JP4252351B2 - Cold forming spring having high fatigue strength and high corrosion fatigue strength and steel for spring - Google Patents

Cold forming spring having high fatigue strength and high corrosion fatigue strength and steel for spring Download PDF

Info

Publication number
JP4252351B2
JP4252351B2 JP2003114829A JP2003114829A JP4252351B2 JP 4252351 B2 JP4252351 B2 JP 4252351B2 JP 2003114829 A JP2003114829 A JP 2003114829A JP 2003114829 A JP2003114829 A JP 2003114829A JP 4252351 B2 JP4252351 B2 JP 4252351B2
Authority
JP
Japan
Prior art keywords
spring
steel
fatigue strength
tempering
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003114829A
Other languages
Japanese (ja)
Other versions
JP2004315944A (en
Inventor
英利 吉川
隆之 榊原
将見 脇田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Original Assignee
Chuo Hatsujo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK filed Critical Chuo Hatsujo KK
Priority to JP2003114829A priority Critical patent/JP4252351B2/en
Priority to US10/823,629 priority patent/US20040238074A1/en
Priority to DE102004018406A priority patent/DE102004018406B4/en
Publication of JP2004315944A publication Critical patent/JP2004315944A/en
Priority to US11/878,884 priority patent/US20070267112A1/en
Application granted granted Critical
Publication of JP4252351B2 publication Critical patent/JP4252351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Springs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高疲労強度を有する冷間成形ばね及びその素材並びにばねの製造方法に関する。さらに詳しくは、懸架ばね等のように、腐食環境下においても高い疲労強度が必要とされる冷間成形ばね、その材料及びそのようなばねの製造方法に関する。
【0002】
【従来の技術】
近年、環境保護及び資源保護のため、自動車排出ガス中の有害物質含有量の低減が要請されるとともに、燃費の向上も強く要請されている。これらの要請に対しては、車体の軽量化が有効であるため、車体の各部品について軽量化するための努力が続けられている。
【0003】
車体の部品のうち、たとえば懸架用ばね等は使用応力(設計応力)を高めることにより軽量化に寄与できるが、使用応力を高めた場合、問題になるのがばねの疲労(耐久性)である。
【0004】
しかも、懸架用ばねの場合には、車体の中で最も水や泥等が付着しやすい箇所に装着されるものであるため、腐食の問題を避けて通ることができない。腐食によって、ばねの表面にピット(微小孔)が生じ、それを起点として疲労破壊が引き起こされるからである。
【0005】
これらの問題に対処するため、本出願人はすでに、特許文献1に示す「耐腐食疲労強度を向上させたばね」を出願している。
【0006】
しかしながら、上記ばねは高い使用応力下での使用には耐えられるが、主に熱間成形を想定して開発したものであるため、本発明のような冷間成形材料として用いるには脱炭(高温加熱時に、ばね表面から炭素が脱する現象)が生じすぎて、耐久性が劣化する可能性がある。
【0007】
【特許文献1】
特開平11-241143号公報
【0008】
【発明が解決しようとする課題】
そこで、耐腐食性を有するとともに耐久性(耐疲労性)をも併せ有する冷間成形ばね用鋼、及び該ばね用鋼を用いた冷間成形コイルばねを得ることが課題になる。
【0009】
本発明はこのような課題を解決するために成されたものであり、その目的とするところは、高疲労強度(耐疲労性・耐久性)及び高腐食疲労強度を有する冷間成形ばね、及び該ばね用材料(鋼)並びにその冷間成形コイルばねの製造方法を提供することにある。
【0010】
【課題を解決するための手段】
本発明に係る高疲労強度及び高腐食疲労強度を有するコイルばねの製造方法は、重量比にしてC:0.45〜0.52%、Si:1.80〜2.00%、Ni:0.30〜0.80%、Cr:0.15〜0.35%、V:0.15〜0.30%を含有し、残部Fe及び不可避不純物からなる鋼を素材とし、高周波加熱により焼入れ・焼戻しを行い、冷間でコイリングを行い、高周波加熱による焼入れが、920〜1040℃で5〜20秒間加熱後急冷、焼戻しが450〜550℃で5〜20秒間加熱によるものであり、焼戻し後急冷し、フェライト脱炭層の深さを0.02mm以下とすることを特徴とする。
【0011】
上記素材鋼において、Pを0.025%以下、Sを0.020%以下とすることが望ましい。
【0015】
ここにおいて、上記高周波加熱による焼入れは940 1020 ℃で加熱後急冷、焼戻しは480 520 ℃とすることが望ましい。
【0019】
【発明の実施の形態】
本発明の高疲労強度及び高腐食疲労強度を有する冷間成形ばねにおいて、使用する素材鋼の化学成分範囲を上記のように定めた理由は次のとおりである。
【0020】
炭素:0.45〜0.52%
炭素は鋼に強度を与えるために最も大きな影響を持つ元素であり、懸架用ばねとして十分な耐久性(耐疲労性)を有する程度の強度を付与するためには、0.45%以上含有していなければならない。しかし、0.52%を超えて含有させると、靱性の低下の影響により、腐食疲労強度が下がるようになる。
【0021】
シリコン:1.80〜2.00%
シリコンも炭素同様、鋼に強度を与える元素であるが、ばねの場合には、耐へたり性付与の効果を重視する。自動車の通常の使用条件を考慮すると、シリコンが1.80%未満では、へたりが無視し得なくなり、車高の低下を招く恐れがある。一方、シリコンは加熱時の表面脱炭を助長する元素でもある。表面に最大の負荷がかかる状態で使用されるばねの場合には、脱炭に最も注意を払う必要がある。シリコンを2.00%を超えて含有させると、焼入れ加熱時の脱炭が無視し得なくなるため、本発明においては2.00%以下に押さえることにした。
【0022】
ニッケル:0.30〜0.80%
ニッケルは鋼の耐食性を向上させる。懸架ばねとして必要な耐食性を付与するためには、0.30%以上のニッケルを添加する必要がある。しかし、0.80%を超えて添加しても、耐食性付与の効果は飽和し、高価な元素であるニッケルが素材コストをいたずらに増加させるのみである。
【0023】
クロム:0.15〜0.35%
クロムはニッケルと同様、鋼の耐食性を向上させる他、焼入性を向上させる元素である。鋼が熱処理により十分な強度、靭性及び耐久性を発揮するためには、熱処理が完全に行われなければならない。そのためには、ばね用線材の中心まで十分な焼入れが行われる必要がある。そこで本願発明では0.15%以上のクロムを添加することとした。しかし、本願発明が対象とする懸架ばねの線径を考慮した場合、焼入性向上効果に関しては0.35%で十分であり、それ以上添加すると残留オーステナイトが増加するという問題が生ずる。
【0024】
バナジウム:0.15〜0.30%
バナジウムは、炭化物として鋼中に微細に析出し、加熱時の結晶粒成長を防止する。鋼の結晶粒微細化は靭性向上に効果的であるとともに、耐腐食疲労性向上においても有効な手段である。このような効果を得るためには、バナジウムを0.15%以上含有しなければならない。しかし、0.30%以上添加すると、むしろバナジウム炭化物の析出サイトが増加するよりも各炭化物が成長して大きくなる傾向にあり、靭性及び耐腐食疲労性を低下させるおそれがある。
【0025】
リン:0.025%以下
リンは鋼中において結晶粒界に優先的に析出し、粒界の強度を低下させる。これは疲労強度の低下につながるため、ばねにおいてはその含有量をできるだけ下げることが望ましい。製造工程における工程能力と、ばねとしての要求特性を勘案すると、その含有量を0.025%以下とすることが望ましい。
【0026】
イオウ:0.020%以下
イオウは鋼中においてマンガンと化合し、鋼に不溶のMnSとなる。MnSは柔らかいため、圧延等により延びて、鋼の機械的性質を劣化させる。このため、ばねとしてもその含有量を最小限に抑えることが望ましいが、製造工程における工程能力と、ばねとしての要求特性を勘案すると、その含有量を0.020%以下とすることが望ましい。
【0027】
冷間成形ばねの標準的な製造工程は次の通りである。素材を線材に圧延後、場合により引き抜き等により所定の径に調整し、焼入れ・焼戻しを行う。その後、コイリングを行い、ショットピーニング及びセッチングを行う。
【0028】
本発明に係る冷間成形ばねは、素材として上記化学成分を有する鋼を使用するとともに、焼入れ及び焼戻し処理を、硬さがHRC50.5〜53.5となるように行う。硬さがこの範囲よりも低いと、懸架ばねとして必要な耐久性(疲労強度)が確保されない。一方、この範囲よりも硬くすると冷間コイリングが困難となり、コイリングの際の品質低下(表面疵や割れ等の発生、過度の加工効果による靭性低下)が生じるようになる。
【0029】
なお、本発明では、この焼入れ及び焼戻しの際に高周波加熱を用いる。高周波加熱は迅速な昇温が可能であるため、表面脱炭の生成を最小限に抑え、また、内部においては結晶粒が成長する暇を与えないという効果を有する。また、温度管理が比較的容易であり精度のよい加熱を行うことができる。このような効果は特に焼入れにおいて有用であるが、焼戻しにおいても、同じ効果(焼戻し硬さ)を得るために時間を短くして温度をやや上げることは、ばねにおいては耐へたり性を向上させるという有用な効果につながる。
【0030】
具体的には、高周波加熱による焼入れは、920〜1040℃(望ましくは940〜1020℃)で5〜20秒間加熱後急冷、焼戻しは450〜550℃(望ましくは480〜520℃)で5〜20秒間加熱とすることが望ましい。これらの加熱温度はいずれも、通常の炉加熱の場合よりも高いが、短時間加熱(昇温)の効果により、脱炭・結晶粒粗大化等の問題が生じない。
【0031】
また、焼戻し後も急冷することにより、焼戻し硬さのばらつきが小さくなる。
【0032】
ショットピーニング処理の条件は、表面下0.2mmの位置で-600MPa以上の残留応力が発生するように調整する。表面にこの程度の圧縮残留応力を予め付与しておくことにより、懸架ばねとしての十分な耐久性が確保される。ショットピーニングは冷間(室温)で行ってもよいし、温間(250〜340℃程度)で行ってもよい。
【0033】
【発明の効果】
本発明に係る冷間成形ばねは、素材鋼を上記のような適正な成分範囲に設定するとともに、適切な高周波加熱条件と組み合わせたため、懸架ばねとして良好な耐腐食疲労性を有する。また、加熱条件やその後のショットピーニング等の条件を適切に設定したことにより、使用時のへたりも最小限に抑えられる。しかも、コイリング加工が容易であり、加工時の品質低下が最小限に抑えられる。
【0034】
このような良好な特性を有する本発明に係る冷間成形コイルばねは、最大設計応力1150MPa以上で使用することができる。
【0035】
【実施例】
以下、図面を用いて本発明の実施例を説明する。
【0036】
まず、炭素含有量及びシリコン含有量を変化させた計20個の鋼を作製し、その脱炭特性を調査した。その結果を図1に示す。脱炭特性は、各鋼を900℃に10分間加熱し、急冷した後に切断して断面を顕微鏡により観察し、完全(フェライト)脱炭層の深さ(DM-F)が0.02mm未満のものを○、0.02mm以上のものを×と評価した。
【0037】
図1から、脱炭を考慮した場合に最適な炭素含有量及びシリコン含有量の領域として、図2に示す領域が得られた。すなわち、この最適領域は重量比にしてC:0.45〜0.52%、かつ、Si:1.80〜2.00%である領域である。
【0038】
図2において、シリコン含有量が1.80%未満且つ炭素含有量が0.52%未満の領域は強度不足領域であり、この領域においては耐久性が不足し、使用時のへたりが大きい。シリコン含有量が2.00%を超える領域は脱炭不良領域であり、この領域では加熱時の脱炭により表面の強度が著しく低下する恐れがある。炭素含有量が0.52%を超える領域は靱性低下領域であり、特に懸架ばねのような腐食環境下で使用される鋼では、耐久性が低下する。
【0039】
次に、炭素含有量を変化させた場合の腐食耐久性について調べた。その結果を図3に示す。図3において、負荷条件は、490±294MPaとした。また、炭素以外の主要化学成分の組成は、Si:1.99%、Mn:0.69%、Ni:0.55%、Cr:0.20%、V:0.20%とした。
図3からわかるように、炭素含有量が0.52%以下の場合は腐食耐久回数が5万回を超えており、十分な腐食耐久性を有する。しかし、炭素含有量が0.52%を超えると、腐食耐久回数が3万回程度まで急激に低下している。
【0040】
次に、ニッケル含有量を変化させた場合の耐腐食性について調べた。その結果を図4に示す。ニッケル以外の主要化学成分の組成は、C:0.49%、Si:1.99%、Mn:0.69%、Cr:0.20%、V:0.20%とした。耐腐食性を評価する指標としては、「濃度5%、温度35℃の食塩水を3hr噴霧、その後35℃で21hr乾燥」というサイクルを20回繰り返した後の単位表面積当たりの腐食減量(単位はkg/m2)を用いた。
図4から明らかなように、ニッケル含有量が0.30%以上においては腐食減量が0.4kg/m2であり、十分な耐腐食性を備えているといえる。
【0041】
次に、バナジウム含有量を変化させた場合の結晶粒微細化効果について調べた。その結果を図5に示す。バナジウム以外の主要化学成分の組成は、C:0.49%、Si:1.99%、Mn:0.69%、Ni:0.55%、Cr:0.20%とした。
図5からわかるように、バナジウム含有量が0.15〜0.30%の範囲においては結晶粒度番号が10を超え、十分な結晶粒微細化効果が得られている。
【0042】
次に、リン含有量が腐食耐久性に及ぼす影響を調べた。その結果を図6に示す。なお、リン以外の主要化学成分の組成は、C:0.49%、Si:1.99%、Mn:0.69%、Ni:0.55%、Cr:0.20%、V:0.20%とした。
【0043】
図6からわかるように、リン含有量を0.025%以下に抑えることにより腐食耐久回数が5万回を超えるが、リン含有量がそれを超えると、腐食耐久回数が2万回程度まで低下した。
【0044】
次に、C:0.49%、Si:1.99%、Mn:0.69%、Ni:0.55%、Cr:0.20%、V:0.20%なる成分を有する鋼を素材として、高周波加熱により焼入れを行った後、引張強さが1800〜2000MPaとなるように各種温度で焼戻しを行った。その場合の引張強さと絞りとの関係を図7に示す。ここで比較材として、従来鋼であるSAE9254鋼の特性を併記した。このグラフは、本発明に係る鋼が従来よりも高い延性を有することを明らかにしている。これは、耐腐食疲労性に有効に働くものと考えられる。
【図面の簡単な説明】
【図1】 炭素含有量及びシリコン含有量を変化させたときの脱炭特性を評価した結果を示す表。
【図2】 炭素及びシリコンの最適含有量範囲を示すグラフ。
【図3】 炭素含有量と腐食耐久回数の関係を示すグラフ。
【図4】 ニッケル含有量と腐食減量の関係を示すグラフ。
【図5】 バナジウム含有量と結晶粒度番号の関係を示すグラフ。
【図6】 リン含有量と腐食耐久回数の関係を示すグラフ。
【図7】 本発明材及び比較材の引張強さと絞りの関係を示すグラフ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cold-formed spring having high fatigue strength, a material thereof, and a method for manufacturing the spring. More specifically, the present invention relates to a cold-formed spring that requires high fatigue strength even in a corrosive environment such as a suspension spring, a material thereof, and a method of manufacturing such a spring.
[0002]
[Prior art]
In recent years, in order to protect the environment and resources, there has been a demand for a reduction in the content of harmful substances in automobile exhaust gas and a strong demand for improvement in fuel consumption. In response to these demands, it is effective to reduce the weight of the vehicle body. Therefore, efforts are being made to reduce the weight of each part of the vehicle body.
[0003]
Among body parts, for example, suspension springs can contribute to weight reduction by increasing the use stress (design stress), but if the use stress is increased, the problem is spring fatigue (durability). .
[0004]
Moreover, in the case of the suspension spring, it is attached to a location where water, mud, etc. are most likely to adhere in the vehicle body, so that it cannot pass through avoiding corrosion problems. This is because pits (micropores) are formed on the surface of the spring due to corrosion, and fatigue failure is caused from the pit.
[0005]
In order to deal with these problems, the present applicant has already applied for a “spring with improved corrosion fatigue strength” shown in Patent Document 1.
[0006]
However, although the above-mentioned spring can withstand use under high operating stress, it was developed mainly assuming hot forming, so that it can be decarburized ( When heated at a high temperature, a phenomenon in which carbon is released from the spring surface) occurs too much, and durability may deteriorate.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 11-241143
[Problems to be solved by the invention]
Accordingly, it is an object to obtain a cold-formed spring steel having corrosion resistance and durability (fatigue resistance), and a cold-formed coil spring using the spring steel.
[0009]
The present invention has been made to solve such problems, and its object is to provide a cold formed spring having high fatigue strength (fatigue resistance / durability) and high corrosion fatigue strength, and An object of the present invention is to provide a method for producing the spring material (steel) and its cold-formed coil spring.
[0010]
[Means for Solving the Problems]
Method for producing a coil spring having a high fatigue strength and high corrosion fatigue strength according to the present invention, in the Weight ratio C: 0.45~0.52%, Si: 1.80~2.00 %, Ni: 0.30~0.80%, Cr: 0.15 to 0.35% V: it contains 0.15 to 0.30%, the steel and the balance Fe and unavoidable impurities ing the material performs quenching and tempering by high-frequency heating, performed coiling cold, the quenching by the high-frequency heating, 920 Rapid cooling after heating at ~ 1040 ° C for 5-20 seconds, tempering is due to heating at 450-550 ° C for 5-20 seconds, rapid cooling after tempering, and the depth of the ferrite decarburized layer is 0.02 mm or less To do.
[0011]
In the material steel, it is desirable that P is 0.025% or less and S is 0.020% or less.
[0015]
Here, it is desirable that the above-mentioned quenching by high frequency heating is rapid cooling after heating at 940 to 1020 ° C., and tempering is preferably 480 to 520 ° C.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
In the cold formed spring having high fatigue strength and high corrosion fatigue strength of the present invention, the reason why the chemical component range of the material steel to be used is determined as described above is as follows.
[0020]
Carbon: 0.45-0.52%
Carbon is the element that has the greatest influence on giving strength to steel, and in order to give the strength to the extent that it has sufficient durability (fatigue resistance) as a suspension spring, it must contain 0.45% or more. I must. However, when the content exceeds 0.52%, the corrosion fatigue strength decreases due to the influence of the decrease in toughness.
[0021]
Silicon: 1.80 to 2.00%
Silicon, like carbon, is an element that gives strength to steel, but in the case of a spring, importance is attached to the effect of imparting sag resistance. Considering the normal usage conditions of automobiles, if silicon is less than 1.80%, the sag cannot be ignored and the vehicle height may be reduced. On the other hand, silicon is an element that promotes surface decarburization during heating. In the case of a spring that is used with a maximum load on the surface, the most attention should be paid to decarburization. If silicon is contained in an amount exceeding 2.00%, decarburization during quenching heating cannot be ignored, so in the present invention, it has been suppressed to 2.00% or less.
[0022]
Nickel: 0.30 to 0.80%
Nickel improves the corrosion resistance of steel. In order to provide the corrosion resistance necessary as a suspension spring, it is necessary to add 0.30% or more of nickel. However, even if added over 0.80%, the effect of imparting corrosion resistance is saturated and nickel, which is an expensive element, only increases the material cost unnecessarily.
[0023]
Chrome: 0.15-0.35%
Chromium, like nickel, is an element that improves the corrosion resistance of steel and improves hardenability. In order for steel to exhibit sufficient strength, toughness and durability by heat treatment, the heat treatment must be carried out completely. For this purpose, it is necessary to perform sufficient quenching to the center of the spring wire. Therefore, in the present invention, 0.15% or more of chromium is added. However, when considering the wire diameter of the suspension spring that is the subject of the present invention, 0.35% is sufficient for the effect of improving hardenability, and there is a problem that the retained austenite increases when it is added more than that.
[0024]
Vanadium: 0.15-0.30%
Vanadium precipitates finely in the steel as a carbide and prevents crystal grain growth during heating. Refinement of crystal grains of steel is effective for improving toughness and is also an effective means for improving corrosion fatigue resistance. In order to obtain such an effect, 0.15% or more of vanadium must be contained. However, when 0.30% or more is added, rather, the precipitation sites of vanadium carbide tend to grow and become larger, and the toughness and corrosion fatigue resistance may be reduced.
[0025]
Phosphorus: 0.025% or less Phosphorus preferentially precipitates at grain boundaries in steel, reducing the strength of the grain boundaries. Since this leads to a decrease in fatigue strength, it is desirable to reduce the content of the spring as much as possible. Considering the process capability in the manufacturing process and the required characteristics as a spring, the content is preferably 0.025% or less.
[0026]
Sulfur: 0.020% or less Sulfur combines with manganese in the steel to form insoluble MnS in the steel. Since MnS is soft, it extends by rolling or the like and degrades the mechanical properties of steel. For this reason, it is desirable to minimize the content of the spring, but considering the process capability in the manufacturing process and the required characteristics as the spring, the content is desirably 0.020% or less.
[0027]
The standard manufacturing process for cold formed springs is as follows. After the material is rolled into a wire, it is adjusted to a predetermined diameter by drawing or the like, and is quenched and tempered. Thereafter, coiling is performed, and shot peening and setting are performed.
[0028]
The cold-formed spring according to the present invention uses steel having the above chemical components as a raw material, and performs quenching and tempering treatment so that the hardness becomes HRC 50.5 to 53.5. If the hardness is lower than this range, the durability (fatigue strength) required for the suspension spring is not ensured. On the other hand, if it is harder than this range, cold coiling becomes difficult and quality degradation (occurrence of surface flaws, cracks, etc., toughness degradation due to excessive processing effect) occurs during coiling.
[0029]
In the present invention, high-frequency heating is used during the quenching and tempering. Since the high-frequency heating can raise the temperature quickly, it has the effect of minimizing the generation of surface decarburization and not giving time for crystal grains to grow inside. In addition, temperature control is relatively easy and accurate heating can be performed. Such an effect is particularly useful in quenching, but even in tempering, shortening the time and increasing the temperature slightly in order to obtain the same effect (tempering hardness) improves sag resistance in springs. This leads to a useful effect.
[0030]
Specifically, quenching by high frequency heating is performed at 920 to 1040 ° C. (preferably 940 to 120 ° C.) for 5 to 20 seconds, followed by rapid cooling and tempering at 450 to 550 ° C. (preferably 480 to 520 ° C.) for 5 to 20 It is desirable to heat for seconds. All of these heating temperatures are higher than in the case of normal furnace heating, but problems such as decarburization and crystal grain coarsening do not occur due to the effect of short-time heating (temperature increase).
[0031]
In addition, by rapidly cooling after tempering, variation in tempering hardness is reduced.
[0032]
The conditions for the shot peening treatment are adjusted so that a residual stress of -600 MPa or more is generated at a position 0.2 mm below the surface. Sufficient durability as a suspension spring is ensured by applying a compressive residual stress of this level to the surface in advance. Shot peening may be performed cold (room temperature) or warm (about 250 to 340 ° C.).
[0033]
【The invention's effect】
The cold-formed spring according to the present invention has good corrosion fatigue resistance as a suspension spring because the material steel is set in the proper component range as described above and combined with appropriate high-frequency heating conditions. Further, by appropriately setting the heating conditions and subsequent conditions such as shot peening, sag during use can be minimized. In addition, coiling is easy and quality degradation during processing can be minimized.
[0034]
The cold-formed coil spring according to the present invention having such good characteristics can be used with a maximum design stress of 1150 MPa or more.
[0035]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0036]
First, a total of 20 steels with different carbon contents and silicon contents were produced, and their decarburization characteristics were investigated. The result is shown in FIG. Decarburization characteristics are as follows: Each steel is heated to 900 ° C for 10 minutes, quenched, cut, and the cross section is observed under a microscope. The depth of the complete (ferrite) decarburized layer (DM-F) is less than 0.02mm. ○, 0.02 mm or more was evaluated as x.
[0037]
From FIG. 1, the region shown in FIG. 2 was obtained as the region of optimal carbon content and silicon content when decarburization was taken into consideration. That is, this optimum region is a region in which C: 0.45 to 0.52% and Si: 1.80 to 2.00% in terms of weight ratio.
[0038]
In FIG. 2, the region where the silicon content is less than 1.80% and the carbon content is less than 0.52% is a region with insufficient strength. In this region, the durability is insufficient and the sag during use is large. A region where the silicon content exceeds 2.00% is a poor decarburization region, and in this region, the strength of the surface may be significantly reduced by decarburization during heating. The region where the carbon content exceeds 0.52% is a toughness-reduced region, and the durability decreases particularly in steel used in a corrosive environment such as a suspension spring.
[0039]
Next, the corrosion durability when the carbon content was changed was examined. The result is shown in FIG. In FIG. 3, the load condition was 490 ± 294 MPa. The composition of main chemical components other than carbon was Si: 1.99%, Mn: 0.69%, Ni: 0.55%, Cr: 0.20%, and V: 0.20%.
As can be seen from FIG. 3, when the carbon content is 0.52% or less, the number of corrosion durability is more than 50,000 times, and the corrosion resistance is sufficient. However, when the carbon content exceeds 0.52%, the number of times of corrosion endurance is rapidly reduced to about 30,000 times.
[0040]
Next, the corrosion resistance when the nickel content was changed was examined. The result is shown in FIG. The composition of main chemical components other than nickel was C: 0.49%, Si: 1.99%, Mn: 0.69%, Cr: 0.20%, and V: 0.20%. As an index for evaluating corrosion resistance, the corrosion weight loss per unit surface area after repeating the cycle of “5% concentration, 35 ° C saline solution sprayed for 3 hours, then dried at 35 ° C for 21 hours” 20 times (unit: kg / m 2 ) was used.
As is apparent from FIG. 4, when the nickel content is 0.30% or more, the corrosion weight loss is 0.4 kg / m 2 , and it can be said that sufficient corrosion resistance is provided.
[0041]
Next, the effect of crystal grain refinement when the vanadium content was changed was examined. The result is shown in FIG. The composition of main chemical components other than vanadium was C: 0.49%, Si: 1.99%, Mn: 0.69%, Ni: 0.55%, and Cr: 0.20%.
As can be seen from FIG. 5, when the vanadium content is in the range of 0.15 to 0.30%, the crystal grain size number exceeds 10, and a sufficient crystal grain refinement effect is obtained.
[0042]
Next, the effect of phosphorus content on corrosion durability was investigated. The result is shown in FIG. The composition of main chemical components other than phosphorus was C: 0.49%, Si: 1.99%, Mn: 0.69%, Ni: 0.55%, Cr: 0.20%, and V: 0.20%.
[0043]
As can be seen from FIG. 6, the number of times of corrosion durability exceeded 50,000 times by suppressing the phosphorus content to 0.025% or less, but when the amount of phosphorus exceeded that, the number of times of corrosion durability decreased to about 20,000 times.
[0044]
Next, steel having a component of C: 0.49%, Si: 1.99%, Mn: 0.69%, Ni: 0.55%, Cr: 0.20%, V: 0.20%, after quenching by high-frequency heating, Tempering was performed at various temperatures such that the tensile strength was 1800 to 2000 MPa. FIG. 7 shows the relationship between the tensile strength and the drawing in that case. Here, as a comparative material, the characteristics of the conventional steel SAE9254 steel are also shown. This graph reveals that the steel according to the present invention has higher ductility than before. This is considered to work effectively for corrosion fatigue resistance.
[Brief description of the drawings]
FIG. 1 is a table showing the results of evaluating decarburization characteristics when the carbon content and silicon content are changed.
FIG. 2 is a graph showing an optimal content range of carbon and silicon.
FIG. 3 is a graph showing the relationship between the carbon content and the number of corrosion durability.
FIG. 4 is a graph showing the relationship between nickel content and corrosion weight loss.
FIG. 5 is a graph showing the relationship between vanadium content and grain size number.
FIG. 6 is a graph showing the relationship between phosphorus content and the number of times of corrosion durability.
FIG. 7 is a graph showing the relationship between tensile strength and drawing of the inventive material and the comparative material.

Claims (2)

重量比にしてC:0.45〜0.52%、Si:1.80〜2.00%、Ni:0.30〜0.80%、Cr:0.15〜0.35%、V:0.15〜0.30%を含有し、残部Fe及び不可避不純物からなる鋼を素材とし、
高周波加熱により焼入れ・焼戻しを行い、冷間でコイリングを行い、
上記高周波加熱による焼入れが、920〜1040℃で5〜20秒間加熱後急冷、焼戻しが450〜550℃で5〜20秒間加熱によるものであり、
焼戻し後急冷し、
フェライト脱炭層の深さを0.02mm以下とする、
ことを特徴とする高疲労強度及び高腐食疲労強度を有するコイルばねの製造方法。
In the weight ratio of C: 0.45~0.52%, Si: 1.80~2.00 %, Ni: 0.30~0.80%, Cr: 0.15~0.35%, V: contains 0.15 to 0.30%, that Do the balance Fe and unavoidable impurities Made of steel ,
Quenching and tempering by high frequency heating, cold coiling,
The above-mentioned quenching by high frequency heating is rapid cooling after heating at 920 to 140 ° C. for 5 to 20 seconds, and tempering is by heating at 450 to 550 ° C. for 5 to 20 seconds,
Quench after tempering,
The depth of the ferrite decarburized layer is 0.02 mm or less,
A method of manufacturing a coil spring having high fatigue strength and high corrosion fatigue strength.
焼入れ温度が940〜1020℃、焼戻し温度が480〜520℃であることを特徴とする請求項に記載のコイルばねの製造方法。The method for manufacturing a coil spring according to claim 1 , wherein the quenching temperature is 940 to 120 ° C, and the tempering temperature is 480 to 520 ° C.
JP2003114829A 2003-04-18 2003-04-18 Cold forming spring having high fatigue strength and high corrosion fatigue strength and steel for spring Expired - Fee Related JP4252351B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003114829A JP4252351B2 (en) 2003-04-18 2003-04-18 Cold forming spring having high fatigue strength and high corrosion fatigue strength and steel for spring
US10/823,629 US20040238074A1 (en) 2003-04-18 2004-04-14 Cold-formed spring having high fatigue strength and high corrosion fatigue strength, steel for such spring, and method of manufacturing such spring
DE102004018406A DE102004018406B4 (en) 2003-04-18 2004-04-16 Cold-formed spring of high fatigue strength and high corrosion fatigue strength, steel for such a spring and method of making such a spring
US11/878,884 US20070267112A1 (en) 2003-04-18 2007-07-27 Cold-formed spring having high fatigue strength and high corrosion fatigue strength, steel for such spring, and method of manufacturing such spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114829A JP4252351B2 (en) 2003-04-18 2003-04-18 Cold forming spring having high fatigue strength and high corrosion fatigue strength and steel for spring

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008042164A Division JP5001874B2 (en) 2008-02-22 2008-02-22 Cold forming spring having high fatigue strength and high corrosion fatigue strength, and method for producing spring steel wire

Publications (2)

Publication Number Publication Date
JP2004315944A JP2004315944A (en) 2004-11-11
JP4252351B2 true JP4252351B2 (en) 2009-04-08

Family

ID=33128134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114829A Expired - Fee Related JP4252351B2 (en) 2003-04-18 2003-04-18 Cold forming spring having high fatigue strength and high corrosion fatigue strength and steel for spring

Country Status (3)

Country Link
US (2) US20040238074A1 (en)
JP (1) JP4252351B2 (en)
DE (1) DE102004018406B4 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8308150B2 (en) 2009-06-17 2012-11-13 Nhk Spring Co., Ltd. Coil spring for vehicle suspension and method for manufacturing the same
US8328169B2 (en) * 2009-09-29 2012-12-11 Chuo Hatsujo Kabushiki Kaisha Spring steel and spring having superior corrosion fatigue strength
CN103025904B (en) * 2010-08-04 2015-04-01 日本发条株式会社 Spring and manufacture method thereof
JP5711539B2 (en) 2011-01-06 2015-05-07 中央発條株式会社 Spring with excellent corrosion fatigue strength
JP5624503B2 (en) 2011-03-04 2014-11-12 日本発條株式会社 Spring and manufacturing method thereof
EP2538346A3 (en) * 2011-06-23 2013-10-02 Casio Computer Co., Ltd. Expression input apparatus, expression display apparatus, expression input method, expression display method, recording medium storing expression input control program, and recording medium storing expression display control program
JP2015086890A (en) * 2013-10-28 2015-05-07 中央発條株式会社 Spring and method for manufacturing spring
JP6221031B1 (en) * 2016-12-16 2017-11-01 日本電産リード株式会社 Contact probe and electrical connection jig

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407683A (en) * 1978-04-28 1983-10-04 Neturen Company, Ltd. Steel for cold plastic working
DE3005972A1 (en) * 1980-02-18 1981-09-10 Platenius & Frohn, 5800 Hagen METHOD FOR PRODUCING A HIGHLY RESILIENT LEG SPRING
US4842818A (en) * 1980-03-17 1989-06-27 Daido Tokushuko Kabushiki Kaisha Method for manufacturing tapered rods
US4711675A (en) * 1981-08-11 1987-12-08 Aichi Steel Works, Ltd. Process for improving the sag-resistance and hardenability of a spring steel
US5229069A (en) * 1989-10-02 1993-07-20 The Goodyear Tire & Rubber Company High strength alloy steels for tire reinforcement
JP2842579B2 (en) * 1991-10-02 1999-01-06 株式会社 神戸製鋼所 High strength spring steel with excellent fatigue strength
JPH11241143A (en) * 1997-11-17 1999-09-07 Chuo Spring Co Ltd Spring improved in corrosion fatigue strength
US20040079067A1 (en) * 2002-03-18 2004-04-29 Chuo Hatsujo Kabushiki Kaisha Oil tempered wire for cold forming coil springs

Also Published As

Publication number Publication date
US20070267112A1 (en) 2007-11-22
DE102004018406A1 (en) 2004-11-04
DE102004018406B4 (en) 2013-02-28
JP2004315944A (en) 2004-11-11
US20040238074A1 (en) 2004-12-02

Similar Documents

Publication Publication Date Title
EP2058414B1 (en) High-strength spring steel wire, high-strength springs and processes for production of both
CN104797729B (en) Resistance to hydrogen embrittlement excellent steel wire for high-strength spring material and its manufacture method and high-strength spring
JP2001240941A (en) Bar wire rod for cold forging and its production method
JP5693126B2 (en) Coil spring and manufacturing method thereof
JP2001240940A (en) Bar wire rod for cold forging and its production method
US6193816B1 (en) Spring with corrosion fatigue strength
JPH032354A (en) Spring steel excellent in durability and settling resistance
JPH11241143A (en) Spring improved in corrosion fatigue strength
JP4252351B2 (en) Cold forming spring having high fatigue strength and high corrosion fatigue strength and steel for spring
JP5001874B2 (en) Cold forming spring having high fatigue strength and high corrosion fatigue strength, and method for producing spring steel wire
JP4097151B2 (en) High strength spring steel wire and high strength spring with excellent workability
JPH11246941A (en) High strength valve spring and its manufacture
JPH039168B2 (en)
JP2008106365A (en) Spring with high corrosion resistance and fatigue strength
JP4061003B2 (en) Cold forging bar wire with excellent induction hardenability and cold forgeability
JP5941439B2 (en) Coil spring and manufacturing method thereof
KR101889172B1 (en) High strength steel wire rod having excellent corrosion resistance for spring, and method for manufacturing the same
JP4044460B2 (en) Cold forming spring steel
JPH0598388A (en) High toughness and high carbon thin steel sheet and its manufacture
JP3644217B2 (en) Induction-hardened parts and manufacturing method thereof
JP3872364B2 (en) Manufacturing method of oil tempered wire for cold forming coil spring
KR100325706B1 (en) High stress steel for suspension spring and manufacture method thereof
KR101757754B1 (en) Method of manufacturing cold forging steel capable of being carburized at high temperature
JP2001049337A (en) Production of high strength spring excellent in fatigue strength
JPH11246943A (en) High strength valve spring and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090121

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4252351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140130

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees