal is that this lattice plane has good consistency with the {110} plane of Al. Since Al has a crystal structure of FCC, the {110} plane is most likely to grow. By adding an intermetallic compound having a lattice plane having good consistency with the Al {110} plane, it functions as a nucleation site for the Al {110} plane which is easy to grow, thereby reducing the nucleation energy of the Al phase. Therefore, it is considered that the solidified structure can be brought closer to an equiaxed crystal.

ブラベー格子の格子面を構成する格子方向の一方の面間隔を2.57Å以上3.15Å以下に限定した理由は、2.57Å未満、又は3.15Åを超えるとAlの{110}面と整合性が悪くなり、加工部耐食性が低下するためであり、また、他方の面間隔を3.64Å以上4.46Å以下に限定した理由は、3.64Å未満、又は4.46Åを超えるとAlの{110}面と整合性が悪くなり、加工部耐食性が低下するためである。   The reason for limiting the distance between one surface in the lattice direction constituting the lattice surface of the Bravais lattice to 2.57 mm or more and 3.15 mm or less is that it matches the Al {110} plane when less than 2.57 mm or more than 3.15 mm. This is because the corrosion resistance of the processed part is deteriorated and the corrosion resistance of the processed part is lowered, and the reason why the other surface interval is limited to 3.64 mm or more and 4.46 mm or less is less than 3.64 mm or exceeds 4.46 mm. This is because the compatibility with the {110} plane is deteriorated and the corrosion resistance of the processed portion is lowered.

また、Alの結晶系は立方晶であるため、金属間化合物の結晶系は、軸角に直角を持つ立方晶、正方晶、斜方晶、単斜晶、六方晶のいずれかであることが望ましい。   In addition, since the crystal system of Al is cubic, the crystal system of the intermetallic compound may be any one of cubic, tetragonal, orthorhombic, monoclinic, and hexagonal with a right angle to the axis angle. desirable.

金属間化合物は少量の添加で効果を発揮し、添加量が多くなるとめっき後の外観が粗雑になる等の外観不良が発生するため、上限は1質量%が望ましい。   The intermetallic compound is effective when added in a small amount, and when the added amount increases, appearance defects such as a rough appearance after plating occur. Therefore, the upper limit is desirably 1% by mass.

本発明者等が多数のめっき中のAl相を調査した結果、大部分のAl相のデンドライトの中心から大きさ数μmの金属間化合物が観察された。さらにEBSP法を用いて金属間化合物とAl相の結晶方位を同定したところ、金属間化合物の格子方向の一方の面間隔が2.57Å以上3.15Å以下他方の面間隔が3.64Å以上4.46Å以下である格子面とAl相の{110}面が平行であり、Al相のデンドライトが[110]方向に成長していることが確認された。   As a result of the inventors investigating a large number of Al phases in plating, intermetallic compounds having a size of several μm were observed from the center of most Al phase dendrites. Further, when the crystal orientations of the intermetallic compound and the Al phase were identified by using the EBSP method, one interplanar spacing in the lattice direction of the intermetallic compound was 2.57 mm to 3.15 mm, and the other interplanar spacing was 3.64 mm to 4 It was confirmed that the lattice plane of .46 cm or less and the Al phase {110} plane were parallel, and the Al phase dendrite grew in the [110] direction.

Al相中に存在するZn−Mg系金属間化合物の一例として、Al−Ti金属間化合物を添加したAl−Zn−Mg−Si系めっき中の,Al相中に存在するZn−Mg系金属間化合物を図1、図2に示す。   As an example of the Zn-Mg intermetallic compound existing in the Al phase, between the Zn-Mg based metals present in the Al phase in the Al-Zn-Mg-Si based plating to which the Al-Ti intermetallic compound is added. The compounds are shown in FIGS.

図1の上段の(a)は、本発明におけるめっき鋼材のめっき層の顕微鏡写真(倍率5000倍)であり、該写真中の各組織の分布状態を図示したものが下段の(b)である。図1は、[Al相]1、[Al/Zn/MgZn2の三元共晶組織]2、及び[Zn−Mg系金属間化合物を含んだ相]3が存在する組織となっていて、この図からも解るように、本発明におけるめっき鋼材のめっき層の顕微鏡写真によって明確にAl相を特定することができる。 (A) in the upper part of FIG. 1 is a micrograph (magnification 5000 times) of the plating layer of the plated steel material in the present invention, and the lower part (b) illustrates the distribution state of each structure in the photograph. . 1, [Al phase] 1, have a [Al / Zn / MgZn 2 ternary eutectic structure] 2, and [containing Zn-Mg intermetallic compound phase] 3 is present tissue, As can be seen from this figure, the Al phase can be clearly identified by the micrograph of the plated layer of the plated steel material in the present invention.

また、同様にZn−Mg系金属間化合物を含有するAl相の透過電子顕微鏡写真(倍率28000倍)を図2に示す。Al相1は常温では微細なAl相と微細なZn相4が析出するが、透過電子顕微鏡のEDX分析により確認した結果、Mgを過飽和に固溶させた部分では、Al相とZn相の共析5、MgZn2相6が析出することが判った。また、(Al0.8Si0.23金属間化合物7が存在していた。 Similarly, FIG. 2 shows a transmission electron micrograph (magnification 28,000 times) of an Al phase containing a Zn—Mg intermetallic compound. The Al phase 1 precipitates a fine Al phase and a fine Zn phase 4 at room temperature. As a result of confirmation by EDX analysis with a transmission electron microscope, the Al phase and Zn phase coexist in the portion where Mg is supersaturated. It was found that precipitation 5 and MgZn 2 phase 6 were precipitated. In addition, (Al 0.8 Si 0.2 ) 3 intermetallic compound 7 was present.

本発明の下地鋼材としては、鋼板のみならず、線材、形鋼、条鋼、鋼管など種々の鋼材が使用できる。鋼板としては、熱延鋼板、冷延鋼板共に使用でき、鋼種もAlキルド鋼、Ti、Nb等を添加した極低炭素鋼板、および、これらにP、Si、Mn等の強化元素を添加した高強度鋼、ステンレス鋼等種々のものが適用できる。本発明品の製造方法については、特に限定することなく鋼板の連続めっき、鋼材や線材のどぶづけめっき法など種々の方法が適用できる。下層としてNiプレめっきを施す場合も、通常行われているプレめっき方法を適用すれば良い。   As the base steel material of the present invention, not only a steel plate but also various steel materials such as a wire, a shape steel, a steel bar, and a steel pipe can be used. As the steel sheet, both hot-rolled steel sheets and cold-rolled steel sheets can be used, and the steel grades are extremely low carbon steel sheets to which Al killed steel, Ti, Nb, etc. are added, and high strength elements such as P, Si, Mn, etc. added to these. Various materials such as strength steel and stainless steel can be applied. There are no particular limitations on the method for producing the product of the present invention, and various methods such as continuous plating of steel plates and dip plating of steel materials and wires can be applied. Even when Ni pre-plating is applied as the lower layer, a conventional pre-plating method may be applied.

めっきの付着量については特に制約は設けないが、耐食性の観点から10g/m2以上、加工性の観点から350g/m2以下で有ることが望ましい。 There are no particular restrictions on the amount of plating deposited, but it is preferably 10 g / m 2 or more from the viewpoint of corrosion resistance and 350 g / m 2 or less from the viewpoint of workability.

以下、実施例により本発明を具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

まず、厚さ1mmの冷延鋼板を準備し、これに各種金属又は金属間間化合物を添加した450℃のZn−Mg−Alめっき浴、Zn−Mg−Al−Siめっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を片面80g/m2に調整した。冷却速度は5〜20℃/sの範囲で変化させた。得られためっき鋼板のめっき組成を表2に示す。Al相中のZn−Mg系金属間化合物は、作製したサンプルを研磨後、Al相をSEMとEDXを使用して観察し、その有無を調査した。 First, a cold-rolled steel sheet having a thickness of 1 mm was prepared, and hot-plated for 3 seconds in a 450 ° C. Zn—Mg—Al plating bath and Zn—Mg—Al—Si plating bath to which various metals or intermetallic compounds were added. The amount of plating adhesion was adjusted to 80 g / m 2 on one side by N 2 wiping. The cooling rate was changed in the range of 5 to 20 ° C./s. Table 2 shows the plating composition of the obtained plated steel sheet. Regarding the Zn—Mg intermetallic compound in the Al phase, the prepared sample was polished, the Al phase was observed using SEM and EDX, and the presence or absence was investigated.

金属間化合物はEDXを使用して元素と組成を分析した。また、表1に各金属間化合物のAlの{110}面と近い面の面指数とその面を構成する格子方向の方向指数、及び面間隔を示す。   The intermetallic compounds were analyzed for elements and composition using EDX. Table 1 shows the surface index of the surface close to the Al {110} surface of each intermetallic compound, the direction index in the lattice direction constituting the surface, and the surface spacing.

Al系金属間化合物の中にはめっき浴中に溶解し、再晶出した際にAlの一部がSiに置換されたと考えられるものも存在したが、結晶方位と面間隔に大きな変化が見られなかったため、実施例ではSiに置換されていないAl系金属間化合物として表記した。   Although some Al-based intermetallic compounds were dissolved in the plating bath and recrystallized, some of the Al was considered to be replaced by Si, but there were significant changes in crystal orientation and interplanar spacing. In the examples, it was expressed as an Al-based intermetallic compound not substituted with Si.

加工部耐食性は、作製しためっき鋼板を180℃折り曲げ,折り曲げ部の耐食性を塩水散布曝露試験で評価した。塩水散布曝露試験は、屋外に曝したサンプルに3回/週、5%NaCl溶液を噴霧した。評価は、折り曲げ部で赤錆が発生するまでの試験期間を調査し、以下の評価で○を合格とした。
○:赤錆が発生するまでの試験期間が150週以上
△:赤錆が発生するまでの試験期間が100週以上150週未満
×:赤錆が発生するまでの試験期間が100週未満
The corrosion resistance of the processed part was evaluated by bending the prepared plated steel sheet at 180 ° C., and evaluating the corrosion resistance of the bent part in a salt water spray exposure test. In the salt spray exposure test, samples exposed outdoors were sprayed 3 times / week with a 5% NaCl solution. Evaluation examined the test period until red rust generate | occur | produces in a bending part, and made ○ pass by the following evaluation.
○: The test period until red rust occurs is 150 weeks or more
Δ: Test period until red rust occurs 100 weeks or more and less than 150 weeks ×: Test period until red rust occurs less than 100 weeks

結果を表に示す。番号8、9、10、18、19、20はAl相中にZn−Mg系金属間化合物が無いため耐食性が不合格となった。 The results are shown in Table 1 . Nos. 8, 9, 10, 18, 19, and 20 failed in corrosion resistance because there was no Zn—Mg intermetallic compound in the Al phase.

これら以外の本発明品は、加工部の耐食性が優れためっき鋼板であった。   The products of the present invention other than these were plated steel sheets having excellent corrosion resistance of the processed parts.

Figure 0004374281
Figure 0004374281

まず、厚さ1mmの冷延鋼板を準備し、これにTi−Al系金属間間化合物を添加した450℃のZn−Mg−Al−Siめっき浴で3秒溶融めっきを行い、N2ワイピングでめっき付着量を片面80g/m2に調整した。冷却速度は10℃/sとした。得られためっき鋼板のめっき層中組成は、Mg3%、Al11%、Si0.18%、Ti0.001%であった。作製したサンプルを研磨後、Al相をSEMで観察し、Al相中にZn−Mg系金属間化合物を含有する場所を探索し、FIBを使用してサンプリング後、透過電子顕微鏡で観察した。Al相のZn−Mg系金属間化合物をEDXで分析した結果、Znの質量%は約84質量%であった。また、電子線回折結果を同定した結果、Zn−Mg系金属間化合物はMgZn2の回折パターンを示していた。 First, prepare the cold-rolled steel plate having a thickness of 1 mm, this for 3 seconds dip plating with Zn-Mg-Al-Si plating bath 450 ° C. with the addition of Ti-Al system intermetallic intermetallic compound, in N 2 wiping The amount of plating adhesion was adjusted to 80 g / m 2 on one side. The cooling rate was 10 ° C./s. The composition in the plating layer of the obtained plated steel sheet was Mg 3%, Al 11%, Si 0.18%, and Ti 0.001%. After polishing the prepared sample, the Al phase was observed with an SEM, the place containing the Zn—Mg intermetallic compound in the Al phase was searched, and after sampling using FIB, it was observed with a transmission electron microscope. As a result of analyzing the Al-phase Zn—Mg intermetallic compound by EDX, the mass% of Zn was about 84 mass%. As a result of identification of an electron-ray diffraction results, Zn-Mg intermetallic compound showed a diffraction pattern of the MgZn 2.

以上述べてきたように、本発明により、Zn−Al−Mg系めっき鋼板において、加工部耐食性が優れためっき鋼材を製造することが可能となった。これまで加工部耐食性低下のために使用できなかった部材に高耐食性鋼板の使用が広がることによって、これら加工品の耐久性向上に大いに貢献可能となる。   As described above, according to the present invention, it is possible to produce a plated steel material having excellent processed portion corrosion resistance in a Zn-Al-Mg-based plated steel sheet. By expanding the use of high corrosion-resistant steel sheets to members that could not be used due to a decrease in the corrosion resistance of processed parts so far, it becomes possible to greatly contribute to improving the durability of these processed products.

Zn−Mg系金属間化合物を含有するAl相の一例を示す図で,(a)はめっき鋼板のめっき層の図面代用顕微鏡写真(3000倍)で,(b)は写真中の各組織の分布状態を示した図である。It is a figure which shows an example of the Al phase containing a Zn-Mg type | system | group intermetallic compound, (a) is a drawing substitute micrograph of the plating layer of a plated steel plate (3000 times), (b) is distribution of each structure | tissue in a photograph It is the figure which showed the state. Zn−Mg系金属間化合物を含有するAl相の図面代用透過電子顕微鏡写真である。It is a drawing-substitution transmission electron micrograph of an Al phase containing a Zn—Mg-based intermetallic compound.

1 Al相
2 Al/Zn/MgZn2の三元共晶組織
3 Zn−Mg系金属間化合物を含んだ相
4 Zn相
5 Al−Znの共析
6 MgZn2
7 Ti(Al0.8Si0.23金属間化合物
DESCRIPTION OF SYMBOLS 1 Al phase 2 Al / Zn / MgZn2 ternary eutectic structure 3 Zn-Mg phase containing intermetallic compound 4 Zn phase 5 Al-Zn eutectoid 6 MgZn 2 phase 7 Ti (Al 0.8 Si 0.2 ) 3 Intermetallic compounds

Claims (5)

Al:4〜10質量%、Mg:2〜10質量%含有し残部がZn及び不可避的不純物よりなるZn合金めっき層を表面に有するめっき鋼材のめっき層が〔Al/Zn/MgZn2の三元共晶組織〕の素地中に〔Al相〕を含有した金属組織を有し、かつ、この〔Al相〕の中にブラベー格子の格子面を構成する格子方向の一方の面間隔が2.57Å以上3.15Å以下、他方の面間隔が3.64Å以上4.46Å以下である格子面を持つ金属間化合物とZn−Mg系金属間化合物を含有し、さらに〔Al相〕のデンドライトが[110]方向に成長した等軸晶であることを特徴とする加工部耐食性に優れる溶融めっき鋼材。 The plating layer of the plated steel material containing Al: 4 to 10% by mass, Mg: 2 to 10% by mass, the balance being Zn and an unavoidable impurity is formed on the surface [Al / Zn / MgZn 2 ternary The [eutectic structure] substrate has a metal structure containing [Al phase], and the spacing between one surface in the lattice direction constituting the lattice plane of the Bravey lattice is 2.57 mm in this [Al phase]. It contains an intermetallic compound having a lattice plane of 3.15 mm or less and an interval between the other surfaces of 3.64 mm or more and 4.46 mm or less and a Zn—Mg intermetallic compound, and [Al phase] dendrite is [110]. A hot-dip galvanized steel material excellent in corrosion resistance of the processed part, characterized by being equiaxed crystals grown in the direction . Al:4〜22質量%、Mg:2〜10質量%、Si:2質量%以下含有し残部がZn及び不可避的不純物よりなるZn合金めっき層を表面に有するめっき鋼材のめっき層が〔Al/Zn/MgZn2の三元共晶組織〕の素地中に〔Mg2Si相〕と〔Al相〕が混在した金属組織を有し、かつ、この〔Al相〕の中にブラベー格子の格子面を構成する格子方向の一方の面間隔が2.57Å以上3.15Å以下、他方の面間隔が3.64Å以上4.46Å以下である格子面を持つ金属間化合物とZn−Mg系金属間化合物を含有し、さらに〔Al相〕のデンドライトが[110]方向に成長した等軸晶であることを特徴とする加工部耐食性に優れる溶融めっき鋼材。 A plating layer of a plated steel material containing Al: 4 to 22% by mass, Mg: 2 to 10% by mass, Si: 2% by mass or less, with the balance being Zn and an inevitable impurity Zn alloy plating layer on the surface [Al / has a Zn / MgZn 2 ternary eutectic structure] metallographic structure in the matrix and [Mg 2 Si phase] is [Al phase] were mixed, and the grating surface of the Bravais lattice in the [Al phase] And an intermetallic compound having a lattice plane in which the distance between one plane in the lattice direction constituting the layer is 2.57 mm to 3.15 mm and the other plane distance is 3.64 mm to 4.46 mm, and a Zn-Mg intermetallic compound Further, the [Al phase] dendrite is an equiaxed crystal grown in the [110] direction . 請求項1又は請求項2に記載のZn−Mg系金属間化合物がMgZn2、Mg2Zn11のいずれかであることを特徴とする加工部耐食性に優れる溶融めっき鋼材。 A hot-dip galvanized steel material excellent in corrosion resistance of a processed part, wherein the Zn-Mg intermetallic compound according to claim 1 or 2 is either MgZn 2 or Mg 2 Zn 11 . 請求項1又は請求項2に記載の金属間化合物の結晶系が、立方晶、正方晶、斜方晶、単斜晶、六方晶のいずれかであることを特徴とする加工部耐食性に優れる溶融めっき鋼材。 The melt having excellent corrosion resistance in the processed part, characterized in that the crystal system of the intermetallic compound according to claim 1 or 2 is any one of cubic, tetragonal, orthorhombic, monoclinic and hexagonal. Plated steel. 請求項1、請求項2、請求項4のいずれかに記載の金属間化合物がTiAl3、ZrAl3、HfAl3、SrAl4、CaAl4、NiAl3、TiB2のいずれかであることを特徴とする加工部耐食性に優れる溶融めっき鋼材。 The intermetallic compound according to any one of claims 1, 2, and 4 is any one of TiAl 3 , ZrAl 3 , HfAl 3 , SrAl 4 , CaAl 4 , NiAl 3 , and TiB 2. Hot-dip galvanized steel with excellent corrosion resistance.
JP2004156812A 2004-05-26 2004-05-26 Hot-dip galvanized steel with excellent corrosion resistance Expired - Lifetime JP4374281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004156812A JP4374281B2 (en) 2004-05-26 2004-05-26 Hot-dip galvanized steel with excellent corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004156812A JP4374281B2 (en) 2004-05-26 2004-05-26 Hot-dip galvanized steel with excellent corrosion resistance

Publications (2)

Publication Number Publication Date
JP2005336546A JP2005336546A (en) 2005-12-08
JP4374281B2 true JP4374281B2 (en) 2009-12-02

Family

ID=35490434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156812A Expired - Lifetime JP4374281B2 (en) 2004-05-26 2004-05-26 Hot-dip galvanized steel with excellent corrosion resistance

Country Status (1)

Country Link
JP (1) JP4374281B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4874328B2 (en) 2006-03-20 2012-02-15 新日本製鐵株式会社 High corrosion resistance hot-dip galvanized steel
KR101417304B1 (en) * 2012-07-23 2014-07-08 주식회사 포스코 HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT ANTI-CORROSION AND SURFACE APPEARANCE AND METHOD FOR MANUFACTURING THE STEEL SHEET USING THE SAME
KR101692118B1 (en) * 2014-12-12 2017-01-17 동부제철 주식회사 Coating composition, and method for coating of steel using the same, and coating steel coated coating composition
EP3369837B1 (en) 2015-10-26 2020-02-05 Nippon Steel Corporation Plated steel sheet
CN108384977B (en) * 2018-05-28 2019-10-15 天津大学 A kind of diphase particles reinforced Al matrix composite and preparation method thereof
KR102297298B1 (en) * 2019-12-06 2021-09-03 주식회사 포스코 Galvanizing steel sheet having excelent bendability and corrosion resistance, and manufacturing method thereof
KR102305753B1 (en) * 2019-12-18 2021-09-27 주식회사 포스코 Zn-Al-Mg BASED HOT DIP ALLOY COATED STEEL MATERIAL HAVING EXCELLENT CORROSION RESISTANCE OF PROCESSED PARTS AND METHOD OF MANUFACTURING THE SAME
KR20230005364A (en) * 2020-06-09 2023-01-09 닛폰세이테츠 가부시키가이샤 Hot-dip Zn-Al-Mg coated steel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3179401B2 (en) * 1996-12-13 2001-06-25 日新製鋼株式会社 Hot-dip Zn-Al-Mg plated steel sheet with good corrosion resistance and surface appearance and method for producing the same
JP2001020050A (en) * 1999-07-08 2001-01-23 Nippon Steel Corp HOT DIP Zn-Al-Mg PLATED STEEL EXCELLENT IN CORROSION RESISTANCE IN NONCOATED PART AND COATED EDGE PART AND ITS PRODUCTION
JP3684135B2 (en) * 2000-04-11 2005-08-17 新日本製鐵株式会社 Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and method for producing the same
JP2001355055A (en) * 2000-04-11 2001-12-25 Nippon Steel Corp HOT DIP Zn-Al-Mg-Si PLATED STEEL EXCELLENT IN CORROSION RESISTANCE OF UNCOATED PART AND COATED EDGE FACE PART
JP4224256B2 (en) * 2002-05-02 2009-02-12 新日本製鐵株式会社 High corrosion resistance hot-dip Zn-plated steel with excellent surface smoothness
JP4171232B2 (en) * 2002-03-08 2008-10-22 新日本製鐵株式会社 Hot-dip galvanized steel with excellent surface smoothness
JP3760901B2 (en) * 2002-08-06 2006-03-29 Jfeスチール株式会社 Hot-dip Zn-Al-Mg-based plated steel sheet excellent in workability and corrosion resistance and method for producing the same
AU2003275688B2 (en) * 2002-10-28 2006-12-14 Nippon Steel Corporation High corrosion-resistant hot dip coated steel product excellent in surface smoothness and formability, and method for producing hot dip coated steel product

Also Published As

Publication number Publication date
JP2005336546A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
TWI664315B (en) Coated steel
US20080131729A1 (en) Highly corrosion-resistant hot-dip galvanized steel product excellent in surface smoothness and formability and process for producing same
JP4874328B2 (en) High corrosion resistance hot-dip galvanized steel
US7238431B2 (en) Highly corrosion-resistant hot dip plated steel material excellent in surface smoothness
US8562757B2 (en) Mg-based alloy plated steel material
JP5556186B2 (en) High corrosion resistance hot-dip galvanized steel sheet
CA2611439C (en) Hot-dip sn-zn system coated steel sheet having excellent corrosion resistance
JP4528187B2 (en) Hot-dip steel sheet with good appearance
JP2003268519A (en) Galvanized steel sheet having excellent corrosion resistance after coating and image clarity in coating
JP5200851B2 (en) Zn-Al-Mg-based plated steel sheet and method for producing the same
JP4171232B2 (en) Hot-dip galvanized steel with excellent surface smoothness
JP5532552B2 (en) Hot-dip Al alloy plated steel
JP4374281B2 (en) Hot-dip galvanized steel with excellent corrosion resistance
JP7052942B1 (en) Plated steel
JP4224256B2 (en) High corrosion resistance hot-dip Zn-plated steel with excellent surface smoothness
JP4374263B2 (en) High corrosion resistance hot-dip galvanized steel sheet with excellent abrasion resistance and manufacturing method thereof
JP4757581B2 (en) High corrosion resistance hot-dip galvanized steel sheet with excellent weldability and manufacturing method thereof
KR101168730B1 (en) Mg-BASED ALLOY PLATED STEEL MATERIAL
TWI794874B (en) Plated steel
US11814732B2 (en) Hot-dip plated steel
TWI825475B (en) Hot plated steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4374281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350