JP4109756B2 - Light emitting diode - Google Patents

Light emitting diode Download PDF

Info

Publication number
JP4109756B2
JP4109756B2 JP19147698A JP19147698A JP4109756B2 JP 4109756 B2 JP4109756 B2 JP 4109756B2 JP 19147698 A JP19147698 A JP 19147698A JP 19147698 A JP19147698 A JP 19147698A JP 4109756 B2 JP4109756 B2 JP 4109756B2
Authority
JP
Japan
Prior art keywords
wavelength conversion
emitting diode
conversion element
light
horn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19147698A
Other languages
Japanese (ja)
Other versions
JP2000022222A (en
Inventor
宗弘 加藤
道宏 佐野
光範 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP19147698A priority Critical patent/JP4109756B2/en
Publication of JP2000022222A publication Critical patent/JP2000022222A/en
Application granted granted Critical
Publication of JP4109756B2 publication Critical patent/JP4109756B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48464Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area also being a ball bond, i.e. ball-to-ball
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating

Landscapes

  • Led Device Packages (AREA)

Description

【0001】
【産業上の利用分野】
本発明は発光ダイオード(以下、LEDと称す)に関するものであり、詳細には、発光ダイオードチップ(以下、LEDチップと称す)からの放射光の色変換を目的とする波長変換物質を使用したLEDに係るものである。
【0002】
【従来の技術】
従来の、この種の波長変換物質を使用したLEDの例として、例えば特開平7−99345号が知られている。図6に示すようにリードフレーム91に形成した反射ホーン92内にLEDチップ93を載置し、LEDチップ93の一方の電極は反射ホーン92に接続され、他方の電極はリードフレーム94にワイヤー95によりボンディング接続されている。反射ホーン92内にはLEDチップの発光波長を他の波長に変換する蛍光物質、または発光波長の一部の光を吸収するフィルター物質等の変換物質を含有する第1の樹脂96をプレディップして硬化させている。その後、第1の樹脂より屈折率の小さなものとし、空気の屈折率と近くなるようにした第2の樹脂97を、これらを覆うようにして硬化させてLED90を形成している。
【0003】
【発明が解決しようとする課題】
しかしながら、前記した従来のLED90においては、蛍光物質等の波長変換物質を含有した第1の樹脂96をワイヤーボンデイング接続しているLEDチップ93を覆うように反射ホーン92内にプレディップをした後に硬化して形成しているため、第1の樹脂96は複雑な凸形状を覆う不均一な厚みのものとなる。また、波長変換物質をプレディップする場合に波長変換物質は比重が樹脂の比重に比べて大きいため、硬化するまで間に波長変換物質が沈降し、塗布後の波長変換物質分布が不均一になり易い。そのため、LEDチップから放射された光は様々な厚みに形成されている第1の樹脂96内でより一層不均一に波長変換されることとなる。したがって、変換効率が低下するという問題点、および位置によって変換効率が異なるものとなり、その結果LEDは色ムラを生じるという問題点を生じるものとなる。
【0004】
【課題を解決するための手段】
本発明は、前記した従来の課題を解決するための具体的手段として、反射ホーンを形成したリードフレームと、該反射ホーン内に載置した発光ダイオードチップと、発光ダイオードチップからの放射光を波長変換する波長変換素子とを有し、これらを透光性材料により覆って封止した発光ダイオードであって、前記反射ホーン内には、前記透光性基板が反射ホーン上面側に位置し、前記電極が反射ホーン底面側にてリードフレームと電気的に接続するように配設した少なくとも1個以上の発光ダイオードチップを有し、前記波長変換素子は、波長変換物質とそれを保持する透光性基体とを含み、予め所定の密度、厚みとなるように調整されて層状に形成されており、前記反射ホーンには係合爪が形成され、前記発光ダイオードチップの上部となる位置にて、該係合爪により前記波長変換素子が固定されている発光ダイオードを提供することで上記した課題を解決するものである。
【0005】
【発明の実施の形態】
つぎに、本発明について、図に示す実施形態に基づいて詳細に説明する。図1は本発明にかかる発光ダイオード10を示す。一対のリードフレーム1、1には夫々反射ホーン2、2が形成され、LEDチップ3は反射ホーン2、2の底面2a、2bと該チップに設けた電極3c、3dとが夫々接続するように配設され、透光性基板3aが反射ホーン2の上側に位置するように配置されている。
【0006】
さらに、LEDチップ3の上方には波長変換素子4が該チップ3の透光性基板3aと接するように配設されている。波長変換素子4は波長変換物質と、波長変換物質を保持する樹脂結合剤とを均一に混合したものを、シート状の基体フィルム4b上に塗布硬化させた波長変換素子層4aを設けたものとされ、該波長変換素子層4aがLEDチップ3の透光性基板3aと接するようにして反射ホーン2内に配設されている。また、反射ホーン2の反射枠内周縁の略全周には波長変換素子4を固定するための係合爪2cが形成されており、波長変換素子4の基体フィルム4bの部分を係合爪2cにより押さえつけることにより確実に固定するものとしている。
【0007】
LEDチップ3としては、例えば青色および/または紫外光(λ=370〜500nm)を出射するGaN系のLEDを用いることができる。発光波長に対して透過性のサファイア等からなる透光性基板3aの上にGaN系の発光層3bを形成し、同一面側にp電極3cおよびn電極3dを形成する。また、本実施例においては従来例のようにワイヤーボンディング接続するものではなく、LEDチップ3の電極とリードフレーム1の反射ホーン2との電気的接続にワイヤーを用いていない。即ち、p電極3cおよびn電極3dの一対の電極の夫々にはボンディング用バンプを形成し、該バンプを介して一対のリードフレーム1、1の各反射ホーン底面2a、2bとを電気的に接続している。
【0008】
次に波長変換素子4を固定した後に、これらを覆うようにリードフレーム1、1の外周を、透光性のエポキシ樹脂などにより成形して硬化させた透光性封止材料5により覆うものとしてLED10を得ている。なお、波長変換素子4はLEDチップ3と接する側に波長変換物質が多く存在するように波長変換素子層4aをLEDチップ3側とし、且つ図に示したように反射ホーン2の全面を覆うように載置すると変換効率および均一性の面から好ましい。
【0009】
上記したように波長変換素子4を反射ホーン2内にプレディップして硬化させたものではなく、波長変換物質を層状に形成したものとしているので波長変換物質層の厚みを制御することができ、波長変換効率の均一化と効率の向上を図ることができる。また、均一な波長変換が可能となるので、変換効率の差に起因する色ムラを著しく低減することができる。また、波長変換素子4をLEDチップ3の真上に配設して係合爪2cにより固定しているので、LEDチップからの放射光、即ち波長変換素子4に入射する光のロスを最小に押さえるようにして固定することができる。さらにまた、波長変換素子4を反射ホーン2の略全面を覆う大きさのものとすることで、LEDチップ3の側面から放射された光に対しても波長変換が可能となり、より一層均一な発光とすることができる。
【0010】
ここで、前記波長変換素子4について更に説明する。波長変換素子4は、前記したように基体フィルム4b上に波長変換素子層4aを塗布形成したものを用いているが、これに限るものではない。例えば、以下に示す方法により得ることができる。
【0011】
図2(A)から(C)は波長変換素子41の製造方法を工程順に説明するための概略図である。あらかじめ波長変換物質42を熱硬化型樹脂よりなる分散媒43に分散させ、十分に攪拌させる。次に所望の形の開孔を形成したパターンマスク45と支持体46とを重ねあわせ、開孔に前記分散媒を所定量流し込んで、一定時間静置する。その後分散媒を硬化させ、パターンマスク45から離型させると、比重差により下部側には波長変換物質42が高密度に均一分散した高密度波長変換素子層41aが、上側には低密度もしくは波長変換物質が分散していない低密度波長変換素子層41bが形成された波長変換素子41が得られる。高密度波長変換素子層41aと低密度波長変換素子層41bの厚みおよび波長変換物質の密度は、使用する材料の比重、粘度、開孔に注入し放置している時間、混合比率等を適宜変更することで調整することができる。
【0012】
具体的には、波長変換物質42として比重4.1のZnS系蛍光体11.2gを分散媒43である比重1.1の透光性エポキシ樹脂100gに混合し、マグネチックスターラーにより500rpmで30分間攪拌させる。次にこの攪拌懸濁液をディスペンサー44にてパターンマスク45の外形2mm、深さ1mmの開孔に所定量流し込み、30分間放置した。これにより比重の大きい波長変換物質42は下部に沈降する。その状態のまま熱処理を行いエポキシ樹脂43を硬化させ、パターンマスク45を支持体46から離すと、外形2mmの円形ペレット状の波長変換素子41を得ることができた。
【0013】
波長変換物質42としては、例えばZnS:Cu、Au、Al蛍光体、ZnS:Cu、Al蛍光体、ZnS:Ag蛍光体、ZnS:Ag+(Zn、Cd)S:Cu、Al蛍光体等のZnSにAg、Cu、Al、Ga、Clなどの種々の不純物を付活させたものや、(Zn、Cd)SにCu、Al、Ag等の不純物を付活させたものなどを用いて青、白、黄緑等の色に変換するもの、およびその他の主として紫外域〜青色の波長光を変換する蛍光体など様々な蛍光体を単独で、もしくは複数の蛍光体を組み合わせて用いることができる。また、分散媒43としては発光波長および変換波長に対して高い透過率を有するエポキシ樹脂、PET(ポリエチレンテフタレート)、シリコン樹脂、ポリカーボネート、アクリル系樹脂等の熱硬化性の樹脂や、UV硬化樹脂など、様々なものを用いることができる。
【0014】
なお、波長変換素子は前記した製造方法により製造したものに限られるものではなく、先に記したようにシート状の透光性基体上に波長変換物質層を塗布もしくは印刷したものとし、波長変換物質層を形成した後に所定形状に切断するものとしたり、低密度もしくは波長変換物質が分散していない低密度波長変換素子層と波長変換物質を高密度に均一分散した高密度波長変換素子層とを射出成形などの手法により所定形状に積層成形もしくは成形後切断するものであっても良い。
【0015】
次いで、前記した実施形態のLED10の波長変換素子4の代わりに上記波長変換素子40を図1に示したLED10に用いることによる作用および効果について説明を行う。波長変換の効率は、LEDチップからの照射光により励起される波長変換物質の密度および厚みに大きく依存する。先に記した実施形態における波長変換素子4を用いた場合に比べて、本実施形態にて製造した波長変換素子40を用いると、先の実施形態の場合よりもより高密度に波長変換物質を設けた高密度波長変換物質層41aを簡単に且つ均一に効率よく製造することができる。そのため、該高密度波長変換物質層41aをLEDチップ3と密接するように設けることで、LEDチップ3の出射光が波長変換物質42に達する際のロスをより一層最小限に押さえることができる。
【0016】
続いて他の実施形態について説明する。先の実施形態においては、LEDチップ3の透光性基板3aを波長変換素子4側として、波長変換素子4を前記基板3aと密接するようにして固定するものとして設けていたが、本実施形態においては図3に示したように、波長変換素子34をLEDチップ33と密接しないように、且つ反射ホーンに設けた係合爪32cにより反射枠段差32dとで挟むようにして固定したものとしている。また、LEDチップ33はチップ基板33を一方のリードフレーム31に形成した反射ホーン32の底面上に設置し、LEDチップ基板33の上面に形成した一対の電極と、該反射ホーン32の底面及び他方のリードフレームに形成した反射ホーン32の底面とを夫々ワイヤ35により電気的に接続している。なお、波長変換素子34は波長変換物質が高密度に存在する高密度波長変換素子層34aがLEDチップ33側に、低密度波長変換素子層34bが反対側に位置するように配設している。
【0017】
このようにLEDチップ33をワイヤ35にて接続する場合には、ワイヤ35がLEDチップ35と波長変換素子34との間に存在するため、密着するように設けることができない。そこで、反射ホーン32に段差32d等を設け、該段差32dと係合爪32cにより波長変換素子34を固定することで、先の実施形態と同様に均一な波長変換ができるものとなる。なお、本発明のようにワイヤがLEDチップと波長変換素子との間に存在すると、ワイヤがあるために発光層にて放射された光をワイヤ及びワイヤを設けるための電極により遮光し、また、両者の距離を適宜設けなければならなくなるため、LED発光層より外部に取り出す放射光の利用効率が劣るものとなる。そこで、ワイヤ接続する場合には、LEDチップと波長変換素子との間の距離をできるだけ短いものとし、且つその間に存在するLEDチップ電極及びワイヤ等の遮光物質の面積を小さくすることが好ましい。
【0018】
続いて更に他の実施形態について説明する。先の実施形態においては、リードフレーム1、1の双方に反射ホーン2、2を形成していたが。本実施形態においては図4に示したように一方のリードフレーム11aにのみ反射ホーン12を形成し、該反射ホーン12の底面には開口14が設けてある。そして、他方のリードフレーム11bは、前記した反射ホーン12の開口14に位置するものとしている。LEDチップ13は反射ホーン12の底面に載置され、LEDチップ13の一対の電極は反射ホーン12と該反射ホーン12の開口14に位置するリードフレーム11bの夫々に電気的に接続されている。なお、波長変換素子は図面をわかりやすくするために図示しないが、LEDチップ13の上面に密接するように波長変換素子を設置すると共に、反射ホーン12の全周に形成した係合爪12cにて固定するものとされ、前の実施形態と同様にLEDチップ13からの出射光の波長を変更するものとしている。
【0019】
このようにすることで、波長変換素子を固定する係合爪12cを反射ホーン12の反射枠外周縁内面の全周に設けることができ、波長変換素子を固定した際に反射ホーンと波長変換素子との間に一切隙間が生じないようにすることが可能となる。これにより、隙間から波長変換されていないLEDチップ13からの出射光が漏れることがなく、波長の均一性が更に向上する。なお、開口14は図示したような円形形状に限るものではなく、U字状の切り欠き等とすることもできる。
【0020】
図5は、更に他の実施形態のLED20の要部を示すものであり、本実施形態においては発光波長の異なる2個のLEDチップ25、26を用いている。開口及び反射ホーン22を有するリードフレーム21aと、21aの開口に位置するリードフレーム21b、21cの3本のリードフレームを有し、反射ホーン22の底面には2個のLEDチップ25、26が載置されている。LEDチップ25の電極25a、25bは夫々反射ホーン22、リードフレーム21bにワイヤーを用いることなく接続されている。LEDチップ26の電極26a、26bもまた夫々反射ホーン22、リードフレーム21cにワイヤーを用いることなく接続されている。また、これらのLEDチップ25、26の上には波長変換素子24が密接するように配設され、その上に更に拡散板27が配設されており、反射ホーン22の全周に設けた係合爪22cにより固定されている。
【0021】
このような構成としたことにより、一方のLEDチップ25の出射光は係合爪22cにより間接的に固定されている波長変換素子24により波長変換され、その光は拡散板27にて拡散される。他方のLEDチップ26の出射光は発光波長が波長変換素子と合わないので、波長変換素子24による波長変換を受けずに透過して、係合爪22cにより直接的に固定されている拡散板27に到達し、拡散する。拡散板27においては両LEDチップからの光が拡散され、均一化する。これにより、波長変換素子24による波長変換色と波長変換されないLEDチップからの放射光色により、LED20の発光色を波長変換素子のみを用いた場合に比べて更に任意に変更することができるようになる。なお、異なる波長を照射するLEDチップを2個用いる例にて説明したが、2個以上の複数のLEDチップとしてもよく、同じ波長を照射するLEDチップであってもよい。更に、拡散板27若しくは波長変換素子の表面にレンズ効果を持たせて、より一層均一な発光のLED20が得られるようにする等の変更を加えることもできる。
【0022】
今までに説明した実施形態においては、青色および/または紫外光を出射するGaN系のLEDチップを用い、その出射光により波長変換物質である蛍光体を励起して波長変換する例にて説明したが、これに限るものではなく、LEDチップとしてSiC系LED、ZnSe系LED、GaAs系LED(λ=630〜850nm)、GaAlAs系LED、ZnO系LED等を用いたり、波長変換物質も前記した主として青色および/または紫外光を他の波長に変換するものに限らず、例えばNdP14、LiNdP12、NaNd(WO、AlNd(BO、CsNaNdCl6、SrSなどや、各種の赤外励起蛍光体等により、異なる波長に変換するものとすることができる。また、波長変換物質として蛍光体ではなく、染料等の特定波長吸収物質を用いて波長変換するなどとすることもできる。
【0023】
【発明の効果】
以上説明したように、本発明によれば、従来のようにLEDチップを載置していることで凸形状となっている反射ホーンの内部に波長変換物質をディップするものではなく、予め波長変換物質の厚み、密度を所望の値に設定した波長変換素子を別途設けることで、均一な波長変換が可能となり、変換効率の差に起因する色ムラを著しく低減することができる。また、本発明においては波長変換素子をLEDチップ真上に配設しているので、更にLEDチップからの出射光ロス、即ち波長変換素子に入射する光の減衰を最小に押さえることができる。さらにまた、波長変換素子は反射ホーンの略全面を覆うようにして係合爪にて固定されていることで、LEDチップの側面から放射された光に対しても波長変換が可能となり、より一層均一な発光とすることができる。また、波長変換素子と反射ホーンとの間に僅かな隙間が開いていても、その個所に係合爪が存在することで係合爪によりLED正面方向による漏れ光を防ぐことができるなどの優れた効果を奏する。
【図面の簡単な説明】
【図1】 本発明のLEDを説明する概略模式断面図である。
【図2】 本発明の波長変換素子の製造方法を示す概略工程図である。
【図3】 本発明の別の実施形態を説明する概略断面図である。
【図4】 本発明の他の実施形態を説明する概略斜視図である。
【図5】 本発明の更に別の実施形態を説明する要部断面図である。
【図6】 従来のLEDを説明する概略図である。
【符号の説明】
1 リードフレーム
2 反射ホーン
3 LEDチップ
4 波長変換素子
4a 波長変換素子層
4b シート状フィルム
5 透光性封止材料
10 LED
11a、11b リードフレーム
12 反射ホーン
12c 係合爪
13 LEDチップ
14 開口
30 LED
31 リードフレーム
32 反射ホーン
32c 係合爪
32d 反射枠段差
33 基板
34 波長変換素子
34a 高密度波長変換素子層
34b 低密度波長変換素子層
35 ワイヤ
90 LED
91 リードフレーム
92 反射ホーン
93 LEDチップ
94 リードフレーム
95 ワイヤー
96 第1の樹脂
97 第2の樹脂
[0001]
[Industrial application fields]
The present invention relates to a light emitting diode (hereinafter referred to as an LED), and more specifically, an LED using a wavelength conversion material for the purpose of color conversion of emitted light from a light emitting diode chip (hereinafter referred to as an LED chip). It is related to.
[0002]
[Prior art]
For example, JP-A-7-99345 is known as an example of a conventional LED using this type of wavelength converting substance. As shown in FIG. 6, an LED chip 93 is placed in a reflection horn 92 formed on the lead frame 91, one electrode of the LED chip 93 is connected to the reflection horn 92, and the other electrode is connected to the lead frame 94 with a wire 95. Are connected by bonding. In the reflection horn 92, a first resin 96 containing a conversion substance such as a fluorescent substance that converts the emission wavelength of the LED chip into another wavelength or a filter substance that absorbs a part of the emission wavelength is pre-dipped. Is cured. Thereafter, the second resin 97 having a refractive index smaller than that of the first resin and close to the refractive index of air is cured so as to cover them, thereby forming the LED 90.
[0003]
[Problems to be solved by the invention]
However, in the above-described conventional LED 90, the first resin 96 containing a wavelength converting material such as a fluorescent material is cured after pre-dipping in the reflection horn 92 so as to cover the LED chip 93 connected by wire bonding. Therefore, the first resin 96 has a non-uniform thickness covering a complicated convex shape. In addition, when pre-dipping the wavelength conversion material, the wavelength conversion material has a specific gravity larger than that of the resin, so that the wavelength conversion material settles before curing and the distribution of the wavelength conversion material after application becomes uneven. easy. For this reason, the light emitted from the LED chip is more non-uniformly wavelength-converted in the first resin 96 formed in various thicknesses. Therefore, there is a problem that the conversion efficiency is lowered, and the conversion efficiency varies depending on the position. As a result, the LED has a problem that color unevenness occurs.
[0004]
[Means for Solving the Problems]
The present invention provides, as specific means for solving the above-described conventional problems, a lead frame in which a reflection horn is formed, a light emitting diode chip mounted in the reflection horn, and a wavelength of light emitted from the light emitting diode chip. A light-emitting diode having a wavelength conversion element for conversion, and covering and sealing these with a light-transmitting material, and in the reflection horn, the light-transmitting substrate is located on the upper surface side of the reflection horn, The wavelength conversion element includes at least one light emitting diode chip disposed so that the electrode is electrically connected to the lead frame on the bottom surface side of the reflection horn. And a base layer, which is adjusted in advance so as to have a predetermined density and thickness, and is formed into a layered shape. The reflective horn has an engaging claw, and an upper portion of the light emitting diode chip, At that position, it is intended to solve the problems described above by the wavelength conversion element by engaging claw is to provide a light-emitting diode is fixed.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail based on the embodiments shown in the drawings. FIG. 1 shows a light emitting diode 10 according to the present invention. The pair of lead frames 1 and 1 are formed with reflection horns 2 and 2, respectively, and the LED chip 3 is connected so that the bottom surfaces 2a and 2b of the reflection horns 2 and 2 and the electrodes 3c and 3d provided on the chips are respectively connected. It arrange | positions and the translucent board | substrate 3a is arrange | positioned so that it may be located above the reflective horn 2. As shown in FIG.
[0006]
Further, the wavelength conversion element 4 is disposed above the LED chip 3 so as to be in contact with the translucent substrate 3 a of the chip 3. The wavelength conversion element 4 is provided with a wavelength conversion element layer 4a in which a wavelength conversion substance and a resin binder that holds the wavelength conversion substance are uniformly mixed and coated and cured on a sheet-like substrate film 4b. Then, the wavelength conversion element layer 4 a is disposed in the reflection horn 2 so as to be in contact with the translucent substrate 3 a of the LED chip 3. An engagement claw 2c for fixing the wavelength conversion element 4 is formed on substantially the entire inner periphery of the reflection frame of the reflection horn 2. The portion of the base film 4b of the wavelength conversion element 4 is engaged with the engagement claw 2c. It is supposed to be securely fixed by pressing down.
[0007]
As the LED chip 3, for example, a GaN-based LED that emits blue and / or ultraviolet light (λ = 370 to 500 nm) can be used. A GaN-based light-emitting layer 3b is formed on a light-transmitting substrate 3a made of sapphire that is transparent to the emission wavelength, and a p-electrode 3c and an n-electrode 3d are formed on the same surface side. Further, in this embodiment, wire bonding connection is not performed as in the conventional example, and no wire is used for electrical connection between the electrode of the LED chip 3 and the reflection horn 2 of the lead frame 1. That is, a bonding bump is formed on each of the pair of electrodes of the p electrode 3c and the n electrode 3d, and the reflection horn bottom surfaces 2a and 2b of the pair of lead frames 1 and 1 are electrically connected via the bumps. is doing.
[0008]
Next, after fixing the wavelength conversion element 4, the outer periphery of the lead frames 1, 1 is covered with a translucent sealing material 5 that is molded and cured with a translucent epoxy resin so as to cover them. LED10 is obtained. The wavelength conversion element 4 has the wavelength conversion element layer 4a on the LED chip 3 side so that a large amount of wavelength conversion substance exists on the side in contact with the LED chip 3, and covers the entire surface of the reflection horn 2 as shown in the figure. It is preferable from the viewpoint of conversion efficiency and uniformity.
[0009]
As described above, the wavelength conversion element 4 is not pre-dipped in the reflection horn 2 and cured, but the wavelength conversion substance is formed in layers, so that the thickness of the wavelength conversion substance layer can be controlled, It is possible to make the wavelength conversion efficiency uniform and improve the efficiency. In addition, since uniform wavelength conversion is possible, color unevenness due to a difference in conversion efficiency can be significantly reduced. In addition, since the wavelength conversion element 4 is disposed directly above the LED chip 3 and fixed by the engaging claws 2c, the loss of light emitted from the LED chip, that is, light incident on the wavelength conversion element 4 is minimized. It can be fixed by pressing. Furthermore, by making the wavelength conversion element 4 large enough to cover the entire surface of the reflective horn 2, wavelength conversion is possible even for light emitted from the side surface of the LED chip 3, and even more uniform light emission. It can be.
[0010]
Here, the wavelength conversion element 4 will be further described. As described above, the wavelength conversion element 4 is formed by coating the wavelength conversion element layer 4a on the base film 4b, but is not limited thereto. For example, it can be obtained by the following method.
[0011]
FIGS. 2A to 2C are schematic views for explaining the method of manufacturing the wavelength conversion element 41 in the order of steps. The wavelength converting material 42 is previously dispersed in a dispersion medium 43 made of a thermosetting resin and sufficiently stirred. Next, the pattern mask 45 having a hole having a desired shape and the support 46 are overlapped, and a predetermined amount of the dispersion medium is poured into the hole and allowed to stand for a predetermined time. After that, when the dispersion medium is cured and released from the pattern mask 45, a high-density wavelength conversion element layer 41a in which the wavelength conversion material 42 is uniformly dispersed at a high density on the lower side due to a difference in specific gravity, and a low density or wavelength on the upper side. The wavelength conversion element 41 in which the low density wavelength conversion element layer 41b in which the conversion substance is not dispersed is formed is obtained. The thickness of the high-density wavelength conversion element layer 41a and the low-density wavelength conversion element layer 41b and the density of the wavelength conversion substance can be changed as appropriate according to the specific gravity, viscosity, time for which the material is injected and left, and the mixing ratio. You can adjust it.
[0012]
Specifically, 11.2 g of a ZnS-based phosphor having a specific gravity of 4.1 as the wavelength converting substance 42 is mixed with 100 g of a light-transmitting epoxy resin having a specific gravity of 1.1 as the dispersion medium 43, and 30 minutes at 500 rpm with a magnetic stirrer. Let stir for minutes. Next, a predetermined amount of this stirred suspension was poured into an opening having an outer shape of 2 mm and a depth of 1 mm of the pattern mask 45 with a dispenser 44, and left for 30 minutes. As a result, the wavelength converting material 42 having a large specific gravity settles down. In this state, heat treatment was performed to cure the epoxy resin 43, and when the pattern mask 45 was separated from the support 46, a circular pellet-shaped wavelength conversion element 41 having an outer diameter of 2 mm could be obtained.
[0013]
Examples of the wavelength converting substance 42 include ZnS: Cu, Au, Al phosphor, ZnS: Cu, Al phosphor, ZnS: Ag phosphor, ZnS: Ag + (Zn, Cd) S: Cu, and Al phosphor. In addition, blue, which is obtained by activating various impurities such as Ag, Cu, Al, Ga, Cl, etc., or (Zn, Cd) S, activated by impurities such as Cu, Al, Ag, etc. Various phosphors such as those that convert colors such as white and yellow-green, and other phosphors that mainly convert ultraviolet to blue wavelength light can be used alone or in combination with a plurality of phosphors. Further, as the dispersion medium 43, a thermosetting resin such as an epoxy resin having a high transmittance with respect to the emission wavelength and the conversion wavelength, PET (polyethylene terephthalate), silicon resin, polycarbonate, acrylic resin, or a UV curable resin. Various things can be used.
[0014]
The wavelength conversion element is not limited to the one manufactured by the above-described manufacturing method. As described above, the wavelength conversion material layer is applied or printed on the sheet-like translucent substrate, and wavelength conversion is performed. The material layer is cut into a predetermined shape after the material layer is formed, or the low density or wavelength conversion element layer in which the wavelength conversion substance is not dispersed and the high density wavelength conversion element layer in which the wavelength conversion substance is uniformly dispersed in a high density May be formed into a predetermined shape by a method such as injection molding or cut after molding.
[0015]
Next, the operation and effect of using the wavelength conversion element 40 in the LED 10 shown in FIG. 1 instead of the wavelength conversion element 4 of the LED 10 of the above-described embodiment will be described. The efficiency of wavelength conversion greatly depends on the density and thickness of the wavelength converting material excited by the irradiation light from the LED chip. Compared with the case where the wavelength conversion element 4 in the embodiment described above is used, when the wavelength conversion element 40 manufactured in the present embodiment is used, the wavelength conversion substance is denser than in the case of the previous embodiment. The provided high-density wavelength conversion material layer 41a can be easily and uniformly manufactured efficiently. Therefore, by providing the high-density wavelength conversion material layer 41 a so as to be in close contact with the LED chip 3, it is possible to further minimize the loss when the emitted light from the LED chip 3 reaches the wavelength conversion material 42.
[0016]
Next, another embodiment will be described. In the previous embodiment, the translucent substrate 3a of the LED chip 3 is provided on the wavelength conversion element 4 side, and the wavelength conversion element 4 is fixed so as to be in close contact with the substrate 3a. As shown in FIG. 3, the wavelength conversion element 34 is fixed so as not to be in close contact with the LED chip 33 and to be sandwiched between the reflection frame step 32d by the engaging claw 32c provided on the reflection horn. The LED chip 33 has a chip substrate 33 placed on the bottom surface of the reflection horn 32 formed on one lead frame 31, a pair of electrodes formed on the top surface of the LED chip substrate 33, the bottom surface of the reflection horn 32, and the other The bottom surface of the reflection horn 32 formed on the lead frame is electrically connected by wires 35. The wavelength conversion element 34 is disposed such that the high-density wavelength conversion element layer 34a in which the wavelength conversion substance is present at a high density is positioned on the LED chip 33 side, and the low-density wavelength conversion element layer 34b is positioned on the opposite side. .
[0017]
Thus, when connecting the LED chip 33 with the wire 35, since the wire 35 exists between the LED chip 35 and the wavelength conversion element 34, it cannot provide so that it may contact | adhere. Therefore, by providing the reflection horn 32 with a step 32d and the like, and fixing the wavelength conversion element 34 with the step 32d and the engaging claw 32c, uniform wavelength conversion can be performed as in the previous embodiment. When the wire exists between the LED chip and the wavelength conversion element as in the present invention, the light emitted from the light emitting layer is shielded by the wire and the electrode for providing the wire because of the wire, Since the distance between the two must be provided as appropriate, the utilization efficiency of the emitted light extracted from the LED light emitting layer to the outside is inferior. Therefore, in the case of wire connection, it is preferable to make the distance between the LED chip and the wavelength conversion element as short as possible and to reduce the area of the light-shielding substance such as the LED chip electrode and the wire existing therebetween.
[0018]
Next, still another embodiment will be described. In the previous embodiment, the reflection horns 2 and 2 are formed on both the lead frames 1 and 1. In this embodiment, as shown in FIG. 4, the reflection horn 12 is formed only on one lead frame 11 a, and an opening 14 is provided on the bottom surface of the reflection horn 12. The other lead frame 11 b is located in the opening 14 of the reflection horn 12 described above. The LED chip 13 is placed on the bottom surface of the reflection horn 12, and the pair of electrodes of the LED chip 13 are electrically connected to the reflection horn 12 and the lead frame 11 b located in the opening 14 of the reflection horn 12. Although the wavelength conversion element is not shown for easy understanding of the drawing, the wavelength conversion element is installed so as to be in close contact with the upper surface of the LED chip 13, and the engagement claw 12c formed on the entire circumference of the reflection horn 12 is used. The wavelength of emitted light from the LED chip 13 is changed as in the previous embodiment.
[0019]
By doing in this way, the engaging claw 12c which fixes a wavelength conversion element can be provided in the perimeter of the reflective frame outer periphery inner surface of the reflection horn 12, and when a wavelength conversion element is fixed, a reflection horn, a wavelength conversion element, It is possible to prevent any gaps between them. Thereby, the emitted light from the LED chip 13 whose wavelength is not converted from the gap does not leak, and the wavelength uniformity is further improved. The opening 14 is not limited to the circular shape as shown in the figure, and may be a U-shaped notch or the like.
[0020]
FIG. 5 shows a main part of the LED 20 of still another embodiment. In this embodiment, two LED chips 25 and 26 having different emission wavelengths are used. A lead frame 21a having an opening and a reflection horn 22 and three lead frames 21b and 21c located in the opening of 21a are provided. Two LED chips 25 and 26 are mounted on the bottom surface of the reflection horn 22. Is placed. The electrodes 25a and 25b of the LED chip 25 are connected to the reflection horn 22 and the lead frame 21b without using wires, respectively. The electrodes 26a and 26b of the LED chip 26 are also connected to the reflection horn 22 and the lead frame 21c without using wires, respectively. Further, a wavelength conversion element 24 is disposed on the LED chips 25 and 26 so as to be in close contact with each other, and a diffusion plate 27 is further disposed on the wavelength conversion element 24. It is fixed by the joint claw 22c.
[0021]
With this configuration, the light emitted from one LED chip 25 is wavelength-converted by the wavelength conversion element 24 that is indirectly fixed by the engaging claws 22 c, and the light is diffused by the diffusion plate 27. . Since the light emitted from the other LED chip 26 does not match the wavelength conversion element, the light emitted from the other LED chip 26 is transmitted without being subjected to wavelength conversion by the wavelength conversion element 24 and is directly fixed by the engaging claw 22c. To reach and spread. In the diffusion plate 27, light from both LED chips is diffused and uniformed. Thereby, the emission color of the LED 20 can be further arbitrarily changed as compared with the case where only the wavelength conversion element is used by the wavelength conversion color by the wavelength conversion element 24 and the emitted light color from the LED chip that is not wavelength-converted. Become. In addition, although the example using two LED chips that irradiate different wavelengths has been described, two or more LED chips may be used, or LED chips that irradiate the same wavelength may be used. Furthermore, it is possible to add a lens effect to the surface of the diffusing plate 27 or the wavelength conversion element so as to obtain a more uniform light emitting LED 20.
[0022]
In the embodiments described so far, the description has been given of the example in which the GaN-based LED chip that emits blue and / or ultraviolet light is used, and the phosphor that is the wavelength conversion substance is excited by the emitted light to convert the wavelength. However, the present invention is not limited to this, and a SiC LED, a ZnSe LED, a GaAs LED (λ = 630 to 850 nm), a GaAlAs LED, a ZnO LED, or the like is used as the LED chip, and the wavelength conversion material is mainly described above. For example, NdP 5 O 14 , LiNdP 4 O 12 , Na 5 Nd (WO 4 ) 4 , Al 3 Nd (BO 3 ) 4 , Cs 2 NaNdC are not limited to those that convert blue and / or ultraviolet light into other wavelengths. It can be converted to a different wavelength by l6 , SrS, or various infrared excitation phosphors. Further, wavelength conversion may be performed using a specific wavelength absorbing material such as a dye instead of a phosphor as the wavelength converting material.
[0023]
【The invention's effect】
As described above, according to the present invention, the wavelength conversion material is not dipted inside the reflective horn which is convex because the LED chip is placed as in the prior art. By separately providing a wavelength conversion element in which the thickness and density of the substance are set to desired values, uniform wavelength conversion is possible, and color unevenness due to a difference in conversion efficiency can be significantly reduced. In the present invention, since the wavelength conversion element is disposed directly above the LED chip, the loss of light emitted from the LED chip, that is, attenuation of light incident on the wavelength conversion element can be minimized. Furthermore, since the wavelength conversion element is fixed by the engaging claws so as to cover almost the entire surface of the reflection horn, wavelength conversion is possible even for light emitted from the side surface of the LED chip, and further. Uniform light emission can be achieved. In addition, even if there is a slight gap between the wavelength conversion element and the reflection horn, the presence of the engaging claw at that location makes it possible to prevent light leaking from the LED front direction due to the engaging claw. Has an effect.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view illustrating an LED of the present invention.
FIG. 2 is a schematic process diagram showing a method for manufacturing a wavelength conversion element of the present invention.
FIG. 3 is a schematic cross-sectional view illustrating another embodiment of the present invention.
FIG. 4 is a schematic perspective view illustrating another embodiment of the present invention.
FIG. 5 is a cross-sectional view of an essential part for explaining still another embodiment of the present invention.
FIG. 6 is a schematic diagram illustrating a conventional LED.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lead frame 2 Reflection horn 3 LED chip 4 Wavelength conversion element 4a Wavelength conversion element layer 4b Sheet-like film 5 Translucent sealing material 10 LED
11a, 11b Lead frame 12 Reflective horn 12c Engaging claw 13 LED chip 14 Opening 30 LED
31 Lead frame 32 Reflection horn 32c Engaging claw 32d Reflection frame step 33 Substrate 34 Wavelength conversion element 34a High density wavelength conversion element layer 34b Low density wavelength conversion element layer 35 Wire 90 LED
91 Lead frame 92 Reflective horn 93 LED chip 94 Lead frame 95 Wire 96 First resin 97 Second resin

Claims (6)

反射ホーンを形成したリードフレームと、該反射ホーン内に載置した発光ダイオードチップと、発光ダイオードチップからの放射光を波長変換する波長変換素子とを有し、これらを透光性材料により覆って封止した発光ダイオードであって、
前記反射ホーン内には、前記透光性基板が反射ホーン上面側に位置し、前記電極が反射ホーン底面側にてリードフレームと電気的に接続するように配設した少なくとも1個以上の発光ダイオードチップを有し、
前記波長変換素子は、波長変換物質とそれを保持する透光性基体とを含み、予め所定の密度、厚みとなるように調整されて層状に形成されており、
前記反射ホーンには係合爪が形成され、前記発光ダイオードチップの上部となる位置にて、該係合爪により前記波長変換素子を固定していることを特徴とする発光ダイオード。
A lead frame in which a reflection horn is formed, a light emitting diode chip mounted in the reflection horn, and a wavelength conversion element that converts the wavelength of light emitted from the light emitting diode chip, and these are covered with a translucent material A sealed light emitting diode,
At least one or more light emitting diodes disposed in the reflective horn so that the translucent substrate is located on the upper surface side of the reflective horn and the electrode is electrically connected to the lead frame on the lower surface side of the reflective horn Having a chip,
The wavelength conversion element includes a wavelength conversion substance and a translucent substrate that holds the wavelength conversion substance, and is previously formed to have a predetermined density and thickness, and is formed in a layer shape,
An engaging claw is formed on the reflection horn, and the wavelength conversion element is fixed by the engaging claw at a position above the light emitting diode chip.
反射ホーンを形成したリードフレームと、該反射ホーン内に載置した発光ダイオードチップと、発光ダイオードチップからの放射光を波長変換する波長変換素子とを有し、これらを透光性材料により覆って封止した発光ダイオードであって、
前記反射ホーン内には少なくとも1個以上の発光ダイオードチップが電気的に接続するように配設され、
前記波長変換素子は、波長変換物質とそれを保持する透光性物質とを含み、予め所定の密度、厚みとなるように調整されて層状に形成されており、
前記反射ホーンには係合爪が形成されており、該係合爪により前記発光ダイオードチップの透光性基板と密接するように該基板上部に配設した波長変換素子が固定されていることを特徴とする発光ダイオード。
A lead frame in which a reflection horn is formed, a light emitting diode chip mounted in the reflection horn, and a wavelength conversion element that converts the wavelength of light emitted from the light emitting diode chip, and these are covered with a translucent material A sealed light emitting diode,
In the reflective horn, at least one or more light emitting diode chips are arranged to be electrically connected,
The wavelength conversion element includes a wavelength conversion substance and a translucent substance that holds the wavelength conversion substance, and is adjusted in advance to have a predetermined density and thickness, and is formed in a layer shape.
An engagement claw is formed on the reflection horn, and the wavelength conversion element disposed on the upper portion of the substrate is fixed by the engagement claw so as to be in close contact with the light transmitting substrate of the light emitting diode chip. A light-emitting diode that is characterized.
前記波長変換素子は、波長変換物質が相対的に高密度に含まれる波長変換素子層と低密度に含まれる波長変換素子層とを有し、高密度な波長変換素子層側がLEDチップ側に位置するように配設されていることを特徴とする請求項1または請求項2記載の発光ダイオード。The wavelength conversion element has a wavelength conversion element layer containing a wavelength conversion substance at a relatively high density and a wavelength conversion element layer contained at a low density, and the high-density wavelength conversion element layer side is located on the LED chip side. The light-emitting diode according to claim 1, wherein the light-emitting diode is disposed so as to perform. 前記波長変換素子は、分散媒樹脂に波長変換物質を混合分散した後に、型に流入して前記分散媒樹脂と波長変換物質との比重差により、波長変換物質が相対的に高密度に含まれる波長変換素子層と低密度に含まれる波長変換素子層を有するようにして硬化させた波長変換素子であることを特徴とする請求項3記載の発光ダイオード。In the wavelength conversion element, after the wavelength conversion material is mixed and dispersed in the dispersion medium resin, the wavelength conversion material flows into a mold and the wavelength conversion material is contained in a relatively high density due to the difference in specific gravity between the dispersion medium resin and the wavelength conversion material. 4. The light-emitting diode according to claim 3, wherein the light-emitting diode is a wavelength conversion element cured so as to have a wavelength conversion element layer and a wavelength conversion element layer included in a low density. 前記発光ダイオードチップは異なる発光波長を放射する2個以上の発光ダイオードチップを前記反射ホーン内に有し、
該発光ダイオードチップの上には波長変換素子と拡散板とが順に積層されると共に、反射ホーンに形成した係合爪により固定されていることを特徴とする請求項1から請求項4のいずれか記載の発光ダイオード。
The light emitting diode chip has two or more light emitting diode chips that radiate different light emission wavelengths in the reflection horn,
The wavelength conversion element and the diffusion plate are sequentially laminated on the light emitting diode chip, and are fixed by engagement claws formed on the reflection horn. The light emitting diode as described.
前記発光ダイオードチップは、発光波長に対し透光性の基板上に発光層を形成し、且つ発光層と同一面側に電極を形成したものとされると共に、
前記透光性の基板側が反射ホーンの上側となるようにして反射ホーン内に配設され、反射ホーン底面側とされた電極とリードフレームとがワイヤーを用いることなく電気的に接続されていることを特徴とする請求項2記載の発光ダイオード。
The light-emitting diode chip is formed by forming a light-emitting layer on a substrate that is transparent to the light emission wavelength, and forming an electrode on the same side as the light-emitting layer,
The translucent substrate side is disposed on the reflection horn so that the translucent substrate side is on the upper side of the reflection horn, and the electrode on the bottom side of the reflection horn and the lead frame are electrically connected without using a wire. The light-emitting diode according to claim 2.
JP19147698A 1998-07-07 1998-07-07 Light emitting diode Expired - Fee Related JP4109756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19147698A JP4109756B2 (en) 1998-07-07 1998-07-07 Light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19147698A JP4109756B2 (en) 1998-07-07 1998-07-07 Light emitting diode

Publications (2)

Publication Number Publication Date
JP2000022222A JP2000022222A (en) 2000-01-21
JP4109756B2 true JP4109756B2 (en) 2008-07-02

Family

ID=16275296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19147698A Expired - Fee Related JP4109756B2 (en) 1998-07-07 1998-07-07 Light emitting diode

Country Status (1)

Country Link
JP (1) JP4109756B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878270B1 (en) * 2011-09-15 2018-07-13 엘지이노텍 주식회사 Lighting device comprising photoluminescent plate and photoluminescent tape

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3806301B2 (en) * 2000-11-15 2006-08-09 日本ライツ株式会社 Light source device
KR100748815B1 (en) 2000-02-09 2007-08-13 니폰 라이츠 가부시키가이샤 Light source
JP2002043633A (en) * 2000-07-25 2002-02-08 Stanley Electric Co Ltd White light emitting diode
JP2002076440A (en) * 2000-08-28 2002-03-15 Stanley Electric Co Ltd Light emitting device and free-space optical transmitter
JP2002141559A (en) * 2000-10-31 2002-05-17 Sanken Electric Co Ltd Light emitting semiconductor chip assembly and light emitting semiconductor lead frame
JP4932078B2 (en) * 2000-12-04 2012-05-16 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2002246647A (en) * 2001-02-16 2002-08-30 Stanley Electric Co Ltd Wavelength conversion type semiconductor device
JP4925512B2 (en) * 2001-02-16 2012-04-25 スタンレー電気株式会社 Wavelength conversion type semiconductor device
US7497596B2 (en) * 2001-12-29 2009-03-03 Mane Lou LED and LED lamp
JP3707446B2 (en) * 2002-05-28 2005-10-19 住友電気工業株式会社 White light emitting device
US7005679B2 (en) 2003-05-01 2006-02-28 Cree, Inc. Multiple component solid state white light
JP2005005544A (en) * 2003-06-13 2005-01-06 Sumitomo Electric Ind Ltd White light emitting element
DE10351397A1 (en) * 2003-10-31 2005-06-16 Osram Opto Semiconductors Gmbh LED chip
DE10351349A1 (en) * 2003-10-31 2005-06-16 Osram Opto Semiconductors Gmbh Production of a luminescent diode chip applies a radiation decoupling surface and a semiconductor body with an epitaxial-grown sequence of semiconductor layers with an active zone
JP2005166733A (en) * 2003-11-28 2005-06-23 Matsushita Electric Works Ltd Light emitting device
JP2005244075A (en) * 2004-02-27 2005-09-08 Matsushita Electric Works Ltd Light emitting device
JP2005268634A (en) * 2004-03-19 2005-09-29 Kyoshin Kagi Kofun Yugenkoshi Molding structure of replaceable light emitting diode device
US7361938B2 (en) 2004-06-03 2008-04-22 Philips Lumileds Lighting Company Llc Luminescent ceramic for a light emitting device
US7553683B2 (en) * 2004-06-09 2009-06-30 Philips Lumiled Lighting Co., Llc Method of forming pre-fabricated wavelength converting elements for semiconductor light emitting devices
WO2006016398A1 (en) * 2004-08-10 2006-02-16 Renesas Technology Corp. Light emitting device and process for manufacturing the same
US8125137B2 (en) * 2005-01-10 2012-02-28 Cree, Inc. Multi-chip light emitting device lamps for providing high-CRI warm white light and light fixtures including the same
US7564180B2 (en) 2005-01-10 2009-07-21 Cree, Inc. Light emission device and method utilizing multiple emitters and multiple phosphors
US9412926B2 (en) 2005-06-10 2016-08-09 Cree, Inc. High power solid-state lamp
JP5196711B2 (en) * 2005-07-26 2013-05-15 京セラ株式会社 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
EP2372223A3 (en) 2005-12-21 2012-08-01 Cree, Inc. Lighting Device and Lighting Method
EP1963743B1 (en) 2005-12-21 2016-09-07 Cree, Inc. Lighting device
CN101351891B (en) 2005-12-22 2014-11-19 科锐公司 Lighting device
KR101419954B1 (en) 2006-04-18 2014-07-16 크리, 인코포레이티드 Lighting device and lighting method
US9084328B2 (en) 2006-12-01 2015-07-14 Cree, Inc. Lighting device and lighting method
US8513875B2 (en) 2006-04-18 2013-08-20 Cree, Inc. Lighting device and lighting method
BRPI0710461A2 (en) 2006-04-20 2011-08-16 Cree Led Lighting Solutions lighting device and lighting method
EP2029936B1 (en) 2006-05-31 2015-07-29 Cree, Inc. Lighting device and method of lighting
JP2009540595A (en) * 2006-06-14 2009-11-19 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Lighting device
US8029155B2 (en) 2006-11-07 2011-10-04 Cree, Inc. Lighting device and lighting method
US9441793B2 (en) 2006-12-01 2016-09-13 Cree, Inc. High efficiency lighting device including one or more solid state light emitters, and method of lighting
WO2008073794A1 (en) 2006-12-07 2008-06-19 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
CN101657671B (en) 2007-02-22 2012-07-11 科锐公司 Lighting devices, methods of lighting, light filters and methods of filtering light
EP2142843B1 (en) 2007-05-08 2016-12-14 Cree, Inc. Lighting device and lighting method
KR20100017668A (en) 2007-05-08 2010-02-16 크리 엘이디 라이팅 솔루션즈, 인크. Lighting device and lighting method
JP2010527156A (en) 2007-05-08 2010-08-05 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド Lighting device and lighting method
CN101688644B (en) 2007-05-08 2011-06-15 科锐Led照明科技公司 Lighting device and lighting method
WO2008137983A1 (en) 2007-05-08 2008-11-13 Cree Led Lighting Solutions, Inc. Lighting device and lighting method
JP5158472B2 (en) * 2007-05-24 2013-03-06 スタンレー電気株式会社 Semiconductor light emitting device
US7863635B2 (en) 2007-08-07 2011-01-04 Cree, Inc. Semiconductor light emitting devices with applied wavelength conversion materials
DE102008005345A1 (en) 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Semiconductor-based device, semiconductor device-based device receptacle, and method of making a semiconductor-based device
US8018135B2 (en) 2007-10-10 2011-09-13 Cree, Inc. Lighting device and method of making
DE102009005907A1 (en) * 2009-01-23 2010-07-29 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor device
US8921876B2 (en) 2009-06-02 2014-12-30 Cree, Inc. Lighting devices with discrete lumiphor-bearing regions within or on a surface of remote elements
KR20120094477A (en) 2009-09-25 2012-08-24 크리, 인코포레이티드 Lighting device with low glare and high light level uniformity
US9500325B2 (en) 2010-03-03 2016-11-22 Cree, Inc. LED lamp incorporating remote phosphor with heat dissipation features
US9316361B2 (en) 2010-03-03 2016-04-19 Cree, Inc. LED lamp with remote phosphor and diffuser configuration
US9275979B2 (en) 2010-03-03 2016-03-01 Cree, Inc. Enhanced color rendering index emitter through phosphor separation
US10359151B2 (en) 2010-03-03 2019-07-23 Ideal Industries Lighting Llc Solid state lamp with thermal spreading elements and light directing optics
US9310030B2 (en) 2010-03-03 2016-04-12 Cree, Inc. Non-uniform diffuser to scatter light into uniform emission pattern
US9625105B2 (en) 2010-03-03 2017-04-18 Cree, Inc. LED lamp with active cooling element
JP2013521647A (en) * 2010-03-03 2013-06-10 クリー インコーポレイテッド Radiators with improved color rendering index through phosphor separation
US8632196B2 (en) 2010-03-03 2014-01-21 Cree, Inc. LED lamp incorporating remote phosphor and diffuser with heat dissipation features
US8931933B2 (en) 2010-03-03 2015-01-13 Cree, Inc. LED lamp with active cooling element
US8562161B2 (en) 2010-03-03 2013-10-22 Cree, Inc. LED based pedestal-type lighting structure
US9062830B2 (en) 2010-03-03 2015-06-23 Cree, Inc. High efficiency solid state lamp and bulb
US9057511B2 (en) 2010-03-03 2015-06-16 Cree, Inc. High efficiency solid state lamp and bulb
US9024517B2 (en) 2010-03-03 2015-05-05 Cree, Inc. LED lamp with remote phosphor and diffuser configuration utilizing red emitters
US10451251B2 (en) 2010-08-02 2019-10-22 Ideal Industries Lighting, LLC Solid state lamp with light directing optics and diffuser
US9068701B2 (en) 2012-01-26 2015-06-30 Cree, Inc. Lamp structure with remote LED light source
US9234655B2 (en) 2011-02-07 2016-01-12 Cree, Inc. Lamp with remote LED light source and heat dissipating elements
US11251164B2 (en) 2011-02-16 2022-02-15 Creeled, Inc. Multi-layer conversion material for down conversion in solid state lighting
JP2013016588A (en) * 2011-07-01 2013-01-24 Citizen Electronics Co Ltd Led light-emitting device
JP2013077679A (en) * 2011-09-30 2013-04-25 Citizen Electronics Co Ltd Semiconductor light-emitting device and manufacturing method of the same
CN103254889B (en) * 2012-02-16 2015-12-09 赛恩倍吉科技顾问(深圳)有限公司 Fluorescent powder film making method and corresponding LED encapsulation method
US9488359B2 (en) 2012-03-26 2016-11-08 Cree, Inc. Passive phase change radiators for LED lamps and fixtures
DE102012107290A1 (en) 2012-08-08 2014-02-13 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor device, conversion agent platelets and method of making a conversion agent platelet
CN104981915A (en) * 2013-02-06 2015-10-14 株式会社小糸制作所 Light-emitting module
CN104241262B (en) 2013-06-14 2020-11-06 惠州科锐半导体照明有限公司 Light emitting device and display device
JP5698808B2 (en) * 2013-07-26 2015-04-08 スタンレー電気株式会社 Semiconductor light emitting device
CN110010746A (en) * 2014-01-07 2019-07-12 亮锐控股有限公司 With phosphor converted device without glue luminescent device
US9360188B2 (en) 2014-02-20 2016-06-07 Cree, Inc. Remote phosphor element filled with transparent material and method for forming multisection optical elements
JP6176171B2 (en) * 2014-03-28 2017-08-09 豊田合成株式会社 Method for manufacturing light emitting device
JP5996037B2 (en) * 2015-05-12 2016-09-21 シチズン電子株式会社 LED light emitting device
JP6387954B2 (en) * 2015-12-24 2018-09-12 日亜化学工業株式会社 Method for manufacturing light emitting device using wavelength conversion member
JP6711021B2 (en) * 2016-03-02 2020-06-17 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP6790478B2 (en) * 2016-06-14 2020-11-25 日亜化学工業株式会社 Manufacturing method of light emitting device
JP7011143B2 (en) * 2016-11-30 2022-01-26 日亜化学工業株式会社 Manufacturing method of light emitting device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6125267Y2 (en) * 1980-02-19 1986-07-29
JPH043510Y2 (en) * 1985-10-03 1992-02-04
JP2821064B2 (en) * 1992-07-21 1998-11-05 シャープ株式会社 Light emitting diode lamp and full color display panel using the same
JPH0677537A (en) * 1992-08-24 1994-03-18 Asahi Chem Ind Co Ltd Light emitting diode
JPH0799345A (en) * 1993-09-28 1995-04-11 Nichia Chem Ind Ltd Light emitting diode
JPH07297449A (en) * 1994-04-27 1995-11-10 Rohm Co Ltd Led lamp of its manufacture
JPH08264840A (en) * 1995-03-27 1996-10-11 Sanyo Electric Co Ltd Light emitting diode display device
JPH09153645A (en) * 1995-11-30 1997-06-10 Toyoda Gosei Co Ltd Group-iii nitride semiconductor light-emitting device
JPH1187778A (en) * 1997-09-02 1999-03-30 Toshiba Corp Semiconductor light emitting element, semiconductor light emitting device and manufacture thereof
JP3048368U (en) * 1997-10-27 1998-05-06 興 陳 Light emitting diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878270B1 (en) * 2011-09-15 2018-07-13 엘지이노텍 주식회사 Lighting device comprising photoluminescent plate and photoluminescent tape

Also Published As

Publication number Publication date
JP2000022222A (en) 2000-01-21

Similar Documents

Publication Publication Date Title
JP4109756B2 (en) Light emitting diode
US10768353B2 (en) Method of manufacturing light emitting module and light emitting module
KR100880638B1 (en) Light emitting device package
US11380826B2 (en) Light emitting module
JP4171107B2 (en) Planar light source
KR100621154B1 (en) Manufacturing method of light emitting diode
TWI447450B (en) Light guide panel, backlight module, and manufacturing method thereof
JP4238681B2 (en) Light emitting device
US11616169B2 (en) Light emitting module with concave surface light guide plate
JP3640153B2 (en) Illumination light source
JP2004056075A (en) Light-emitting device and method of manufacturing the same
KR20100058779A (en) Light emitting diode package and manufacturing method thereof
US10930624B2 (en) Light-emitting module
JP2000077723A (en) Semiconductor device provided with light-emitting semiconductor
JP2007324417A (en) Semiconductor light-emitting device and manufacturing method therefor
JP2009094199A (en) Light emitting device, plane light source, display device, and method of manufacturing the light emitting device
JP7108203B2 (en) Method for manufacturing light-emitting module
KR20090039932A (en) Light emitting device package
JP7007591B2 (en) Luminous module
US20190355783A1 (en) Led module
CN106887507B (en) Light emitting device and method for manufacturing the same
JP5681532B2 (en) Light emitting device and manufacturing method thereof
US11342314B2 (en) Light-emitting module
JP6790602B2 (en) Light emitting device and its manufacturing method
US11709310B2 (en) Surface-emitting light source and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110411

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120411

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130411

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140411

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees