JP2712367B2 - Method and apparatus for forming thin film - Google Patents

Method and apparatus for forming thin film

Info

Publication number
JP2712367B2
JP2712367B2 JP63227117A JP22711788A JP2712367B2 JP 2712367 B2 JP2712367 B2 JP 2712367B2 JP 63227117 A JP63227117 A JP 63227117A JP 22711788 A JP22711788 A JP 22711788A JP 2712367 B2 JP2712367 B2 JP 2712367B2
Authority
JP
Japan
Prior art keywords
gas
thin film
substrate
source
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63227117A
Other languages
Japanese (ja)
Other versions
JPH0274587A (en
Inventor
純一 渡部
謙次 岡元
精威 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63227117A priority Critical patent/JP2712367B2/en
Publication of JPH0274587A publication Critical patent/JPH0274587A/en
Application granted granted Critical
Publication of JP2712367B2 publication Critical patent/JP2712367B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 〔概 要〕 原子層エピタキシー法とそれに適用する装置に関し、 不純物含有の少ない高品質な薄膜を形成することを目
的とし、 反応管に流入する原料ガスの種類を一原子層毎に切り
換え、且つ、流れ方向を被成長基板面に対して一原子層
毎に逆方向に切り換えて成長するようにしたことを特徴
とし、 薄膜形成装置は、反応管の両側にそれぞれオリフィス
弁を介してターボ分子ポンプを配置し、該反応管の中心
位置に被成長基板Wと該被成長基板に対向した不活性ガ
ス導入口Ncを配置し、且つ、該中心位置と前記オリフィ
ス弁との間の両側にそれぞれ原料ガス導入口を配置した
構成にする。
DETAILED DESCRIPTION OF THE INVENTION [Summary] Regarding the atomic layer epitaxy method and an apparatus applied to it, the purpose of the present invention is to form a high-quality thin film with a small amount of impurities, and to set the kind of raw material gas flowing into a reaction tube to one atom. The thin film forming apparatus is characterized in that the growth is performed by switching every layer and switching the flow direction in the reverse direction every atomic layer with respect to the surface of the substrate to be grown. , A turbo-molecular pump is disposed, a substrate to be grown W and an inert gas inlet Nc opposed to the substrate to be grown are disposed at a center position of the reaction tube, and the center position and the orifice valve are disposed between the center position and the orifice valve. A configuration is adopted in which the raw material gas inlets are arranged on both sides between them.

〔産業上の利用分野〕[Industrial applications]

本発明は薄膜の形成方法とその装置に係り、特に原子
層エピタキシー法とそれに適用する装置に関する。
The present invention relates to a method and an apparatus for forming a thin film, and more particularly, to an atomic layer epitaxy method and an apparatus applied thereto.

近年、単原子層レベルで成長を制御できる原子層エピ
タキシー(ALE;Atomic Layer Epitaxy)法によつて高品
質な半導体薄膜を形成する方法が研究されており、その
将来性が期待されている。また、絶縁膜も高品位な膜質
のものが望まれており、例えば、ELパネルの絶縁層は不
純物・膜欠陥などのない高耐圧・無欠陥・長寿命な絶縁
膜が要望されている。
In recent years, a method for forming a high-quality semiconductor thin film by an atomic layer epitaxy (ALE) method capable of controlling growth at a monoatomic layer level has been studied, and its future is expected. Also, it is desired that the insulating film has high quality. For example, the insulating layer of the EL panel is required to have a high withstand voltage, no defect, and a long life without any impurities or film defects.

〔従来の技術〕[Conventional technology]

原子層エピタキシー法は複数の異種原料ガスを交互に
切り換えて被成長基板面に導入し1原子層づつ成長する
方法で、通常の化学気相成長(CVD)法は原料ガスが被
成長基板の上部で反応して被着することが起こるが、原
子層エピタキシー法は一層づつ積層して確実に被成長基
板面で反応するためにCVD法に比べて高品質な薄膜が形
成できる方法として注目されている。例えば、トリエチ
ルガリウム(Ga(C2H5)ガスとアルシン(AsH3)ガ
スとを反応させてGaAs層を成長する場合、エタン(C
2H6)などを含有せず高品質な膜が得られる方法であ
る。
Atomic layer epitaxy is a method in which a plurality of different source gases are alternately switched and introduced onto the surface of a substrate to be grown to grow one atomic layer at a time. In a normal chemical vapor deposition (CVD) method, the source gas is deposited on the substrate to be grown. Atomic layer epitaxy is attracting attention as a method that can form higher quality thin films compared to CVD because the layer is stacked one by one and reacts reliably on the surface of the substrate to be grown. I have. For example, when a GaAs layer is grown by reacting a triethylgallium (Ga (C 2 H 5 ) 3 ) gas with an arsine (AsH 3 ) gas, ethane (C
2 H 6) is a method of high-quality film can be obtained without containing such.

第5図はその原子層エピタキシー法を適用する従来の
薄膜形成装置の断面図を示しており、1は反応管,2は被
成長基板,3はオリフィス弁,4は真空ポンプ,5は原料ガス
Aの導入口,6は原料ガスBの導入口,7はバリアガスの導
入口,5V,6V,7Vはそれらの開閉バルブである。このよう
な薄膜形成装置は気体の流れ方向が一定しており、バリ
アガスおよび原料ガスA,Bの切り換えによつて被成長基
板面を流れるガスの種類を切り換えて1原子層ずつ成長
する方法である。
FIG. 5 is a cross-sectional view of a conventional thin film forming apparatus to which the atomic layer epitaxy method is applied, wherein 1 is a reaction tube, 2 is a substrate to be grown, 3 is an orifice valve, 4 is a vacuum pump, and 5 is a source gas. Reference numeral A denotes an inlet, reference numeral 6 denotes a source gas B, reference numeral 7 denotes a barrier gas inlet, and reference numerals 5V, 6V, and 7V denote on-off valves thereof. Such a thin film forming apparatus is a method in which the direction of gas flow is constant, and the type of gas flowing on the surface of the substrate to be grown is switched by switching between the barrier gas and the source gases A and B to grow one atomic layer at a time. .

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

ところが、上記のような薄膜形成装置を用いた原子層
エピタキシー法ではガスの導入口が一方側にあり、原料
ガスAと原料ガスBとの間に流す遮蔽用のバリアガスの
量と時間が不十分であつたり、また、ガスの淀みやすい
部分(反応チャンバの壁面やガス導入口近傍など)があ
つて、原料ガスが被成長基板面以外の部分で反応して薄
膜が異常成長し、そのように異常成長した薄膜は剥離さ
れ易いためにガスの流れに乗つて被成長基板面に達し、
被成長基板面に形成される薄膜中に不純物粒子として混
入し異常結晶成長の核となる問題がある。
However, in the atomic layer epitaxy method using the thin film forming apparatus as described above, the gas inlet is on one side, and the amount and time of the shielding barrier gas flowing between the source gas A and the source gas B are insufficient. In addition, there are parts where the gas tends to stagnate (such as near the wall surface of the reaction chamber or the gas inlet), and the raw material gas reacts on parts other than the surface of the substrate to be grown, and the thin film grows abnormally. Since the abnormally grown thin film is easily peeled, it rides on the gas flow to reach the growth substrate surface,
There is a problem that the impurities are mixed as impurity particles in the thin film formed on the surface of the substrate to be grown and become nuclei of abnormal crystal growth.

本発明はそのような問題点を解消させて、不純物含有
の少ない高品質な薄膜を形成することを目的とした薄膜
の形成方法とその装置を提案するものである。
The present invention proposes a method and an apparatus for forming a thin film for the purpose of forming a high-quality thin film containing less impurities by solving such problems.

〔課題を解決するための手段〕[Means for solving the problem]

その課題は、反応管に流入する原料ガスの種類を一原
子層毎に切り換え、且つ、原料ガスの種類を切り換える
際に不活性ガスを流入して残留原料ガスを該不活性ガス
と共に除去し、且つ、一原子層毎に流れ方向を被成長基
板面に対して逆方向に切り換えて成長するようにした薄
膜の形成方法によつて解決される。
The problem is that the type of the source gas flowing into the reaction tube is switched for each atomic layer, and when the type of the source gas is switched, an inert gas is introduced to remove the residual source gas together with the inert gas, In addition, the problem is solved by a method of forming a thin film in which the flow direction is changed in the direction opposite to the surface of the substrate to be grown for each atomic layer to grow.

また、それを実施する薄膜形成装置として、第1図に
示す実施例図のように、筒状反応管11の両側にそれぞれ
にオリフィス弁Oa,Obを介してターボ分子ポンプVa,Vbを
配置し、該反応管の中心位置に被成長基板Wと該被成長
基板Wに対向した不活性ガス導入口Ncを配置し、且つ、
該中心位置と前記オリフィス弁との間の両側にそれぞれ
原料ガス導入口Na,Nbを配置した構造にする。
In addition, as a thin film forming apparatus for performing the same, turbo molecular pumps Va and Vb are arranged on both sides of a cylindrical reaction tube 11 via orifice valves Oa and Ob, respectively, as shown in the embodiment of FIG. A substrate W to be grown and an inert gas inlet Nc opposed to the substrate W to be grown are arranged at a central position of the reaction tube, and
Source gas inlets Na and Nb are arranged on both sides between the center position and the orifice valve.

〔作 用〕(Operation)

即ち、本発明は、一原子層毎に流れ方向を被成長基板
面に対して逆方向に切り換え、且つ、切り換え毎に不活
性ガスを流入して残留原料ガスを同時に追放する。
That is, according to the present invention, the flow direction is switched in the opposite direction to the surface of the substrate to be grown for each atomic layer, and the inert gas is introduced and the residual raw material gas is simultaneously expelled at each switching.

それを実施するために、筒状反応管11の両側に原料ガ
ス導入口Na,Nbを設け、中心位置の被成長基板Wに対向
した位置に不活性ガス導入口Ncを設けた薄膜形成装置を
用い、まず、不活性ガスを導入し、オリフィス弁Oa,Ob
を開いて一定減圧度に保持し、次に、一方のオリフィス
弁Obとを開いて一方向にA原料ガスを流して原料Aから
なる層を形成する。次いで、再び不活性ガスを導入し、
オリフィス弁Oa,Obを開いて一定減圧度に保持し、次
に、一方のオリフィス弁Oaとを開いて逆方向にB原料ガ
スを流して原料Bからなる原子層を形成する。
In order to perform this, a thin film forming apparatus is provided in which source gas inlets Na and Nb are provided on both sides of the cylindrical reaction tube 11 and an inert gas inlet Nc is provided at a position opposite to the growth target substrate W at the center position. First, an inert gas was introduced, and the orifice valves Oa, Ob
Is opened to maintain a constant degree of reduced pressure, and then one of the orifice valves Ob is opened to flow the A raw material gas in one direction to form a layer made of the raw material A. Next, an inert gas is introduced again,
The orifice valves Oa and Ob are opened to maintain a constant degree of pressure reduction, and then one of the orifice valves Oa is opened and a B source gas flows in the opposite direction to form an atomic layer of the source B.

かくすれば、ガスの流れ方向が逆方向に変化するた
め、反応管壁やガス導入口近くに滞留しているガスが除
去され易く、上記した薄膜の不純物粒子異常成長がなく
なり、高品質な薄膜が形成できる。
In this way, the gas flow direction changes in the opposite direction, so that the gas staying near the wall of the reaction tube or near the gas inlet is easily removed, and the abnormal growth of impurity particles in the thin film described above is eliminated, and the high-quality thin film is removed. Can be formed.

〔実施例〕〔Example〕

以下、図面を参照して実施例によつて詳細に説明す
る。
Hereinafter, embodiments will be described in detail with reference to the drawings.

第1図は本発明の第1実施例にかかる薄膜形成装置の
概念図を示しており、11は筒状の反応管,Va,Vbはターボ
分子ポンプ、Oa,Obはオリフィス弁,Wは被成長基板,Poは
圧力差計,Pは圧力計,Ncは不活性ガス導入口,NaはA原料
ガス導入口,NbはB原料ガス導入口で、Vc′,Va′,Vb′
はそれらの導入口に付属した開閉バルブである。本装置
は流れ方向を被成長基板W面に対してA原料ガスとB原
料ガスとを左右反対方向に配置しており、不活性ガスは
中心位置から両側に流れて排気されるような構成であ
る。
FIG. 1 is a conceptual diagram of a thin film forming apparatus according to a first embodiment of the present invention, in which 11 is a cylindrical reaction tube, Va and Vb are turbo molecular pumps, Oa and Ob are orifice valves, and W is a valve. Growth substrate, Po is pressure gauge, P is pressure gauge, Nc is inert gas inlet, Na is A source gas inlet, Nb is B source gas inlet, Vc ', Va', Vb '
Are opening / closing valves attached to those inlets. This apparatus has a configuration in which the flow directions of the raw material gas A and the raw material gas B are opposite to each other with respect to the surface of the substrate W to be grown, and the inert gas flows from the center position to both sides and is exhausted. is there.

例えば、第1図に示す薄膜形成装置によつてGaAs結晶
薄膜を形成する場合を説明すると、第2図(a)〜
(e)に第1図の薄膜形成装置の動作説明図を示してい
る。まず、ターボ分子ポンプVa,Vbによつて5×10-7Tor
rまで排気し、被成長基板Wを300℃に加熱した後、最初
に、開閉バルブVc′を開けてAr(アルゴン)ガスを不活
性ガス導入口Ncから流入し、反応管11内の圧力が10Torr
になるようにオリフィス弁Oa,Obで調整する。そのと
き、圧力差計Poによつて反応管両側で圧力差が生じない
ように、オリフィス弁Oa,Obで微調整をもおこなう。第
2図(a)はそのArガスの流れ状態(矢印)を示してい
る。
For example, a case where a GaAs crystal thin film is formed by the thin film forming apparatus shown in FIG. 1 will be described.
(E) is an operation explanatory view of the thin film forming apparatus of FIG. First, 5 × 10 -7 Tor using the turbo molecular pumps Va and Vb
After the substrate W was heated to 300 ° C., the opening / closing valve Vc ′ was first opened to flow Ar (argon) gas through the inert gas inlet Nc, and the pressure in the reaction tube 11 was reduced. 10Torr
Is adjusted by the orifice valves Oa and Ob. At this time, fine adjustment is also performed by the orifice valves Oa and Ob so that a pressure difference is not generated on both sides of the reaction tube by the pressure difference gauge Po. FIG. 2 (a) shows the flow state (arrow) of the Ar gas.

次いで、開閉バルブVc′とオリフィス弁Oaとを閉じ、
オリフィス弁Obを開けた状態で開閉バルブVa′を開けて
水素(H2)をキャリアガスとしたトリエチルガリウム
(Ga(C2H5)ガスをA反応ガス導入口Naから流入す
る。そうすると、被成長基板WにGa(C H )が吸着・
分解してGa原子層が形成される。第2図(b)にそのH2
をキャリアガスとしたGa(C H )ガスの流れ状態(矢
印)を示している。
Next, the on-off valve Vc 'and the orifice valve Oa are closed,
Opening the opening and closing valve Va 'in a state of opening the orifice valve Ob flows of hydrogen triethyl gallium (H 2) was the carrier gas (Ga (C 2 H 5) 3) gas from the A reactive gas inlet Na. Then, Ga (CH 3 ) 3 is adsorbed on the substrate W to be grown.
It decomposes to form a Ga atomic layer. FIG. 2 (b) shows the H 2
Shows the flow state (arrow) of the Ga (CH 3 ) 3 gas using as a carrier gas.

次いで、開閉バルブVa′を閉じ、オリフィス弁Oa,Ob
の両方を開け、開閉バルブVcを開けてArガスを不活性ガ
ス導入口Ncから流入して、Arガスと共に残留H2+Ga(C
H )ガスを排気して除去する。第2図(c)はそのAr
ガスの流れ状態(矢印)である。このように不活性ガス
を導入する理由は、残留原料ガスに不活性ガスを混入し
て原料ガスを除去する効率が良くなるからである。
Next, the on-off valve Va 'is closed, and the orifice valves Oa, Ob
Are opened, the open / close valve Vc is opened, Ar gas flows from the inert gas inlet Nc, and the residual H 2 + Ga (C
H) Exhaust and remove the three gases. FIG. 2 (c) shows the Ar
This is the gas flow state (arrow). The reason for introducing the inert gas in this manner is that the efficiency of removing the source gas by mixing the inert gas with the residual source gas is improved.

次いで、開閉バルブVc′とオリフィス弁Obを閉じてオ
リフィス弁Oaを開けた状態で、開閉バルブVb′を開けて
水素をキャリアガスとしたアルシン(AsH3)ガスをB反
応ガス導入口Nbから流入する。そうすると、被成長基板
WにAsH3が吸着・分解してAs原子層が形成される。第2
図(d)はそのH2をキャリアガスとしたAsH3ガスの流れ
状態(矢印)を示している。
Then, the inflow opening and closing valve Vc 'and in a state of opening the orifice valve Oa closes the orifice valve Ob, the opening and closing valve Vb' hydrogen open the arsine (AsH 3) gas that is a carrier gas from the B reaction gas inlet Nb I do. Then, AsH 3 is adsorbed and decomposed on the growth target substrate W to form an As atomic layer. Second
FIG. 4D shows the flow state (arrow) of the AsH 3 gas using H 2 as a carrier gas.

次いで、開閉バルブVb′を閉じ、オリフィス弁Oa,Ob
の両方を開け、開閉バルブVc′を開けてArガスを不活性
ガス導入口Ncから流入して、Arガスと共に残留H2+AsH3
ガスを排気して除去する。第2図(e)はそのArガスの
流れ状態(矢印)図である。
Next, the on-off valve Vb 'is closed, and the orifice valves Oa, Ob
Are opened, the open / close valve Vc 'is opened, Ar gas flows in from the inert gas inlet Nc, and the residual H 2 + AsH 3 together with the Ar gas.
The gas is exhausted and removed. FIG. 2 (e) is a flow state (arrow) diagram of the Ar gas.

以上の操作を500回繰り返して500分子層からなるGaAs
結晶薄膜を成長する。このように形成したGaAs結晶薄膜
は薄膜中に不純物粒子・異常成長が観察されなかつた。
The above operation was repeated 500 times to form GaAs consisting of 500 molecular layers.
Grow a crystalline thin film. In the GaAs crystal thin film thus formed, no impurity particles and abnormal growth were observed in the thin film.

次に、第3図は本発明の第2実施例にかかる薄膜形成
装置の概念図を示しており、第1図と同一部位には同一
記号が付けてあるが、その他のTa,Tbは吸着トラップ,Sa
はA原料ガス源容器,SbはB原料ガス源容器,Ha,Hbはキ
ャリアガス流入口である。即ち、本装置は第1図で説明
した構成の特徴に加えて、A原料ガス導入口Na,B原料ガ
ス導入口Nbに開閉バルブを設けず、A原料ガス源容器S
a,B原料ガス源容器Sbへのキャリアガスの流入・停止に
よつて反応ガスの反応管への流入・停止をおこなう装置
の例である。このような装置は腐食性の強い反応ガスを
用いて薄膜を形成する場合に有効で、例えば、Al2O
3(アルミナ)は従来のCVD法では十分な絶縁耐圧が得ら
れず、そのために原子層エピタキシー法が用いられてい
るが、そのようなAl2O3薄膜の形成に使用するものであ
る。なお、吸着トラップTa,Tbは反応管内に浮遊不純物
をトラップさせる部分で、特に激しく反応して薄膜を形
成する場合に付設する。
Next, FIG. 3 shows a conceptual diagram of a thin film forming apparatus according to a second embodiment of the present invention. In FIG. 3, the same parts as those in FIG. Trap, Sa
Is an A source gas source container, Sb is a B source gas source container, and Ha and Hb are carrier gas inlets. That is, in addition to the features of the configuration described with reference to FIG. 1, the present apparatus does not have an opening / closing valve at the A source gas inlet Na and the B source gas inlet Nb, and the A source gas source container S
a, B This is an example of an apparatus for flowing / stopping a reaction gas into a reaction tube by flowing / stopping a carrier gas into / from a source gas source container Sb. Such devices are useful for forming a thin film using a strong reaction gas corrosive, for example, Al 2 O
3 (alumina) cannot achieve a sufficient dielectric strength by the conventional CVD method, and for that reason, an atomic layer epitaxy method is used. However, it is used for forming such an Al 2 O 3 thin film. The adsorption traps Ta and Tb are portions for trapping floating impurities in the reaction tube, and are provided particularly when a thin film is formed by violently reacting.

第3図に示す薄膜形成装置によつてAl2O3薄膜を形成
する場合について説明すると、第4図(a)〜(e)に
第3図の薄膜形成装置の動作説明図を示している。初め
に、A原料ガス源容器SaはAlCl3(塩化アルミニウム)
を収容して70〜80℃に加熱し、B原料ガス源容器Sbには
水を収容して10〜20℃に保持しておき、ターボ分子ポン
プVa,Vbによつて5×10-4Torrまで排気し、被成長基板
Wは300℃に加熱する。まず、開閉バルブVc′を開けてA
rガスを不活性ガス導入口Ncから流入し、反応管11内の
圧力が10Torrになるようにオリフィス弁Oa,Obで調整
し、そのとき、圧力差計Poによつて反応管両側で圧力差
が生じないように、オリフィス弁Oa,obを微調整する。
第4図(a)はそのArガスの流れ状態(矢印)を示して
いる。
To describe the case of forming a Yotsute Al 2 O 3 thin film in the thin film forming apparatus shown in FIG. 3, and the fourth diagram (a) ~ (e) shows a view for explaining an operation of the third view of a thin film forming apparatus . First, A source gas source container Sa is AlCl 3 (aluminum chloride)
And heated to 70 to 80 ° C., water is stored in the B source gas source container Sb at 10 to 20 ° C., and 5 × 10 −4 Torr by turbo molecular pumps Va and Vb. The substrate W to be grown is heated to 300 ° C. First, open the on-off valve Vc '
r Gas flows in from the inert gas inlet Nc, and is adjusted by the orifice valves Oa and Ob so that the pressure in the reaction tube 11 becomes 10 Torr. The orifice valves Oa and ob are finely adjusted so as not to cause bleeding.
FIG. 4 (a) shows the flow state (arrow) of the Ar gas.

次いで、開閉バルブVc′とオリフィス弁Oaとを閉じ、
オリフィス弁Obを開けた状態でArガスをキャリアガス流
入口HaからA原料ガス源容器Saに流入して、Arガスをキ
ャリアガスとした昇華AlCl3ガスをA反応ガス導入口Na
から反応管に流入する。同時に、Arガスをキャリアガス
流入口HbからA原料ガス源容器Sbに流入して、Arガスを
キャリアガスとした水蒸気をB反応ガス導入口Nbから反
後管に流入する。しかし、水蒸気は被成長基板W上を通
過せずに排気されるから、被成長基板W上にAlCl3分子
のみが吸着する。且つ、1分子層のみ吸着し、その他は
基板上を通過して除去される。第4図(b)にそのガス
の流れ状態(矢印)を示している。
Next, the on-off valve Vc 'and the orifice valve Oa are closed,
With the orifice valve Ob open, Ar gas flows into the A source gas source container Sa from the carrier gas inlet Ha, and sublimates AlCl 3 gas using Ar gas as the carrier gas to the A reaction gas inlet Na.
From the reaction tube. At the same time, Ar gas flows into the A source gas source container Sb from the carrier gas inlet Hb, and steam using the Ar gas as the carrier gas flows from the B reaction gas inlet Nb into the rear pipe. However, since the water vapor is exhausted without passing over the growth substrate W, only the AlCl 3 molecules are adsorbed on the growth substrate W. Further, only one molecular layer is adsorbed, and the others are removed by passing over the substrate. FIG. 4B shows the flow state (arrow) of the gas.

次いで、Arガスのキャリアガス流入口Ha,Hbへの流入
を中止(図にない元栓を閉める)し、オリフィス弁Oa,O
bの両方を開け、開閉バルブVc′を開けてArガスを不活
性ガス導入口Ncから流入して、Arガスと共に残留AlCl3
と水蒸気を排気して除去する。第4図(c)はそのArガ
スの流れ状態(矢印)である。
Next, the inflow of the Ar gas into the carrier gas inlets Ha and Hb was stopped (the main stopper not shown was closed), and the orifice valves Oa and O
opened both b, Ar gas was supplied from the inert gas inlet Nc by opening the opening and closing valve Vc ', residual AlCl 3 with Ar gas
And the water vapor is exhausted and removed. FIG. 4 (c) shows the flow state (arrow) of the Ar gas.

次いで、開閉バルブVc′とオリフィス弁Obとを閉じ、
オリフィス弁Oaを開けた状態でArガスをキャリアガス流
入口HbからA原料ガス源容器Sbに流入して、Arガスをキ
ャリアガスとした水蒸気をB反応ガス導入口Nbから反応
管に流入し、同時に、Arガスをキャリアガス流入口Haか
らA原料ガス源容器Saに流入して、Arガスをキャリアガ
スとしたAlCl3ガスをA反応ガス導入口Naから反応管に
流入する。そうすると、被成長基板W上に水分子のみが
吸着し、既に吸着したAlCl3と反応してAl2O3分子層を形
成する。第4図(d)にそのガスの流れ状態(矢印)を
示している。この時、AlCl3は被成長基板W上を通過し
ないために吸着されない。
Next, the on-off valve Vc 'and the orifice valve Ob are closed,
With the orifice valve Oa opened, Ar gas flows into the A source gas source container Sb from the carrier gas inlet Hb, and water vapor using Ar gas as the carrier gas flows into the reaction tube from the B reaction gas inlet Nb, At the same time, Ar gas flows from the carrier gas inlet Ha into the A source gas source container Sa, and AlCl 3 gas using Ar gas as the carrier gas flows from the A reaction gas inlet Na into the reaction tube. Then, only water molecules are adsorbed on the growth target substrate W, and react with the already adsorbed AlCl 3 to form an Al 2 O 3 molecular layer. FIG. 4D shows the gas flow state (arrow). At this time, AlCl 3 is not adsorbed because it does not pass over the substrate W to be grown.

次いで、開閉バルブVb′を閉じ、オリフィス弁Oa,Ob
の両方を開け、開閉バルブVc′を開けてArガスを不活性
ガス導入口Ncから流入して、Arガスと共に残留している
水蒸気,AlCl3ガスを排気して除去する。第4図(e)は
そのArガスの流れ状態(矢印)図である。
Next, the on-off valve Vb 'is closed, and the orifice valves Oa, Ob
Are opened, the open / close valve Vc 'is opened, Ar gas flows in from the inert gas inlet Nc, and the remaining water vapor and AlCl 3 gas together with the Ar gas are exhausted and removed. FIG. 4 (e) is a flow state (arrow) diagram of the Ar gas.

以上の操作において反応管内の圧力は10Torrから変動
しないようにオリフィス弁を調整するが、上記の操作を
3000回繰り返して2000Åのアルミナ多結晶薄膜を成長す
る。このように形成したアルミナ薄膜は反応ガスの淀み
がないために被成長基板面近傍での異常成長がなく、従
って、薄膜中に不純物粒子・異常成長が見られず、無欠
陥で絶縁耐圧の高いアルミナ薄膜が得られる。
In the above operation, the orifice valve is adjusted so that the pressure in the reaction tube does not fluctuate from 10 Torr.
Repeat 3,000 times to grow a 2000mm alumina polycrystalline thin film. The alumina thin film formed in this manner has no abnormal growth near the surface of the substrate to be grown because there is no stagnation of the reaction gas. Therefore, no impurity particles and abnormal growth are observed in the thin film, and there is no defect and high withstand voltage. An alumina thin film is obtained.

このようなアルミナ薄膜はELパネルの絶縁層として利
用して、ELパネルの長寿命化など、その品質を向上させ
ることができる。
Such an alumina thin film can be used as an insulating layer of an EL panel to improve the quality of the EL panel, such as extending its life.

〔発明の効果〕〔The invention's effect〕

以上の実施例の説明から明らかなように、本発明にか
かる薄膜の形成方法および形成装置によれば、異常成長
膜が薄膜中に含まれず、高品質な結晶薄膜,多結晶薄膜
が得られ、半導体装置その他の電子デバイスの高性能化
に大きく役立つものである。
As is clear from the above description of the embodiment, according to the method and apparatus for forming a thin film according to the present invention, a high-quality crystalline thin film and polycrystalline thin film can be obtained without including an abnormally grown film in the thin film. This is very useful for improving the performance of semiconductor devices and other electronic devices.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第1実施例にかかる薄膜形成装置の概
念図、 第2図(a)〜(e)は第1図の薄膜形成装置の動作説
明図、 第3図は本発明の第2実施例にかかる薄膜形成装置の概
念図、 第4図(a)〜(e)は第3図の薄膜形成装置の動作説
明図、 第5図は従来の薄膜形成装置の概念図である。 図において、 11は反応管、 Va,Vbはターボ分子ポンプ、 Oa,Obはオリフィス弁、 Wは被成長基板、 Poは圧力差計、 Pは圧力計、 Ncは不活性ガス導入口、 NaはA原料ガス導入口、 NbはB原料ガス導入口、 Vc′,Va′,Vb′は開閉バルブ、 Ta,Tbは吸着トラップ、 SaはA原料ガス源容器、 SbはB原料ガス源容器、 Ha,Hbはキャリアガス流入口 を示している。
FIG. 1 is a conceptual diagram of a thin film forming apparatus according to a first embodiment of the present invention, FIGS. 2 (a) to 2 (e) are explanatory diagrams of the operation of the thin film forming apparatus of FIG. 1, and FIG. FIGS. 4 (a) to 4 (e) are conceptual diagrams of a thin film forming apparatus according to the second embodiment, FIGS. 4 (a) to 4 (e) are explanatory diagrams of the operation of the thin film forming apparatus of FIG. 3, and FIG. . In the figure, 11 is a reaction tube, Va and Vb are turbo molecular pumps, Oa and Ob are orifice valves, W is a substrate to be grown, Po is a pressure differential gauge, P is a pressure gauge, Nc is an inert gas inlet, and Na is A source gas inlet, Nb is B source gas inlet, Vc ', Va', Vb 'are open / close valves, Ta and Tb are adsorption traps, Sa is A source gas source container, Sb is B source gas source container, Ha , Hb indicates the carrier gas inlet.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反応管(11)に流入する原料ガスの種類を
一原子層毎に切り換え、且つ、原料ガスの種類を切り換
える際に不活性ガスを流入して残留原料ガスを該不活性
ガスと共に除去し、且つ、一原子層毎に流れ方向を被成
長基板(W)の表面に対して逆方向に切り換えて成長す
るようにしたことを特徴とする薄膜の形成方法。
The type of source gas flowing into the reaction tube (11) is switched for each atomic layer, and when the type of source gas is switched, an inert gas is introduced to remove the residual source gas. And a growth method wherein the flow direction is changed for each atomic layer in a direction opposite to the surface of the substrate to be grown (W).
【請求項2】前記原料ガスの反応管(11)への流入・停
止を原料ガス源へのキャリアガスの流入・停止によって
おこなうようにしたことを特徴とする請求項1記載の薄
膜の形成方法。
2. A thin film forming method according to claim 1, wherein the flow of said source gas into and out of said reaction tube is performed by the flow of a carrier gas into and out of said source gas source. .
【請求項3】反応管(11)の両側にそれぞれオリフィス
弁(Oa,Ob)を介してターボ分子ポンプ(Va,Vb)を配置
し、該反応管の中心位置に被成長基板(W)と該被成長
基板(W)に対向した不活性ガス導入口(Nc)を配置
し、且つ、該中心位置と前記オリフィス弁との間の両側
にそれぞれ原料ガス導入口(Na,Nb)を配置してなるこ
とを特徴とする薄膜形成装置。
3. Turbo molecular pumps (Va, Vb) are disposed on both sides of a reaction tube (11) via orifice valves (Oa, Ob), and a substrate to be grown (W) is located at a center position of the reaction tube. An inert gas inlet (Nc) facing the substrate to be grown (W) is arranged, and source gas inlets (Na, Nb) are arranged on both sides between the center position and the orifice valve. An apparatus for forming a thin film, comprising:
JP63227117A 1988-09-09 1988-09-09 Method and apparatus for forming thin film Expired - Fee Related JP2712367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63227117A JP2712367B2 (en) 1988-09-09 1988-09-09 Method and apparatus for forming thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63227117A JP2712367B2 (en) 1988-09-09 1988-09-09 Method and apparatus for forming thin film

Publications (2)

Publication Number Publication Date
JPH0274587A JPH0274587A (en) 1990-03-14
JP2712367B2 true JP2712367B2 (en) 1998-02-10

Family

ID=16855745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63227117A Expired - Fee Related JP2712367B2 (en) 1988-09-09 1988-09-09 Method and apparatus for forming thin film

Country Status (1)

Country Link
JP (1) JP2712367B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06507143A (en) * 1991-01-11 1994-08-11 ユニバーシティ・オブ・ジョージア・リサーチ・ファウンデーション・インコーポレーテッド Method for electrochemically depositing compound semiconductors
JP3338884B2 (en) * 1993-09-20 2002-10-28 株式会社日立製作所 Semiconductor processing equipment
JP4727085B2 (en) * 2000-08-11 2011-07-20 東京エレクトロン株式会社 Substrate processing apparatus and processing method
WO2002015243A1 (en) * 2000-08-11 2002-02-21 Tokyo Electron Limited Device and method for processing substrate
US6951804B2 (en) 2001-02-02 2005-10-04 Applied Materials, Inc. Formation of a tantalum-nitride layer
US6878206B2 (en) 2001-07-16 2005-04-12 Applied Materials, Inc. Lid assembly for a processing system to facilitate sequential deposition techniques
US6911391B2 (en) 2002-01-26 2005-06-28 Applied Materials, Inc. Integration of titanium and titanium nitride layers
KR20030074901A (en) * 2002-03-14 2003-09-22 주식회사 엘지이아이 Buffering structure of eccentric cam for crank shaft of hermetic rotary compressor
JP4099092B2 (en) 2002-03-26 2008-06-11 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and high-speed rotary valve
DE10245553A1 (en) 2002-09-30 2004-04-08 Infineon Technologies Ag Process for the gas phase deposition of components contained in a process gas flowing along a main flow direction used in the manufacture of transistors or capacitors comprises changing the main flow direction once during the process
WO2005042160A2 (en) 2003-10-29 2005-05-12 Asm America, Inc. Reaction system for growing a thin film
KR101376336B1 (en) 2007-11-27 2014-03-18 한국에이에스엠지니텍 주식회사 Atomic layer deposition apparatus

Also Published As

Publication number Publication date
JPH0274587A (en) 1990-03-14

Similar Documents

Publication Publication Date Title
JP2712367B2 (en) Method and apparatus for forming thin film
JP2828152B2 (en) Method of forming thin film, multilayer structure film, and method of forming silicon thin film transistor
US6165555A (en) Method for forming copper film using chemical vapor deposition
Herman Atomic layer epitaxy—12 years later
JP3895410B2 (en) Device comprising group III-V nitride crystal film and method for manufacturing the same
JP2717972B2 (en) Method and apparatus for forming thin film
JP4918221B2 (en) Material evaporation chamber with differential vacuum pumping
KR102649530B1 (en) Low-temperature deposition method of crystalline zirconium oxide thin film by ALD
JPS6348817A (en) Epitaxial growth method
JP2587624B2 (en) Epitaxial crystal growth method for compound semiconductor
JPH01313927A (en) Compound-semiconductor crystal growth method
JPH04260696A (en) Production of crystal of compound semiconductor
JP4551072B2 (en) Single wafer processing equipment that can deposit one atomic layer at a time
JP2648211B2 (en) Preparation method of oxide thin film
JP3006776B2 (en) Vapor growth method
JPH02143419A (en) Method and apparatus for forming thin film by vapor growth
JPS6355193A (en) Apparatus for growing compound semiconductor crystal
JP2753832B2 (en) III-V Vapor Phase Growth of Group V Compound Semiconductor
JPH07226380A (en) Atomic layer crystal growth method
JP3304440B2 (en) Silicon substrate having phthalocyanine thin film and method of manufacturing the same
JPH01145806A (en) Organic metal vapor growth apparatus
JPH03211723A (en) Forming thin film by vapor phase epitaxy, manufacture of transistor, and apparatus for vapor phase epitaxy
JPH02117128A (en) Manufacture of compound semiconductor device
JPH06267862A (en) Vapor growth method for iii-v compound semiconductor
JPS62274712A (en) Molecular beam crystal growth

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees