JP4355300B2 - Hydrogen permeable membrane, hydrogen sensor, and hydrogen detection method - Google Patents

Hydrogen permeable membrane, hydrogen sensor, and hydrogen detection method Download PDF

Info

Publication number
JP4355300B2
JP4355300B2 JP2005118798A JP2005118798A JP4355300B2 JP 4355300 B2 JP4355300 B2 JP 4355300B2 JP 2005118798 A JP2005118798 A JP 2005118798A JP 2005118798 A JP2005118798 A JP 2005118798A JP 4355300 B2 JP4355300 B2 JP 4355300B2
Authority
JP
Japan
Prior art keywords
hydrogen
absorber
semiconductor
sensor
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005118798A
Other languages
Japanese (ja)
Other versions
JP2006300560A (en
Inventor
敏明 紺野
泰一 小野
卓雄 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2005118798A priority Critical patent/JP4355300B2/en
Publication of JP2006300560A publication Critical patent/JP2006300560A/en
Application granted granted Critical
Publication of JP4355300B2 publication Critical patent/JP4355300B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

本発明は、水素を選択的に透過させる水素透過膜と、常温で簡単に水素を検知することができ、メタンガスなどの可燃性ガスの存在に影響を受けることなく水素のみの検知ができる水素センサおよび水素検知方法に関する。   The present invention provides a hydrogen permeable membrane that selectively permeates hydrogen, and a hydrogen sensor that can easily detect hydrogen at room temperature and can detect only hydrogen without being affected by the presence of flammable gas such as methane gas. And a hydrogen detection method.

従来から、金属酸化物半導体からなるガス感応体の表面に、水素以外のガスの通過を抑制するとともに水素を選択的に通過させる薄膜を保護膜として形成した水素センサが提案されている。この水素センサの薄膜としては、例えば、アルミナ、シリカ、窒化ケイ素等の薄膜が一般的に用いられている。この種の水素センサは、ガス感応体の表面に緻密で一様な連続薄膜(水素選択性透過膜)を形成することによって、感応体を保護すると共に、水素以外のガスによる干渉を少なくして高感度の水素選択性を有する水素センサの実現を狙ったものである。   Conventionally, a hydrogen sensor has been proposed in which a thin film that suppresses the passage of a gas other than hydrogen and selectively allows hydrogen to pass therethrough as a protective film on the surface of a gas sensor made of a metal oxide semiconductor. As a thin film of this hydrogen sensor, for example, a thin film of alumina, silica, silicon nitride or the like is generally used. This type of hydrogen sensor protects the sensing element by forming a dense and uniform continuous thin film (hydrogen-selective permeable membrane) on the surface of the gas sensing element, and reduces interference from gases other than hydrogen. The aim is to realize a hydrogen sensor with high sensitivity and hydrogen selectivity.

例えば、以下の特許文献1には、アルミナからなる支持基板上にチタン酸ストロンチウムからなる半導体層を形成し、この半導体層を覆う二酸化ケイ素または窒化ケイ素からなる外層を有する水素センサが開示されている。この水素センサにおいては、二酸化ケイ素または窒化ケイ素からなる外層が水素を選択的に透過させるため、水素センサ用水素透過膜として好適に使用できることが記載されている。
特表2002−513930号公報
For example, Patent Document 1 below discloses a hydrogen sensor having a semiconductor layer made of strontium titanate on a support substrate made of alumina and an outer layer made of silicon dioxide or silicon nitride covering the semiconductor layer. . In this hydrogen sensor, it is described that since the outer layer made of silicon dioxide or silicon nitride selectively allows hydrogen to pass therethrough, it can be suitably used as a hydrogen permeable membrane for a hydrogen sensor.
JP-T-2002-513930

ところで、上記の特許文献1に記載の水素センサにおいては、水素は感応体の表面に形成された水素選択性透過膜を通過した後に感応体で検知されることになり、該透過膜は水素の流れに対して何がしかの抵抗となるため、水素選択性透過膜を使用しない水素センサに比べて応答速度が遅くなる傾向にあることは避けられなかった。   By the way, in the hydrogen sensor described in Patent Document 1, hydrogen is detected by the sensitive body after passing through the hydrogen-selective permeable membrane formed on the surface of the sensitive body. Since there is some resistance to the flow, it is inevitable that the response speed tends to be slower than a hydrogen sensor that does not use a hydrogen-selective permeable membrane.

本発明は前記事情に鑑みてなされたものであって、保護膜としての機能を果たしながら応答速度の低下を抑制できる水素透過膜を提供することを目的とする。
また、該水素透過膜を水素センサに適用して、応答速度が速い水素センサおよび水素検知方法を提供することを目的とする。
さらに、水素を選択的に透過させることができ、常温で検知することが可能であり、加熱の必要が無いため省電力構造にできるとともに、一度水素検知が終了しても繰り返し使用が可能であり、長期間使用することが可能な水素センサおよび水素検知方法を提供することを目的とする。
This invention is made | formed in view of the said situation, Comprising: It aims at providing the hydrogen permeable film which can suppress the fall of a response speed, fulfill | performing a function as a protective film.
It is another object of the present invention to provide a hydrogen sensor and a hydrogen detection method having a high response speed by applying the hydrogen permeable membrane to a hydrogen sensor.
In addition, hydrogen can be selectively permeated and can be detected at room temperature, and since there is no need for heating, it can be made into a power saving structure and can be used repeatedly even once hydrogen detection is completed. An object of the present invention is to provide a hydrogen sensor and a hydrogen detection method that can be used for a long period of time.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明の水素透過膜は、リンを添加した酸化珪素からなることを特徴とする。かかる構成によれば、水素透過膜を水素が透過する際の抵抗が少なく、応答速度の低下を抑制することができる。
本発明の水素透過膜は、前記リンの添加量が0.1〜1.0wt%の範囲であることを特徴とする。かかる構成によれば、上記と同様の効果が得られる。
In order to achieve the above object, the present invention employs the following configuration.
The hydrogen permeable membrane of the present invention is characterized by being made of silicon oxide to which phosphorus is added. According to such a configuration, resistance when hydrogen permeates through the hydrogen permeable membrane is small, and a decrease in response speed can be suppressed.
The hydrogen permeable membrane of the present invention is characterized in that the amount of phosphorus added is in the range of 0.1 to 1.0 wt%. According to this configuration, the same effect as described above can be obtained.

本発明の水素センサは、半導体と、該半導体の表面の少なくとも一部に付設する水素吸収体と、前記水素吸収体の露出した面を覆うとともに水素を透過する水素透過膜と、前記水素吸収体の付設位置を挟んで、前記半導体に、前記水素吸収体によって導通しないよう配置した対になる電極とを具備してなり、前記水素透過膜がリンを添加した酸化珪素からなり、前記水素吸収体への水素吸収の有無に対応する前記半導体の抵抗値変化を前記対になる電極間で計測することにより、水素の存在を検知可能とされてなることを特徴とする。   The hydrogen sensor of the present invention includes a semiconductor, a hydrogen absorber attached to at least a part of the surface of the semiconductor, a hydrogen permeable film that covers an exposed surface of the hydrogen absorber and transmits hydrogen, and the hydrogen absorber. The semiconductor is provided with a pair of electrodes arranged so as not to be conducted by the hydrogen absorber, and the hydrogen permeable film is made of silicon oxide to which phosphorus is added, and the hydrogen absorber The presence of hydrogen can be detected by measuring a change in resistance value of the semiconductor corresponding to the presence or absence of hydrogen absorption between the pair of electrodes.

かかる構成によれば、水素透過膜を水素が透過する際の抵抗が少なく、応答速度の低下を抑制することができる。また、混合気体の雰囲気中においても、水素以外の気体は水素透過膜を透過せず、選択的に水素のみを透過させることができる。さらに、水素透過膜を透過して水素吸収体に吸収された水素の有無により半導体層に影響が与えられ、半導体層の抵抗値が変化するので、水素の検知が可能である。
尚、この水素検知は、特に加熱する必要がなく常温で検知可能であるとともに、水素吸収体から水素が離脱することで半導体の抵抗値は容易に原点復帰する。そのため、加熱ヒータなどを用いてなくても常温で繰り返し使用することができるので、消費電力を低減することができる。
According to such a configuration, resistance when hydrogen permeates through the hydrogen permeable membrane is small, and a decrease in response speed can be suppressed. Further, even in a mixed gas atmosphere, gases other than hydrogen do not permeate the hydrogen permeable membrane and can selectively permeate only hydrogen. Furthermore, since the semiconductor layer is affected by the presence or absence of hydrogen that has passed through the hydrogen permeable membrane and absorbed by the hydrogen absorber, the resistance value of the semiconductor layer changes, so that hydrogen can be detected.
Note that this hydrogen detection can be performed at normal temperature without the need for heating, and the resistance value of the semiconductor can easily return to the origin when hydrogen desorbs from the hydrogen absorber. Therefore, since it can be used repeatedly at room temperature without using a heater or the like, power consumption can be reduced.

本発明の水素センサは、前記水素透過膜中の前記リンの添加量が0.1〜1.0wt%の範囲であることを特徴とする。かかる構成によれば、上記と同様の効果が得られる。
本発明の水素センサは、常温動作可能であって、エタンガス、メタンガス、プロパンガス等の可燃性ガスの存在下では前記電極間の抵抗値の変化を生じさせないことを特徴とする。かかる構成によれば、水素透過膜はメタンガス、エタンガス、プロパンガス等の可燃性ガスを透過させないため、これらの可燃性ガスの存在下では前記電極間の抵抗値変化を生じない。そのため、これらの可燃性ガスの存在には影響されず、水素のみを専門に検出することができる。また、加熱装置を必要とせず、常温で水素センサを動作可能であり、消費電力を低減できる。
In the hydrogen sensor of the present invention, the amount of phosphorus added in the hydrogen permeable membrane is in the range of 0.1 to 1.0 wt%. According to this configuration, the same effect as described above can be obtained.
The hydrogen sensor of the present invention can be operated at room temperature, and does not cause a change in resistance value between the electrodes in the presence of a combustible gas such as ethane gas, methane gas, or propane gas. According to such a configuration, since the hydrogen permeable membrane does not transmit flammable gases such as methane gas, ethane gas, and propane gas, the resistance value does not change between the electrodes in the presence of these flammable gases. Therefore, only hydrogen can be detected exclusively without being affected by the presence of these combustible gases. In addition, a hydrogen sensor can be operated at room temperature without requiring a heating device, and power consumption can be reduced.

本発明の水素センサは、酸素が存在していない環境下で動作可能であり、前記水素吸収体への水素の吸収により初期状態から変化した前記半導体の抵抗値が、前記水素吸収体からの水素の離脱により前記初期状態に復帰可能とされてなることを特徴とする。かかる構成によれば、水素吸収体からの水素の離脱により抵抗値が初期状態に復帰するので、1度水素検知した後でも初期状態に戻すことができ、繰り返しの使用ができる。その場合に、水素離脱の後に加熱処理や酸化処理を施すことなく水素の存在しない環境に設置しておくだけで良い。水素の存在しない環境に設置しておくだけで水素吸収体から水素は抜けるので、水素を水素吸収体から強制的に離脱するための特別な処理を要することなく繰り返し使用することができる。   The hydrogen sensor of the present invention can be operated in an environment in which oxygen is not present, and the resistance value of the semiconductor, which has changed from the initial state due to the absorption of hydrogen into the hydrogen absorber, is the hydrogen from the hydrogen absorber. It is possible to return to the initial state by leaving. According to such a configuration, the resistance value is restored to the initial state by the detachment of hydrogen from the hydrogen absorber, so that it can be restored to the initial state even after hydrogen is detected once and can be used repeatedly. In that case, it is only necessary to install in an environment where hydrogen is not present without performing heat treatment or oxidation treatment after hydrogen desorption. Since hydrogen is released from the hydrogen absorber simply by installing it in an environment where hydrogen is not present, it can be used repeatedly without requiring any special treatment for forcibly leaving the hydrogen absorber.

本発明の水素センサは、前記半導体が、シリコン、炭化珪素、ゲルマニウム、シリコンゲルマニウム、ガリウムヒ素、窒化ガリウム、炭素のいずれかを主成分とする非酸化物半導体からなることを特徴とする。かかる構成によれは、上記と同様の効果が得られる。 The hydrogen sensor according to the present invention is characterized in that the semiconductor is made of a non-oxide semiconductor mainly containing any one of silicon, silicon carbide, germanium, silicon germanium, gallium arsenide, gallium nitride, and carbon . According to this configuration, the same effect as described above can be obtained.

本発明の水素センサは、前記水素吸収体が、パラジウム、パラジウム合金、白金、白金合金のいずれかからなり、前記半導体上に島状分散構造として配置されたことを特徴とする。かかる構成によれは、上記と同様の効果が得られる。また、水素吸収体を半導体上に形成する場合に、水素吸収体は粒子が繋がって膜状に生成されるよりも薄く、膜として導通しない状態、即ち、粒子が島状に分散した状態の絶縁体として半導体上に形成することにより、単に膜状に形成する場合に起こる半導体よりも遙かに抵抗値が低い導通状態となって対になる電極間の半導体の抵抗値を大幅に低くしてしまう現象を避けることができる。   The hydrogen sensor according to the present invention is characterized in that the hydrogen absorber is made of any one of palladium, palladium alloy, platinum, and platinum alloy, and is arranged as an island-shaped dispersion structure on the semiconductor. According to this configuration, the same effect as described above can be obtained. In addition, when the hydrogen absorber is formed on a semiconductor, the hydrogen absorber is thinner than the particles connected to form a film and does not conduct as a film, that is, the insulation in which the particles are dispersed in an island shape. By forming it on the semiconductor as a body, the resistance value of the semiconductor between the paired electrodes is greatly reduced because the resistance value is much lower than that of the semiconductor that occurs when it is simply formed into a film shape. Can be avoided.

本発明の水素の検知方法は、半導体の表面に水素吸収体を付設し、前記水素吸収体の露出した面を、リンを添加した酸化珪素からなる水素透過膜で覆い、前記水素透過膜を介して前記水素吸収体が水素を吸収したことに起因する前記半導体の抵抗値の変化を測定して水素の存在を検知することを特徴とする。かかる方法によれば、水素透過膜を水素が透過する際の抵抗が少なく、応答速度の速い水素検知が可能になる。水素以外の気体が水素透過膜を透過することを防止でき、水素のみを検知することができる。
本発明の水素の検知方法は、前記水素透過膜中の前記リンの添加量が0.1〜1.0wt%の範囲であることを特徴とする。かかる方法によれば、上記と同様の効果を得られる。
In the hydrogen detection method of the present invention, a hydrogen absorber is attached to the surface of a semiconductor, the exposed surface of the hydrogen absorber is covered with a hydrogen permeable film made of silicon oxide to which phosphorus is added, and the hydrogen permeable film is interposed therebetween. The presence of hydrogen is detected by measuring a change in resistance value of the semiconductor caused by the hydrogen absorber absorbing hydrogen. According to this method, it is possible to detect hydrogen with a low response speed and a high response speed when hydrogen passes through the hydrogen permeable membrane. Gas other than hydrogen can be prevented from passing through the hydrogen permeable membrane, and only hydrogen can be detected.
The hydrogen detection method of the present invention is characterized in that the amount of phosphorus added in the hydrogen permeable membrane is in the range of 0.1 to 1.0 wt%. According to this method, the same effect as described above can be obtained.

本発明の水素透過膜によれば、水素を選択的に透過させると共に、水素が透過する際の抵抗が少ないという効果がある。
本発明の水素センサによれば、水素透過膜を水素が透過する際の抵抗が少ないことから、応答速度の低下を抑制することができる。即ち、保護膜を有しながらも応答速度の速い水素センサを得ることができる。
また、混合気体の雰囲気中においても、水素以外の気体は水素透過膜を透過せず、選択的に水素のみを透過させることができる。さらに、水素透過膜を透過して水素吸収体に吸収された水素の有無により半導体層に影響が与えられ、半導体層の抵抗値が変化するので、水素の検知ができる。
本発明の水素検知方法によれば、水素透過膜を水素が透過する際の抵抗が少ないことから、応答速度の速い水素検知が可能になる。
According to the hydrogen permeable membrane of the present invention, there are effects that hydrogen is selectively permeated and resistance when hydrogen permeates is small.
According to the hydrogen sensor of the present invention, since the resistance when hydrogen permeates through the hydrogen permeable membrane is small, it is possible to suppress a decrease in response speed. That is, it is possible to obtain a hydrogen sensor having a protective film and a high response speed.
Further, even in a mixed gas atmosphere, gases other than hydrogen do not permeate the hydrogen permeable membrane and can selectively permeate only hydrogen. Furthermore, the presence or absence of hydrogen that has passed through the hydrogen permeable membrane and is absorbed by the hydrogen absorber affects the semiconductor layer, and the resistance value of the semiconductor layer changes, so that hydrogen can be detected.
According to the hydrogen detection method of the present invention, since the resistance when hydrogen permeates through the hydrogen permeable membrane is small, hydrogen detection with a high response speed becomes possible.

本発明に係る水素センサの実施形態の構成について図面を参照して説明する。なお、以下の全ての図面においては図面を見やすくするために、各構成要素の膜厚や寸法の比率などは適宜異ならせて示してある。
図1と図2は本発明に係る水素センサの構成を示すもので、この水素センサAは、絶縁基板(絶縁基体)1の上面のほぼ全域に半導体層2が積層され、この半導体層2の上面にSiからなる薄膜絶縁層3が形成されている。さらに、この薄膜絶縁層3の上面に島状に粒子が分散配置された構造の水素吸収体4が形成され、この水素吸収体4の露出した面を覆うように水素透過膜5が形成されている。また、前記半導体層2の表面上であって先の水素吸収体4の左右両側に位置するように内側電極6、6と、前記半導体層2の表面上であって先の水素吸収体4の左右両側であって先の内側電極6、6よりも更に外側に位置するように外側電極7、7が形成されている。
A configuration of an embodiment of a hydrogen sensor according to the present invention will be described with reference to the drawings. In all of the following drawings, the film thicknesses and dimensional ratios of the constituent elements are appropriately varied in order to make the drawings easy to see.
1 and 2 show a configuration of a hydrogen sensor according to the present invention. In this hydrogen sensor A, a semiconductor layer 2 is laminated on almost the entire upper surface of an insulating substrate (insulating base) 1. A thin film insulating layer 3 made of Si 3 N 4 is formed on the upper surface. Further, a hydrogen absorber 4 having a structure in which particles are dispersed and arranged in an island shape is formed on the upper surface of the thin film insulating layer 3, and a hydrogen permeable film 5 is formed so as to cover the exposed surface of the hydrogen absorber 4. Yes. Further, the inner electrodes 6, 6 are positioned on the surface of the semiconductor layer 2 and on the left and right sides of the previous hydrogen absorber 4, and The outer electrodes 7 and 7 are formed so as to be located on both the left and right sides and further outside the inner electrodes 6 and 6.

絶縁基板1は、SiOなどのガラス基板や石英基板、Alなどのセラミックス基板、イオンをドープしていない絶縁基板としてのSi基板などの絶縁材料からなる基板を用いることができる。また、サファイア基板を用いることもできる。この絶縁基板1はその上面側のみが絶縁性を有するものであれば良いので、導電性基板の表面に絶縁層を被覆形成したものでも良い。半導体層2はITO(インジウムスズ酸化物)、GaN、あるいはPをドープして半導体としたn型Siなどの半導体からなる層状のものである。この半導体層2としては、本来絶縁物であるが、イオンをドープして半導体としたものが望ましい。このタイプの半導体として、シリコンにV族の元素であるPやAsあるいはSbなどの元素をイオンドープしてなるn型半導体あるいはシリコンにBなどのIII族元素をイオンドープしてなるP型半導体などを用いることができる。その他半導体層2を構成するための半導体としてn型またはp型のSiC、Ge、SiGe、GaAs、GaNなど、あるいはダイヤモンドを含む炭素のいずれかを用いることができる。また、半導体層2の表面に薄膜絶縁層3を形成しておくことにより、半導体層3の表面の保護機能を確保することができる。この薄膜絶縁層4としては、Siなどが挙げられる。 As the insulating substrate 1, a substrate made of an insulating material such as a glass substrate such as SiO 2 , a quartz substrate, a ceramic substrate such as Al 2 O 3, or an Si substrate as an insulating substrate not doped with ions can be used. A sapphire substrate can also be used. Since the insulating substrate 1 only needs to have insulating properties on the upper surface side, the insulating substrate 1 may be formed by coating an insulating layer on the surface of the conductive substrate. The semiconductor layer 2 is a layered layer made of a semiconductor such as n-type Si doped with ITO (indium tin oxide), GaN, or P. The semiconductor layer 2 is originally an insulator but is preferably a semiconductor doped with ions. As this type of semiconductor, an n-type semiconductor obtained by ion doping silicon with an element such as P, As or Sb, which is a group V element, or a p-type semiconductor obtained by ion doping silicon with a group III element such as B, etc. Can be used. In addition, any of n-type or p-type SiC, Ge, SiGe, GaAs, GaN , or carbon containing diamond can be used as a semiconductor for forming the semiconductor layer 2. In addition, by forming the thin film insulating layer 3 on the surface of the semiconductor layer 2, the protective function of the surface of the semiconductor layer 3 can be ensured. Examples of the thin film insulating layer 4 include Si 3 N 4 .

前記水素吸収体(水素吸排材料体)4は、Pd、Pd合金、Pt、Pt合金のいずれかからなる粒子あるいはその他の白金族元素あるいはそれらの合金元素が粒子状となって島状に分散配置された構造であることが好ましい。また、これらの金属の他に一般的に水素吸蔵合金として知られるLa、Ti、Zr、Mg、希土類金属、Ca、Vあるいはこれらを含む合金などのいずれかを用いても良いのは勿論である。ここで水素吸収体4は、上述の金属あるいは合金の水素吸排材料からなるが、これらの水素吸排材料を先の絶縁薄膜層3の上に成膜する際、後に形成する対の電極間を導通させないパターンとする必要がある。パターン形成に当たってはフォトリソ法が好適に用いられる。他の形態としては島状にとぎれとぎれの状態で粒子が分散されてなり、全体として導電性を有しない、絶縁体として機能する状態のものとすることが好ましい。図1と図2ではこの水素吸収体4を膜状として略して示した。図1と図2のパターンでは水素吸収体4が電極と離れているため、連続膜であっても本発明の効果を奏するが、水素吸収体4は拡大すると島状に粒子が分離して形成された集合体の絶縁体として機能する程度の膜厚とすることがより好ましい。例えばこの水素吸収体4は抵抗値1MΩ程度以上の絶縁体とされ、水素吸収体4はその膜厚として0.5nm〜5nm程度の範囲とすることが好ましい。   The hydrogen absorber (hydrogen absorbing / discharging material body) 4 is made of particles made of any one of Pd, Pd alloy, Pt, and Pt alloy, or other platinum group elements or their alloy elements dispersed in an island shape. It is preferable that it is the structure made. In addition to these metals, it is of course possible to use any of La, Ti, Zr, Mg, rare earth metals, Ca, V, or alloys containing these, which are generally known as hydrogen storage alloys. . Here, the hydrogen absorber 4 is made of the above-described metal or alloy hydrogen absorbing / discharging material. When these hydrogen absorbing / discharging materials are formed on the insulating thin film layer 3, the pair of electrodes formed later are electrically connected. It is necessary to make the pattern not to be allowed. Photolithographic methods are preferably used for pattern formation. As another form, it is preferable that the particles are dispersed in an island-like state and do not have conductivity as a whole and function as an insulator. In FIG. 1 and FIG. 2, this hydrogen absorber 4 is abbreviated as a film. Since the hydrogen absorber 4 is separated from the electrode in the patterns of FIGS. 1 and 2, the effect of the present invention is obtained even if it is a continuous film. However, when the hydrogen absorber 4 is enlarged, particles are separated into islands and formed. More preferably, the film thickness is such that it functions as an insulator of the aggregate. For example, the hydrogen absorber 4 is an insulator having a resistance value of about 1 MΩ or more, and the thickness of the hydrogen absorber 4 is preferably in the range of about 0.5 nm to 5 nm.

このような島状に分散した水素吸収体4は真空蒸着法、スパッタ法などの成膜法により薄膜絶縁層3の上に粒子を堆積させて成膜する場合に膜として生成される前の状態で成膜を中止することで製造することができる。例えば、Pd、Pd合金、Pt、Pt合金などはいずれも良導電性の金属材料であり、膜として生成すると導電体となるので、導電体となる前の絶縁体の状態で成膜を停止すれば複数の粒子が島状に分散配置された構造の水素吸収体3を得ることができる。従って、先に説明した膜厚の範囲に形成するならば絶縁体としての水素吸収体4を薄膜絶縁層3の上に形成することができる。この形態で水素吸収体4の縦幅は絶縁基板1の縦幅よりも若干短く、横幅は絶縁基板1の横幅の数分の1に形成されている。従って図1と図2における水素吸収体4の左右両側には半導体層2が露出されている。   Such a hydrogen absorber 4 dispersed in an island shape is in a state before being formed as a film when a film is deposited by depositing particles on the thin film insulating layer 3 by a film deposition method such as a vacuum evaporation method or a sputtering method. The film can be manufactured by stopping the film formation. For example, Pd, Pd alloy, Pt, Pt alloy, etc. are all highly conductive metal materials, and when formed as a film, become a conductor, so that the film formation is stopped in the state of an insulator before becoming a conductor. For example, the hydrogen absorber 3 having a structure in which a plurality of particles are dispersed and arranged in an island shape can be obtained. Therefore, the hydrogen absorber 4 as an insulator can be formed on the thin film insulating layer 3 if it is formed in the range of the film thickness described above. In this form, the vertical width of the hydrogen absorber 4 is slightly shorter than the vertical width of the insulating substrate 1, and the horizontal width is formed to be a fraction of the horizontal width of the insulating substrate 1. Therefore, the semiconductor layer 2 is exposed on both the left and right sides of the hydrogen absorber 4 in FIGS.

水素透過膜5は、リンを添加した二酸化珪素のターゲットなどの成膜源を予め作成しておき、スパッタ法などの成膜法により、水素吸収体4を覆うように形成されている。水素透過膜5の膜厚は、0.5nm〜5nmになるようにすることが好ましい。膜厚が0.5nm以下では、可燃性ガスに対して、僅かではあるが感度を持つ可能性があり、5nm以上では、水素透過膜5を水素が透過する際の抵抗が大きくなり、それに伴って応答速度が遅くなり、水素センサとしては好ましくない。また、リンの添加量は、0.1wt%〜1.0wt%の範囲であることが好ましい。リンの添加量が0.1wt%以下では、水素透過膜5を水素が透過する際の抵抗が大きくなり、それに伴って応答速度が遅くなり、水素センサとしては好ましくなく、1.0wt%以上では、スパッタ装置などの反応容器内にリンが蓄積し、容器内を汚染するという問題が生じる可能性がある。   The hydrogen permeable film 5 is formed so as to cover the hydrogen absorber 4 by a film forming method such as a sputtering method in which a film forming source such as a silicon dioxide target to which phosphorus is added is prepared in advance. The film thickness of the hydrogen permeable membrane 5 is preferably 0.5 nm to 5 nm. When the film thickness is 0.5 nm or less, there is a possibility that the film has a slight sensitivity to the flammable gas. When the film thickness is 5 nm or more, the resistance when hydrogen passes through the hydrogen permeable film 5 increases. As a result, the response speed becomes slow, which is not preferable for a hydrogen sensor. Moreover, it is preferable that the addition amount of phosphorus is in the range of 0.1 wt% to 1.0 wt%. When the added amount of phosphorus is 0.1 wt% or less, the resistance when hydrogen permeates the hydrogen permeable membrane 5 is increased, and the response speed is accordingly slowed, which is not preferable as a hydrogen sensor. There is a possibility that phosphorus accumulates in a reaction vessel such as a sputtering apparatus and contaminates the inside of the vessel.

内側電極6は半導体層2の上面であって水素吸収体4の両側にこれを挟むように水素吸収体4と離間して形成されている。これらの内側電極6はAuあるいはAlなどの良導電性の金属材料から構成され、真空蒸着法、スパッタ法、スクリーン印刷法などの成膜法により形成されている。外側電極7,7は半導体層2の両端部側に先の内側電極6,6をさらに両側から挟む位置に形成されている。   The inner electrode 6 is formed on the upper surface of the semiconductor layer 2 so as to be separated from the hydrogen absorber 4 so as to be sandwiched between both sides of the hydrogen absorber 4. These inner electrodes 6 are made of a highly conductive metal material such as Au or Al, and are formed by a film forming method such as a vacuum evaporation method, a sputtering method, or a screen printing method. The outer electrodes 7, 7 are formed on both ends of the semiconductor layer 2 at positions where the inner electrodes 6, 6 are further sandwiched from both sides.

以上の如く構成された水素センサAを用いて水素の検知を行うには、水素センサAを測定環境に設置するとともに、外側電極7,7の間に所定の電流を印加しながら内側電極6,6間の電圧を測定することで半導体層2そのものの電気抵抗変化を測定することで使用する。ここで内側電極6,6によって測定するのは、半導体層2そのものの電気抵抗変化に相当する。水素センサAの設置環境に水素ガスが存在すると、水素透過膜を水素ガスが透過し、水素センサAの水素吸収体4に水素が取り込まれ、半導体層2において薄膜絶縁層3を介して水素吸収体4に接続している部分は水素吸収体4への水素の吸収により荷電キャリアの状態が変化し、これに起因して半導体層2の抵抗値が変化する。また、この例の水素センサAを設置した環境から水素が無くなると水素吸収体4から水素が放出されるので、半導体層2の抵抗値は原点復帰し、再度使用できる状態となる。この状態から再度設置環境に水素ガスが存在するようになると半導体層2は再度抵抗値変化を生じるので、この例の水素センサAは繰り返し使用することができる。   In order to detect hydrogen using the hydrogen sensor A configured as described above, the hydrogen sensor A is installed in a measurement environment, and a predetermined current is applied between the outer electrodes 7 and 7 while the inner electrodes 6 and 6 are applied. It is used by measuring the electric resistance change of the semiconductor layer 2 itself by measuring the voltage between the six. Here, the measurement by the inner electrodes 6 and 6 corresponds to a change in electric resistance of the semiconductor layer 2 itself. When hydrogen gas is present in the installation environment of the hydrogen sensor A, the hydrogen gas permeates through the hydrogen permeable membrane, and hydrogen is taken into the hydrogen absorber 4 of the hydrogen sensor A, and the semiconductor layer 2 absorbs hydrogen through the thin film insulating layer 3. In the portion connected to the body 4, the state of charge carriers changes due to the absorption of hydrogen into the hydrogen absorber 4, and as a result, the resistance value of the semiconductor layer 2 changes. Further, when hydrogen disappears from the environment in which the hydrogen sensor A of this example is installed, hydrogen is released from the hydrogen absorber 4, so that the resistance value of the semiconductor layer 2 returns to the origin and becomes usable again. When hydrogen gas is present again in the installation environment from this state, the semiconductor layer 2 changes its resistance value again, so that the hydrogen sensor A of this example can be used repeatedly.

水素センサAの設置環境は常温で良いが、それよりも低温または高温の環境であっても特に構わない。従来の水素センサにおいては高温で作動するものが一般的であり、水素の検知後は200〜300℃程度の高温に加熱して再酸化しなければ、再使用できなかったが、先の構成の水素センサAであれば、検知後に水素の無い常温の環境に放置しておくだけで初期段階に原点復帰することができ、再使用することができる。   The installation environment of the hydrogen sensor A may be normal temperature, but it may be particularly low temperature or high temperature environment. Conventional hydrogen sensors generally operate at high temperatures, and after hydrogen detection, they could not be reused unless heated to a high temperature of about 200 to 300 ° C. and reoxidized. With the hydrogen sensor A, the origin can be returned to the initial stage simply by leaving it in a room temperature environment without hydrogen after detection and can be reused.

本発明の水素透過膜5は、半導体層2の上面を覆っていることにより、半導体層2の保護膜としても機能することができる。また、本発明の水素透過膜5は、従来の水素透過膜に比べて測定感度が良好であるため、従来の水素透過膜より膜厚を厚くしても高い測定感度が得られる。そのため、従来の水素透過膜に比べて膜厚を厚くすることにより、容易に保護膜としての機能を向上させることができる。   The hydrogen permeable film 5 of the present invention can also function as a protective film for the semiconductor layer 2 by covering the upper surface of the semiconductor layer 2. In addition, since the hydrogen permeable membrane 5 of the present invention has better measurement sensitivity than the conventional hydrogen permeable membrane, high measurement sensitivity can be obtained even if the film thickness is larger than that of the conventional hydrogen permeable membrane. Therefore, the function as a protective film can be easily improved by increasing the film thickness as compared with the conventional hydrogen permeable film.

なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.

(実施例1)
図1と図2に示す構成であって、縦3mm、横3mm、膜厚0.43mmのサファイア基板上に厚さ0.05μmのシリコンをドープしたGaN膜を形成し、その上にSiからなる薄膜絶縁層3を形成した。この薄膜絶縁層3の上面に縦2.5mm、横1mmの長方形状のPdからなる厚さ12Åの水素吸収体4の島状の膜を形成した。この水素吸収体4の膜は薄膜絶縁層上において絶縁体であった。次に、水素吸収体4を覆うように、SiOにリンをドープした水素透過膜5を膜厚20Åで形成した。SiOに対してドープするP(リン)の量をそれぞれ0.1wt%、0.5wt%、1.0wt%として、3種類の水素透過膜を作成した。
(Example 1)
1 and FIG. 2, a GaN film doped with 0.05 μm thick silicon is formed on a sapphire substrate having a length of 3 mm, a width of 3 mm, and a film thickness of 0.43 mm, and Si 3 N is formed thereon. A thin film insulating layer 3 made of 4 was formed. An island-shaped film of a hydrogen absorber 4 having a thickness of 12 mm and made of rectangular Pd having a length of 2.5 mm and a width of 1 mm was formed on the upper surface of the thin film insulating layer 3. The film of the hydrogen absorber 4 was an insulator on the thin film insulating layer. Next, a hydrogen permeable film 5 in which SiO 2 was doped with phosphorus was formed to a thickness of 20 mm so as to cover the hydrogen absorber 4. Three types of hydrogen permeable membranes were prepared with the amount of P (phosphorus) doped with respect to SiO 2 being 0.1 wt%, 0.5 wt%, and 1.0 wt%, respectively.

次に、先のGaN膜上であるとともに、水素吸収体4の両側であって水素吸収体4と離した位置にTi/Au層からなる縦2.5mm、横0.3mmの内側電極6,6(Ti層を下地としてその上にAu層を成膜した積層構造の内側電極)を形成し、更にそれら内側電極の0.3mm外側にTi/Au層からなる外側電極7,7を形成した。この構成の水素ガスセンサAを図示略の測定用のチャンバーの内部に収容し、25℃(ほぼ常温)にて大気雰囲気(空気100%)とするか、水素ガス含有空気雰囲気(水素ガス0.3%+空気99.7%、あるいは水素ガス0.5%+空気99.5%、あるいは水素ガス1%+空気99%)とするかを所定時間毎に切り替え、繰り返し水素ガス検知試験を施した。図3(A)はリンを0.1wt%添加した水素透過膜、図3(B)はリンを0.5wt%添加した水素透過膜、図3(C)はリンを1.0wt%添加した水素透過膜をそれぞれ用いた場合の測定電圧の結果である。
尚、図3(A)〜(C)においては、大気雰囲気から水素含有空気雰囲気へ切り替えた時点を点aとし、大気雰囲気から水素含有空気雰囲気へ切り替えた時点を点bとする。
Next, on the GaN film, on both sides of the hydrogen absorber 4 and at a position separated from the hydrogen absorber 4, an inner electrode 6 made of a Ti / Au layer having a length of 2.5 mm and a width of 0.3 mm is provided. 6 (inner electrode having a laminated structure in which an Au layer is formed on a Ti layer as a base) was formed, and outer electrodes 7 and 7 made of a Ti / Au layer were formed 0.3 mm outside these inner electrodes. . The hydrogen gas sensor A having this configuration is housed in a measurement chamber (not shown) and is set to an air atmosphere (100% air) at 25 ° C. (approximately normal temperature), or an air atmosphere containing hydrogen gas (hydrogen gas 0.3%). % + Air 99.7%, or hydrogen gas 0.5% + air 99.5%, or hydrogen gas 1% + air 99%), and the hydrogen gas detection test was repeated. . 3A is a hydrogen permeable membrane with 0.1 wt% phosphorus added, FIG. 3B is a hydrogen permeable membrane with 0.5 wt% phosphorus added, and FIG. 3C is 1.0 wt% phosphorus added. It is a result of the measurement voltage at the time of using a hydrogen permeable membrane, respectively.
In FIGS. 3A to 3C, the time point when the air atmosphere is switched to the hydrogen-containing air atmosphere is a point a, and the time point when the air atmosphere is switched to the hydrogen-containing air atmosphere is a point b.

図3(A)〜(C)に示す結果から、大気雰囲気から水素ガス含有空気雰囲気に切り替えた場合、直ちに抵抗値が減少し、それに伴って測定電圧が減少していることが分かった。ここで、大気雰囲気中における安定電圧を動作前電圧Vaとし、水素ガス含有空気雰囲気に切り替えた後の安定電圧を動作後電圧Vbとし、その変化分を変化電圧Vcとし、出力感度を
Vc/Va×100(%)
で表した場合、出力感度はそれぞれ表1のようになり、1.0wt%のリンを添加したものが、最も良い出力感度を示すことが分かり、図4のような傾向が見られた。また、図3の結果によると、水素ガス含有空気雰囲気に切り替えた後、大気雰囲気に戻すことで抵抗値が急上昇し、それに伴って測定電圧が増加していることが分かった。
From the results shown in FIGS. 3A to 3C, it was found that when the air atmosphere was switched to the hydrogen gas-containing air atmosphere, the resistance value immediately decreased, and the measurement voltage decreased accordingly. Here, the stable voltage in the air atmosphere is the pre-operation voltage Va, the stable voltage after switching to the hydrogen gas-containing air atmosphere is the post-operation voltage Vb, the change is the change voltage Vc, and the output sensitivity is Vc / Va. × 100 (%)
, The output sensitivities are as shown in Table 1, and it was found that the addition of 1.0 wt% phosphorus showed the best output sensitivity, and a tendency as shown in FIG. 4 was observed. Moreover, according to the result of FIG. 3, it turned out that resistance value increases rapidly by switching to an air atmosphere after switching to a hydrogen gas containing air atmosphere, and the measurement voltage increases in connection with it.

また、水素ガス含有空気雰囲気(水素ガス0.3%+空気99.7%)と大気雰囲気の置換を3回繰り返した後の出力感度を測定すると、出力感度はそれぞれ表2のようになり、1度目の測定の出力感度と略一致することが分かった。
同様に、水素ガス0.3%の後に、水素ガス0.5%、1%について、水素ガス含有空気雰囲気と大気雰囲気の置換を3回ずつ繰り返し、合計9回水素ガス含有空気雰囲気と大気雰囲気の置換を実施した。
Moreover, when the output sensitivity after repeating the substitution of the atmosphere containing hydrogen gas (hydrogen gas 0.3% + air 99.7%) and air atmosphere three times, the output sensitivity is as shown in Table 2, respectively. It was found that the output sensitivity of the first measurement almost coincided with the output sensitivity.
Similarly, hydrogen gas-containing air atmosphere and air atmosphere are repeated 9 times in total for hydrogen gas 0.5% and 1% after hydrogen gas 0.3% and substitution of hydrogen gas-containing air atmosphere and air atmosphere three times each. Was replaced.

これにより、本実施例の水素センサにおいては、特別な処理を施すことなく、大気雰囲気中に戻すことのみにより、水素ガスを繰り返し再現性良く検知することができた。さらにこの反応は、25℃というほぼ常温での測定結果であるので、加熱ヒータで加熱する必要がなくなり、ヒータで加熱しながら測定する必要のあった従来の水素センサに比べて消費電力も低くでき、また常温で作動することから水素吸収体の酸化が起こりにくく、長寿命化できることが明らかである。   As a result, in the hydrogen sensor of this example, it was possible to detect hydrogen gas repeatedly and with good reproducibility only by returning to the atmosphere without performing any special treatment. Furthermore, since this reaction is a measurement result at approximately room temperature of 25 ° C., it is not necessary to heat with a heater, and power consumption can be reduced compared to a conventional hydrogen sensor that has to be measured while heating with a heater. In addition, since it operates at room temperature, it is clear that the hydrogen absorber is less likely to oxidize and the life can be extended.

Figure 0004355300
Figure 0004355300

Figure 0004355300
Figure 0004355300

また、大気雰囲気から水素ガス含有空気雰囲気に切り替えた前後の出力電圧の変化を図5に示す。ここで、大気雰囲気から水素ガス含有雰囲気に切り替えた時点を切り替え点cとし、動作後電圧Vbが安定する点を出力安定点dとし、切り替え点cから出力安定点dまでの時間を応答時間とした場合、大気雰囲気から水素ガス含有空気雰囲気に切り替えると、直ちに抵抗値が減少し、それに伴って測定電圧も減少し、100秒後には動作後電圧が安定し、水素検知が完了していることが分かった。   FIG. 5 shows the change in output voltage before and after switching from the air atmosphere to the hydrogen gas-containing air atmosphere. Here, the time point when the atmosphere is switched from the atmosphere to the hydrogen gas containing atmosphere is defined as a switching point c, the point at which the post-operation voltage Vb is stabilized is defined as an output stable point d, and the time from the switching point c to the output stable point d is defined as a response time. In this case, when switching from the air atmosphere to the hydrogen gas-containing air atmosphere, the resistance value immediately decreases, and the measurement voltage also decreases accordingly. After 100 seconds, the voltage stabilizes and the hydrogen detection is completed. I understood.

(実施例2)
実施例1と同様に、SiOに対して1.0wt%のリンをドープした水素透過膜5を用いた3つの水素センサを準備し、実施例1と同様の実験を−10℃、25℃、130℃の3種類の温度条件で行った。
図6(A)は−10℃、(B)は25℃、(C)は130℃における実験結果である。図6(A)〜(C)及び表3に示した通り、何れの温度条件においても、水素検知に必要な感度特性が得られた。特に、25℃において、最も良好な感度特性が得られた。
(Example 2)
As in Example 1, three hydrogen sensors using a hydrogen permeable membrane 5 doped with 1.0 wt% phosphorus with respect to SiO 2 were prepared, and experiments similar to Example 1 were performed at −10 ° C. and 25 ° C. , And performed at three temperature conditions of 130 ° C.
6A shows the experimental results at −10 ° C., FIG. 6B shows the experimental results at 25 ° C., and FIG. As shown in FIGS. 6A to 6C and Table 3, sensitivity characteristics necessary for hydrogen detection were obtained under any temperature condition. In particular, the best sensitivity characteristics were obtained at 25 ° C.

Figure 0004355300
Figure 0004355300

(比較例)
比較例として、SiOにリンをドープしない以外は実施例と同様にして作成した水素センサを用いて、実施例と同様の条件で実験を行った。
図7(A)は−10℃、図7(B)は25℃、図7(C)は130℃における測定結果である。また、25℃における大気雰囲気から水素ガス含有空気雰囲気に切り替える前後の出力電圧の変化を図8に示す。ここで、大気雰囲気から水素ガス含有雰囲気に切り替えた時点を切り替え点cとし、動作後電圧Vbが安定する点を出力安定点dとし、切り替え点cから出力安定点dまでの時間を応答時間とした場合、応答時間が180秒かかっており、実施例に比べて応答速度が悪いことが分かった。また、温度特性についても、−10℃および25℃の場合においては、出力感度が非常に小さいことが分かった。
(Comparative example)
As a comparative example, an experiment was performed under the same conditions as in the example using a hydrogen sensor prepared in the same manner as in the example except that SiO 2 was not doped with phosphorus.
7A shows measurement results at −10 ° C., FIG. 7B shows measurement results at 25 ° C., and FIG. 7C shows measurement results at 130 ° C. FIG. 8 shows the change in output voltage before and after switching from the air atmosphere at 25 ° C. to the hydrogen gas-containing air atmosphere. Here, the time point when the atmosphere is switched from the atmosphere to the hydrogen gas containing atmosphere is defined as a switching point c, the point at which the post-operation voltage Vb is stabilized is defined as an output stable point d, and the time from the switching point c to the output stable point d is defined as a response time. In this case, the response time took 180 seconds, and it was found that the response speed was worse than that of the example. As for the temperature characteristics, it was found that the output sensitivity was very small in the case of −10 ° C. and 25 ° C.

Figure 0004355300
Figure 0004355300

上述のように、本発明の水素透過膜を用いた水素センサによれば、従来の水素センサに比べて応答時間が短縮され、応答速度が飛躍的に向上していることが分かる。また、従来の水素センサに比べて、常温においても、出力感度が飛躍的に向上していることが分かる。   As described above, according to the hydrogen sensor using the hydrogen permeable membrane of the present invention, it can be seen that the response time is shortened and the response speed is dramatically improved as compared with the conventional hydrogen sensor. It can also be seen that the output sensitivity is dramatically improved at room temperature as compared with the conventional hydrogen sensor.

本発明の活用例として、燃料電池等の水素貯蔵タンク、および、これを備えた燃料電池自動車、あるいは、この燃料電池自動車へ水素ガスを補給するための水素ガスステーション等に水素ガス漏れ検知器として備えることができる。   As an application example of the present invention, a hydrogen storage tank such as a fuel cell, and a fuel cell vehicle equipped with the same, or a hydrogen gas station for supplying hydrogen gas to the fuel cell vehicle as a hydrogen gas leak detector Can be provided.

本発明に係る水素センサの側面図である。It is a side view of the hydrogen sensor concerning the present invention. 本発明に係る水素センサの平面図である。It is a top view of the hydrogen sensor concerning the present invention. 本発明の第1の実施例におけるリンの添加量を変化させた場合の測定電圧を示す図であり、(A)は0.1%、(B)は0.5%、(C)は1.0%、のリンを添加した場合の図である。It is a figure which shows the measurement voltage at the time of changing the addition amount of phosphorus in 1st Example of this invention, (A) is 0.1%, (B) is 0.5%, (C) is 1 It is a figure at the time of adding 0.0% of phosphorus. 本発明の第1の実施例におけるリンの添加量を変化させた場合の出力感度を示す図である。It is a figure which shows the output sensitivity at the time of changing the addition amount of phosphorus in 1st Example of this invention. 本発明の第1の実施例における測定電圧を示す拡大図である。It is an enlarged view which shows the measurement voltage in the 1st Example of this invention. 本発明の第2の実施例における測定電圧を示す図であり、(A)は−10℃、(B)は25℃、(C)は130℃、における測定電圧の図である。It is a figure which shows the measurement voltage in the 2nd Example of this invention, (A) is -10 degreeC, (B) is 25 degreeC, (C) is a figure of the measurement voltage in 130 degreeC. 比較例における試験温度を変化させた場合の測定電圧を示す図であり、(A)は−10℃、(B)は25℃、(C)は130℃、における測定電圧の図である。It is a figure which shows the measurement voltage at the time of changing the test temperature in a comparative example, (A) is -10 degreeC, (B) is 25 degreeC, (C) is a figure of the measurement voltage in 130 degreeC. 比較例における測定電圧を示す拡大図である。It is an enlarged view which shows the measurement voltage in a comparative example.

符号の説明Explanation of symbols

A・・・水素センサ、1・・・絶縁基板、2・・・半導体膜、3・・・薄膜絶縁層、4・・・水素吸収体、5・・・水素透過膜、6・・・内部電極、7・・・外部電極、c・・・切り替え点、d・・・出力安定点

A ... hydrogen sensor, 1 ... insulating substrate, 2 ... semiconductor film, 3 ... thin film insulating layer, 4 ... hydrogen absorber, 5 ... hydrogen permeable membrane, 6 ... inside Electrode, 7 ... external electrode, c ... switching point, d ... output stability point

Claims (10)

リンを添加した酸化珪素からなることを特徴とする水素透過膜。   A hydrogen permeable film comprising silicon oxide to which phosphorus is added. 前記リンの添加量が0.1〜1.0wt%の範囲であることを特徴とする請求項1に記載の水素透過膜。   2. The hydrogen permeable membrane according to claim 1, wherein the amount of phosphorus added is in the range of 0.1 to 1.0 wt%. 半導体と、該半導体の表面の少なくとも一部に付設する水素吸収体と、前記水素吸収体の露出した面を覆うとともに水素を透過する水素透過膜と、前記水素吸収体の付設位置を挟んで、前記半導体に、前記水素吸収体によって導通しないように配置した対になる電極とを具備してなり、前記水素透過膜がリンを添加した酸化珪素からなり、前記水素吸収体への水素吸収の有無に対応する前記半導体の抵抗値変化を前記対になる電極間で計測することにより、水素の存在を検知可能とされてなることを特徴とする水素センサ。   A semiconductor, a hydrogen absorber attached to at least a part of the surface of the semiconductor, a hydrogen permeable film that covers the exposed surface of the hydrogen absorber and transmits hydrogen, and an attachment position of the hydrogen absorber, The semiconductor includes a pair of electrodes arranged so as not to be conducted by the hydrogen absorber, the hydrogen permeable film is made of silicon oxide to which phosphorus is added, and hydrogen absorption to the hydrogen absorber is present. A hydrogen sensor characterized in that the presence of hydrogen can be detected by measuring a change in resistance value of the semiconductor corresponding to the above between the pair of electrodes. 前記水素透過膜中の前記リンの添加量が0.1〜1.0wt%の範囲であることを特徴とする請求項3に記載の水素センサ。   The hydrogen sensor according to claim 3, wherein the amount of phosphorus added to the hydrogen permeable membrane is in the range of 0.1 to 1.0 wt%. 常温動作可能であって、エタンガス、メタンガス、プロパンガス等の可燃性ガスの存在下では前記電極間の抵抗値の変化を生じさせないことを特徴とする請求項3または4に記載の水素センサ。   5. The hydrogen sensor according to claim 3, wherein the hydrogen sensor can operate at normal temperature and does not cause a change in resistance value between the electrodes in the presence of a combustible gas such as ethane gas, methane gas, and propane gas. 酸素が存在していない環境下で動作可能であり、前記水素吸収体への水素の吸収により初期状態から変化した前記半導体の抵抗値が、前記水素吸収体からの水素の離脱により前記初期状態に復帰可能とされてなることを特徴とする請求項3〜5の何れか一項に記載の水素センサ。   It is operable in an environment where oxygen is not present, and the resistance value of the semiconductor changed from the initial state due to the absorption of hydrogen into the hydrogen absorber is changed to the initial state due to the release of hydrogen from the hydrogen absorber. The hydrogen sensor according to any one of claims 3 to 5, wherein the hydrogen sensor is capable of returning. 前記半導体が、シリコン、炭化珪素、ゲルマニウム、シリコンゲルマニウム、ガリウムヒ素、窒化ガリウム、炭素のいずれかを主成分とする非酸化物半導体からなることを特徴とする請求項3〜6の何れか一項に記載の水素センサ。 The said semiconductor consists of a non-oxide semiconductor which has as a main component any one of silicon, silicon carbide, germanium, silicon germanium, gallium arsenide, gallium nitride, and carbon. The hydrogen sensor described in 1. 前記水素吸収体が、パラジウム、パラジウム合金、白金、白金合金のいずれかからなり、前記半導体上に島状分散構造として配置されたことを特徴とする請求項3〜7の何れか一項に記載の水素センサ。   The said hydrogen absorber consists of either palladium, a palladium alloy, platinum, and a platinum alloy, and has been arrange | positioned as an island-like dispersion structure on the said semiconductor, The any one of Claims 3-7 characterized by the above-mentioned. Hydrogen sensor. 半導体の表面に水素吸収体を付設し、前記水素吸収体の露出した面を、リンを添加した酸化珪素からなる水素透過膜で覆い、前記水素透過膜を介して前記水素吸収体が水素を吸収したことに起因する前記半導体の抵抗値の変化を測定して水素の存在を検知することを特徴とする水素の検知方法。   A hydrogen absorber is attached to the surface of the semiconductor, the exposed surface of the hydrogen absorber is covered with a hydrogen permeable film made of silicon oxide to which phosphorus is added, and the hydrogen absorber absorbs hydrogen through the hydrogen permeable film. A method for detecting hydrogen, wherein the presence of hydrogen is detected by measuring a change in resistance value of the semiconductor caused by the above. 前記水素透過膜中の前記リンの添加量が0.1〜1.0wt%の範囲であることを特徴とする請求項9記載の水素の検知方法。

The method for detecting hydrogen according to claim 9, wherein an addition amount of the phosphorus in the hydrogen permeable membrane is in a range of 0.1 to 1.0 wt%.

JP2005118798A 2005-04-15 2005-04-15 Hydrogen permeable membrane, hydrogen sensor, and hydrogen detection method Expired - Fee Related JP4355300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005118798A JP4355300B2 (en) 2005-04-15 2005-04-15 Hydrogen permeable membrane, hydrogen sensor, and hydrogen detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005118798A JP4355300B2 (en) 2005-04-15 2005-04-15 Hydrogen permeable membrane, hydrogen sensor, and hydrogen detection method

Publications (2)

Publication Number Publication Date
JP2006300560A JP2006300560A (en) 2006-11-02
JP4355300B2 true JP4355300B2 (en) 2009-10-28

Family

ID=37469041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005118798A Expired - Fee Related JP4355300B2 (en) 2005-04-15 2005-04-15 Hydrogen permeable membrane, hydrogen sensor, and hydrogen detection method

Country Status (1)

Country Link
JP (1) JP4355300B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589217A (en) * 2017-08-22 2018-01-16 中国船舶重工集团公司第七八研究所 A kind of hydrogen gas sensor with alloy protective structure
US20210116405A1 (en) * 2018-08-07 2021-04-22 New Cosmos Electric Co., Ltd. Mems type semiconductor gas detection element

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102037349A (en) * 2008-04-06 2011-04-27 H2Scan公司 Protective coatings for solid-state gas sensors employing catalytic metals
JP6761764B2 (en) 2016-03-18 2020-09-30 パナソニックセミコンダクターソリューションズ株式会社 Hydrogen sensor and fuel cell vehicle, and hydrogen detection method
CN106770582A (en) * 2016-12-01 2017-05-31 深圳市深安旭传感技术有限公司 Used in new energy vehicles hydrogen gas sensor
CN111295256B (en) 2017-11-06 2022-05-10 佳能安内华股份有限公司 Structure and method for manufacturing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589217A (en) * 2017-08-22 2018-01-16 中国船舶重工集团公司第七八研究所 A kind of hydrogen gas sensor with alloy protective structure
CN107589217B (en) * 2017-08-22 2021-07-06 中国船舶重工集团公司第七一八研究所 Hydrogen sensor with alloy protective structure
US20210116405A1 (en) * 2018-08-07 2021-04-22 New Cosmos Electric Co., Ltd. Mems type semiconductor gas detection element
US11977043B2 (en) * 2018-08-07 2024-05-07 New Cosmos Electric Co., Ltd. MEMS type semiconductor gas detection element

Also Published As

Publication number Publication date
JP2006300560A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4056987B2 (en) Hydrogen sensor and hydrogen detection method
JP4355300B2 (en) Hydrogen permeable membrane, hydrogen sensor, and hydrogen detection method
JP5352049B2 (en) Hydrogen sensor
WO2020031909A1 (en) Mems type semiconductor gas detection element
US20170363556A1 (en) Gas sensor
JPH11183420A (en) Thin film gas sensor
JP2000298108A (en) Gas sensor
JP3988999B2 (en) Thin film gas sensor and manufacturing method thereof
JP6372686B2 (en) Gas detection device and gas detection method
JP2008232784A (en) Membrane gas sensor and manufacturing method therefor
JP4022822B2 (en) Thin film gas sensor
KR20110066849A (en) Semiconductor gas sensor with low power consumption
JP4376093B2 (en) Thin film gas sensor
JP4340639B2 (en) Hydrogen sensor and hydrogen detection method
JP4010738B2 (en) Gas sensor, gas detector and gas detection method
JP2005030907A (en) Gas sensor
JP3075070B2 (en) Carbon monoxide gas sensor
JP2010060481A (en) Thin film gas sensor and method of manufacturing the same
JP2007017217A (en) Thin film gas sensor
TWI798261B (en) gas detection device
JP4315992B2 (en) Gas sensor, gas detector and gas detection method
JP4859129B2 (en) BiMeVOx-based VOCs sensor
JP4851610B2 (en) Thin film gas sensor
JP4779076B2 (en) Thin film gas sensor
JP6176523B2 (en) Thin film gas sensor and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090731

R150 Certificate of patent or registration of utility model

Ref document number: 4355300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees