JP4174941B2 - Thin film manufacturing method and thin film manufacturing apparatus - Google Patents

Thin film manufacturing method and thin film manufacturing apparatus Download PDF

Info

Publication number
JP4174941B2
JP4174941B2 JP2000032620A JP2000032620A JP4174941B2 JP 4174941 B2 JP4174941 B2 JP 4174941B2 JP 2000032620 A JP2000032620 A JP 2000032620A JP 2000032620 A JP2000032620 A JP 2000032620A JP 4174941 B2 JP4174941 B2 JP 4174941B2
Authority
JP
Japan
Prior art keywords
gas
pressure
exhaust
thin film
source gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000032620A
Other languages
Japanese (ja)
Other versions
JP2001220677A (en
Inventor
栄 宮地
篤史 大谷
雅之 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000032620A priority Critical patent/JP4174941B2/en
Publication of JP2001220677A publication Critical patent/JP2001220677A/en
Application granted granted Critical
Publication of JP4174941B2 publication Critical patent/JP4174941B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜が成膜される成膜室に対して、原料ガスの供給と原料ガスを成膜室から排気するためのパージガスの供給とを交互に繰り返して行う薄膜の製造方法及びそのような薄膜の製造装置に関する。
【0002】
【従来の技術】
この種の薄膜製造方法及び薄膜製造装置に関するものとしては、例えば特表平9−508890号公報に記載のものが提案されている。これは、薄膜が成膜される成膜室、原料ガス及びパージガス供給系統、成膜室の排気系統を備える製造装置を用い、原料ガスの供給とパージガスの供給とを交互に繰り返して基板上にて原子層成長をさせることにより薄膜を製造するものである。また、成膜室内の余剰ガスは減圧排気することにより除去するようにしている。
【0003】
【発明が解決しようとする課題】
しかしながら、本発明者等が従来技術について検討したところ、従来の製造方法及び製造装置においては、原料ガスの供給時(成膜時)とパージガスの供給(パージ時)とで、例えば同一の排気ポンプを用いる等、成膜室の排気能力を同じとしているため、以下のような問題が生じることがわかった。
【0004】
このような薄膜製造に用いられる原料ガスは、そもそも、AlCl3、ZnCl2、TaCl5等の塩化物、あるいは固体有機金属などの凝集しやすいガスが採用される。また、パージガスとしては窒素ガス等の原料ガスの反応に関与しないガスが採用される。ここにおいて、生産性を上げるべくパージ時間を短くするために、排気能力の大きいポンプを使用した場合、原料ガスを供給する成膜時に、成膜室の圧力が低くなり、原料ガスの供給と停止を制御するバルブの下流側が低い圧力となる。
【0005】
この状態でバルブを開けると、バルブの上流と下流との間に大きな圧力差が生じ、原料ガスが膨張して温度が下がり、バルブ内部またはバルブ下流側の配管あるいは成膜室内にて原料ガスが凝集してしまう。この原料ガスの凝集が発生すると、例えば、原料ガスの凝集粉が成膜された膜に付着して膜性能に影響を与える等の不具合が発生する。
【0006】
また、逆に、バルブの下流側の圧力を高めるためにポンプの排気能力を小さくすると、上記した原料ガスの凝集という問題は防止できるが、パージガスを供給するパージ時にパージガスの流量が減少するため、パージに要する時間が長くなり、薄膜製造における生産性が落ちることとなってしまう。このように、従来では、成膜時とパージ時とで、成膜室の排気能力を同じとしているため、原料ガスの凝集の防止と良好な生産性とを両立させることができなかった。
【0007】
本発明は、上記したような本発明者等が独自に見出した問題に鑑みてなされたものであり、その目的とするところは、成膜室に対して原料ガスの供給とパージガスの供給とを交互に繰り返して行うことにより製造される薄膜において、原料ガスの凝集の防止と良好な生産性とを両立させるような薄膜製造方法及びそのような製造方法に適した薄膜製造装置を提供することにある。
【0008】
【課題を解決するための手段】
請求項1〜請求項4記載の発明は薄膜製造方法に係るものであり、原料ガスの供給を行うときは、成膜室(10)内の圧力をパージガスの供給を行うときよりも大きく、パージガスの供給を行うときは、成膜室内の圧力を原料ガスの供給を行うときよりも小さくすることを特徴としている。
【0009】
それにより、原料ガスの供給時には、原料ガスを供給するバルブの下流側の圧力を高め、該バルブを開けたときに伴う原料ガスの急激な温度低下による凝集を抑制することができ、一方、パージ中は短時間で確実にパージを行うことのできるように、成膜室の圧力を小さくすることができる。よって、本発明によれば、原料ガスの凝集の防止と良好な生産性とを両立させるような薄膜製造方法を提供することができる。
【0010】
また、請求項1の製造方法のより具体的な方法としては、請求項2の製造方法のように、原料ガスの供給を行うときは、パージガスの供給を行うときに比べて、成膜室(10)の排気能力を小さくする方法や、請求項3の製造方法のように、原料ガスの供給を行うときは、同時に成膜室(10)へ原料ガスの反応に関与しないガスを導入することにより、パージガスの供給を行うときよりも成膜室内の圧力を大きくする方法を採用することができる。
【0011】
また、請求項5〜請求項記載の発明は薄膜製造装置に係るものであり、原料ガスの供給を行うときは、成膜室内の圧力をパージガスの供給を行うときよりも大きく、パージガスの供給を行うときは、成膜室内の圧力を原料ガスの供給を行うときよりも小さくなるように、成膜室(10)内の圧力を可変とする圧力可変手段(35、55、65)を設け、さらに、原料ガスの供給と停止とを行う原料ガス用バルブ手段(234)を備え、圧力可変手段(65)は、原料ガス用バルブ手段の下流側の圧力を検知する圧力検知手段(60)と、この圧力検知手段によって検知される圧力に基づいて成膜室(10)へ原料ガスの反応に関与しないガスを導入するガス導入手段(61〜63)とを備えたものとしたことを特徴としている。
【0012】
本製造装置を用いれば、圧力可変手段によって成膜室内の圧力を可変とできるため、上記製造方法と同様に、原料ガスの供給時とパージガスの供給時とで、成膜室内の圧力を大きくしたり小さくしたりできる。よって、原料ガスの凝集の防止と良好な生産性とを両立させるような薄膜製造方法に適した薄膜製造装置を提供することができる。また、上記圧力可変手段としては、原料ガスの供給と停止とを行う原料ガス用バルブ手段(234)の下流側の圧力を検知する圧力検知手段(60)と、この圧力検知手段によって検知される圧力に基づいて成膜室(10)へ原料ガスの反応に関与しないガスを導入するガス導入手段(61〜63)とを備えたものとしており、本製造装置を用いれば、請求項3の製造方法を適切に実行することができる。
【0013】
特に、請求項6の発明のように、圧力可変手段を、成膜室(10)を排気するときの排気能力を可変とする排気能力可変手段(35、55)を備えた薄膜製造装置を用いれば、請求項2の製造方法を適切に実行することができる。
【0014】
その排気能力可変手段としては、成膜室(10)に対して別々に設けられた排気用の2個の排気通路(30、40)と、個々の該排気通路に設けられた互いに排気能力の異なるポンプ手段(31、41)とを備えたものとしたり(請求項7の発明)、成膜室(10)に対して設けられた排気用の排気通路(50)と、この排気通路に設けられ該排気通路の通路面積を可変とする可変バルブ手段(52)とを備えたものとする(請求項8の発明)ことができる。
【0016】
なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
【0017】
【発明の実施の形態】
(第1実施形態)
本発明は、薄膜が成膜される成膜室を排気しながら、該成膜室に対して原料ガスの供給とパージガスの供給とを交互に繰り返して基板上にて原子層成長をさせることにより薄膜を製造するものである。
【0018】
以下、限定するものではないが、原料ガスとしてAlCl3(塩化アルミニウム)とH2Oを用い、パージガスとしてN2(窒素)を用い、Al23(アルミナ)を成膜する場合について説明する。成膜方法は、公知の如く、AlCl3導入+N2パージ(第1パージ)+H2O導入+N2パージ(第2パージ)を1サイクルとしてこれを複数サイクル繰り返すことにより、所望の厚さのアルミナ薄膜を得るものである。
【0019】
図1に、本発明の第1実施形態に係る薄膜製造装置を模式的に示す。図1において、10はチタン等の金属やガラス等よりなる成膜室であり、この成膜室10には、成膜室10へ原料ガスやパージガスを交互に導入するためのガス供給通路20、及び成膜室10内の余剰ガスを排気するための2個の排気通路30、40が設けられている。各通路20〜40は、例えばステンレスやガラス等よりなる配管より構成されている。
【0020】
図示されるガス供給通路20は、原料ガスとしてのAlCl3ガスを成膜室10へ導入するとともに、第1パージを行うためのものである。このガス供給通路20の上流側は、図示しないキャリアガス(パージ時にはパージガスにもなる)であるN2ガスが収納されたタンクやボンベ等につながっている。
【0021】
また、ガス供給通路20の途中には原料供給通路21が設けられ、原料供給通路21の途中部には原料ガスであるAlCl3ガスが収納された耐食性金属等よりなる原料容器22が介在している。この原料容器22には、AlCl3が固体Sで収納されており、ヒータやオーブン等にて加熱することにより、該容器22内部においては、AlCl3が一部昇華してAlCl3ガスGが存在した状態となっている。
【0022】
また、ガス供給通路20における原料供給通路21の分岐点と合流点との間(バイパス通路)には第1供給バルブ231が、原料供給通路21におけるガス供給通路20の分岐点と原料容器22との間には第2供給バルブ232が、原料供給通路21における原料容器22とガス供給通路20の合流点との間には第3供給バルブ233が、ガス供給通路20における原料供給通路21の合流点と成膜室10との間には第4供給バルブ234が、それぞれ介在設定されている。また、原料ガスが流れる第3及び第4供給バルブ233、234及び通路部分は、原料のガス状態を維持すべくヒータやオーブン等にて加熱可能となっている。
【0023】
そして、AlCl3ガスを成膜室10内へ導入するときは、第1供給バルブ231を閉状態、第2〜第4供給バルブ232〜234を開状態とする。すると、図1中の実線矢印に示す様に、ガス供給通路20の上流からキャリアガスとしてのN2ガスが流れ、このガスは原料供給通路21から原料容器22内のAlCl3ガスGを搬送し、成膜室10内へ導入する。このAlCl3ガスの流量は、原料容器22の温度即ちAlCl3の昇華温度で決められる。
【0024】
一方、第1パージ時に、パージガスとしてのN2ガスを成膜室10内へ導入するときは、第1及び第4供給バルブ231及び234を開状態、第2及び第3供給バルブ232及び233を閉状態とする。すると、図1中の破線矢印に示す様に、ガス供給通路20の上流から、上記バイパス通路を介してパージガスとしてのN2ガスが流れ、成膜室10内へ導入される。
【0025】
なお、上記ガス供給通路20とは別に、図示しないが、上記した原料供給通路、原料容器及び各供給バルブを有するガス供給通路が、もう1系統設けられており、このガス供給通路は、原料ガスとしてのH2Oガスを成膜室10へ導入するとともに、第2パージを行うためのものである。その構成は、上記ガス供給通路20と比べて、原料容器にAlCl3の代わりに水が入っている以外は同様である。
【0026】
こうして、AlCl3ガスの導入、第1パージ、水ガスの導入、第2パージにおける各パルスは、予め決められたパルス時間にて上記各供給バルブ231〜234を切り替えることにより、成膜室10へ順次交互に導入される。なお、上記の各供給バルブ231〜234は、特に限定しないが、例えば、電磁弁から送られるエアによって駆動されるダイヤフラム式のものを採用できる。そして、各バルブ231〜234は、上記各パルス時間に基づいて図示しない制御回路から送られる信号により電磁弁を作動制御するようになっている。
【0027】
一方、2個の排気通路30、40は、成膜室10に対して別々に設けられており、個々の排気通路30、40には、互いに排気能力の異なる電動式の真空ポンプ(ポンプ手段)31、41が介在設定されている。ここで、排気能力の小さいポンプ(第1のポンプ)31を有する方を第1の排気通路30、排気能力の大きいポンプ(第2のポンプ)41を有する方を第2の排気通路40とする。各排気通路30及び40において、成膜室とポンプとの間には、それぞれ第1排気バルブ32及び第2排気バルブ42が介在設定されている。
【0028】
ここで、AlCl3ガスの導入及び水ガスの導入時(つまり、原料ガスの供給時)には、第1及び第2パージ時(つまり、パージガスの供給時)に比べて、成膜室10の排気能力を小さくするようにしている。それにより、原料ガスの供給時には、成膜室10内の圧力をパージガスの供給時よりも大きく、パージガスの供給時には、成膜室10内の圧力を原料ガスの供給時よりも小さくすることができる。
【0029】
具体的には、両ポンプ31、41を駆動状態としたまま、原料ガスの供給時には、第1排気バルブ32を開状態、第2排気バルブ42を閉状態として、排気能力の小さい第1の排気通路30のみで排気する。一方、パージガスの供給時には、第1排気バルブ32を閉状態、第2排気バルブ42を開状態として、排気能力の大きい第2の排気通路40のみで排気するか、両排気バルブ32、42をともに開状態として、両排気通路30、40で排気を行う。また、各排気バルブ32、42及び排気通路は、排気されるガスのガス状態を維持すべくヒータやオーブン等にて加熱可能となっている。
【0030】
なお、上記の各排気32、42は、特に限定しないが、例えば、上記供給バルブと同様に、電磁弁から送られるエアによって駆動されるダイヤフラム式のものを採用でき、上記各パルス時間に基づいて各バルブ32、42の作動を制御できるようになっている。これら各排気通路30、40、各ポンプ31、41及び各排気バルブ32、42により、本発明でいう圧力可変手段としての排気能力可変手段35が構成されている。
【0031】
次に、この薄膜製造装置を用いた本実施形態の薄膜製造方法について述べる。基本的には、成膜室10に対して原料ガスの供給とパージガスの供給とを交互に繰り返して行うのであるが、本実施形態の主たる特徴は、原料ガスの供給時(成膜中)には、排気能力の小さい第1のポンプ32で排気することにより、成膜室10を高圧力にし、バルブ動作に伴うガスの急激な温度低下による凝集を抑制し、一方、パージガスの供給時(パージ中)には、排気能力の大きい第2のポンプ42で排気することにより、短時間で確実にパージを行うことにある。
【0032】
例えば、第1のポンプ32の排気能力を400L/min(リットル/分)、第2のポンプ42の排気能力を1600L/minとする。まず、成膜室10内に成膜用の図示しない基板(ガラス基板やシリコン基板等)を設置し、ヒータ(図示せず)等により、該基板を成膜可能な温度(例えば500℃)に昇温する。
【0033】
次に、AlCl3ガス導入工程を行う。第1供給バルブ231を閉状態、第2〜第4供給バルブ232〜234を開状態とし、図1中の実線矢印に示す様に、キャリアガスとしてのN2ガスとともにAlCl3ガスを成膜室10内へ導入する。こうして、成膜室10内の上記基板上にAlCl3ガスが吸着する。このとき同時に、第1排気バルブ32を開状態、第2排気バルブ42を閉状態として、排気能力の小さい第1の排気通路30のみで成膜室10を排気する。
【0034】
ここで、AlCl3の昇華温度(原料容器22の温度)を実用的な昇華量が確保できる140℃、第3及び第4供給バルブ233及び234の温度を市販バルブの耐熱保証温度上限の150℃、キャリアガスのN2流量を標準状態で3L/min(3SLM)としたとき、排気能力が400L/minである第1のポンプ31で排気した場合、成膜室10の圧力が800Paとなる。このとき、第4供給バルブ234の上流側と下流側との圧力差は10kPaであり、温度低下も10℃以下となり、第4供給バルブ234下流側でのAlCl3の凝集はほとんど発生しない。
【0035】
次に、第1パージ工程を行う。第1及び第4供給バルブ231及び234を開状態、第2及び第3供給バルブ232及び233を閉状態とし、図1中の破線矢印に示す様に、パージガスとしてのN2ガスを成膜室10内へ導入する。そして、成膜室10内の余剰ガスを除去する。このとき同時に、第1排気バルブ32を閉状態、第2排気バルブ42を開状態として、排気能力の大きい第2の排気通路40のみで排気するか、両排気バルブ32、42をともに開状態として、両排気通路30、40で排気を行う。
【0036】
この第1パージ工程において、排気能力が1600L/minである第2のポンプ42に切り替えて排気することにより、排気能力が400L/minである第1のポンプ32で排気する場合に比べて、4分の1のパージ時間で同等のパージ効果が得られる。なお、両排気通路30、40で排気を行えば、いっそうパージ時間を短縮できる。
【0037】
仮に、AlCl3ガス導入工程(成膜中)にて、排気能力が1600L/minである第2のポンプ41を使用して第2の排気通路40から排気を行うと、成膜室10の圧力は200Paとなり、第4供給バルブ234の上流側と下流側との圧力差が25kPaと大きくなり、温度低下は20℃以上となり、AlCl3は第4供給バルブ234下流側で凝集してしまうことが確認された。
【0038】
次に、H2O導入工程を行い、基板に吸着されたAlCl3とH2Oとを反応させ、アルミナ薄膜を形成する。なお、H2OガスはAlCl3ガスと比べて凝集を起こしにくいので、成膜室10の排気は両排気通路30、40のどちらで行っても良い。次に、第2パージ工程を上記第1パージ工程と同様に行う。こうして、アルミナ薄膜の成膜の1サイクルが終了する。この1サイクルを複数回繰り返して所望の膜厚を得る。
【0039】
以上述べてきたように、本実施形態の薄膜製造装置によれば、成膜室10を排気するときの排気能力を可変とする排気能力可変手段35を備えており、この排気能力可変手段35は、原料ガスの供給とパージガスの供給とで成膜室10内の圧力(真空度)を可変とする圧力可変手段として機能する。
【0040】
そして、本薄膜製造装置を用いた上記製造方法によれば、原料ガスの供給を行うときは、パージガスの供給を行うときに比べて、成膜室10の排気能力を小さくすることができるため、原料ガスの供給を行うときは、成膜室10内の圧力をパージガスの供給を行うときよりも大きく、パージガスの供給を行うときは、成膜室10内の圧力を原料ガスの供給を行うときよりも小さくすることができる。
【0041】
それにより、原料ガスの供給時には、原料ガスを供給するバルブの下流側の圧力を高め、該バルブを開けたときに伴う原料ガスの急激な温度低下による凝集を抑制することができ、一方、パージ中は短時間で確実にパージを行うことのできるように、成膜室10の圧力を小さくすることができる。よって、本実施形態によれば、原料ガスの凝集の防止と良好な生産性とを両立させるような薄膜製造方法及びそのような製造方法に適した薄膜製造装置を提供することができる。
【0042】
(第2実施形態)
図2に、本発明の第2実施形態に係る薄膜製造装置を模式的に示す。図2中、上記第1実施形態(図1)と同一部分には同一符号を付し、以下、第1実施形態と異なるところについて主として説明することとする。
【0043】
本実施形態においても、上記第1実施形態と同様、基本的には、製造装置における圧力可変手段を、成膜室10を排気するときの排気能力を可変とする排気能力可変手段55を備えたものとし、原料ガスの供給を行うときは、パージガスの供給を行うときに比べて、成膜室10の排気能力を小さくする製造方法を採用している。
【0044】
しかし、本実施形態においては、排気能力可変手段55として、図2に示す様に、成膜室10に対して設けられた排気用の配管(ステンレス等)である1個の排気通路50と、この排気通路50における成膜室10とポンプ51との間に設けられ排気通路50の通路面積を可変とする可変バルブ(可変バルブ手段)52とを備えたものを採用している。
【0045】
この可変バルブ52は、特に限定しないが、例えば板状の弁体をサーボモータ等により回動可能に制御する通常のバルブを採用することができ、ポンプ51は所定の排気能力を有する通常の電動式の真空ポンプを採用できる。また、可変バルブ52及び排気通路は、排気されるガスのガス状態を維持すべくヒータやオーブン等にて加熱可能となっている。
【0046】
この可変バルブ52により、ポンプ51を駆動状態としたまま、原料ガスの供給時には、成膜室10の圧力がAlCl3の凝集が起こらない程度になるようにバルブ52の開度を小さくし、一方、パージガスの供給時には、短時間でパージ効果を得るためにバルブ52の開度を大きくする。
【0047】
これにより、排気通路50の開度を変えることができ、実効的な排気能力を変え、成膜中とパージ中とで成膜室10の圧力(真空度)を可変とすることができる。このように、本実施形態においても、上記第1実施形態と同様の効果を有する薄膜製造方法及び薄膜製造装置を提供することができる。また、本実施形態の排気能力可変手段55は、排気通路を1系統とできるため、上記第1実施形態に比べて、排気系統の構成を簡略化することができる。
【0048】
(第3実施形態)
図3に、本発明の第3実施形態に係る薄膜製造装置を模式的に示す。図3中、上記第1実施形態(図1)と同一部分には同一符号を付し、以下、第1実施形態と異なるところについて主として説明することとする。本実施形態は、原料ガスの供給を行うときは、同時に成膜室10へ原料ガスの反応に関与しないガスを導入することにより、パージガスの供給を行うときよりも成膜室10内の圧力を大きくする製造方法を採用するものである。
【0049】
本実施形態の薄膜製造装置は、圧力可変手段65として、AlCl3ガス(原料ガス)の供給と停止とを行う第4供給バルブ(原料ガス用バルブ手段)234の下流側の圧力を検知する圧力計(圧力検知手段)60と、この圧力計60によって検知される圧力に基づいて成膜室10へ原料ガスの反応に関与しないガスを導入するガス導入手段61〜63とを備えている。
【0050】
第4供給バルブ234と成膜室10との間のガス供給通路10には、ガス導入用配管61の一端が合流して接続されており、このガス導入用配管61には、合流点側から順に、上記圧力計60、導入バルブ62、流量制御器63が設けられており、ガス導入用配管61の他端側は、原料ガスの反応に関与しないガス(HeやNe等の不活性ガス等)が収納されたタンクやボンベ等につながっている。本例では、原料ガスの反応に関与しないガスとして、キャリアガス及びパージガスと同じN2ガスを用いている。
【0051】
そして、原料ガスの供給時には、導入バルブ62を開け、第4供給バルブ234の下流側にてAlCl3が凝集しない圧力になるように圧力計60の数値を読み取りながら、N2ガスの流量を流量制御器63により適正値に設定する。この流量値の設定は、図示しない制御回路によって圧力計60の計測値をフィードバックしながら流量制御器63を連動させて可変的に制御しても良いし、予め適正な流量を決めておいて一定にしておいても良い。
【0052】
これによって、原料ガスの供給時には、ガス導入用配管61から導入されたN2ガスによって、成膜室10内を含む第4供給バルブ234の下流側の圧力を高めることができる。そのため、原料ガスの供給を行うときは、成膜室10内の圧力をパージガスの供給を行うときよりも大きく、パージガスの供給を行うときは、成膜室10内の圧力を原料ガスの供給を行うときよりも小さくすることができる。
【0053】
このように、本実施形態においても、上記第1実施形態と同様の効果を有する薄膜製造方法及び薄膜製造装置を提供することができる。特に、本実施形態によれば、原料ガスの反応に関与しないガスであるN2ガスの流量を、流量制御器63によって細かく調整することができ、なおかつ、圧力計60に基づいて第4供給バルブ234下流近傍の圧力を直接把握できることにより、高精度に圧力を設定できる。
【0054】
なお、原料ガスの反応に関与しないガスであるN2ガスの導入は、原料ガスの供給時のみでなく、パージガスの供給時にも行って良い。パージガスの供給時にも行うことにより、パージが促進される。このN2ガスの導入は、図示しない制御回路等にて作動制御される導入バルブ62の開閉により、自由に行うことができる。
【0055】
(他の実施形態)
なお、上記各実施形態では、AlCl3を用いてAl23(アルミナ)薄膜を成膜する場合について主として述べたが、これに限定されるものでは勿論ない。例えば、ZnCl2、TaCl5等の塩化物、あるいは固体有機金属などの凝集しやすいガスを用いて、これらの酸化膜等を成膜する場合であっても、本発明は適用できることは勿論である。さらには、液体材料を蒸発させて原料ガスとして用いる場合にも、上記凝集の問題が起こりうるので、本発明は適用可能である。
【0056】
要するに、本発明は、薄膜が成膜される成膜室に対して原料ガスの供給と該原料ガスを前記成膜室から排気するためのパージガスの供給とを交互に繰り返して行う薄膜製造方法及び薄膜製造装置に適用することができる。
【0057】
また、上記実施形態では、成膜室を排気しながら原料ガスの供給を行っているが、成膜室全体にガスが行き渡るように、原料ガスを供給するときに成膜室の排気を一時的に停止しても良い。この場合でも、パージ中の減圧排気により成膜室内は低圧となっているため、原料ガスの供給バルブを開けたときには、圧力差による凝集の問題が起こりうる。そのような場合でも、本発明のように、原料ガス供給時にパージガス供給時よりも成膜室内の圧力を大きくするという製造方法及び製造装置を用いれば、問題はない。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る薄膜製造装置の模式的構成図である。
【図2】本発明の第2実施形態に係る薄膜製造装置の模式的構成図である。
【図3】本発明の第3実施形態に係る薄膜製造装置の模式的構成図である。
【符号の説明】
10…成膜室、30…第1排気通路、31…第1のポンプ、
35、55…排気能力可変手段、40…第2排気通路、41…第2のポンプ、
50…排気通路、52…可変バルブ、60…圧力計、61…ガス導入用配管、
62…導入バルブ、63…流量制御器、65…圧力可変手段、
234…第4供給バルブ(原料ガス用バルブ手段)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a thin film in which a supply of a source gas and a supply of a purge gas for exhausting the source gas from the film formation chamber are alternately repeated for a film formation chamber in which a thin film is formed, and the like The present invention relates to a thin film manufacturing apparatus.
[0002]
[Prior art]
As this type of thin film manufacturing method and thin film manufacturing apparatus, for example, the one described in JP-T-9-508890 has been proposed. This is achieved by using a manufacturing apparatus having a film forming chamber in which a thin film is formed, a source gas and purge gas supply system, and an exhaust system for the film forming chamber, and alternately supplying the source gas and the purge gas on the substrate. Thus, a thin film is produced by atomic layer growth. Further, excess gas in the film formation chamber is removed by evacuation under reduced pressure.
[0003]
[Problems to be solved by the invention]
However, when the present inventors have examined the prior art, in the conventional manufacturing method and manufacturing apparatus, for example, the same exhaust pump is used when supplying the source gas (when forming a film) and when supplying the purge gas (when purging). It has been found that the following problems occur because the exhaust capacity of the film formation chamber is the same, such as using a film.
[0004]
In the first place, the raw material gas used for manufacturing such a thin film is AlCl.ThreeZnCl2, TaClFiveA gas that easily aggregates such as a chloride such as solid organic metal is employed. Further, as the purge gas, a gas that does not participate in the reaction of the raw material gas such as nitrogen gas is employed. Here, in order to shorten the purge time in order to increase productivity, when a pump having a large exhaust capacity is used, the pressure in the film formation chamber becomes low during film formation for supplying the source gas, and supply and stop of the source gas are performed. The downstream side of the valve that controls the pressure is low.
[0005]
When the valve is opened in this state, a large pressure difference is generated between the upstream and downstream of the valve, the raw material gas expands and the temperature drops, and the raw material gas flows inside the valve or in the piping downstream of the valve or in the film forming chamber. Aggregates. When this agglomeration of the source gas occurs, for example, a problem occurs that the agglomerated powder of the source gas adheres to the formed film and affects the film performance.
[0006]
Conversely, if the pumping capacity of the pump is reduced in order to increase the pressure on the downstream side of the valve, the above-mentioned problem of aggregation of the raw material gas can be prevented, but the flow rate of the purge gas decreases during the purge supplying the purge gas. The time required for purging becomes longer, and the productivity in thin film manufacturing is reduced. Thus, conventionally, since the exhaust capacity of the film forming chamber is the same during film formation and during purging, it has been impossible to achieve both prevention of aggregation of raw material gas and good productivity.
[0007]
The present invention has been made in view of the problems uniquely found by the present inventors as described above. The object of the present invention is to supply the source gas and the purge gas to the film forming chamber. To provide a thin film manufacturing method and a thin film manufacturing apparatus suitable for such a manufacturing method that achieve both prevention of aggregation of raw material gas and good productivity in a thin film manufactured by repeatedly performing alternately. is there.
[0008]
[Means for Solving the Problems]
The invention described in claims 1 to 4 relates to a thin film manufacturing method, and when supplying a raw material gas, the pressure in the film forming chamber (10) is larger than that when supplying a purge gas, and the purge gas Is characterized in that the pressure in the film formation chamber is made smaller than when the source gas is supplied.
[0009]
Thereby, when supplying the raw material gas, the pressure on the downstream side of the valve for supplying the raw material gas can be increased, and aggregation due to a sudden temperature drop of the raw material gas when the valve is opened can be suppressed. The pressure in the film formation chamber can be reduced so that the purge can be reliably performed in a short time. Therefore, according to the present invention, it is possible to provide a thin film manufacturing method capable of achieving both prevention of aggregation of raw material gas and good productivity.
[0010]
Further, as a more specific method of the manufacturing method of claim 1, as in the manufacturing method of claim 2, when the raw material gas is supplied, the film formation chamber ( When supplying the source gas as in the method of reducing the exhaust capacity of 10) or the manufacturing method of claim 3, a gas not participating in the reaction of the source gas is simultaneously introduced into the film forming chamber (10). Thus, it is possible to employ a method of increasing the pressure in the film forming chamber as compared with the case of supplying the purge gas.
[0011]
  Claims 5-58The described invention relates to a thin film manufacturing apparatus, and supply of raw material gasWhen performing the above, the pressure in the film formation chamber is larger than when the purge gas is supplied, and when the purge gas is supplied, the pressure in the film formation chamber is smaller than when the source gas is supplied.Pressure variable means (35, 55, 65) for changing the pressure in the film forming chamber (10) is provided.Furthermore, a source gas valve means (234) for supplying and stopping the source gas is provided, and the pressure variable means (65) is a pressure detection means (60) for detecting the pressure downstream of the source gas valve means. And gas introducing means (61 to 63) for introducing a gas not involved in the reaction of the raw material gas into the film forming chamber (10) based on the pressure detected by the pressure detecting means.It is characterized by that.
[0012]
  If this manufacturing apparatus is used, the pressure in the film forming chamber can be varied by the pressure variable means. Therefore, as in the above manufacturing method, the pressure in the film forming chamber is increased between the supply of the source gas and the supply of the purge gas. Can be made smaller or smaller. Therefore, it is possible to provide a thin film manufacturing apparatus suitable for a thin film manufacturing method that achieves both prevention of aggregation of raw material gas and good productivity.The pressure variable means is detected by a pressure detection means (60) for detecting the pressure downstream of the raw material gas valve means (234) for supplying and stopping the raw material gas, and the pressure detection means. According to the present invention, there is provided gas introducing means (61-63) for introducing a gas not involved in the reaction of the raw material gas into the film forming chamber (10) based on the pressure. The method can be carried out appropriately.
[0013]
In particular, as in the invention of claim 6, a thin film manufacturing apparatus provided with an exhaust capacity variable means (35, 55) for making the pressure variable means variable when exhausting the film forming chamber (10) is used. Accordingly, the manufacturing method of claim 2 can be appropriately executed.
[0014]
As the exhaust capacity variable means, two exhaust passages (30, 40) for exhaust provided separately for the film forming chamber (10) and the mutual exhaust capacity provided in each exhaust passage are provided. Different pump means (31, 41) are provided (invention of claim 7), an exhaust exhaust passage (50) provided for the film forming chamber (10), and an exhaust passage provided in the exhaust passage. And a variable valve means (52) for changing the passage area of the exhaust passage (invention of claim 8).
[0016]
In addition, the code | symbol in the bracket | parenthesis of each said means is an example which shows a corresponding relationship with the specific means as described in embodiment mentioned later.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
The present invention allows atomic layer growth on a substrate by evacuating a film formation chamber in which a thin film is formed while alternately supplying a source gas and a purge gas to the film formation chamber. A thin film is manufactured.
[0018]
Hereinafter, although not limited, AlCl as a source gasThree(Aluminum chloride) and H2O and N as the purge gas2(Nitrogen), Al2OThreeThe case where (alumina) is formed will be described. As is well known, the film formation method is AlCl 1.ThreeIntroduction + N2Purge (first purge) + H2O introduction + N2By purging (second purge) as one cycle and repeating this multiple times, an alumina thin film having a desired thickness is obtained.
[0019]
FIG. 1 schematically shows a thin film manufacturing apparatus according to the first embodiment of the present invention. In FIG. 1, reference numeral 10 denotes a film forming chamber made of metal such as titanium, glass, or the like. In this film forming chamber 10, a gas supply passage 20 for alternately introducing a source gas and a purge gas into the film forming chamber 10, In addition, two exhaust passages 30 and 40 for exhausting excess gas in the film forming chamber 10 are provided. Each passage 20-40 is comprised from piping which consists of stainless steel, glass, etc., for example.
[0020]
The illustrated gas supply passage 20 has an AlCl as a source gas.ThreeThe gas is introduced into the film forming chamber 10 and the first purge is performed. An upstream side of the gas supply passage 20 is a carrier gas (not shown) which is a purge gas (not purged).2It is connected to tanks and cylinders that contain gas.
[0021]
A raw material supply passage 21 is provided in the middle of the gas supply passage 20, and AlCl, which is a raw material gas, is provided in the middle of the raw material supply passage 21.ThreeA raw material container 22 made of a corrosion-resistant metal or the like containing gas is interposed. In this raw material container 22, AlClThreeIs stored in solid S, and when heated in a heater or oven, the container 22 has an AlClThreePartially sublimated to AlClThreeGas G is present.
[0022]
A first supply valve 231 is provided between a branch point and a junction of the raw material supply passage 21 in the gas supply passage 20 (bypass passage), and a branch point of the gas supply passage 20 in the raw material supply passage 21 and the raw material container 22. The second supply valve 232 is interposed between the raw material container 22 in the raw material supply passage 21 and the confluence of the gas supply passage 20, and the third supply valve 233 is confluence of the raw material supply passage 21 in the gas supply passage 20. A fourth supply valve 234 is interposed between the point and the film forming chamber 10. The third and fourth supply valves 233 and 234 and the passage portion through which the raw material gas flows can be heated by a heater, an oven, or the like so as to maintain the raw material gas state.
[0023]
And AlClThreeWhen the gas is introduced into the film forming chamber 10, the first supply valve 231 is closed and the second to fourth supply valves 232 to 234 are opened. Then, as indicated by the solid line arrow in FIG.2The gas flows, and this gas flows from the raw material supply passage 21 to the AlCl in the raw material container 22.ThreeThe gas G is transported and introduced into the film forming chamber 10. This AlClThreeThe flow rate of the gas depends on the temperature of the raw material container 22, that is, AlCl.ThreeDetermined by the sublimation temperature.
[0024]
On the other hand, during the first purge, N as the purge gas2When the gas is introduced into the film forming chamber 10, the first and fourth supply valves 231 and 234 are opened, and the second and third supply valves 232 and 233 are closed. Then, as indicated by the broken line arrow in FIG. 1, N as the purge gas passes from the upstream side of the gas supply passage 20 through the bypass passage.2A gas flows and is introduced into the film forming chamber 10.
[0025]
In addition to the gas supply passage 20, although not shown in the figure, another gas supply passage having the above-described raw material supply passage, raw material container, and each supply valve is provided. H as2The O gas is introduced into the film forming chamber 10 and the second purge is performed. Compared with the gas supply passage 20, the configuration is such that the raw material container has AlClThreeIt is the same except that water is contained instead of.
[0026]
Thus, AlClThreeEach pulse in the gas introduction, the first purge, the water gas introduction, and the second purge is alternately introduced into the film forming chamber 10 by switching the supply valves 231 to 234 at a predetermined pulse time. Is done. The supply valves 231 to 234 are not particularly limited. For example, a diaphragm type driven by air sent from an electromagnetic valve can be adopted. Each valve 231 to 234 controls the operation of the electromagnetic valve by a signal sent from a control circuit (not shown) based on each pulse time.
[0027]
On the other hand, the two exhaust passages 30 and 40 are provided separately for the film forming chamber 10, and each of the exhaust passages 30 and 40 has an electric vacuum pump (pump means) having different exhaust capabilities. 31 and 41 are set to be interposed. Here, the one having the pump (first pump) 31 having a small exhaust capacity is referred to as a first exhaust passage 30, and the one having the pump (second pump) 41 having a large exhaust capacity is referred to as a second exhaust passage 40. . In each exhaust passage 30 and 40, a first exhaust valve 32 and a second exhaust valve 42 are interposed between the film forming chamber and the pump, respectively.
[0028]
Where AlClThreeWhen introducing the gas and water gas (that is, when supplying the source gas), the evacuation capacity of the film forming chamber 10 is made smaller than when performing the first and second purges (that is, when supplying the purge gas). I am doing so. Thereby, the pressure in the film forming chamber 10 can be made larger when supplying the source gas than when the purge gas is supplied, and the pressure inside the film forming chamber 10 can be made smaller than when supplying the source gas when supplying the purge gas. .
[0029]
Specifically, the first exhaust valve 32 is opened and the second exhaust valve 42 is closed when the source gas is supplied with both pumps 31 and 41 being driven, so that the first exhaust having a small exhaust capacity is provided. Exhaust air through the passage 30 only. On the other hand, when supplying the purge gas, the first exhaust valve 32 is closed and the second exhaust valve 42 is opened, and the exhaust gas is exhausted only through the second exhaust passage 40 having a large exhaust capacity, or both the exhaust valves 32 and 42 are connected together. In the open state, exhaust is performed in both exhaust passages 30 and 40. The exhaust valves 32 and 42 and the exhaust passage can be heated by a heater, an oven, or the like to maintain the gas state of the exhausted gas.
[0030]
The exhaust 32 and 42 are not particularly limited. For example, as in the case of the supply valve, a diaphragm type driven by air sent from an electromagnetic valve can be adopted, and based on each pulse time. The operation of each valve 32, 42 can be controlled. The exhaust passages 30 and 40, the pumps 31 and 41, and the exhaust valves 32 and 42 constitute an exhaust capacity variable means 35 as a pressure variable means in the present invention.
[0031]
Next, the thin film manufacturing method of this embodiment using this thin film manufacturing apparatus will be described. Basically, the supply of the source gas and the supply of the purge gas are alternately and repeatedly performed with respect to the film forming chamber 10, but the main feature of the present embodiment is during the supply of the source gas (during film formation). Evacuates with the first pump 32 having a small evacuation capacity, thereby increasing the pressure in the film forming chamber 10 and suppressing agglomeration due to a rapid temperature drop of the gas caused by the valve operation. In the middle), the gas is exhausted by the second pump 42 having a large exhaust capacity so that the purge is reliably performed in a short time.
[0032]
For example, the exhaust capacity of the first pump 32 is 400 L / min (liter / min), and the exhaust capacity of the second pump 42 is 1600 L / min. First, a substrate (not shown) for film formation (a glass substrate, a silicon substrate, etc.) is installed in the film formation chamber 10, and is heated to a temperature at which the substrate can be formed (for example, 500 ° C.) by a heater (not shown). Raise the temperature.
[0033]
Next, AlClThreeA gas introduction process is performed. The first supply valve 231 is closed, the second to fourth supply valves 232 to 234 are opened, and N as a carrier gas as shown by the solid line arrow in FIG.2AlCl with gasThreeA gas is introduced into the film forming chamber 10. In this way, AlCl is deposited on the substrate in the film forming chamber 10.ThreeGas is adsorbed. At the same time, the first exhaust valve 32 is opened and the second exhaust valve 42 is closed, and the film forming chamber 10 is exhausted only by the first exhaust passage 30 having a small exhaust capability.
[0034]
Where AlClThreeThe sublimation temperature (temperature of the raw material container 22) is 140 ° C. at which a practical amount of sublimation can be secured, the temperatures of the third and fourth supply valves 233 and 234 are 150 ° C., the upper limit of the heat resistance guarantee temperature of commercial valves, and the carrier gas N2When the flow rate is 3 L / min (3 SLM) in the standard state, the pressure in the film forming chamber 10 is 800 Pa when the first pump 31 having an exhaust capacity of 400 L / min is exhausted. At this time, the pressure difference between the upstream side and the downstream side of the fourth supply valve 234 is 10 kPa, the temperature drop is 10 ° C. or less, and the AlCl on the downstream side of the fourth supply valve 234ThreeAlmost no aggregation occurs.
[0035]
Next, a first purge process is performed. The first and fourth supply valves 231 and 234 are opened, the second and third supply valves 232 and 233 are closed, and N as a purge gas is indicated as indicated by a broken line arrow in FIG.2A gas is introduced into the film forming chamber 10. Then, excess gas in the film forming chamber 10 is removed. At the same time, the first exhaust valve 32 is closed and the second exhaust valve 42 is opened, and exhaust is performed only by the second exhaust passage 40 having a large exhaust capacity, or both the exhaust valves 32 and 42 are both opened. The exhaust passages 30 and 40 exhaust the air.
[0036]
In this first purge step, switching to the second pump 42 having an exhaust capacity of 1600 L / min and exhausting the exhaust gas, compared with the case of exhausting by the first pump 32 having an exhaust capacity of 400 L / min, An equivalent purge effect can be obtained with a purge time of 1 / min. Note that the purge time can be further shortened by exhausting through the exhaust passages 30 and 40.
[0037]
Temporarily, AlClThreeIn the gas introduction process (during film formation), when the second pump 41 having an exhaust capacity of 1600 L / min is used to exhaust from the second exhaust passage 40, the pressure in the film formation chamber 10 becomes 200 Pa, The pressure difference between the upstream side and the downstream side of the fourth supply valve 234 becomes as large as 25 kPa, the temperature drop becomes 20 ° C. or more, and AlClThreeWas confirmed to aggregate on the downstream side of the fourth supply valve 234.
[0038]
Next, H2AlCl adsorbed on the substrate after the O introduction processThreeAnd H2React with O to form an alumina thin film. H2O gas is AlClThreeSince the agglomeration is less likely than gas, the film formation chamber 10 may be exhausted through either of the exhaust passages 30 and 40. Next, the second purge step is performed in the same manner as the first purge step. Thus, one cycle of forming the alumina thin film is completed. This one cycle is repeated a plurality of times to obtain a desired film thickness.
[0039]
As described above, according to the thin film manufacturing apparatus of the present embodiment, the exhaust capacity variable means 35 is provided which makes the exhaust capacity variable when the film forming chamber 10 is exhausted. It functions as a pressure variable means for varying the pressure (degree of vacuum) in the film forming chamber 10 by supplying the source gas and the purge gas.
[0040]
And, according to the manufacturing method using the thin film manufacturing apparatus, when supplying the raw material gas, the exhaust capacity of the film forming chamber 10 can be reduced compared to when supplying the purge gas. When supplying the source gas, the pressure in the film forming chamber 10 is higher than when supplying the purge gas. When supplying the purge gas, the pressure in the film forming chamber 10 is set when supplying the source gas. Can be made smaller.
[0041]
As a result, when supplying the source gas, the pressure on the downstream side of the valve for supplying the source gas can be increased, and aggregation due to a rapid temperature drop of the source gas when the valve is opened can be suppressed. The pressure in the film forming chamber 10 can be reduced so that the purge can be reliably performed in a short time. Therefore, according to the present embodiment, it is possible to provide a thin film manufacturing method and a thin film manufacturing apparatus suitable for such a manufacturing method that achieve both prevention of aggregation of raw material gas and good productivity.
[0042]
(Second Embodiment)
FIG. 2 schematically shows a thin film manufacturing apparatus according to the second embodiment of the present invention. In FIG. 2, the same parts as those in the first embodiment (FIG. 1) are denoted by the same reference numerals, and the differences from the first embodiment will be mainly described below.
[0043]
Also in the present embodiment, as in the first embodiment, the pressure variable means in the manufacturing apparatus is basically provided with an exhaust capacity variable means 55 that makes the exhaust capacity variable when exhausting the film forming chamber 10. When the source gas is supplied, a manufacturing method is adopted in which the exhaust capacity of the film forming chamber 10 is made smaller than when the purge gas is supplied.
[0044]
However, in the present embodiment, as the exhaust capacity varying means 55, as shown in FIG. 2, one exhaust passage 50 which is an exhaust pipe (stainless steel or the like) provided for the film forming chamber 10, A device provided with a variable valve (variable valve means) 52 provided between the film forming chamber 10 and the pump 51 in the exhaust passage 50 and making the passage area of the exhaust passage 50 variable is adopted.
[0045]
The variable valve 52 is not particularly limited. For example, a normal valve that controls a plate-like valve body so as to be rotatable by a servo motor or the like can be used. The pump 51 is a normal electric motor having a predetermined exhaust capability. A vacuum pump of the type can be adopted. The variable valve 52 and the exhaust passage can be heated by a heater, an oven, or the like to maintain the gas state of the exhausted gas.
[0046]
With this variable valve 52, the pressure in the film forming chamber 10 is changed to AlCl when supplying the source gas while the pump 51 is driven.ThreeThe opening of the valve 52 is made small so that the agglomeration does not occur. On the other hand, when the purge gas is supplied, the opening of the valve 52 is made large in order to obtain a purge effect in a short time.
[0047]
Thereby, the opening degree of the exhaust passage 50 can be changed, the effective exhaust capacity can be changed, and the pressure (vacuum degree) of the film forming chamber 10 can be varied during film forming and purging. Thus, also in this embodiment, the thin film manufacturing method and thin film manufacturing apparatus which have the same effect as the said 1st Embodiment can be provided. Further, since the exhaust capacity varying means 55 of the present embodiment can have one exhaust passage, the configuration of the exhaust system can be simplified as compared with the first embodiment.
[0048]
(Third embodiment)
FIG. 3 schematically shows a thin film manufacturing apparatus according to the third embodiment of the present invention. In FIG. 3, the same parts as those in the first embodiment (FIG. 1) are denoted by the same reference numerals, and the differences from the first embodiment will be mainly described below. In the present embodiment, when supplying the source gas, by introducing a gas that does not participate in the reaction of the source gas into the film forming chamber 10 at the same time, the pressure in the film forming chamber 10 is made higher than when the purge gas is supplied. The manufacturing method to enlarge is adopted.
[0049]
The thin film manufacturing apparatus of this embodiment uses AlCl as the pressure variable means 65.ThreeA pressure gauge (pressure detecting means) 60 for detecting the pressure downstream of the fourth supply valve (raw material gas valve means) 234 for supplying and stopping the gas (raw material gas), and the pressure gauge 60 detects the pressure. Gas introduction means 61 to 63 for introducing a gas not involved in the reaction of the raw material gas into the film forming chamber 10 based on the pressure are provided.
[0050]
One end of a gas introduction pipe 61 joins and is connected to the gas supply passage 10 between the fourth supply valve 234 and the film formation chamber 10, and the gas introduction pipe 61 is connected to the gas introduction pipe 61 from the junction point side. In order, the pressure gauge 60, the introduction valve 62, and the flow rate controller 63 are provided, and the other end of the gas introduction pipe 61 is a gas that does not participate in the reaction of the raw material gas (an inert gas such as He or Ne). ) Is connected to the tank or cylinder in which it is stored. In this example, the same N as the carrier gas and the purge gas is used as the gas not involved in the reaction of the raw material gas.2Gas is used.
[0051]
When supplying the source gas, the introduction valve 62 is opened, and the AlCl is disposed downstream of the fourth supply valve 234.ThreeWhile reading the numerical value of the pressure gauge 60 so that the pressure does not agglomerate, N2The gas flow rate is set to an appropriate value by the flow rate controller 63. This flow rate value may be controlled variably in conjunction with the flow rate controller 63 while feeding back the measured value of the pressure gauge 60 by a control circuit (not shown), or may be fixed by determining an appropriate flow rate in advance. You can leave it.
[0052]
As a result, when the source gas is supplied, N introduced from the gas introduction pipe 61 is supplied.2The pressure on the downstream side of the fourth supply valve 234 including the inside of the film forming chamber 10 can be increased by the gas. Therefore, when supplying the source gas, the pressure in the film forming chamber 10 is larger than that when supplying the purge gas. When supplying the purge gas, the pressure in the film forming chamber 10 is set to be equal to the supply of the source gas. It can be smaller than when doing it.
[0053]
As described above, also in this embodiment, it is possible to provide a thin film manufacturing method and a thin film manufacturing apparatus having the same effects as those of the first embodiment. In particular, according to the present embodiment, N, which is a gas that does not participate in the reaction of the source gas.2The flow rate of the gas can be finely adjusted by the flow rate controller 63, and the pressure in the vicinity of the fourth supply valve 234 can be directly grasped based on the pressure gauge 60, whereby the pressure can be set with high accuracy.
[0054]
Note that N is a gas that does not participate in the reaction of the source gas.2The gas may be introduced not only when supplying the source gas but also when supplying the purge gas. Purging is promoted by carrying out the purge gas supply. This N2The introduction of the gas can be freely performed by opening and closing the introduction valve 62 whose operation is controlled by a control circuit (not shown).
[0055]
(Other embodiments)
In each of the above embodiments, AlClThreeUsing Al2OThreeAlthough the case of forming an (alumina) thin film has been mainly described, it is of course not limited thereto. For example, ZnCl2, TaClFiveNeedless to say, the present invention can be applied to the case where these oxide films are formed using a gas such as a chloride such as solid organic metal or the like that easily aggregates. Furthermore, even when the liquid material is evaporated and used as a raw material gas, the above problem of aggregation can occur, and therefore the present invention is applicable.
[0056]
In short, the present invention provides a thin film manufacturing method in which supply of a source gas to a film formation chamber in which a thin film is formed and supply of a purge gas for exhausting the source gas from the film formation chamber are alternately repeated, and It can be applied to a thin film manufacturing apparatus.
[0057]
In the above embodiment, the source gas is supplied while exhausting the film formation chamber. However, when the source gas is supplied so that the gas is distributed throughout the film formation chamber, the film formation chamber is temporarily exhausted. You may stop at any time. Even in this case, since the pressure in the film formation chamber is low due to the reduced pressure exhaust during the purge, there is a possibility of aggregation due to the pressure difference when the source gas supply valve is opened. Even in such a case, there is no problem if a manufacturing method and a manufacturing apparatus in which the pressure in the film forming chamber is set larger when supplying the source gas than when supplying the purge gas as in the present invention.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a thin film manufacturing apparatus according to a first embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of a thin film manufacturing apparatus according to a second embodiment of the present invention.
FIG. 3 is a schematic configuration diagram of a thin film manufacturing apparatus according to a third embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Film-forming chamber, 30 ... 1st exhaust passage, 31 ... 1st pump,
35, 55 ... exhaust capacity variable means, 40 ... second exhaust passage, 41 ... second pump,
50 ... exhaust passage, 52 ... variable valve, 60 ... pressure gauge, 61 ... piping for gas introduction,
62 ... Introducing valve, 63 ... Flow rate controller, 65 ... Pressure variable means,
234... Fourth supply valve (source gas valve means).

Claims (8)

薄膜が成膜される成膜室(10)に対して原料ガスの供給と該原料ガスを前記成膜室から排気するためのパージガスの供給とを交互に繰り返して行う薄膜製造方法において、
前記原料ガスの供給を行うときは、前記成膜室内の圧力を前記パージガスの供給を行うときよりも大きく、前記パージガスの供給を行うときは、前記成膜室内の圧力を前記原料ガスの供給を行うときよりも小さくすることを特徴とする薄膜製造方法。
In the thin film manufacturing method in which the supply of the source gas and the supply of the purge gas for exhausting the source gas from the film formation chamber are alternately repeated to the film formation chamber (10) where the thin film is formed,
When supplying the source gas, the pressure in the film formation chamber is larger than that when supplying the purge gas, and when supplying the purge gas, the pressure in the film formation chamber is set to the supply of the source gas. A method for producing a thin film, characterized in that it is smaller than when performing.
前記原料ガスの供給を行うときは、前記パージガスの供給を行うときに比べて、前記成膜室(10)の排気能力を小さくすることを特徴とする請求項1に記載の薄膜製造方法。  2. The thin film manufacturing method according to claim 1, wherein when the source gas is supplied, the exhaust capacity of the film formation chamber is made smaller than when the purge gas is supplied. 前記原料ガスの供給を行うときは、同時に前記成膜室(10)へ前記原料ガスの反応に関与しないガスを導入することにより、前記パージガスの供給を行うときよりも前記成膜室内の圧力を大きくすることを特徴とする請求項1に記載の薄膜製造方法。  When supplying the source gas, simultaneously introducing the gas not involved in the reaction of the source gas into the film forming chamber (10), the pressure in the film forming chamber is made higher than when the purge gas is supplied. The thin film manufacturing method according to claim 1, wherein the thin film manufacturing method is increased. 前記成膜室(10)を排気しながら、前記原料ガスの供給と前記パージガスの供給とを交互に繰り返して行うことを特徴とする請求項1ないし3のいずれか1つに記載の薄膜製造方法。  The thin film manufacturing method according to any one of claims 1 to 3, wherein the supply of the source gas and the supply of the purge gas are alternately repeated while the film formation chamber (10) is evacuated. . 薄膜が成膜される成膜室(10)に対して原料ガスの供給と該原料ガスを前記成膜室から排気するためのパージガスの供給とを交互に繰り返して行うようにした薄膜製造装置において、
前記原料ガスの供給を行うときは、前記成膜室内の圧力を前記パージガスの供給を行うときよりも大きく、前記パージガスの供給を行うときは、前記成膜室内の圧力を前記原料ガスの供給を行うときよりも小さくなるように、前記成膜室内の圧力を可変とする圧力可変手段(35、55、65)を備え
前記原料ガスの供給と停止とを行う原料ガス用バルブ手段(234)を備え、
前記圧力可変手段(65)は、前記原料ガス用バルブ手段の下流側の圧力を検知する圧力検知手段(60)と、この圧力検知手段によって検知される圧力に基づいて前記成膜室(10)へ前記原料ガスの反応に関与しないガスを導入するガス導入手段(61〜63)とを備えたものであることを特徴とする薄膜製造装置。
In a thin film manufacturing apparatus in which supply of a source gas and supply of a purge gas for exhausting the source gas from the film formation chamber are alternately and repeatedly performed to a film formation chamber (10) in which a thin film is formed ,
When supplying the source gas, the pressure in the film formation chamber is larger than that when supplying the purge gas, and when supplying the purge gas, the pressure in the film formation chamber is set to the supply of the source gas. Pressure varying means (35, 55, 65) for varying the pressure in the film forming chamber so as to be smaller than when performing ,
A source gas valve means (234) for supplying and stopping the source gas;
The pressure variable means (65) includes a pressure detection means (60) for detecting a pressure downstream of the source gas valve means, and the film formation chamber (10) based on the pressure detected by the pressure detection means. A thin film manufacturing apparatus comprising gas introducing means (61 to 63) for introducing a gas not involved in the reaction of the raw material gas .
前記圧力可変手段は、前記成膜室(10)を排気するときの排気能力を可変とする排気能力可変手段(35、55)を備えたものであることを特徴とする請求項5に記載の薄膜製造装置。  The said pressure variable means is provided with the exhaust capacity variable means (35, 55) which makes the exhaust capacity variable when exhausting the said film-forming chamber (10). Thin film manufacturing equipment. 前記排気能力可変手段(35)は、前記成膜室(10)に対して別々に設けられた排気用の2個の排気通路(30、40)と、個々の前記排気通路に設けられた互いに排気能力の異なるポンプ手段(31、41)とを備えたものであることを特徴とする請求項6に記載の薄膜製造装置。  The exhaust capacity varying means (35) includes two exhaust passages (30, 40) for exhaust provided separately for the film forming chamber (10) and each other provided in each of the exhaust passages. 7. The thin film manufacturing apparatus according to claim 6, comprising pump means (31, 41) having different exhaust capabilities. 前記排気能力可変手段(55)は、前記成膜室(10)に対して設けられた排気用の排気通路(50)と、この排気通路に設けられ前記排気通路の通路面積を可変とする可変バルブ手段(52)とを備えたものであることを特徴とする請求項6に記載の薄膜製造装置。  The exhaust capacity variable means (55) is an exhaust exhaust path (50) provided for the film forming chamber (10), and a variable which is provided in the exhaust path and makes the passage area of the exhaust path variable. 7. The thin film manufacturing apparatus according to claim 6, further comprising valve means (52).
JP2000032620A 2000-02-03 2000-02-03 Thin film manufacturing method and thin film manufacturing apparatus Expired - Fee Related JP4174941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000032620A JP4174941B2 (en) 2000-02-03 2000-02-03 Thin film manufacturing method and thin film manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000032620A JP4174941B2 (en) 2000-02-03 2000-02-03 Thin film manufacturing method and thin film manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2001220677A JP2001220677A (en) 2001-08-14
JP4174941B2 true JP4174941B2 (en) 2008-11-05

Family

ID=18557192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000032620A Expired - Fee Related JP4174941B2 (en) 2000-02-03 2000-02-03 Thin film manufacturing method and thin film manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4174941B2 (en)

Families Citing this family (282)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6893506B2 (en) 2002-03-11 2005-05-17 Micron Technology, Inc. Atomic layer deposition apparatus and method
KR20030081144A (en) * 2002-04-11 2003-10-17 가부시키가이샤 히다치 고쿠사이 덴키 Vertical semiconductor manufacturing apparatus
JP5208128B2 (en) * 2007-12-04 2013-06-12 フルテック株式会社 Pressurized gas pulse control processing method and pressurized gas pulse control processing apparatus
US10378106B2 (en) 2008-11-14 2019-08-13 Asm Ip Holding B.V. Method of forming insulation film by modified PEALD
US9394608B2 (en) 2009-04-06 2016-07-19 Asm America, Inc. Semiconductor processing reactor and components thereof
US8802201B2 (en) 2009-08-14 2014-08-12 Asm America, Inc. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
JP5357083B2 (en) * 2010-02-24 2013-12-04 三井造船株式会社 Thin film forming apparatus and thin film forming method
US9312155B2 (en) 2011-06-06 2016-04-12 Asm Japan K.K. High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules
JP5699980B2 (en) * 2011-06-16 2015-04-15 東京エレクトロン株式会社 Film forming method and film forming apparatus
US10854498B2 (en) 2011-07-15 2020-12-01 Asm Ip Holding B.V. Wafer-supporting device and method for producing same
US20130023129A1 (en) 2011-07-20 2013-01-24 Asm America, Inc. Pressure transmitter for a semiconductor processing environment
US9017481B1 (en) 2011-10-28 2015-04-28 Asm America, Inc. Process feed management for semiconductor substrate processing
US8911826B2 (en) * 2012-08-02 2014-12-16 Asm Ip Holding B.V. Method of parallel shift operation of multiple reactors
US9659799B2 (en) 2012-08-28 2017-05-23 Asm Ip Holding B.V. Systems and methods for dynamic semiconductor process scheduling
US10714315B2 (en) 2012-10-12 2020-07-14 Asm Ip Holdings B.V. Semiconductor reaction chamber showerhead
US20160376700A1 (en) 2013-02-01 2016-12-29 Asm Ip Holding B.V. System for treatment of deposition reactor
JP6167673B2 (en) 2013-05-31 2017-07-26 東京エレクトロン株式会社 Film forming apparatus, film forming method, and storage medium
US10683571B2 (en) 2014-02-25 2020-06-16 Asm Ip Holding B.V. Gas supply manifold and method of supplying gases to chamber using same
US10167557B2 (en) 2014-03-18 2019-01-01 Asm Ip Holding B.V. Gas distribution system, reactor including the system, and methods of using the same
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US9890456B2 (en) 2014-08-21 2018-02-13 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US9657845B2 (en) 2014-10-07 2017-05-23 Asm Ip Holding B.V. Variable conductance gas distribution apparatus and method
KR102263121B1 (en) 2014-12-22 2021-06-09 에이에스엠 아이피 홀딩 비.브이. Semiconductor device and manufacuring method thereof
US10529542B2 (en) 2015-03-11 2020-01-07 Asm Ip Holdings B.V. Cross-flow reactor and method
US10276355B2 (en) 2015-03-12 2019-04-30 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US10458018B2 (en) 2015-06-26 2019-10-29 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US10600673B2 (en) 2015-07-07 2020-03-24 Asm Ip Holding B.V. Magnetic susceptor to baseplate seal
US9960072B2 (en) 2015-09-29 2018-05-01 Asm Ip Holding B.V. Variable adjustment for precise matching of multiple chamber cavity housings
US10211308B2 (en) 2015-10-21 2019-02-19 Asm Ip Holding B.V. NbMC layers
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US10529554B2 (en) 2016-02-19 2020-01-07 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches
US10468251B2 (en) 2016-02-19 2019-11-05 Asm Ip Holding B.V. Method for forming spacers using silicon nitride film for spacer-defined multiple patterning
US10190213B2 (en) 2016-04-21 2019-01-29 Asm Ip Holding B.V. Deposition of metal borides
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10032628B2 (en) 2016-05-02 2018-07-24 Asm Ip Holding B.V. Source/drain performance through conformal solid state doping
US10367080B2 (en) 2016-05-02 2019-07-30 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US10388509B2 (en) 2016-06-28 2019-08-20 Asm Ip Holding B.V. Formation of epitaxial layers via dislocation filtering
US9859151B1 (en) 2016-07-08 2018-01-02 Asm Ip Holding B.V. Selective film deposition method to form air gaps
US10612137B2 (en) 2016-07-08 2020-04-07 Asm Ip Holdings B.V. Organic reactants for atomic layer deposition
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US9887082B1 (en) 2016-07-28 2018-02-06 Asm Ip Holding B.V. Method and apparatus for filling a gap
KR102532607B1 (en) 2016-07-28 2023-05-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and method of operating the same
US9812320B1 (en) 2016-07-28 2017-11-07 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10395919B2 (en) 2016-07-28 2019-08-27 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10410943B2 (en) 2016-10-13 2019-09-10 Asm Ip Holding B.V. Method for passivating a surface of a semiconductor and related systems
US10643826B2 (en) 2016-10-26 2020-05-05 Asm Ip Holdings B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US10229833B2 (en) 2016-11-01 2019-03-12 Asm Ip Holding B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10435790B2 (en) 2016-11-01 2019-10-08 Asm Ip Holding B.V. Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap
US10134757B2 (en) 2016-11-07 2018-11-20 Asm Ip Holding B.V. Method of processing a substrate and a device manufactured by using the method
KR102546317B1 (en) 2016-11-15 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Gas supply unit and substrate processing apparatus including the same
US10340135B2 (en) 2016-11-28 2019-07-02 Asm Ip Holding B.V. Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride
KR20180068582A (en) 2016-12-14 2018-06-22 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
KR20180070971A (en) 2016-12-19 2018-06-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US10269558B2 (en) 2016-12-22 2019-04-23 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US10655221B2 (en) 2017-02-09 2020-05-19 Asm Ip Holding B.V. Method for depositing oxide film by thermal ALD and PEALD
US10468261B2 (en) 2017-02-15 2019-11-05 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US10529563B2 (en) 2017-03-29 2020-01-07 Asm Ip Holdings B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
KR102457289B1 (en) 2017-04-25 2022-10-21 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10770286B2 (en) 2017-05-08 2020-09-08 Asm Ip Holdings B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10446393B2 (en) 2017-05-08 2019-10-15 Asm Ip Holding B.V. Methods for forming silicon-containing epitaxial layers and related semiconductor device structures
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10504742B2 (en) 2017-05-31 2019-12-10 Asm Ip Holding B.V. Method of atomic layer etching using hydrogen plasma
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
KR20190009245A (en) 2017-07-18 2019-01-28 에이에스엠 아이피 홀딩 비.브이. Methods for forming a semiconductor device structure and related semiconductor device structures
US10541333B2 (en) 2017-07-19 2020-01-21 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US10590535B2 (en) 2017-07-26 2020-03-17 Asm Ip Holdings B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US10605530B2 (en) 2017-07-26 2020-03-31 Asm Ip Holding B.V. Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10692741B2 (en) 2017-08-08 2020-06-23 Asm Ip Holdings B.V. Radiation shield
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US10249524B2 (en) 2017-08-09 2019-04-02 Asm Ip Holding B.V. Cassette holder assembly for a substrate cassette and holding member for use in such assembly
USD900036S1 (en) 2017-08-24 2020-10-27 Asm Ip Holding B.V. Heater electrical connector and adapter
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
KR102491945B1 (en) 2017-08-30 2023-01-26 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US10607895B2 (en) 2017-09-18 2020-03-31 Asm Ip Holdings B.V. Method for forming a semiconductor device structure comprising a gate fill metal
KR102630301B1 (en) 2017-09-21 2024-01-29 에이에스엠 아이피 홀딩 비.브이. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10658205B2 (en) 2017-09-28 2020-05-19 Asm Ip Holdings B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US10403504B2 (en) 2017-10-05 2019-09-03 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10319588B2 (en) 2017-10-10 2019-06-11 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
KR102443047B1 (en) 2017-11-16 2022-09-14 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
KR102597978B1 (en) 2017-11-27 2023-11-06 에이에스엠 아이피 홀딩 비.브이. Storage device for storing wafer cassettes for use with batch furnaces
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
TW202325889A (en) 2018-01-19 2023-07-01 荷蘭商Asm 智慧財產控股公司 Deposition method
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
USD903477S1 (en) 2018-01-24 2020-12-01 Asm Ip Holdings B.V. Metal clamp
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD880437S1 (en) 2018-02-01 2020-04-07 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US10535516B2 (en) 2018-02-01 2020-01-14 Asm Ip Holdings B.V. Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
WO2019158960A1 (en) 2018-02-14 2019-08-22 Asm Ip Holding B.V. A method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10658181B2 (en) 2018-02-20 2020-05-19 Asm Ip Holding B.V. Method of spacer-defined direct patterning in semiconductor fabrication
KR102636427B1 (en) 2018-02-20 2024-02-13 에이에스엠 아이피 홀딩 비.브이. Substrate processing method and apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
KR102646467B1 (en) 2018-03-27 2024-03-11 에이에스엠 아이피 홀딩 비.브이. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US10510536B2 (en) 2018-03-29 2019-12-17 Asm Ip Holding B.V. Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber
KR102501472B1 (en) 2018-03-30 2023-02-20 에이에스엠 아이피 홀딩 비.브이. Substrate processing method
TWI811348B (en) 2018-05-08 2023-08-11 荷蘭商Asm 智慧財產控股公司 Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
TWI816783B (en) 2018-05-11 2023-10-01 荷蘭商Asm 智慧財產控股公司 Methods for forming a doped metal carbide film on a substrate and related semiconductor device structures
KR102596988B1 (en) 2018-05-28 2023-10-31 에이에스엠 아이피 홀딩 비.브이. Method of processing a substrate and a device manufactured by the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
KR102568797B1 (en) 2018-06-21 2023-08-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing system
CN112292477A (en) 2018-06-27 2021-01-29 Asm Ip私人控股有限公司 Cyclic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
JP2021529254A (en) 2018-06-27 2021-10-28 エーエスエム・アイピー・ホールディング・ベー・フェー Periodic deposition methods for forming metal-containing materials and films and structures containing metal-containing materials
KR20200002519A (en) 2018-06-29 2020-01-08 에이에스엠 아이피 홀딩 비.브이. Method for depositing a thin film and manufacturing a semiconductor device
US10612136B2 (en) 2018-06-29 2020-04-07 ASM IP Holding, B.V. Temperature-controlled flange and reactor system including same
US10388513B1 (en) 2018-07-03 2019-08-20 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10483099B1 (en) 2018-07-26 2019-11-19 Asm Ip Holding B.V. Method for forming thermally stable organosilicon polymer film
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
KR20200030162A (en) 2018-09-11 2020-03-20 에이에스엠 아이피 홀딩 비.브이. Method for deposition of a thin film
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
CN110970344A (en) 2018-10-01 2020-04-07 Asm Ip控股有限公司 Substrate holding apparatus, system including the same, and method of using the same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
KR102592699B1 (en) 2018-10-08 2023-10-23 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and apparatuses for depositing thin film and processing the substrate including the same
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
KR102546322B1 (en) 2018-10-19 2023-06-21 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
KR102605121B1 (en) 2018-10-19 2023-11-23 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US10381219B1 (en) 2018-10-25 2019-08-13 Asm Ip Holding B.V. Methods for forming a silicon nitride film
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
KR20200051105A (en) 2018-11-02 2020-05-13 에이에스엠 아이피 홀딩 비.브이. Substrate support unit and substrate processing apparatus including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10559458B1 (en) 2018-11-26 2020-02-11 Asm Ip Holding B.V. Method of forming oxynitride film
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
KR102636428B1 (en) 2018-12-04 2024-02-13 에이에스엠 아이피 홀딩 비.브이. A method for cleaning a substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
JP2020096183A (en) 2018-12-14 2020-06-18 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming device structure using selective deposition of gallium nitride, and system for the same
TWI819180B (en) 2019-01-17 2023-10-21 荷蘭商Asm 智慧財產控股公司 Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
KR20200091543A (en) 2019-01-22 2020-07-31 에이에스엠 아이피 홀딩 비.브이. Semiconductor processing device
CN111524788B (en) 2019-02-01 2023-11-24 Asm Ip私人控股有限公司 Method for topologically selective film formation of silicon oxide
KR102626263B1 (en) 2019-02-20 2024-01-16 에이에스엠 아이피 홀딩 비.브이. Cyclical deposition method including treatment step and apparatus for same
KR102638425B1 (en) 2019-02-20 2024-02-21 에이에스엠 아이피 홀딩 비.브이. Method and apparatus for filling a recess formed within a substrate surface
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
JP2020136677A (en) 2019-02-20 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Periodic accumulation method for filing concave part formed inside front surface of base material, and device
JP2020133004A (en) 2019-02-22 2020-08-31 エーエスエム・アイピー・ホールディング・ベー・フェー Base material processing apparatus and method for processing base material
KR20200108242A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Method for Selective Deposition of Silicon Nitride Layer and Structure Including Selectively-Deposited Silicon Nitride Layer
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
KR20200108243A (en) 2019-03-08 2020-09-17 에이에스엠 아이피 홀딩 비.브이. Structure Including SiOC Layer and Method of Forming Same
JP2020167398A (en) 2019-03-28 2020-10-08 エーエスエム・アイピー・ホールディング・ベー・フェー Door opener and substrate processing apparatus provided therewith
KR20200116855A (en) 2019-04-01 2020-10-13 에이에스엠 아이피 홀딩 비.브이. Method of manufacturing semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
KR20200125453A (en) 2019-04-24 2020-11-04 에이에스엠 아이피 홀딩 비.브이. Gas-phase reactor system and method of using same
KR20200130121A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Chemical source vessel with dip tube
KR20200130118A (en) 2019-05-07 2020-11-18 에이에스엠 아이피 홀딩 비.브이. Method for Reforming Amorphous Carbon Polymer Film
KR20200130652A (en) 2019-05-10 2020-11-19 에이에스엠 아이피 홀딩 비.브이. Method of depositing material onto a surface and structure formed according to the method
JP2020188255A (en) 2019-05-16 2020-11-19 エーエスエム アイピー ホールディング ビー.ブイ. Wafer boat handling device, vertical batch furnace, and method
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
KR20200141002A (en) 2019-06-06 2020-12-17 에이에스엠 아이피 홀딩 비.브이. Method of using a gas-phase reactor system including analyzing exhausted gas
KR20200143254A (en) 2019-06-11 2020-12-23 에이에스엠 아이피 홀딩 비.브이. Method of forming an electronic structure using an reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
KR20210005515A (en) 2019-07-03 2021-01-14 에이에스엠 아이피 홀딩 비.브이. Temperature control assembly for substrate processing apparatus and method of using same
JP2021015791A (en) 2019-07-09 2021-02-12 エーエスエム アイピー ホールディング ビー.ブイ. Plasma device and substrate processing method using coaxial waveguide
CN112216646A (en) 2019-07-10 2021-01-12 Asm Ip私人控股有限公司 Substrate supporting assembly and substrate processing device comprising same
KR20210010307A (en) 2019-07-16 2021-01-27 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
KR20210010816A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Radical assist ignition plasma system and method
KR20210010820A (en) 2019-07-17 2021-01-28 에이에스엠 아이피 홀딩 비.브이. Methods of forming silicon germanium structures
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
CN112242296A (en) 2019-07-19 2021-01-19 Asm Ip私人控股有限公司 Method of forming topologically controlled amorphous carbon polymer films
TW202113936A (en) 2019-07-29 2021-04-01 荷蘭商Asm Ip私人控股有限公司 Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
CN112309899A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112309900A (en) 2019-07-30 2021-02-02 Asm Ip私人控股有限公司 Substrate processing apparatus
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
CN112323048B (en) 2019-08-05 2024-02-09 Asm Ip私人控股有限公司 Liquid level sensor for chemical source container
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
JP2021031769A (en) 2019-08-21 2021-03-01 エーエスエム アイピー ホールディング ビー.ブイ. Production apparatus of mixed gas of film deposition raw material and film deposition apparatus
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
KR20210024423A (en) 2019-08-22 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for forming a structure with a hole
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
KR20210024420A (en) 2019-08-23 2021-03-05 에이에스엠 아이피 홀딩 비.브이. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
KR20210029090A (en) 2019-09-04 2021-03-15 에이에스엠 아이피 홀딩 비.브이. Methods for selective deposition using a sacrificial capping layer
KR20210029663A (en) 2019-09-05 2021-03-16 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
CN112593212B (en) 2019-10-02 2023-12-22 Asm Ip私人控股有限公司 Method for forming topologically selective silicon oxide film by cyclic plasma enhanced deposition process
TW202129060A (en) 2019-10-08 2021-08-01 荷蘭商Asm Ip控股公司 Substrate processing device, and substrate processing method
TW202115273A (en) 2019-10-10 2021-04-16 荷蘭商Asm Ip私人控股有限公司 Method of forming a photoresist underlayer and structure including same
KR20210045930A (en) 2019-10-16 2021-04-27 에이에스엠 아이피 홀딩 비.브이. Method of Topology-Selective Film Formation of Silicon Oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
KR20210047808A (en) 2019-10-21 2021-04-30 에이에스엠 아이피 홀딩 비.브이. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
JP2021075739A (en) * 2019-11-05 2021-05-20 東京エレクトロン株式会社 Apparatus for processing substrate, apparatus for thickening process gas, and method for processing substrate
KR20210054983A (en) 2019-11-05 2021-05-14 에이에스엠 아이피 홀딩 비.브이. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
KR20210062561A (en) 2019-11-20 2021-05-31 에이에스엠 아이피 홀딩 비.브이. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11450529B2 (en) 2019-11-26 2022-09-20 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
CN112951697A (en) 2019-11-26 2021-06-11 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885693A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
CN112885692A (en) 2019-11-29 2021-06-01 Asm Ip私人控股有限公司 Substrate processing apparatus
JP2021090042A (en) 2019-12-02 2021-06-10 エーエスエム アイピー ホールディング ビー.ブイ. Substrate processing apparatus and substrate processing method
KR20210070898A (en) 2019-12-04 2021-06-15 에이에스엠 아이피 홀딩 비.브이. Substrate processing apparatus
JP2021097227A (en) 2019-12-17 2021-06-24 エーエスエム・アイピー・ホールディング・ベー・フェー Method of forming vanadium nitride layer and structure including vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
JP2021109175A (en) 2020-01-06 2021-08-02 エーエスエム・アイピー・ホールディング・ベー・フェー Gas supply assembly, components thereof, and reactor system including the same
KR20210095050A (en) 2020-01-20 2021-07-30 에이에스엠 아이피 홀딩 비.브이. Method of forming thin film and method of modifying surface of thin film
TW202130846A (en) 2020-02-03 2021-08-16 荷蘭商Asm Ip私人控股有限公司 Method of forming structures including a vanadium or indium layer
TW202146882A (en) 2020-02-04 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Method of verifying an article, apparatus for verifying an article, and system for verifying a reaction chamber
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
TW202203344A (en) 2020-02-28 2022-01-16 荷蘭商Asm Ip控股公司 System dedicated for parts cleaning
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
KR20210116240A (en) 2020-03-11 2021-09-27 에이에스엠 아이피 홀딩 비.브이. Substrate handling device with adjustable joints
CN113394086A (en) 2020-03-12 2021-09-14 Asm Ip私人控股有限公司 Method for producing a layer structure having a target topological profile
KR20210124042A (en) 2020-04-02 2021-10-14 에이에스엠 아이피 홀딩 비.브이. Thin film forming method
TW202146689A (en) 2020-04-03 2021-12-16 荷蘭商Asm Ip控股公司 Method for forming barrier layer and method for manufacturing semiconductor device
TW202145344A (en) 2020-04-08 2021-12-01 荷蘭商Asm Ip私人控股有限公司 Apparatus and methods for selectively etching silcon oxide films
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
CN113555279A (en) 2020-04-24 2021-10-26 Asm Ip私人控股有限公司 Method of forming vanadium nitride-containing layers and structures including the same
TW202146831A (en) 2020-04-24 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Vertical batch furnace assembly, and method for cooling vertical batch furnace
KR20210132600A (en) 2020-04-24 2021-11-04 에이에스엠 아이피 홀딩 비.브이. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
KR20210134226A (en) 2020-04-29 2021-11-09 에이에스엠 아이피 홀딩 비.브이. Solid source precursor vessel
KR20210134869A (en) 2020-05-01 2021-11-11 에이에스엠 아이피 홀딩 비.브이. Fast FOUP swapping with a FOUP handler
KR20210141379A (en) 2020-05-13 2021-11-23 에이에스엠 아이피 홀딩 비.브이. Laser alignment fixture for a reactor system
TW202147383A (en) 2020-05-19 2021-12-16 荷蘭商Asm Ip私人控股有限公司 Substrate processing apparatus
KR20210145078A (en) 2020-05-21 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Structures including multiple carbon layers and methods of forming and using same
KR20210145080A (en) 2020-05-22 2021-12-01 에이에스엠 아이피 홀딩 비.브이. Apparatus for depositing thin films using hydrogen peroxide
TW202201602A (en) 2020-05-29 2022-01-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing device
TW202218133A (en) 2020-06-24 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method for forming a layer provided with silicon
TW202217953A (en) 2020-06-30 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Substrate processing method
KR20220010438A (en) 2020-07-17 2022-01-25 에이에스엠 아이피 홀딩 비.브이. Structures and methods for use in photolithography
TW202204662A (en) 2020-07-20 2022-02-01 荷蘭商Asm Ip私人控股有限公司 Method and system for depositing molybdenum layers
TW202212623A (en) 2020-08-26 2022-04-01 荷蘭商Asm Ip私人控股有限公司 Method of forming metal silicon oxide layer and metal silicon oxynitride layer, semiconductor structure, and system
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
TW202229613A (en) 2020-10-14 2022-08-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing material on stepped structure
TW202217037A (en) 2020-10-22 2022-05-01 荷蘭商Asm Ip私人控股有限公司 Method of depositing vanadium metal, structure, device and a deposition assembly
TW202223136A (en) 2020-10-28 2022-06-16 荷蘭商Asm Ip私人控股有限公司 Method for forming layer on substrate, and semiconductor processing system
KR20220076343A (en) 2020-11-30 2022-06-08 에이에스엠 아이피 홀딩 비.브이. an injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
TW202231903A (en) 2020-12-22 2022-08-16 荷蘭商Asm Ip私人控股有限公司 Transition metal deposition method, transition metal layer, and deposition assembly for depositing transition metal on substrate
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate

Also Published As

Publication number Publication date
JP2001220677A (en) 2001-08-14

Similar Documents

Publication Publication Date Title
JP4174941B2 (en) Thin film manufacturing method and thin film manufacturing apparatus
US7622396B2 (en) Method of producing a semiconductor device
US20040029379A1 (en) Thin film forming method and thin film forming device
US7713582B2 (en) Substrate processing method for film formation
JP3332053B2 (en) Gas supply method to chamber
US6677250B2 (en) CVD apparatuses and methods of forming a layer over a semiconductor substrate
JP2004006801A (en) Vertical semiconductor manufacturing apparatus
JPH0645256A (en) Method for supplying gas pulse and method forming for film using the same
JP2016084517A (en) Raw material gas supply device and film deposition device
JP4399517B2 (en) Film forming apparatus and film forming method
JP2712367B2 (en) Method and apparatus for forming thin film
KR20010076332A (en) Manufacturing method for semiconductor device and apparatus for manufacturing the semiconductor
JP3670524B2 (en) Manufacturing method of semiconductor device
JP2717972B2 (en) Method and apparatus for forming thin film
JP6720650B2 (en) Thin film manufacturing method and thin film manufacturing apparatus
JPH0663095B2 (en) CVD equipment
JPH02307892A (en) Method and device for producing thin film
US11993841B2 (en) Substrate processing method and substrate processing apparatus
US20210054503A1 (en) Substrate processing method and substrate processing apparatus
JP6531487B2 (en) Deposition apparatus, deposition method, and storage medium
WO2023277920A1 (en) System and method for delivering precursor to a process chamber
JPS5943988B2 (en) Ultrafine particle membrane manufacturing method and manufacturing device
JP2001284285A (en) METHOD AND DEVICE FOR FORMING COPPER OR Cu CONTAINING FILM
JP4067792B2 (en) Manufacturing method of semiconductor device
JP3092572B2 (en) Semiconductor vapor phase growth apparatus and gas supply method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080811

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110829

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120829

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130829

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees