JP3179401B2 - Hot-dip Zn-Al-Mg plated steel sheet with good corrosion resistance and surface appearance and method for producing the same - Google Patents

Hot-dip Zn-Al-Mg plated steel sheet with good corrosion resistance and surface appearance and method for producing the same

Info

Publication number
JP3179401B2
JP3179401B2 JP36228797A JP36228797A JP3179401B2 JP 3179401 B2 JP3179401 B2 JP 3179401B2 JP 36228797 A JP36228797 A JP 36228797A JP 36228797 A JP36228797 A JP 36228797A JP 3179401 B2 JP3179401 B2 JP 3179401B2
Authority
JP
Japan
Prior art keywords
phase
steel sheet
dip
hot
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36228797A
Other languages
Japanese (ja)
Other versions
JPH10226865A (en
Inventor
厚志 小松
太佳夫 辻村
敦司 安藤
敏晴 橘高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26579641&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3179401(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP36228797A priority Critical patent/JP3179401B2/en
Publication of JPH10226865A publication Critical patent/JPH10226865A/en
Application granted granted Critical
Publication of JP3179401B2 publication Critical patent/JP3179401B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,耐食性と表面外観
の良好な溶融Zn−Al−Mgめっき鋼板およびその製
造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot-dip Zn-Al-Mg plated steel sheet having excellent corrosion resistance and surface appearance, and a method for producing the same.

【0002】[0002]

【従来の技術】Zn中にAlとMgを適量含有させため
っき浴を用いた溶融Zn−Al−Mgめっき鋼板は耐食
性に優れるので,従来より種々の開発研究が進められて
きた。しかし,現在のところ工業製品としての商業的成
功例を見ない。
2. Description of the Related Art Various developmental researches have been conducted on a hot-dip Zn-Al-Mg plated steel sheet using a plating bath containing Zn and an appropriate amount of Al and Mg because of its excellent corrosion resistance. However, there is no commercial success as an industrial product at present.

【0003】例えば米国特許第3,505,043 号明細書にお
いてAl:3〜17重量%,Mg:1〜5%重量%,残
部がZnからなる溶融めっき浴を用いた耐食性に優れた
溶融Zn−Al−Mgめっき鋼板が提案されて以来,こ
の種の基本浴組成に対して各種の添加元素を配合したり
製造条件を規制することにより,一層の耐食性や製造性
を改善する提案が特公昭64−8702号公報,特公昭
64−11112号公報,特開平8−60324号公報
等になされている。
For example, in US Pat. No. 3,505,043, molten Zn—Al—Mg having excellent corrosion resistance using a hot-dip plating bath composed of 3 to 17% by weight of Al, 1 to 5% by weight of Mg, and the balance of Zn. Since the proposal of plated steel sheets, a proposal has been made to further improve corrosion resistance and productivity by blending various additional elements with the basic bath composition of this type and regulating the production conditions (Japanese Patent Publication No. 64-8702). And Japanese Patent Publication No. Sho 64-11112 and Japanese Patent Laid-Open Publication No. Hei 8-60324.

【0004】[0004]

【発明が解決しようとする課題】かような溶融Zn−A
l−Mgめっき鋼板の工業的な製造にあたっては,得ら
れる溶融めっき鋼板が優れた耐食性を有することはもと
より,耐食性と表面外観が良好な帯成品を製造性よく生
産できることが必要である。すなわち,通常の連続溶融
めっき設備を用いて,耐食性と表面外観の良好な溶融Z
n−Al−Mgめっき鋼板が安定して連続生産できるこ
とが必要である。本明細書において,鋼帯を連続溶融め
っき設備に通板して製造される溶融Zn−Al−Mgめ
っき鋼帯であっても,便宜上,溶融Zn−Al−Mgめ
っき鋼板と呼ぶことがある。すなわち,めっき鋼板とめ
っき鋼帯は同じものを表すものとする。
SUMMARY OF THE INVENTION Such molten Zn-A
In the industrial production of 1-Mg plated steel sheets, it is necessary that not only the obtained hot-dip coated steel sheets have excellent corrosion resistance, but also that a strip having good corrosion resistance and surface appearance can be produced with good productivity. That is, using a normal continuous hot-dip plating equipment, a hot-dip Z having good corrosion resistance and surface appearance can be obtained.
It is necessary that n-Al-Mg plated steel sheets can be stably and continuously produced. In this specification, a hot-dip Zn-Al-Mg-plated steel strip manufactured by passing a steel strip through a continuous hot-dip plating facility may be referred to as a hot-dip Zn-Al-Mg-plated steel sheet for convenience. That is, the plated steel sheet and the plated steel strip represent the same thing.

【0005】Zn−Al−Mgの三元平衡状態図上で
は,Alが約4重量%付近でMgが約3重量%近傍にお
いて,融点が最も低くなる三元共晶点(融点=343
℃)が見られる。したがって,Zn−Al−Mgの三元
合金を基本とした溶融Zn−Al−Mgめっき鋼板の製
造にあたっては,一見したところ,この三元共晶点の近
傍の組成とすることが有利である。
[0005] In the ternary equilibrium diagram of Zn-Al-Mg, the ternary eutectic point at which the melting point becomes the lowest is obtained when Al is about 4% by weight and Mg is about 3% by weight (melting point = 343).
° C). Therefore, in producing a hot-dip Zn-Al-Mg plated steel sheet based on a ternary alloy of Zn-Al-Mg, at first glance, it is advantageous to have a composition near this ternary eutectic point.

【0006】しかし,この三元共晶点近傍の浴組成を採
用した場合に,めっき層の金属組織中にZn11Mg2
の相,実際には,Al/Zn/Zn11Mg2の三元共晶
の素地自体或いは該素地中に〔Al初晶〕または〔Al
初晶〕と〔Zn単相〕が混在してなるZn11Mg2系の
相が局部的に晶出する現象が起きる。この局部的に晶出
したZn11Mg2系の相は他の相(Zn2Mg系の相)よ
りも変色しやすく,放置しておくと,この部分が非常に
目立った色調となり,表面外観を著しく悪くする。した
がって,溶融めっき鋼板としての製品価値を著しく低下
させる。
However, when the bath composition near the ternary eutectic point is adopted, the Zn 11 Mg 2 phase, in fact, Al / Zn / Zn 11 Mg 2 The original eutectic substrate itself or [Al primary crystal] or [Al
A phenomenon occurs in which a Zn 11 Mg 2 -based phase in which [primary crystal] and [Zn single phase] are mixed is locally crystallized. This locally crystallized Zn 11 Mg 2 -based phase is more easily discolored than other phases (Zn 2 Mg-based phase). Significantly worsens. Therefore, the product value as a hot-dip coated steel sheet is significantly reduced.

【0007】加えて,本発明者らの経験によると,この
Zn11Mg2系の相が局部的に晶出した場合に,このZ
11Mg2系の部分が優先的に腐食される現象が起きる
ことも明らかとなった。
In addition, according to the experience of the present inventors, when the Zn 11 Mg 2 phase is locally crystallized, this Z
It has also been clarified that the n 11 Mg 2 -based portion is preferentially corroded.

【0008】したがって,本発明の課題はこのような問
題を解決し,耐食性と表面外観の良好な溶融Zn−Al
−Mgめっき鋼板を提供しようとするものである。
Accordingly, an object of the present invention is to solve such a problem and to provide a molten Zn—Al alloy having good corrosion resistance and good surface appearance.
-To provide an Mg-plated steel sheet.

【0009】[0009]

【課題を解決するための手段】本発明によれば,Al:
4.0〜10重量%,Mg:1.0〜4.0重量%,残部
がZnおよび不可避的不純物からなる溶融Zn−Al−
Mgめっき層を鋼板表面に形成した連続溶融Zn基めっ
き鋼板であって,当該めっき層が,〔Al/Zn/Zn
2Mgの三元共晶組織〕の素地中に〔初晶Al相〕,ま
たは〔初晶Al相〕と〔Zn単相〕が混在した金属組織
を有する耐食性および表面外観の良好な連続溶融Zn−
Al−Mgめっき鋼板を提供する。
According to the present invention, Al:
4.0 to 10% by weight, Mg: 1.0 to 4.0% by weight, balance being Zn and molten Zn-Al- containing inevitable impurities.
A continuous hot-dip Zn-based steel sheet having an Mg plating layer formed on the surface of the steel sheet, wherein the plating layer is [Al / Zn / Zn
(2 ) A ternary eutectic structure of Mg in which a [primary Al phase] or a metallic structure in which [primary Al phase] and [Zn single phase] are mixed is a continuous molten Zn with good corrosion resistance and surface appearance. −
Provided is an Al-Mg plated steel sheet.

【0010】当該めっき層の金属組織は,好ましくは,
〔初晶Al相〕と〔Al/Zn/Zn2Mgの三元共晶
組織〕の合計量:80容積%以上,〔Zn単相〕:15
容積%以下(0容積%を含む)である。
The metal structure of the plating layer is preferably
Total amount of [primary Al phase] and [ternary eutectic structure of Al / Zn / Zn 2 Mg]: 80% by volume or more, [Zn single phase]: 15
% By volume (including 0% by volume).

【0011】本発明に従う溶融Zn−Al−Mgめっき
鋼板のめっき層は,〔Al/Zn/Zn11Mg2の三元
共晶組織〕を実質的に有しないし,また,〔Al/Zn
/Zn11Mg2の三元共晶組織〕の素地中に〔初晶Al
相〕または〔初晶Al相〕と〔Zn単相〕が混在した金
属組織を実質的に有しない。
The plating layer of the hot-dip Zn—Al—Mg plated steel sheet according to the present invention has substantially no [ternary eutectic structure of Al / Zn / Zn 11 Mg 2 ], and has a [Al / Zn
/ Zn 11 Mg 2 ternary eutectic structure]
Phase) or a metal structure in which [primary crystal Al phase] and [Zn single phase] coexist.

【0012】本発明に従う金属組織のめっき層を有する
溶融めっき鋼板は,連続溶融めっき設備におけるめっき
浴の浴温を融点以上470℃未満,好ましくは450℃
以下とし且つめっき後の冷却速度を10℃/秒以上に制
御するか,またはめっき浴の浴温を470℃以上で且つ
めっき後の冷却速度を0.5℃/秒以上に制御すること
によって鋼帯の形態で連続的に製造することができる。
The hot-dip coated steel sheet having a plated layer of a metal structure according to the present invention has a bath temperature of a plating bath in a continuous hot-dip plating facility of not less than the melting point and less than 470 ° C. , preferably 450 ° C.
Steel by and controlling the cooling rate after plating to 0.5 ° C. / sec or more or less as to and operatively controlling the cooling rate after plating than 10 ° C. / sec, or a bath temperature of the plating bath 470 ° C. or higher It can be manufactured continuously in the form of a band.

【0013】ここで,〔Al/Zn/Zn2Mgの三元
共晶組織〕とは,例えば図2の電子顕微鏡写真にその代
表例を示すように,Al相と,Zn相と,金属間化合物
Zn2Mg相との三元共晶組織であり,この三元共晶組
織を形成しているAl相は実際にはAl−Zn−Mgの
三元系平衡状態図における高温での「Al”相」(Zn
を固溶するAl固溶体であり,少量のMgを含む)に由
来するものである。この高温でのAl”相は常温では通
常は微細なAl相と微細なZn相に分離して現れる。ま
た,該三元共晶組織中のZn相は少量のAlを固溶し,
場合によってはさらに少量のMgを固溶したZn固溶体
である。該三元共晶組織中のZn2Mg相は,Zn−M
gの二元系平衡状態図のZn:約84重量%の付近に存
在する金属間化合物相である。この3つの相からなる三
元共晶組織を本明細書では〔Al/Zn/Zn2Mgの
三元共晶組織〕と表す。
Here, the "ternary eutectic structure of Al / Zn / Zn 2 Mg" means, for example, as shown in the electron micrograph of FIG. The compound has a ternary eutectic structure with a Zn 2 Mg phase, and the Al phase forming the ternary eutectic structure is actually “Al—Zn—Mg” at a high temperature in a ternary equilibrium diagram of Al—Zn—Mg. "Phase" (Zn
(Al solid solution containing a small amount of Mg). The Al ″ phase at a high temperature usually appears at room temperature as being separated into a fine Al phase and a fine Zn phase. The Zn phase in the ternary eutectic structure dissolves a small amount of Al,
In some cases, it is a Zn solid solution in which a small amount of Mg is further dissolved. The Zn 2 Mg phase in the ternary eutectic structure is Zn-M
g in the binary equilibrium diagram for Zn: an intermetallic compound phase present at around 84% by weight. In the present specification, the ternary eutectic structure composed of these three phases is referred to as [ternary eutectic structure of Al / Zn / Zn 2 Mg].

【0014】また,〔初晶Al相〕とは,例えば図1の
電子顕微鏡写真にその代表例を示すように,前記の三元
共晶組織の素地中に明瞭な境界をもって島状に見える相
であり,これはAl−Zn−Mgの三元系平衡状態図に
おける高温での「Al”相」( Znを固溶するAl固溶
体であり,少量のMgを含む)に由来するものである。
この高温でのAl”相はめっき浴のAlやMg濃度応じ
て固溶するZn量やMg量が相違する。この高温でのA
l”相は常温では通常は微細なAl相と微細なZn相に
分離するが,常温で見られる島状の形状は高温でのA
l”相の形骸を留めたものであると見てよい。この高温
でのAl”相(Al初晶と呼ばれる)に由来し且つ形状
的にはAl”相の形骸を留めている相を本明細書では
〔初晶Al相〕と呼ぶ。この〔初晶Al相〕は前記の三
元共晶組織を形成しているAl相とは顕微鏡観察におい
て明瞭に区別できる。
[0014] The "primary Al phase" is a phase which appears as an island with a clear boundary in the above-mentioned ternary eutectic structure as shown in a typical example in an electron micrograph of FIG. This is derived from the “Al” phase at high temperature in the ternary equilibrium diagram of Al—Zn—Mg (an Al solid solution that dissolves Zn and contains a small amount of Mg).
The Al "phase at this high temperature differs in the amount of Zn and Mg dissolved in solid solution depending on the Al and Mg concentrations in the plating bath.
The l ″ phase usually separates into a fine Al phase and a fine Zn phase at room temperature, but the island-like shape seen at room temperature is
It can be seen that the phase remains in the form of the 1 ″ phase. The phase originating from the Al ″ phase at this high temperature (referred to as an Al primary crystal) and retaining the form in the form of the Al ″ phase is referred to as a book. In the specification, this is referred to as “primary Al phase.” This “primary Al phase” can be clearly distinguished from the Al phase forming the ternary eutectic structure by microscopic observation.

【0015】また,〔Zn単相〕とは,例えば図3の電
子顕微鏡写真にその代表例を示すように,前記の三元共
晶組織の素地中に明瞭な境界をもって島状に見える相
(前記の初晶Al相よりはやや白く見える)であり,実
際には少量のAlさらには少量のMgを固溶しているこ
ともある。この〔Zn単相〕は前記の三元共晶組織を形
成しているZn相とは顕微鏡観察において明瞭に区別で
きる。
The [Zn single phase] refers to a phase which looks like an island with a clear boundary in the ternary eutectic structure as shown in a typical example in an electron micrograph of FIG. (It looks a little whiter than the primary Al phase), and in fact, a small amount of Al and a small amount of Mg may be dissolved. This [Zn single phase] can be clearly distinguished from the Zn phase forming the ternary eutectic structure by microscopic observation.

【0016】本明細書において〔Al/Zn/Zn2
gの三元共晶組織〕の素地中に〔初晶Al相〕,または
〔初晶Al相〕と〔Zn単相〕が混在した金属組織のこ
とを「Zn2Mg系の相」と呼ぶことがある。また,本
明細書において「Zn11Mg2系の相」と呼ぶものは,
〔Al/Zn/Zn11Mg2の三元共晶組織〕の素地自
体の金属組織,或いはこの素地中に〔初晶Al相〕,ま
たは〔初晶Al相〕と〔Zn単相〕が混在した金属組織
を表す。後者のZn11Mg2系の相が目視可能な大きさ
の斑点状として現れると表面外観を著しく悪くし,耐食
性も低下する。本発明に従うめっき層は,目視可能な大
きさの斑点状のZn11Mg2系の相が実質上存在しない
点に特徴がある。
In this specification, [Al / Zn / Zn 2 M
in the matrix of g ternary eutectic structure] [primary crystal Al phase] or [primary crystal Al phase] and that of [Zn single phase] is mixed-metal structure is referred to as "Zn 2 Mg-based phase" Sometimes. Also, in this specification, what is called “Zn 11 Mg 2 -based phase”
Metallographic structure of the substrate itself [ternary eutectic structure of Al / Zn / Zn 11 Mg 2 ], or [primary Al phase] or [primary Al phase] and [Zn single phase] mixed in this substrate Represents the metal structure obtained. When the latter Zn 11 Mg 2 -based phase appears as spots of visible size, the surface appearance is significantly deteriorated and the corrosion resistance is also reduced. The plating layer according to the present invention is characterized in that there is substantially no spot-like Zn 11 Mg 2 -based phase of a size that is visible.

【0017】[0017]

【発明の実施の形態】本発明に従う溶融Zn−Al−M
gめっき鋼板は,そのめっき層の組成がAl:4.0〜
10重量%,Mg:1.0〜4.0重量%,残部がZnお
よび不可避的不純物からなる。そして,該鋼板のめっき
層が,〔Al/Zn/Zn2Mgの三元共晶組織〕の素
地中に〔初晶Al相〕が混在した金属組織,または該素
地中に〔初晶Al相〕および〔Zn単相〕が混在した金
属組織から実質的になる点に特徴があり,これにより,
耐食性,表面外観および製造性を同時に改善したもので
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Fused Zn-Al-M according to the present invention
g-plated steel sheet, the composition of the plating layer is Al: 4.0-4.0.
10% by weight, Mg: 1.0 to 4.0% by weight, with the balance being Zn and unavoidable impurities. Then, the plating layer of the steel sheet has a metallic structure in which [primary Al phase] is mixed in a [Al / Zn / Zn 2 Mg ternary eutectic] base, or a [primary Al phase] in the base. ] And [Zn single phase] are substantially composed of a mixed metal structure.
Corrosion resistance, surface appearance and manufacturability were simultaneously improved.

【0018】このように,本発明に従う溶融Zn−Al
−Mgめっき鋼板は特定の金属組織を有する点に特徴が
あるが,まず,当該めっき鋼板の基本的なめっき組成か
ら説明する。
Thus, the molten Zn-Al according to the present invention
-The characteristic of the Mg-plated steel sheet is that it has a specific metal structure. First, the basic plating composition of the plated steel sheet will be described.

【0019】めっき層中のAlは,当該めっき鋼板の耐
食性の向上と当該めっき鋼板製造時のドロス発生を抑制
する作用を供する。Al含有量が4.0重量%未満では
耐食性向上効果が十分ではなく,またMg酸化物系のド
ロス発生を抑制する効果も低い。他方,Al含有量が1
0重量%を越えると,めっき層と母材鋼板との界面でF
e−Al合金層の成長が著しくなり,めっき密着性が悪
くなる。好ましいAl含有量は4.0〜9.0重量%,更
に好ましいAl含有量は5.0〜8.5重量%,一層好ま
しいAl含有量は5.0〜7.0重量%である。
Al in the plating layer serves to improve the corrosion resistance of the plated steel sheet and to suppress dross generation during the production of the plated steel sheet. If the Al content is less than 4.0% by weight, the effect of improving corrosion resistance is not sufficient, and the effect of suppressing the generation of dross of Mg oxide is low. On the other hand, when the Al content is 1
If it exceeds 0% by weight, F at the interface between the plating layer and the base steel sheet
The growth of the e-Al alloy layer becomes remarkable, and the plating adhesion deteriorates. The preferred Al content is 4.0 to 9.0% by weight, the more preferred Al content is 5.0 to 8.5% by weight, and the more preferred Al content is 5.0 to 7.0% by weight.

【0020】めっき層中のMgは,めっき層表面に均一
な腐食生成物を生成させて当該めっき鋼板の耐食性を著
しく高める作用を供する。Mg含有量が1.0%未満で
はかような腐食生成物を均一に生成させる作用が十分で
はなく,他方,Mg含有量が4.0%を越えてもMgに
よる耐食性向上効果は飽和し,かえってMg酸化物系の
ドロスが発生しやすくなるので,Mg含有量は1.0〜
4.0%とする。好ましいMg含有量は1.5〜4.0重
量%,さらに好ましいMg含有量は2.0〜3.5重量
%,一層好ましいMg含有量は2.5〜3.5重量%であ
る。
The Mg in the plating layer has a function of generating a uniform corrosion product on the surface of the plating layer and significantly increasing the corrosion resistance of the plated steel sheet. If the Mg content is less than 1.0%, the effect of uniformly producing such corrosion products is not sufficient, while if the Mg content exceeds 4.0%, the effect of improving the corrosion resistance by Mg is saturated, On the contrary, Mg oxide-based dross is likely to be generated.
4.0%. The preferred Mg content is 1.5-4.0% by weight, the more preferred Mg content is 2.0-3.5% by weight, and the more preferred Mg content is 2.5-3.5% by weight.

【0021】このようなAl量とMg量をZn中に含む
Zn−Al−Mgの三元組成において,Zn11Mg2
の相が晶出すると前記したように表面外観を悪くすると
共に耐食性も悪くすることがわかった。他方,めっき層
の組織を,〔Al/Zn/Zn2Mgの三元共晶組織〕
の素地中に〔初晶Al相〕,または〔初晶Al相〕と
〔Zn単相〕が混在した金属組織としたものでは,表面
外観が極めて良好で且つ耐食性にも優れることがわかっ
た。
In such a ternary composition of Zn—Al—Mg containing Zn in an amount of Al and Mg, if the Zn 11 Mg 2 phase is crystallized, the surface appearance is deteriorated and the corrosion resistance is lowered as described above. It turned out to be worse. On the other hand, the structure of the plating layer was changed to [ternary eutectic structure of Al / Zn / Zn 2 Mg]
It was found that the surface texture was extremely good and the corrosion resistance was excellent when the metal structure was composed of [primary Al phase] or [primary Al phase] and [Zn single phase] mixed in the base material.

【0022】ここで〔Al/Zn/Zn2Mgの三元共
晶組織〕の素地中に〔初晶Al相〕が混在した組織と
は,めっき層断面をミクロ的に観察したときに,〔Al
/Zn/Zn2Mgの三元共晶組織〕の素地中に最初に
析出した〔初晶Al相〕が混在した金属組織である。こ
の金属組織の代表的なものを図1に示した。
Here, the microstructure of [Al / Zn / Zn 2 Mg ternary eutectic] in which the [primary Al phase] is mixed in the base material is defined as [ Al
/ Was initially precipitated material mixture of Zn / Zn 2 Mg ternary eutectic structure] [primary crystal Al phase] is a metal structure coexist. FIG. 1 shows a typical example of the metal structure.

【0023】図1は,本発明に従って得られた代表的な
金属組織を示すめっき層断面の電子顕微鏡2次電子像
(倍率:2000倍)であり,下方の鋼板母材(やや黒
っぽく見える部分)の表面に溶融めっきされためっき層
の組成は6Al−3Mg−Zn(Alほぼ6重量%,M
gほぼ3重量%,残部Zn)である。図1の写真の組織
を描写し,組織中の相を解説した図を右側に示したが,
同図に示すように〔Al/Zn/Zn2Mgの三元共晶
組織〕の素地中に独立した島状の〔初晶Al相〕が混在
した状態にある。
FIG. 1 is an electron microscope secondary electron image (magnification: 2000 times) of a section of a plating layer showing a typical metal structure obtained according to the present invention. The composition of the plating layer formed by hot-dip plating on the surface of 6Al-3Mg-Zn (Al almost 6% by weight, M
g about 3% by weight, with the balance being Zn). A picture depicting the structure of the photograph in Fig. 1 and explaining the phases in the structure is shown on the right.
As shown in the figure, an independent island-like [primary Al phase] is mixed in the [Al / Zn / Zn 2 Mg ternary eutectic structure] matrix.

【0024】図2は,図1における〔Al/Zn/Zn
2Mgの三元共晶組織〕の素地部分を拡大した電子顕微
鏡2次電子像の写真(倍率:10000倍)であり,同
右の描写解説図に示したように,この素地は,Zn(縞
状にほぼ平行に延びる白色部)とAl(やや黒っぽく粒
状に見える部分)とZn2Mg(Znの縞の間に存在す
る部分であってAl以外の部分)とからなる三元共晶組
織を有している。
FIG. 2 shows [Al / Zn / Zn] in FIG.
2 is a photograph of a secondary electron image (magnification: 10000 ×) of an electron microscope in which a base part of [ternary eutectic structure of 2Mg] is enlarged. As shown in the descriptive diagram on the right, this base is composed of Zn (stripe). A ternary eutectic structure composed of Al (a part that looks somewhat dark and granular) and Zn 2 Mg (a part existing between Zn stripes and other than Al) Have.

【0025】また〔Al/Zn/Zn2Mgの三元共晶
組織〕の素地中に〔初晶Al相〕と〔Zn単相〕が混在
した組織とは,めっき層断面をミクロ的に観察したとき
に,〔Al/Zn/Zn2Mgの三元共晶組織〕の素地
中に〔初晶Al相〕と〔Zn単相〕が混在した金属組織
である。すなわち,少量の〔Zn単相〕が晶出している
以外は前者の金属組織と変わりはなく,この〔Zn単
相〕が少量晶出していても耐食性や外観は前者の組織と
実質的に同様に優れている。この金属組織の代表的なも
のを図3に示した。
The microstructure of [Al / Zn / Zn 2 Mg ternary eutectic] in which [primary Al phase] and [Zn single phase] are mixed in the substrate is microscopically observed on the plating layer cross section. Then, a metal structure in which [primary Al phase] and [Zn single phase] coexist in the [Al / Zn / Zn 2 Mg ternary eutectic structure] base material. That is, there is no difference from the former metallographic structure except that a small amount of [Zn single phase] is crystallized, and even if a small amount of [Zn single phase] is crystallized, the corrosion resistance and appearance are substantially the same as the former structure. Is excellent. FIG. 3 shows a typical example of the metal structure.

【0026】図3は,本発明に従って得られた代表的な
金属組織を示すめっき層断面の電子顕微鏡2次電子像
(倍率:2000倍)であり,めっき層の組成は6Al
−3Mg−Zn(Alほぼ6重量%,Mgほぼ3重量
%,残部Zn)である。図3に見られるように,〔Al
/Zn/Zn2Mgの三元共晶組織〕の素地中に独立し
た島状の〔初晶Al相〕が混在している点は図1のもの
と同じであるが,さらに島状の独立した〔Zn単相〕
(初晶Al相よりやや薄い灰色をした部分)が存在して
いる。
FIG. 3 is a secondary electron image (magnification: 2000 times) of a cross section of a plating layer showing a typical metallographic structure obtained according to the present invention.
-3Mg-Zn (Al approximately 6% by weight, Mg approximately 3% by weight, balance Zn). As can be seen in FIG.
/ Zn / Zn 2 Mg ternary eutectic structure] in which independent island-shaped [primary Al phases] are mixed in the matrix, as in FIG. [Zn single phase]
(A part slightly grayish than the primary Al phase) is present.

【0027】図4は,図3のものより,溶融めっき後の
冷却速度を速くした場合に得られた金属組織のめっき層
断面の電子顕微鏡2次電子像の写真(倍率:2000
倍)であり,めっき層の組成は図3のものと同じであ
る。図4の組織では,図3のものよりも〔初晶Al相〕
がやや小さくなり,その近傍に〔Zn単相〕が存在して
いるが,〔初晶Al相〕と〔Zn単相〕が〔Al/Zn
/Zn2Mgの三元共晶組織〕の素地中に混在している
点では変わりはない。
FIG. 4 is a photograph (magnification: 2000) of an electron microscope secondary electron image of a cross section of a plating layer of a metal structure obtained when the cooling rate after hot-dip plating is increased from that of FIG.
And the composition of the plating layer is the same as that of FIG. In the structure of FIG. 4, the primary crystal Al phase is higher than that of FIG.
Is slightly smaller and [Zn single phase] is present in the vicinity thereof, but [primary Al phase] and [Zn single phase] are [Al / Zn single phase].
/ Ternary eutectic structure of Zn 2 Mg] in the base material.

【0028】めっき層全体に占めるこれらの組織の割合
は,前者のもの,すなわち〔Al/Zn/Zn2Mgの
三元共晶組織〕の素地中に最初に析出した〔初晶Al
相〕が点在した金属組織では,〔Al/Zn/Zn2
gの三元共晶組織〕+〔初晶Al相〕の合計量が80容
積%以上,好ましくは90容積%以上,さらに好ましく
は95容積%以上であり,Zn/Zn2Mgの二元共晶
またはZn2Mgが少量混在してしてもよい。
The proportion of these structures in the whole plating layer is the former, that is, the ternary eutectic structure of [Al / Zn / Zn 2 Mg], which was first deposited in the substrate [primary crystal Al
[Al / Zn / Zn 2 M]
g of ternary eutectic structure] + [the total amount of primary crystal Al phase] is 80 volume% or more, preferably 90 volume% or more, more preferably 95 volume% or more, Zn / Zn 2 Mg binary co Crystals or a small amount of Zn 2 Mg may be mixed.

【0029】後者のもの,すなわち,〔Al/Zn/Z
2Mgの三元共晶組織〕の素地中に〔初晶Al相〕が
点在し且つ〔Zn単相〕が晶出した金属組織では,〔A
l/Zn/Zn2Mgの三元共晶組織〕+〔初晶Al
相〕の合計量が80容積%以上で,〔Zn単相〕が15
容積%以下であり,Zn/Zn2Mgの二元共晶または
Zn2Mgが少量混在していてもよい。
The latter, ie, [Al / Zn / Z
In a metal structure in which [primary Al phase] is scattered in the base material of [n 2 Mg ternary eutectic structure] and [Zn single phase] is crystallized, [A
1 / Zn / Zn 2 Mg ternary eutectic structure] + [primary crystal Al
Phase] is 80% by volume or more and [Zn single phase] is 15% by volume.
% By volume or less, and a binary eutectic of Zn / Zn 2 Mg or a small amount of Zn 2 Mg may be mixed.

【0030】前者および後者の両組織とも,Zn11Mg
2系の相は実質的に存在しないことが望ましい。このZ
11Mg2系の相は,本発明に従うめっき組成範囲で
は,通常の連続溶融めっき設備で連続的にめっき鋼板を
製造しようとすると,〔Al/Zn/Zn11Mg2の三
元共晶組織〕の素地中に〔Al初晶〕または〔Al初
晶〕と〔Zn単相〕が混在した金属組織の相として“斑
点状”に現れやすくなることがわかった。
In both the former and latter structures, Zn 11 Mg
Desirably, substantially no two phases are present. This Z
In the range of the plating composition according to the present invention, the n 11 Mg 2 -based phase has a ternary eutectic structure of [Al / Zn / Zn 11 Mg 2] in an attempt to continuously produce a plated steel sheet with a normal continuous hot-dip coating equipment. ] In the matrix of [Al primary crystal] or a phase of a metal structure in which [Al primary crystal] and [Zn single phase] are mixed.

【0031】図5はZn11Mg2系の相が斑点状に現れ
ためっき鋼板(後記実施例3の表3中のNo.13のも
の)の表面外観を写した写真である。図5に見られるよ
うに,半径が約2〜7mmの斑点(青く変色したもの)
が母相中に点々と現れている。この斑点の大きさは浴温
と溶融めっき層の冷却速度に依存して異なってくる。
FIG. 5 is a photograph showing the surface appearance of a plated steel sheet (No. 13 in Table 3 of Example 3 described later) in which a Zn 11 Mg 2 phase appeared in a spot-like manner. As shown in FIG. 5, spots with a radius of about 2 to 7 mm (discolored blue)
Appear in the mother phase. The size of the spots differs depending on the bath temperature and the cooling rate of the hot-dip layer.

【0032】図6は,図5に現れた斑点部分を通るよう
に試料を剪断し,その断面を見た電子顕微鏡2次電子像
(倍率:2000倍)である。図6に見られるように,
この斑点部分の組織は,〔Al/Zn/Zn11Mg2
三元共晶組織〕の素地中に〔Al初晶〕が混在したもの
である。なお試料によっては,該素地中に〔Al初晶〕
と〔Zn単相〕が混在することもある。
FIG. 6 is a secondary electron image (magnification: 2,000 times) of the sample obtained by shearing the sample so as to pass through the spots appearing in FIG. 5 and viewing the cross section. As can be seen in FIG.
The structure of the spot portion is such that [Al primary crystal] is mixed in the base material of [ternary eutectic structure of Al / Zn / Zn 11 Mg 2 ]. In some samples, [Al primary crystal]
And [Zn single phase] may be mixed.

【0033】図7は,図6の素地部分(Al初晶を含ま
ない部分)だけを倍率を上げて見た電子顕微鏡2次電子
像(倍率:10000倍)であり,白っぽく縞状に伸び
るZnの間にZn11Mg2とAl(やや黒っぽく粒状に
見える部分)が存在した三元共晶組織すなわち〔Al/
Zn/Zn11Mg2の三元共晶組織〕が明瞭に現れてい
る。
FIG. 7 is a secondary electron image (magnification: 10000 times) of the electron microscope (magnification: 10,000 times) obtained by increasing the magnification of only the base portion (portion not containing the primary Al crystal) in FIG. A ternary eutectic structure in which Zn 11 Mg 2 and Al (a part that looks slightly darker and granular) existed, ie, [Al /
Ternary eutectic structure of Zn / Zn 11 Mg 2 ] clearly appears.

【0034】図8は,図5のように現れた斑点部分につ
いて,母相と斑点相の境界部分を見た電子顕微鏡2次電
子像(倍率:10000倍)であり,図8の写真におい
て左半分は母相部分,右半分は斑点相である。左半分の
母相部分は,図2のものと同様の〔Al/Zn/Zn2
Mgの三元共晶組織〕であり,右半分は図7と同様の
〔Al/Zn/Zn11Mg2の三元共晶組織〕が写って
いる。両者の金属間化合物の部分だけを比較すると,Z
11Mg2はZn2Mgよりもやや腐食している状況が理
解される得る。
FIG. 8 is a secondary electron image (magnification: 10000 times) of the spot portion appearing as shown in FIG. 5 as viewed from the boundary between the mother phase and the spot phase. The half is the parent phase and the right half is the spot phase. The left half of the matrix portion is similar to that of FIG. 2 [Al / Zn / Zn 2
Mg ternary eutectic structure], and the right half shows the same [ternary eutectic structure of Al / Zn / Zn 11 Mg 2 ] shown in FIG. Comparing only the two intermetallic compounds, Z
It can be seen that n 11 Mg 2 is slightly more corrosive than Zn 2 Mg.

【0035】これらの図5〜図8から,斑点状のZn11
Mg2系の相は,実際には〔Al/Zn/Zn11Mg2
三元共晶組織〕の素地中に〔Al初晶〕または〔Al初
晶〕と〔Zn単相〕が混在した金属組織を有するもので
あること,そして,このZn11Mg2系の相は,Zn2
g系の相の母地中に,すなわち〔Al/Zn/Zn2
gの三元共晶組織〕の素地中に〔初晶Al相〕または
〔初晶Al相〕と〔Zn単相〕が混在した金属組織の母
地中に,目視可能な大きさの斑点として点々と出現する
ことがわかる。
From FIGS. 5 to 8, it can be seen that spot-like Zn 11
As for the Mg 2 phase, [Al primary crystal] or [Al primary crystal] and [Zn single phase] are mixed in a matrix of [Al / Zn / Zn 11 Mg 2 ternary eutectic structure]. It has a metal structure, and the Zn 11 Mg 2 phase is Zn 2 M
In the matrix of the g-phase, ie, [Al / Zn / Zn 2 M
g ternary eutectic structure] in the matrix of [primary Al phase] or a metal structure in which [primary Al phase] and [Zn single phase] are mixed, as spots of visible size It can be seen that it appears in dots.

【0036】図9は,前記のような金属組織を特定する
根拠となったX線回折の代表例を示したものである。図
中の○印のピークはZn2Mg金属間化合物のもの,×
印のピークはZn11Mg2金属間化合物のものである。
いずれのX線回折も,17mm×17mmの方形のめっ
き層サンプルを採取し,この方形サンプル表面にCu−
Kα管球,管電圧150Kv,管電流40mAの条件で
X線を照射して行ったものである。
FIG. 9 shows a typical example of X-ray diffraction which is the basis for specifying the above metal structure. The peaks marked with a circle in the figure are those of the Zn 2 Mg intermetallic compound,
The peaks marked are those of the Zn 11 Mg 2 intermetallic compound.
In each case of X-ray diffraction, a square plating layer sample of 17 mm × 17 mm was sampled, and Cu-
X-ray irradiation was performed under the conditions of a Kα tube, a tube voltage of 150 Kv, and a tube current of 40 mA.

【0037】図9の上段のチャートは後記実施例3の表
3中のNo.3のもの,中段と下段のチャートは同表3中の
No.14 のものであり,中段と下段のものは,Zn11Mg
2系の相の斑点が試料面積中に一部含まれるようにして
サンプルを採取したものである。採取サンプル面積内の
斑点面積の割合は目視観察で,中段のものは約15%,
下段のものは約70%である。これらのX線回折から,
図2に見られる三元共晶組織は〔Al/Zn/Zn2
gの三元共晶組織〕であること,図7に見られる三元共
晶組織は〔Al/Zn/Zn11Mg2〕であることが明
らかである。
The upper chart in FIG. 9 is No. 3 in Table 3 of Example 3 described later, and the middle and lower charts are those in Table 3 in Example 3.
No.14, the middle and lower ones are Zn 11 Mg
The sample was collected in such a manner that the spots of the two phases were partially contained in the sample area. The percentage of the spot area in the sampled area was visually observed.
The lower one is about 70%. From these X-ray diffractions,
The ternary eutectic structure shown in FIG. 2 is [Al / Zn / Zn 2 M
g ternary eutectic structure] and the ternary eutectic structure shown in FIG. 7 is [Al / Zn / Zn 11 Mg 2 ].

【0038】このような金属組織上の観点から,後記の
実施例の表3〜表11更には後述の図10において,Z
11Mg2系の相が実質上存在しない本発明に従うめっ
き層は「Zn2Mg」と表示し,Zn2Mg系の相の母地
中に目視可能な大きさの斑点状のZn11Mg2系の相が
現れたものは「Zn2Mg+Zn11Mg2」として表示し
ている。このような斑点状のZn11Mg2系の相が現れ
ると耐食性を劣化させると共に表面外観を著しく低下さ
せる。したがって,本発明に従うめっき層は,目視観察
できるような大きさのZn11Mg2系の相が実質的に存
在しない金属組織,すなわち実質上Zn2Mg系の相か
らなることことが望ましい。
From the viewpoint of such a metallographic structure, in Tables 3 to 11 of Examples described later and in FIG.
The plating layer according to the present invention in which the n 11 Mg 2 -based phase is substantially absent is denoted as “Zn 2 Mg”, and a spot-like Zn 11 Mg having a size visible in the matrix of the Zn 2 Mg-based phase. Those in which two- system phases have appeared are indicated as “Zn 2 Mg + Zn 11 Mg 2 ”. The appearance of such a spot-like Zn 11 Mg 2 phase deteriorates the corrosion resistance and significantly lowers the surface appearance. Therefore, it is desirable that the plating layer according to the present invention be made of a metal structure substantially free of a Zn 11 Mg 2 phase having a size that can be visually observed, that is, a substantially Zn 2 Mg phase.

【0039】より具体的には,本発明に従う前記範囲の
組成をもつ溶融Zn−Al−Mgめっき鋼板のめっき層
は,〔Al/Zn/Zn2Mgの三元共晶組織〕の素地
が50容積%以上100容積%未満の範囲で存在し,こ
の共晶組織の素地中に島状の〔初晶Al相〕が0容積%
を超え50容積%以下の範囲で存在し,場合によって
は,さらに島状の〔Zn単相〕が0〜15容積%存在し
たものであって,めっき層の表面を肉眼で観察したとき
に,斑点状に現れるZn11Mg2系の相(Al/Zn/
Zn11Mg2の三元共晶組織の素地をもつ相)は,目視
可能な大きさでは存在しないものである。すなわち,当
該めっき層の金属組織は, 〔Al/Zn/Zn2Mgの三元共晶組織〕の素地:5
0〜100容積%未満, 〔初晶Al相〕:0を超え〜50容積%以下,および 〔Zn単相〕:0〜15容積% から実質的になる。
More specifically, the plated layer of the hot-dip Zn—Al—Mg plated steel sheet having the composition in the above range according to the present invention has a base material of [ternary eutectic structure of Al / Zn / Zn 2 Mg] of 50%. In the range of not less than 100% by volume and less than 100% by volume, 0% by volume of island-like [primary Al phase]
In the range of more than 50% by volume and less than 50% by volume. In some cases, 0 to 15% by volume of island-like [Zn single phase] was present. When the surface of the plating layer was observed with the naked eye, A spot-like Zn 11 Mg 2 phase (Al / Zn /
The phase having a base material of a ternary eutectic structure of Zn 11 Mg 2 ) does not exist in a visually recognizable size. That is, the metallographic structure of the plating layer is a base material of [ternary eutectic structure of Al / Zn / Zn 2 Mg]: 5
0 to less than 100% by volume, [primary Al phase]: more than 0 to 50% by volume, and [Zn single phase]: 0 to 15% by volume.

【0040】ここで,“実質的になる”とは,他の相,
代表的には斑点状のZn11Mg2系の相が外観に影響を
与えるような量では存在しないということであり,目視
観察で判別できないような少量のZn11Mg2系の相は
存在していても,このような少量である限り,耐食性お
よび表面外観に特に影響を及ぼさないので許容され得
る。すなわち,Zn11Mg2系の相が肉眼で斑点状に観
察されるような量で存在する場合には,外観と耐食性に
悪い影響を与えるので,本発明の範囲外である。また,
Zn2Mg系の二元共晶やZn11Mg2系の二元共晶など
も,肉眼で目視観察では判別できないような微量で存在
することも許容され得る。
Here, “become substantially” means that the other phase
Typically, a spot-like Zn 11 Mg 2 -based phase is not present in an amount that affects the appearance, and a small amount of Zn 11 Mg 2 -based phase that cannot be distinguished by visual observation exists. However, such a small amount is acceptable because it does not particularly affect the corrosion resistance and surface appearance. That is, if the Zn 11 Mg 2 phase is present in an amount which is observed in the form of spots with the naked eye, the appearance and corrosion resistance are adversely affected, and thus are outside the scope of the present invention. Also,
A Zn 2 Mg-based binary eutectic, a Zn 11 Mg 2 -based binary eutectic, and the like can be allowed to exist in a trace amount that cannot be discriminated by visual observation with the naked eye.

【0041】本発明に従う金属組織の溶融Zn−Al−
Mgめっき鋼板を製造するには,前記組成の溶融めっき
浴の浴温とめっき後の冷却速度を代表的には図10に示
した斜線域の範囲に制御すればよいことがわかった。
According to the present invention, the molten Zn—Al—
It has been found that in order to manufacture the Mg-plated steel sheet, the bath temperature of the hot-dip bath having the above composition and the cooling rate after the plating may be typically controlled within the range of the hatched area shown in FIG.

【0042】すなわち,図10に見られるように,また
後記の実施例で示すように,浴温が470℃より低く且
つ冷却速度が10℃/秒より遅いと,前記のZn11Mg
2系の相が斑点状に現れ,本発明の目的が達成できない
のである。このようなZn11Mg2系の相が現れること
自体は,Zn−Al−Mg三元平衡状態図上における三
元共晶点近傍の平衡相を見れば或る程度は理解できる。
That is, as shown in FIG. 10 and as shown in the examples described below, when the bath temperature is lower than 470 ° C. and the cooling rate is lower than 10 ° C./sec, the Zn 11 Mg
The two phases appear as spots, and the object of the present invention cannot be achieved. The appearance of such a Zn 11 Mg 2 phase itself can be understood to some extent by looking at the equilibrium phase near the ternary eutectic point on the Zn—Al—Mg ternary equilibrium diagram.

【0043】ところが,浴温が470℃以上となると,
冷却速度の影響は少なくなり,前記のZn11Mg2系の
相は現れず,本発明で規定する金属組織が得られること
がわかった。同様に,浴温が470℃未満でも,さらに
好ましくは450℃以下でも冷却速度を10℃/秒以
上,さらに好ましくは12℃/以上とした場合には,本
発明で規定する金属組織が得られることがわかった。こ
れは,Zn−Al−Mgの三元平衡状態図からは予期で
きない組織状態であり,平衡論的には説明できない現象
である。
However, when the bath temperature exceeds 470 ° C.,
It was found that the influence of the cooling rate was reduced, the Zn 11 Mg 2 -based phase did not appear, and the metal structure specified in the present invention was obtained. Similarly, even when the bath temperature is lower than 470 ° C. , more preferably 450 ° C. or lower, if the cooling rate is 10 ° C./sec or more, more preferably 12 ° C./high, the metal structure specified in the present invention can be obtained. I understand. This is a structure state that cannot be expected from the ternary equilibrium diagram of Zn—Al—Mg, and is a phenomenon that cannot be explained in terms of equilibrium theory.

【0044】この現象を利用すると,インライン焼鈍型
の溶融めっき設備において,Al:4.0〜10重量
%,Mg:1.0〜4.0重量%,残部がZnおよび不可
避的不純物からなる溶融めっき浴とし,このめっき浴の
浴温を融点以上470℃未満好ましくは450℃以下
し且つめっき後の冷却速度を10℃/秒以上好ましくは
12℃/秒以上に制御して鋼板表面に溶融めっきを施せ
ば,或いは,めっき浴の浴温を470℃以上とし且つめ
っき後の冷却速度を任意として(実操業上の下限値であ
る0.5℃/秒以上として)鋼板表面に溶融めっきを施
せば,前記した本発明に従う金属組織のめっき層をもつ
耐食性および表面外観の良好な溶融Zn−Al−Mgめ
っき鋼板を工業的に製造することができる。
By utilizing this phenomenon, in an in-line annealing type hot-dip plating equipment, 4.0 to 10% by weight of Al, 1.0 to 4.0% by weight of Mg, and the balance consisting of Zn and unavoidable impurities. A plating bath having a bath temperature of not less than melting point and less than 470 ° C., preferably not more than 450 ° C., and a cooling rate after plating controlled at not less than 10 ° C./sec, preferably not less than 12 ° C./sec. If the surface of the steel sheet is hot-dip, or if the bath temperature of the plating bath is 470 ° C or higher and the cooling rate after plating is optional (at least 0.5 ° C / sec which is the lower limit in actual operation) When hot-dip galvanized steel is used, a hot-dip Zn-Al-Mg-plated steel sheet having a corrosion-resistant and surface-appearing surface having a metallized plating layer according to the present invention can be industrially manufactured.

【0045】なお,浴組成を三元共晶組成(三元平衡状
態図上では,Al=4重量%,Mg=3重量%,Zn=
93重量%)に完全に一致させたものにすると,融点が
最低となるので有利となると考えられたが,実際には最
終凝固部が引けて凹凸のある表面状態となり,外観が悪
くなるので,完全三元共晶組成は避けた方がよい。また
Alの組成に関しては亜共晶側の組成では一層Zn11
2が晶出しやすくなるので,前記の組成範囲において
過共晶側の組成とするのがよい。
The ternary eutectic composition (in the ternary equilibrium diagram, Al = 4% by weight, Mg = 3% by weight, Zn =
(93% by weight) was thought to be advantageous because the melting point was the lowest, but it was thought that it would be advantageous, but in reality, the final solidified portion would be closed and the surface condition would be uneven, resulting in poor appearance. The perfect ternary eutectic composition should be avoided. Regarding the composition of Al, the composition on the hypoeutectic side is more Zn 11 M
Since g 2 is easily crystallized, it is preferable to set the composition on the hypereutectic side in the above composition range.

【0046】また,浴温については,あまり高くなると
めっき密着性が低下するので,後記実施例に示したよう
に本発明の浴組成においては浴温の上限は550℃と
し,これ以下の浴温で溶融めっきするのがよい。
As for the bath temperature, if the temperature is too high, the adhesion of the plating will be reduced. Therefore, as shown in the examples below, the upper limit of the bath temperature is set to 550 ° C. in the bath composition of the present invention. It is good to hot-dip plating.

【0047】前記したように,本発明で規定する浴組成
の範囲においては,浴温とめっき後の冷却速度が三元共
晶としてのZn11Mg2やZn2Mgの生成・消失の挙動
に大きく影響するが,その理由については現在のところ
明確ではないが,およそ次のように考えられる。
As described above, in the range of the bath composition specified in the present invention, the bath temperature and the cooling rate after plating are affected by the formation and disappearance behavior of Zn 11 Mg 2 and Zn 2 Mg as ternary eutectic. Although it has a significant effect, the reason is not clear at present, but it is considered as follows.

【0048】浴温を上げるに従ってZn11Mg2の晶出
する数が減少し,470℃以上では消滅するから,浴温
はZn11Mg2相の核の生成に直接関係していると見ら
れるが,その理由は,断定はできないものの,めっき浴
と鋼板の反応層(合金層)の物性が影響しているのでは
ないかと推測される。当該合金層がめっき層の主要な凝
固開始位置であると考えられるからである。
Since the number of Zn 11 Mg 2 crystallized decreases as the bath temperature is increased and disappears at 470 ° C. or higher, the bath temperature is considered to be directly related to the formation of Zn 11 Mg 2 phase nuclei. However, although the reason cannot be determined, it is speculated that the physical properties of the reaction layer (alloy layer) between the plating bath and the steel sheet may have an effect. This is because the alloy layer is considered to be the main solidification start position of the plating layer.

【0049】また,めっき後の冷却速度が速くなるに従
って,Zn11Mg2系の斑点状の相,すなわち〔Al/
Zn/Zn11Mg2の三元共晶組織〕の素地中に〔Al
初晶〕または〔Al初晶〕と〔Zn単相〕が混在した斑
点状の相,の大きさが徐々に目視での観察が困難になる
ほど小さくなる。そして,やがて10℃/秒以上の冷却
速度のものでは目視では判別不可能となるまで,そのサ
イズが縮小する。すなわち,冷却速度が速くなる従っ
て,このZn11Mg2系の相の成長が阻止されるものと
考えられる。
As the cooling rate after plating increases, a spot-like phase of Zn 11 Mg 2 , ie, [Al /
[Ternary eutectic structure of Zn / Zn 11 Mg 2 ]
The size of a primary phase or a spot-like phase in which [Al primary phase] and [Zn single phase] are mixed gradually becomes so small that visual observation becomes difficult. Then, at a cooling rate of 10 ° C./sec or more, the size is reduced until it becomes impossible to determine visually. That is, it is considered that the growth of the Zn 11 Mg 2 phase is prevented because the cooling rate is increased.

【0050】以下に,実施例によって前記のめっき層の
組成,組織およびめっき条件が溶融Zn−Al−Mgめ
っき鋼板の耐食性,密着性および表面外観に及ぼす作用
効果を具体的に示す。
The effects of the composition, structure, and plating conditions of the plating layer on the corrosion resistance, adhesion, and surface appearance of a hot-dip Zn—Al—Mg plated steel sheet will be specifically described below with reference to examples.

【0051】[0051]

【実施例】【Example】

〔実施例1〕組成(特にMg量)が耐食性および製造性
に及ぼす関係について。
[Example 1] Relationship between composition (particularly Mg content) on corrosion resistance and manufacturability.

【0052】処理設備:ゼンジマータイプの連続溶融め
っきライン(試験機) 処理鋼板:中炭素鋼の熱延鋼板(厚み:3.2mm) 還元炉最高到達板温:600℃,露点:−40℃ めっき浴組成:Al=4.0〜9.2重量%,Mg=0〜5.2
重量%,残部=Zn めっき浴温:455℃ 浸漬時間:3秒 めっき後の冷却速度:空冷方式で3℃/秒または12℃
/秒 (冷却速度はめっき浴温からめっき層凝固温度までの平
均値)
Processing equipment: Sendzimer-type continuous hot-dip galvanizing line (testing machine) Treated steel sheet: Medium-carbon steel hot-rolled steel sheet (thickness: 3.2 mm) Maximum temperature of reduction furnace reached 600 ° C, dew point: -40 ° C Plating bath composition: Al = 4.0-9.2% by weight, Mg = 0-5.2
Weight%, balance = Zn Plating bath temperature: 455 ° C Immersion time: 3 seconds Cooling rate after plating: 3 ° C / second or 12 ° C by air cooling
/ Sec (Cooling rate is average value from plating bath temperature to plating layer solidification temperature)

【0053】以上の条件で溶融Zn−Al−Mgめっき
鋼板を製造し,その際の浴表面の酸化物(ドロス)の発
生量を観察すると共に,得られた溶融めっき鋼板の耐食
性試験を行った。耐食性はSST(JIS−Z−237
1に従う塩水噴霧試験)を800時間行った後の腐食減
量(g/m2) で評価した。またドロスの発生量は目視によ
り多いものを×, やや多いものを△, 少ないものを◎で
評価した。それらの結果を表1に示した。
Under the above conditions, a hot-dip Zn-Al-Mg coated steel sheet was manufactured. At that time, the amount of oxide (dross) generated on the bath surface was observed, and a corrosion resistance test of the obtained hot-dip coated steel sheet was performed. . Corrosion resistance is SST (JIS-Z-237)
(Salt spray test in accordance with No. 1) for 800 hours, and was evaluated by the weight loss (g / m 2 ) after corrosion. Further, the amount of dross generated was visually evaluated as ×, those with a relatively large amount as Δ, and those with a small amount as ◎. The results are shown in Table 1.

【0054】[0054]

【表1】 [Table 1]

【0055】表1の結果から,Mg量が1%以上となる
と急激に耐食性が向上すること,しかし,4%を越えて
添加しても耐食性は飽和することがわかる。また,4%
を越えるMg量ではAlを含有していても浴表面の酸化
物(ドロス)が増加することがわかる。なお,冷却速度
が3℃/秒ではZn11Mg2が晶出し,この部分が優先
腐食している。
From the results shown in Table 1, it can be seen that the corrosion resistance is rapidly improved when the Mg content is 1% or more, but that the corrosion resistance is saturated even when added over 4%. Also, 4%
It can be seen that when the amount of Mg exceeds the above, the oxide (dross) on the bath surface increases even if Al is contained. At a cooling rate of 3 ° C./sec, Zn 11 Mg 2 is crystallized, and this portion is preferentially corroded.

【0056】〔実施例2〕組成(特にAl量)が耐食性
および密着性に及ぼす関係について。
[Example 2] Relationship between composition (particularly Al content) on corrosion resistance and adhesion.

【0057】処理設備:ゼンジマータイプの連続溶融め
っきライン(試験機) 処理鋼板:中炭素鋼の熱延鋼板(厚み:1.6mm) 還元炉最高到達板温:600℃,露点:−40℃ めっき浴組成:Al=0.15〜13.0重量%,Mg=3.0重
量%,残部=Zn めっき浴温:460℃ 浸漬時間:3秒 めっき後の冷却速度:空冷方式で12℃/秒(冷却速度
はめっき浴温からめっき層凝固温度までの平均値)
Treatment equipment: Continuous hot-dip galvanizing line of Sendzimer type (test machine) Treated steel sheet: Hot-rolled steel sheet of medium carbon steel (thickness: 1.6 mm) Maximum temperature of reduction furnace reached 600 ° C, dew point: -40 ° C Plating bath composition: Al = 0.15 to 13.0% by weight, Mg = 3.0% by weight, balance = Zn Plating bath temperature: 460 ° C Immersion time: 3 seconds Cooling rate after plating: 12 ° C / second by air cooling (cooling rate is plating Average value from bath temperature to plating layer solidification temperature)

【0058】以上の条件で溶融Zn−Al−Mgめっき
鋼板を製造し,得られた溶融めっき鋼板の耐食性試験と
密着性試験を行った。耐食性は実施例1と同じくSST
による800時間後の腐食減量(g/m2) で評価し,密着
性は試片を密着曲げし,曲げ部のセロテープ剥離テスト
により,剥離なしを◎,剥離量5%未満を△,剥離量5
%以上を×で評価した。その結果を表2に示した。
A hot-dip Zn-Al-Mg coated steel sheet was manufactured under the above conditions, and a corrosion resistance test and an adhesion test of the obtained hot-dip coated steel sheet were performed. Corrosion resistance was the same as in Example 1 using SST
The adhesion was evaluated by the weight loss (g / m 2 ) after 800 hours, and the adhesion was evaluated by bending the test piece in close contact. 5
% Or more was evaluated as x. The results are shown in Table 2.

【0059】[0059]

【表2】 [Table 2]

【0060】表2の結果に見られるように,Al量が
4.0%以上で耐食性に優れるようになるが,10%を
越えると密着性不良が生じる。これは合金層(Fe−A
l合金層)の異常発達によるものである。またMg量が
一定でもAl量が増加するにつれてSST腐食減量が小
さくなっており,耐食性が向上している。このことは本
発明に従う金属組織中の〔初晶Al相〕の量が相対的に
増加しても耐食性を向上させることを意味している。
As can be seen from the results in Table 2, when the Al content is 4.0% or more, the corrosion resistance becomes excellent, but when it exceeds 10%, poor adhesion occurs. This is the alloy layer (Fe-A
1 alloy layer). Further, even when the Mg content is constant, the SST corrosion weight loss decreases as the Al content increases, and the corrosion resistance is improved. This means that the corrosion resistance is improved even if the amount of [primary Al phase] in the metal structure according to the present invention is relatively increased.

【0061】〔実施例3〕浴温と冷却速度が組織に及ぼ
す関係と,組織と表面外観との関係について。
Example 3 The relationship between the bath temperature and the cooling rate exerted on the structure and the relationship between the structure and the surface appearance.

【0062】処理設備:ゼンジマータイプの連続溶融め
っきライン(試験機) 処理鋼板:弱脱酸鋼の熱延鋼板(インラインで酸洗,厚
み:2.3mm) 還元炉最高到達板温:580℃,露点:−30℃ めっき浴組成:Al=4.8〜9.6重量%,Mg=1.1〜3.9
重量%,残部=Zn めっき浴温:390〜535℃ 浸漬時間:8秒以内 めっき後の冷却速度:空冷方式で3〜11℃/秒(冷却
速度はめっき浴温からめっき層凝固温度までの平均値)
Processing equipment: Sendzimer-type continuous hot-dip galvanizing line (testing machine) Treated steel sheet: Hot rolled steel sheet of weakly deoxidized steel (in-line pickling, thickness: 2.3 mm) Maximum temperature of reduction furnace: 580 ° C , Dew point: -30 ° C Plating bath composition: Al = 4.8-9.6% by weight, Mg = 1.1-3.9
Wt%, balance = Zn Plating bath temperature: 390-535 ° C Immersion time: within 8 seconds Cooling rate after plating: 3-11 ° C / sec by air cooling (cooling rate is the average from plating bath temperature to plating layer solidification temperature) value)

【0063】以上の条件で,先ずZn−6.2%Al−3.0%
Mgの浴組成としたものについて,よっき浴温とめっき
後の冷却速度を変化させて溶融めっき鋼板を製造し,得
られためっき鋼板のめっき層の組織と表面外観を調べ,
その結果を表3に示した。
Under the above conditions, first, Zn-6.2% Al-3.0%
With the Mg bath composition, hot-dip steel sheets were manufactured by changing the yoke bath temperature and the cooling rate after plating, and the microstructure and surface appearance of the coating layers of the resulting coated steel sheets were examined.
Table 3 shows the results.

【0064】表3のめっき層組織の表示において〔Zn
2Mg〕と表示したものは,本発明で規定する金属組
織,すなわち〔Al/Zn/Zn2Mgの三元共晶組
織〕の素地中に〔初晶Al相〕または〔初晶Al相〕と
〔Zn単相〕が混在した金属組織を有するものであり,
実際には,〔初晶Al相〕と〔Al/Zn/Zn2Mg
の三元共晶組織〕との合計が80容積%以上,〔Zn単
相〕が15容積%以下のものである。
In the display of the plating layer structure in Table 3, [Zn
The 2 Mg] as that displayed, the metal structure specified by the present invention, namely [Al / Zn / Zn in the matrix of 2 Mg ternary eutectic structure] [primary crystal Al phase] or [primary crystal Al phase] And a [Zn single phase] mixed metal structure,
Actually, [primary Al phase] and [Al / Zn / Zn 2 Mg
Ternary eutectic structure] and the Zn single phase is 15% by volume or less.

【0065】また〔Zn2Mg+Zn11Mg2〕と表示し
たものは,前記の〔Zn2Mg〕系組織の中に,斑点状
のZn11Mg2系の相が目視判断できるような大きさに
現れたものである。この斑点状のZn11Mg2系の相と
は,本文で説明したように,〔Al/Zn/Zn11Mg
2の三元共晶組織〕の素地中に〔Al初晶〕または〔A
l初晶〕と〔Zn単相〕が混在した斑点状の相である。
このZn11Mg2系の相はその周囲のものよりも光沢が
あるため目立った模様となり,かつこの部分は室内で2
4時間程度放置しておくと他の部分より先に酸化されて
薄い茶色に変色するので更に目立つようになる。したが
って,表3における外観の評価は,めっき直後とめっき
後24時間経過後の表面を目視観察し,このZn11Mg
2系の相が晶出した斑点の有無で評価し,この斑点が目
視で観察されるものを不均一,目視で観察されないもの
を均一とした。
Further, the material indicated as [Zn 2 Mg + Zn 11 Mg 2 ] has a size such that a spot-like Zn 11 Mg 2 -based phase can be visually judged in the [Zn 2 Mg] -based structure. It has appeared. This spot-like Zn 11 Mg 2 phase is, as described in the text, [Al / Zn / Zn 11 Mg 2
In the matrix of the second three-way eutectic structure] [Al primary crystal] or [A
1 primary crystal] and [Zn single phase].
This Zn 11 Mg 2 phase has a glossy pattern than its surroundings, so it has a prominent pattern, and this part is
If left undisturbed for about 4 hours, it becomes more noticeable because it is oxidized earlier than the other parts and changes color to light brown. Therefore, evaluation of appearance in Table 3, immediately after the surface of the 24-hour after after plating plating was visually observed and the Zn 11 Mg
Evaluation was made based on the presence or absence of spots where the two phases were crystallized. The spots where these spots were visually observed were non-uniform, and those where these spots were not visually observed were uniform.

【0066】[0066]

【表3】 [Table 3]

【0067】表3の結果から,浴温が470℃より低い
場合には冷却速度が低い(10℃/秒未満である)と,
Zn11Mg2系の相が現れ,外観が不均一になることが
わかる。他方,浴温が470℃より低くても,冷却速度
を高くすると(10℃/秒以上とすると),実質的に
〔初晶Al相〕と〔Al/Zn/Zn2Mgの三元共晶
組織〕となり,均一な外観を呈するようになる。また浴
温が470℃以上では冷却速度が低くても,同様に,実
質的に〔初晶Al相〕と〔Al/Zn/Zn2Mgの三
元共晶組織〕となり,均一な外観を呈するようになる。
From the results shown in Table 3, when the bath temperature is lower than 470 ° C., the cooling rate is low (less than 10 ° C./sec).
It can be seen that a Zn 11 Mg 2 phase appears and the appearance becomes non-uniform. On the other hand, even if the bath temperature is lower than 470 ° C., when the cooling rate is increased (at 10 ° C./sec or more), substantially [primary Al phase] and [ternary eutectic of Al / Zn / Zn 2 Mg] are obtained. And a uniform appearance. Similarly, when the bath temperature is 470 ° C. or higher, even if the cooling rate is low, the [primary crystal Al phase] and the [ternary eutectic structure of Al / Zn / Zn 2 Mg] are similarly formed, and a uniform appearance is exhibited. Become like

【0068】ついで,浴組成をZn−4.3%Al−1.2%M
g,Zn−4.3%Al−2.6%MgまたはZn−4.3%Al−
3.8%Mgとした以外は,同様に浴温と冷却速度を変えて
溶融めっき鋼板を製造し,得られためっき鋼板のめっき
層の組織と表面外観を前例と同様に調べ, その結果を,
それぞれ表4,表5および表6に示した。
Next, the bath composition was changed to Zn-4.3% Al-1.2% M
g, Zn-4.3% Al-2.6% Mg or Zn-4.3% Al-
Except that 3.8% Mg was used, the bath temperature and cooling rate were changed in the same way to produce hot-dip coated steel sheets, and the microstructure and surface appearance of the coating layers of the obtained coated steel sheets were examined in the same manner as in the previous example.
The results are shown in Tables 4, 5, and 6, respectively.

【0069】[0069]

【表4】 [Table 4]

【0070】[0070]

【表5】 [Table 5]

【0071】[0071]

【表6】 これら表4〜6の結果からも,表3と同様の結果が得ら
れたことがわかる。
[Table 6] From the results in Tables 4 to 6, it can be seen that the same results as in Table 3 were obtained.

【0072】さらに,浴組成をZn−6.2%Al−1.5%M
gまたはZn−6.2%Al−3.8%Mgとした以外は,同様
に浴温と冷却速度を変えて溶融めっき鋼板を製造し,得
られためっき鋼板のめっき層の組織と表面外観を前例と
同様に調べ, その結果を, それぞれ表7および表8に示
した。
Further, the bath composition was changed to Zn-6.2% Al-1.5% M
g or Zn-6.2% Al-3.8% Mg, except that the bath temperature and cooling rate were changed to produce hot-dip coated steel sheets, and the structure and surface appearance of the coating layer of the obtained coated steel sheets were the same as in the previous example. The results are shown in Tables 7 and 8, respectively.

【0073】[0073]

【表7】 [Table 7]

【0074】[0074]

【表8】 [Table 8]

【0075】これら表7〜8の結果からも,表3と同様
の結果が得られたことがわかる。
From the results in Tables 7 and 8, it can be seen that the same results as in Table 3 were obtained.

【0076】さらに,浴組成をZn−9.6%Al−1.1%M
g,Zn−9.6%Al−3.0%MgまたはZn−9.6%Al−
3.9%Mgとした以外は,同様に浴温と冷却速度を変えて
溶融めっき鋼板を製造し,得られためっき鋼板のめっき
層の組織と表面外観を前例と同様に調べ, その結果を,
それぞれ表9,表10および表11に示した。
Further, the bath composition was changed to Zn-9.6% Al-1.1% M
g, Zn-9.6% Al-3.0% Mg or Zn-9.6% Al-
Except that 3.9% Mg was used, a hot-dip coated steel sheet was manufactured by changing the bath temperature and cooling rate in the same manner, and the microstructure and surface appearance of the coating layer of the obtained coated steel sheet were examined in the same manner as in the previous example.
The results are shown in Tables 9, 10 and 11, respectively.

【0077】[0077]

【表9】 [Table 9]

【0078】[0078]

【表10】 [Table 10]

【0079】[0079]

【表11】 [Table 11]

【0080】これら表9〜11の結果からも,表3と同
様の結果が得られたことがわかる。そして,これら表3
〜表11の結果をまとめると,図10に示すような斜線
域の浴温と冷却速度を採用すれば,本発明に従う浴組成
において,実質的に〔初晶Al相〕と〔Al/Zn/Z
2Mgの三元共晶組織〕からなるか,またはこれに少
量の〔Zn単相〕が加わった金属組織のめっき層が得ら
れ,この結果,耐食性と表面外観の優れためっき層の溶
融Zn−Al−Mgめっき鋼板を得ることができる。
From the results in Tables 9 to 11, it can be seen that the same results as in Table 3 were obtained. And these Table 3
Table 11 summarizes the results, when the bath temperature and the cooling rate in the hatched area as shown in FIG. 10 are employed, the bath composition according to the present invention substantially achieves [primary Al phase] and [Al / Zn / Z
n 2 Mg ternary eutectic structure] or a metal structure with a small amount of [Zn single phase] added thereto, resulting in the melting of the plated layer having excellent corrosion resistance and surface appearance. A Zn-Al-Mg plated steel sheet can be obtained.

【0081】〔実施例4〕浴温と冷却速度がめっき密着
性に及ぼす関係について。
Example 4 Relationship between bath temperature and cooling rate on plating adhesion.

【0082】処理設備:NOFタイプの連続溶融めっき
ライン(試験機) 処理鋼板:弱脱酸鋼の冷延鋼板(厚み:0.8mm) 還元炉最高到達板温:780℃,露点:−25℃ めっき浴組成:Al=4.5〜9.5重量%,Mg=1.5〜3.9
重量%,残部=Zn めっき浴温:400〜590℃ 浸漬時間:3秒 めっき後の冷却速度:空冷方式で3℃/秒または12℃
/秒(冷却速度はめっき浴温からめっき層凝固温度まで
の平均値)
Processing equipment: Continuous hot-dip galvanizing line of NOF type (testing machine) Treated steel sheet: Cold rolled steel sheet of weakly deoxidized steel (thickness: 0.8 mm) Maximum temperature of reduction furnace reached: 780 ° C, dew point: -25 ° C Plating bath composition: Al = 4.5-9.5% by weight, Mg = 1.5-3.9
Weight%, balance = Zn Plating bath temperature: 400 to 590 ° C Immersion time: 3 seconds Cooling rate after plating: 3 ° C / second or 12 ° C by air cooling
/ Sec (cooling rate is the average value from plating bath temperature to plating layer solidification temperature)

【0083】以上の条件で,溶融めっき鋼板を製造し,
得られためっき鋼板のめっき密着性を調べ, その結果を
表12に示した。めっき密着性の評価は実施例2と同様
にして行った。
Under the above conditions, a hot-dip coated steel sheet was manufactured.
The plating adhesion of the obtained plated steel sheet was examined, and the results are shown in Table 12. Evaluation of plating adhesion was performed in the same manner as in Example 2.

【0084】[0084]

【表12】 [Table 12]

【0085】表12の結果から,浴温が550℃を越え
ると,冷却速度の如何に係わらず本発明の浴組成範囲に
おいてめっき密着性が悪くなることがわかる。
From the results shown in Table 12, it can be seen that when the bath temperature exceeds 550 ° C., the plating adhesion deteriorates in the bath composition range of the present invention regardless of the cooling rate.

【0086】[0086]

【発明の効果】以上説明したように,本発明によると,
耐食性と表面外観に優れた溶融Zn−Al−Mgめっき
鋼板とその有利な製造法を提供でき,その優れた耐食性
ゆえに従来の溶融Zn基めっき鋼板のものではなし得な
かった新たな分野への用途の拡大ができる。
As described above, according to the present invention,
A hot-dip Zn-Al-Mg coated steel sheet with excellent corrosion resistance and surface appearance and an advantageous production method can be provided, and because of its excellent corrosion resistance, it can be used in new fields that cannot be achieved with conventional hot-dip Zn-based steel sheets. Can be expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従う溶融Zn−Al−Mgめっき鋼板
のめっき層の断面の金属組織を示す電子顕微鏡2次電子
像の写真とその説明図である。
FIG. 1 is a photograph of a secondary electron image of an electron microscope showing a metal structure of a cross section of a plating layer of a hot-dip Zn—Al—Mg plated steel sheet according to the present invention and an explanatory diagram thereof.

【図2】図1の金属組織のうちの〔Al/Zn/Zn2
Mgの三元共晶組織〕からなる素地部分を拡大した電子
顕微鏡2次電子像の写真とその説明図である。
2] [Al / Zn / Zn 2 of the metal structure shown in FIG.
FIG. 3 is a photograph of a secondary electron image of an electron microscope and an explanatory diagram thereof, in which a base portion made of [ternary eutectic structure of Mg] is enlarged.

【図3】本発明に従う溶融Zn−Al−Mgめっき鋼板
のめっき層の断面の金属組織(Zn単相を含む以外は図
1のものと同じ組織)を示す電子顕微鏡2次電子像の写
真とその説明図である。
FIG. 3 is a photograph of a secondary electron image of an electron microscope showing a metal structure (the same structure as that of FIG. 1 except for including a Zn single phase) in a cross section of a plating layer of a hot-dip Zn—Al—Mg plated steel sheet according to the present invention. FIG.

【図4】本発明に従う溶融Zn−Al−Mgめっき鋼板
のめっき層の断面の金属組織(Zn単相を含む以外は図
1のものと同じ組織であり,図3よりも初晶Al相が小
さい組織)を示す電子顕微鏡2次電子像の写真とその説
明図である。
FIG. 4 shows the metallographic structure of the cross section of the plating layer of the hot-dip Zn—Al—Mg plated steel sheet according to the present invention (the structure is the same as that of FIG. 1 except that a Zn single phase is included. FIG. 2 is a photograph of a secondary electron image of an electron microscope showing a (small tissue) and an explanatory diagram thereof.

【図5】目視可能な大きさの斑点状のZn11Mg2系の
相が点々と現れた溶融Zn−Al−Mgめっき鋼板の金
属組織を写した写真である。
FIG. 5 is a photograph showing the metallographic structure of a hot-dip Zn-Al-Mg plated steel sheet in which spot-like Zn 11 Mg 2 -based phases of visible size are scattered.

【図6】図5の斑点の部分を裁断した断面の金属組織を
示す電子顕微鏡2次電子像写真(倍率2000倍)であ
る。
6 is a secondary electron image photograph (magnification: 2000 times) of an electron microscope showing a metal structure of a cross section obtained by cutting a spot portion of FIG. 5;

【図7】図6の組織のうち三元共晶部分を拡大して写し
た金属組織を示す電子顕微鏡2次電子像写真(倍率10
000倍)である。
FIG. 7 is a secondary electron image photograph (magnification: 10 magnifications) showing a metal structure obtained by enlarging and copying a ternary eutectic portion in the structure of FIG.
000 times).

【図8】図5の斑点の境界部分の金属組織を示す電子顕
微鏡2次電子像写真(倍率10000倍)であり,左半
分はZn2Mg系の相の素地部分,右半分は斑点部分の
Zn11Mg2系の相の素地部分である。
8 is a secondary electron image photograph (magnification: 10,000 times) of an electron microscope showing a metal structure at a boundary portion of a spot in FIG. 5, in which a left half is a base portion of a Zn 2 Mg phase and a right half is a spot portion. This is the base portion of the Zn 11 Mg 2 phase.

【図9】実施例3の表3中のNo.3とNo.14のめっき鋼
板から17mm×17mmのサンプルを採取して測定し
たX線回折図であり,図9の上段のチャートは該No.3
のもの,また,中段と下段のものは該No.14のZn11
Mg2系の相の斑点が試料面積中に一部含まれるように
してサンプルを採取したものである。
FIG. 9 is an X-ray diffraction diagram obtained by measuring a sample of 17 mm × 17 mm from the plated steel sheets No. 3 and No. 14 in Table 3 of Example 3, and measuring the X-ray diffraction pattern. .3
And the middle and lower ones are the Zn 11
The sample was collected so that the spots of the Mg 2 -based phase were partially included in the sample area.

【図10】本発明の溶融Zn−Al−Mgめっき鋼板の
有利な製造条件の範囲を示す図である。
FIG. 10 is a diagram showing a range of advantageous production conditions for the hot-dip Zn—Al—Mg plated steel sheet of the present invention.

フロントページの続き (72)発明者 橘高 敏晴 大阪府堺市石津西町5番地 日新製鋼株 式会社技術研究所内 (56)参考文献 特開 平3−281766(JP,A) (58)調査した分野(Int.Cl.7,DB名) C23C 2/00 - 2/40 C22C 18/04 EPAT(QUESTEL)Continuation of front page (72) Inventor Toshiharu Tachibana Taka 5 Ishizu Nishimachi, Sakai City, Osaka Prefecture Nisshin Steel Co., Ltd. Technical Research Institute (56) References JP-A-3-281766 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C23C 2/00-2/40 C22C 18/04 EPAT (QUESTEL)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Al:4.0〜10重量%,Mg:1.0
〜4.0重量%,残部がZnおよび不可避的不純物から
なる溶融Zn−Al−Mgめっき層を鋼板表面に形成し
連続溶融Zn基めっき鋼板であって,当該めっき層
が,〔Al/Zn/Zn2Mgの三元共晶組織〕の素地
中に〔初晶Al相〕が混在した金属組織を有する耐食性
および表面外観の良好な連続溶融Zn−Al−Mgめっ
き鋼板。
1. Al: 4.0 to 10% by weight, Mg: 1.0
A continuous hot-dip Zn-base coated steel sheet having a hot-dip Zn-Al-Mg plated layer composed of Zn and unavoidable impurities formed on the surface of the steel sheet, the balance being [Al / Zn / Zn 2 Mg ternary eutectic structure good continuous hot-dip Zn-Al-Mg plated steel sheet corrosion resistance and surface appearance having a metal structure in the matrix is [primary crystal Al phase] were mixed].
【請求項2】 Al:4.0〜10重量%,Mg:1.0
〜4.0重量%,残部がZnおよび不可避的不純物から
なる溶融Zn−Al−Mgめっき層を鋼板表面に形成し
連続溶融Zn基めっき鋼板であって,当該めっき層
が,〔Al/Zn/Zn2Mgの三元共晶組織〕の素地
中に〔初晶Al相〕と〔Zn単相〕が混在した金属組織
を有する耐食性および表面外観の良好な連続溶融Zn−
Al−Mgめっき鋼板。
2. Al: 4.0 to 10% by weight, Mg: 1.0.
A continuous hot-dip Zn-base coated steel sheet having a hot-dip Zn-Al-Mg plated layer composed of Zn and unavoidable impurities formed on the surface of the steel sheet, the balance being [Al / Zn / good continuous melt of corrosion resistance and surface appearance having a metal structure in the matrix and [primary crystal Al phase] is [Zn single phase] were mixed Zn 2 Mg ternary eutectic structure] Zn-
Al-Mg plated steel sheet.
【請求項3】 めっき層の金属組織は,〔初晶Al相〕
と〔Al/Zn/Zn2Mgの三元共晶組織〕の合計
量:80容積%以上,〔Zn単相〕:15容積%以下
(0容積%を含む)である請求項1または2に記載の
溶融Zn−Al−Mgめっき鋼板。
3. The metal structure of the plating layer is [primary Al phase].
And the total amount of [Al / Zn / Zn 2 Mg ternary eutectic structure]: not less than 80% by volume and [Zn single phase]: not more than 15% by volume (including 0% by volume). communication with the described
Continued hot-dip Zn-Al-Mg plated steel sheet.
【請求項4】 めっき層の金属組織は,〔Al/Zn/
Zn11Mg2の三元共晶組織〕の素地自体或いは該素地
中に〔Al初晶〕または〔Al初晶〕と〔Zn単相〕が
混在してなるZn11Mg2系の相を実質上含まないもの
である請求項1,2または3に記載の連続溶融Zn−A
l−Mgめっき鋼板。
4. The metallographic structure of the plating layer is [Al / Zn /
The ternary eutectic structure of Zn 11 Mg 2 ] itself or a Zn 11 Mg 2 -based phase in which [Al primary crystal] or [Al primary crystal] and [Zn single phase] are mixed in the substrate. 4. The continuous molten Zn-A according to claim 1, 2, or 3, which is not included.
1-Mg plated steel sheet.
【請求項5】 Al:4.0〜10重量%,Mg:1.0
〜4.0重量%,残部がZnおよび不可避的不純物から
なる連続溶融Zn−Al−Mgめっき鋼板の製造法にお
いて,該めっき浴の浴温を融点以上470℃未満とし且
つめっき後の冷却速度を10℃/秒以上に制御すること
を特徴とする耐食性および表面外観の良好な連続溶融Z
n−Al−Mgめっき鋼板の製造法。
5. Al: 4.0 to 10% by weight, Mg: 1.0
In a method for producing a continuous hot-dip Zn-Al-Mg coated steel sheet comprising up to 4.0% by weight, with the balance being Zn and unavoidable impurities, the bath temperature of the plating bath is set to the melting point or higher and lower than 470 ° C , and the cooling rate after plating is set to Continuous melting Z excellent in corrosion resistance and surface appearance characterized by being controlled at 10 ° C./sec or more
Manufacturing method of n-Al-Mg plated steel sheet.
【請求項6】 該めっき浴の浴温が融点以上450℃以
,めっき後の冷却速度が10℃/秒以上である請求項
5に記載の連続溶融Zn−Al−Mgめっき鋼板の製造
法。
6. The bath temperature of the plating bath is not lower than the melting point and not higher than 450 ° C.
The method for producing a continuous hot-dip Zn-Al-Mg plated steel sheet according to claim 5, wherein the cooling rate after plating is 10 ° C / sec or more.
【請求項7】 Al:4.0〜10重量%,Mg:1.0
〜4.0重量%,残部がZnおよび不可避的不純物から
なる連続溶融Zn−Al−Mgめっき鋼板の製造法にお
いて,該めっき浴の浴温を470℃以上としめっき後の
冷却速度を0.5℃/秒以上に制御し,めっき層を〔A
l/Zn/Zn 2 Mgの三元共晶組織〕の素地中に〔初
晶Al相〕,または〔初晶Al相〕と〔Zn単相〕が混
在した金属組織とすることを特徴とする耐食性および表
面外観の良好な連続溶融Zn−Al−Mgめっき鋼板の
製造法。
7. Al: 4.0 to 10% by weight, Mg: 1.0
In a method for producing a continuous hot-dip Zn-Al-Mg-plated steel sheet comprising up to 4.0% by weight, the balance being Zn and unavoidable impurities, the bath temperature of the plating bath is set to 470 ° C. or higher and the cooling rate after plating is set to 0.5. ℃ / sec or more, and the plating layer
1 / Zn / Zn 2 Mg ternary eutectic structure]
Crystal phase) or a mixture of [primary crystal phase] and [Zn single phase].
A method for producing a continuous hot-dip Zn-Al-Mg-plated steel sheet having excellent corrosion resistance and surface appearance, characterized by having an existing metal structure .
【請求項8】 めっき鋼板のめっき層が,〔Al/Zn
/Zn2Mgの三元共晶組織〕の素地中に〔初晶Al
相〕,または〔初晶Al相〕と〔Zn単相〕が混在した
金属組織を有する請求項5または6に記載の連続溶融Z
n−Al−Mgめっき鋼板の製造法。
8. The method according to claim 8, wherein the plating layer of the plated steel sheet is [Al / Zn
/ Zn 2 into a green body in the ternary eutectic structure] in Mg [primary crystal Al
Continuous melt Z according to claim 5 or 6 having a phase] or [metallographic primary crystal Al phase] and the [Zn single phase] mixed
Manufacturing method of n-Al-Mg plated steel sheet.
JP36228797A 1996-12-13 1997-12-12 Hot-dip Zn-Al-Mg plated steel sheet with good corrosion resistance and surface appearance and method for producing the same Expired - Lifetime JP3179401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36228797A JP3179401B2 (en) 1996-12-13 1997-12-12 Hot-dip Zn-Al-Mg plated steel sheet with good corrosion resistance and surface appearance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35246796 1996-12-13
JP8-352467 1996-12-13
JP36228797A JP3179401B2 (en) 1996-12-13 1997-12-12 Hot-dip Zn-Al-Mg plated steel sheet with good corrosion resistance and surface appearance and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10226865A JPH10226865A (en) 1998-08-25
JP3179401B2 true JP3179401B2 (en) 2001-06-25

Family

ID=26579641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36228797A Expired - Lifetime JP3179401B2 (en) 1996-12-13 1997-12-12 Hot-dip Zn-Al-Mg plated steel sheet with good corrosion resistance and surface appearance and method for producing the same

Country Status (1)

Country Link
JP (1) JP3179401B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014794A (en) * 2011-06-30 2013-01-24 Nippon Steel & Sumitomo Metal Corp High corrosion-resistant hot-dip galvanized steel sheet excellent in appearance uniformity
JP2013036094A (en) * 2011-08-09 2013-02-21 Jfe Steel Corp HOT-DIP Zn-Al-BASED ALLOY PLATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND METHOD FOR MANUFACTURING THE SAME
WO2013187197A1 (en) 2012-06-14 2013-12-19 日新製鋼株式会社 Process for producing arc-welded structural member
WO2018117714A1 (en) 2016-12-22 2018-06-28 주식회사 포스코 Hot-dipped galvanized steel material having excellent weldability and press workability and manufacturing method therefor

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000064012A (en) * 1998-08-13 2000-02-29 Nippon Steel Corp HOT DIP Zn-Mg-Al PLATED STEEL SHEET EXCELLENT IN DESIGNING PROPERTY
JP3888784B2 (en) * 1998-09-21 2007-03-07 日新製鋼株式会社 Edge wrinkle prevention method for hot-dip Zn-based plated steel sheet
JP3567430B2 (en) * 1999-07-02 2004-09-22 日新製鋼株式会社 Painted metal plate with excellent corrosion resistance
JP4409007B2 (en) * 1999-10-12 2010-02-03 日新製鋼株式会社 Method for producing highly corrosion-resistant hot-dip Zn-Al-Mg plated steel sheet with excellent surface properties
CN1258613C (en) 1999-10-25 2006-06-07 新日本制铁株式会社 Metal plated steel wire having excellent resistance to corrosion and workability and method for producing the same
JP2001164194A (en) * 1999-12-13 2001-06-19 Nippon Steel Corp Zinc-rich coating excellent in corrosion-resistant property and coated metal plate
JP3954766B2 (en) * 1999-12-22 2007-08-08 新日本製鐵株式会社 Organic composite coated metal plate with excellent corrosion resistance and press formability that can be resistance welded
JP2001295015A (en) 2000-02-09 2001-10-26 Nisshin Steel Co Ltd HOT DIP HIGH Al-CONTAINING Zn-Al-Mg BASE METAL COATED STEEL SHEET
JP2001234315A (en) * 2000-02-23 2001-08-31 Nippon Steel Corp Precoated steel sheet excellent in corrosion resistance and formability and capable of being subjected to electric resistance welding
US6610423B2 (en) 2000-02-29 2003-08-26 Nippon Steel Corporation Plated steel product having high corrosion resistance and excellent formability and method for production thereof
JP4555499B2 (en) * 2000-04-11 2010-09-29 新日本製鐵株式会社 Hot-dip Zn-Al-Mg-Si plated steel with excellent surface properties and method for producing the same
JP3684135B2 (en) * 2000-04-11 2005-08-17 新日本製鐵株式会社 Si-containing high-strength hot-dip galvanized steel sheet with excellent corrosion resistance and method for producing the same
JP4102035B2 (en) * 2000-04-18 2008-06-18 新日本製鐵株式会社 Plating product with excellent corrosion resistance and manufacturing method thereof
JP2002206156A (en) * 2000-11-06 2002-07-26 Nippon Steel Corp Plated steel product for steel tower, its manufacturing method, and flux for use in the manufacturing method
JP3371107B2 (en) * 2001-03-06 2003-01-27 日新製鋼株式会社 Painted steel sheet with excellent corrosion and stain resistance
JP3580261B2 (en) * 2001-03-23 2004-10-20 住友金属工業株式会社 Hot-dip Zn-Al-Mg plated steel sheet and method for producing the same
JP3599680B2 (en) * 2001-04-16 2004-12-08 日亜鋼業株式会社 Method and apparatus for producing hot-dip zinc alloy plated wire
JP4683764B2 (en) * 2001-05-14 2011-05-18 日新製鋼株式会社 Hot-dip Zn-Al-Mg alloy-plated steel with excellent corrosion resistance
JP2002371345A (en) * 2001-06-13 2002-12-26 Sumitomo Metal Ind Ltd METHOD FOR MANUFACTURING HOT-DIP Zn-Al-Mg ALLOY PLATED STEEL SHEET
JP2003138359A (en) * 2001-10-29 2003-05-14 Sumitomo Metal Ind Ltd HOT DIP Zn-Al-Mg-Zr ALLOY GALVANIZED STEEL SHEET, AND PRODUCTION METHOD THEREFOR
JP2004059945A (en) * 2002-07-25 2004-02-26 Nippon Steel Corp Method for manufacturing steel sheet hot-dipped with multicomponent metal superior in surface quality
US6677058B1 (en) 2002-07-31 2004-01-13 Nisshin Steel Co., Ltd. Hot-dip Zn plated steel sheet excellent in luster-retaining property and method of producing the same
JP3760901B2 (en) * 2002-08-06 2006-03-29 Jfeスチール株式会社 Hot-dip Zn-Al-Mg-based plated steel sheet excellent in workability and corrosion resistance and method for producing the same
JP4102144B2 (en) * 2002-09-13 2008-06-18 新日本製鐵株式会社 Hot-dip galvanized steel material excellent in uniform paintability and corrosion resistance and method for producing the same
JP4173990B2 (en) * 2002-12-27 2008-10-29 新日本製鐵株式会社 Zinc-based alloy-plated steel for welding and its ERW steel pipe
JP2004360056A (en) * 2003-06-09 2004-12-24 Nisshin Steel Co Ltd BLACKENED HOT DIP Zn-Al-Mg BASED ALLOY PLATED STEEL SHEET, AND ITS PRODUCTION METHOD
US7182824B2 (en) 2003-06-17 2007-02-27 Nisshin Steel Co., Ltd. Method of manufacturing zinc alloy ingot
JP4374281B2 (en) * 2004-05-26 2009-12-02 新日本製鐵株式会社 Hot-dip galvanized steel with excellent corrosion resistance
JP4546848B2 (en) * 2004-09-28 2010-09-22 新日本製鐵株式会社 High corrosion-resistant Zn-based alloy plated steel with hairline appearance
JP2006193776A (en) * 2005-01-12 2006-07-27 Nisshin Steel Co Ltd STEEL SHEET PLATED WITH Zn-Al-Mg ALLOY SUPERIOR IN SLIDABILITY, AND SLIDING MEMBER
JP4542434B2 (en) * 2005-01-14 2010-09-15 新日本製鐵株式会社 A molten Zn—Al—Mg—Si plated steel sheet excellent in surface appearance and a method for producing the same.
JP4650243B2 (en) 2005-12-02 2011-03-16 株式会社デンソー Yoke for rotating electrical machine and method for manufacturing yoke
ATE416863T1 (en) * 2006-03-13 2008-12-15 Wolfgang Schmauser WELDED WIRE GRID FOR GABIONS
JP5101249B2 (en) * 2006-11-10 2012-12-19 Jfe鋼板株式会社 Hot-dip Zn-Al alloy-plated steel sheet and method for producing the same
JP5221733B2 (en) 2010-10-26 2013-06-26 日新製鋼株式会社 Gas wiping device
JP5221732B2 (en) 2010-10-26 2013-06-26 日新製鋼株式会社 Gas wiping device
KR20120075235A (en) 2010-12-28 2012-07-06 주식회사 포스코 Hot dip zn alloy plated steel sheet having excellent anti-corrosion and method for manufacturing the steel sheet using the same
KR101417304B1 (en) * 2012-07-23 2014-07-08 주식회사 포스코 HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT ANTI-CORROSION AND SURFACE APPEARANCE AND METHOD FOR MANUFACTURING THE STEEL SHEET USING THE SAME
JP2014205877A (en) * 2013-04-12 2014-10-30 日新製鋼株式会社 PLATING BATH FOR Zn-Al-Mg ALLOY PLATING AND IMMERSION MEMBER IN BATH
JP6287438B2 (en) * 2014-03-26 2018-03-07 株式会社豊田中央研究所 Method for manufacturing metal member
AU2015390616B2 (en) 2015-04-08 2017-12-14 Nippon Steel Corporation Zn-Al-Mg coated steel sheet, and method of producing Zn-Al-Mg coated steel sheet
JP6576689B2 (en) 2015-05-27 2019-09-18 Ntn株式会社 Fastening band for constant velocity universal joint boots
CN108350555A (en) * 2015-10-26 2018-07-31 Posco公司 The galvanized alloy steel plate and its manufacturing method of excellent in bending workability
KR101847567B1 (en) 2015-12-24 2018-04-10 주식회사 포스코 Coated steel sheet
KR101767788B1 (en) * 2015-12-24 2017-08-14 주식회사 포스코 Plating steel material having excellent friction resistance and white rust resistance and method for manufacturing same
EP3497258B1 (en) * 2016-08-08 2024-02-21 Colorado School of Mines Modified hot-dip galvanize coatings with low liquidus temperature, methods of making and using the same
JP7064289B2 (en) * 2017-03-24 2022-05-10 Jfeスチール株式会社 Manufacturing method of molten Zn-Al plated steel sheet
CN110832105B (en) 2017-07-05 2021-11-02 杰富意钢铁株式会社 Molten Zn-Al-Mg-based plated steel sheet having excellent surface appearance and method for producing same
WO2019132412A1 (en) 2017-12-26 2019-07-04 주식회사 포스코 Zinc alloy-plated steel having excellent corrosion resistance and surface smoothness, and manufacturing method therefor
KR102235255B1 (en) * 2017-12-26 2021-04-02 주식회사 포스코 Zinc alloy coated steel having excellent corrosion resistance and surface smoothness, and method for manufacturing the same
KR102031466B1 (en) 2017-12-26 2019-10-11 주식회사 포스코 Zinc alloy coated steel having excellent surface property and corrosion resistance, and method for manufacturing the same
KR102045656B1 (en) 2017-12-26 2019-11-15 주식회사 포스코 Zn-Al-Mg alloy plated steel sheet having excellent corrosion resistance and manufacturing method for the same
JP6950666B2 (en) * 2018-03-01 2021-10-13 Jfeスチール株式会社 Manufacturing method of hot-dip Zn-Al-Mg-based plated steel sheet with excellent surface appearance and manufacturing line of hot-dip Zn-Al-Mg-based plated steel sheet
WO2019230894A1 (en) * 2018-05-30 2019-12-05 日本製鉄株式会社 Zn-Al-Mg-BASED HOT-DIP PLATED STEEL SHEET AND METHOD FOR PRODUCING SAME
CN110760774B (en) * 2019-11-22 2022-02-01 甘肃酒钢集团宏兴钢铁股份有限公司 Zinc-aluminum-magnesium steel plate and preparation method for effectively controlling black spots on surface of hot-dip galvanized aluminum-magnesium steel plate by CSP (cast steel plate) process
KR20230005364A (en) 2020-06-09 2023-01-09 닛폰세이테츠 가부시키가이샤 Hot-dip Zn-Al-Mg coated steel
JP2022019429A (en) * 2020-07-17 2022-01-27 Jfeスチール株式会社 MOLTEN Zn-Al-Mg-BASED PLATED SHEET STEEL, AND PRODUCTION METHOD THEREOF
WO2022053847A1 (en) 2020-09-08 2022-03-17 Arcelormittal Filtration system
TWI825513B (en) 2020-11-18 2023-12-11 日商日本製鐵股份有限公司 plated steel
US11851764B2 (en) 2020-11-18 2023-12-26 Nippon Steel Corporation Plated steel material
JP7156573B1 (en) 2021-01-18 2022-10-19 日本製鉄株式会社 plated steel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013014794A (en) * 2011-06-30 2013-01-24 Nippon Steel & Sumitomo Metal Corp High corrosion-resistant hot-dip galvanized steel sheet excellent in appearance uniformity
JP2013036094A (en) * 2011-08-09 2013-02-21 Jfe Steel Corp HOT-DIP Zn-Al-BASED ALLOY PLATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND METHOD FOR MANUFACTURING THE SAME
WO2013187197A1 (en) 2012-06-14 2013-12-19 日新製鋼株式会社 Process for producing arc-welded structural member
WO2018117714A1 (en) 2016-12-22 2018-06-28 주식회사 포스코 Hot-dipped galvanized steel material having excellent weldability and press workability and manufacturing method therefor

Also Published As

Publication number Publication date
JPH10226865A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
JP3179401B2 (en) Hot-dip Zn-Al-Mg plated steel sheet with good corrosion resistance and surface appearance and method for producing the same
JP3149129B2 (en) Hot-dip Zn-Al-Mg-based coated steel sheet with good corrosion resistance and surface appearance and method for producing the same
TWI664315B (en) Coated steel
JP6428974B1 (en) Plated steel
KR100324893B1 (en) HOT-DIP Zn-Al-Mg COATED STEEL SHEET EXCELLENT IN CORROSION RESISTANCE AND SURFACE APPEARANCE AND PROCESS FOR THE PRODUCTION THEREOF
JP2001295015A (en) HOT DIP HIGH Al-CONTAINING Zn-Al-Mg BASE METAL COATED STEEL SHEET
EP1504134B1 (en) High-strength hot-dip galvanized steel sheet and hot-dip galvannealed steel sheet having fatigue resistance, corrosion resistance, ductility and plating adhesion, after severe deformation, and a method of producing the same
CN113508186B (en) Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same
JP2003268519A (en) Galvanized steel sheet having excellent corrosion resistance after coating and image clarity in coating
CN117987688A (en) Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same
JP7445128B2 (en) Hot-dip Zn-Al-Mg coated steel with excellent workability and corrosion resistance
JP7136351B2 (en) plated steel
JPH10265926A (en) Production of hot dip zn-al-mg coated steel strip excellent in corrosion resistance and appearance
JP2000328214A (en) HIGH CORROSION RESISTANCE Mg-CONTAINING HOT DIP Zn-Al ALLOY PLATED STEEL SHEET GOOD IN SURFACE APPEARANCE
JP2023504496A (en) Hot-dip galvanized steel sheet with excellent bending workability and corrosion resistance, and method for producing the same
CA1303916C (en) Zn-al hot-dip galvanized steel sheet having improved resistance against secular peeling and method for producing the same
JP2002241916A (en) Plated steel sheet having excellent corrosion resistance, workability and weldability and production method therefor
JP2895346B2 (en) Hot-dip aluminized steel sheet with excellent corrosion resistance
EP1561835B1 (en) HOT-DIPPED Sn-Zn PLATED STEEL PLATE OR SHEET EXCELLING IN CORROSION RESISTANCE AND WORKABILITY
JP2023500997A (en) Galvanized steel sheet with excellent corrosion resistance, galling resistance, workability and surface quality, and its manufacturing method
JP2001107212A (en) HIGH CORROSION RESISTANT HOT-DIP Zn-Al-Mg BASE COATED STEEL SHEET EXCELLENT IN SURFACE CHARACTERISTIC
KR102453009B1 (en) Plated steel sheet having excellent corrosion resistance and surface property and method for manufacturing the same
JPH06256925A (en) Zinc-iron hot dip galvannealed steel excellent in press formability
WO2023238934A1 (en) Zn-al-mg hot-dip plated steel sheet
WO2023191027A1 (en) Plated steel wire

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term