JP4069505B2 - Trinaphthylbenzene derivative and organic electroluminescence device using the same - Google Patents

Trinaphthylbenzene derivative and organic electroluminescence device using the same Download PDF

Info

Publication number
JP4069505B2
JP4069505B2 JP21073398A JP21073398A JP4069505B2 JP 4069505 B2 JP4069505 B2 JP 4069505B2 JP 21073398 A JP21073398 A JP 21073398A JP 21073398 A JP21073398 A JP 21073398A JP 4069505 B2 JP4069505 B2 JP 4069505B2
Authority
JP
Japan
Prior art keywords
layer
organic
trinaphthylbenzene
derivative
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21073398A
Other languages
Japanese (ja)
Other versions
JP2000044519A (en
Inventor
内田  学
俊弘 小池
勇昇 泉澤
顕治 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP21073398A priority Critical patent/JP4069505B2/en
Publication of JP2000044519A publication Critical patent/JP2000044519A/en
Application granted granted Critical
Publication of JP4069505B2 publication Critical patent/JP4069505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Indole Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electroluminescent Light Sources (AREA)
  • Pyridine Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トリナフチルベンゼン誘導体、およびこれを用いた発光材料、有機電界発光材料ならびに有機電界発光素子(以下、有機EL素子と略記する)に関する。
【0002】
【従来の技術】
近年、これまでにない高輝度な平面ディスプレイの候補として有機EL素子が注目され、その研究開発が活発化している。有機EL素子は有機材料からなる発光層を2つの電極で挟んだ構造であり、陽極から注入された正孔と陰極から注入された電子とが、発光層中で再結合して光を発する。用いられる有機材料には低分子材料と高分子材料があり、共に高輝度の有機EL素子を与えることが知られている。
【0003】
このような有機EL素子には2つのタイプがある。1つは、タン(C.W.Tang)らによって発表された蛍光色素を添加した電荷輸送材料を発光層として用いたもの(ジャーナル・オブ・ジ・アプライド・フィジックス(J.Appl.Phys.),65,3610(1989))、もう1つは、蛍光色素自身を発光層として用いたものである(例えば、ジャパニーズ・ジャーナル・オブ・ジ・アプライド・フィジックス(Jpn.J.Appl.Phys.),27,L269(1988)に記載されている素子)。
【0004】
蛍光色素自身を発光層として用いた有機EL素子は、大きく分けて、さらに3つのタイプに分けられる。1つ目は、発光層を正孔輸送層と電子輸送層とで挟んで三層としたもの、2つ目は、正孔輸送層と発光層とを積層して二層としたもの、3つ目は、電子輸送層と発光層とを積層して二層としたものである。このように二層もしくは三層に積層することにより、有機EL素子の発光効率が向上することが知られている。
【0005】
上記各構成の有機EL素子における正孔輸送層および電子輸送層は、それぞれ正孔および電子伝達化合物を含有するものであって、電極より注入された電荷を発光層に伝達する機能を有している。正孔注入層および電子注入層は、それぞれ正孔および電子伝達化合物を含有する層であって、電極より注入された電荷を発光層に伝達する機能を有するが、この正孔注入層および/もしくは電子注入層を、電極と輸送層との間に介在させることにより、より低い電界で多くの電荷が発光層に注入される。これらの層の導入は、もう一方の電極より注入された電荷を発光層に閉じ込めることも可能になるので、発光効率が向上するなど、発光性能に優れた有機EL素子を得ることができる。
【0006】
しかしながら、これらの有機EL素子は、実用化のために十分な性能を有していなかった。その大きな原因は、使用材料の耐久性の不足にあり、特に正孔輸送材料の耐久性が乏しいことが挙げられる。有機EL素子の有機層に結晶粒界などの不均質部分が存在すると、その部分に電界が集中して素子の劣化・破壊につながると考えられている。そのため有機層はアモルファス状態で使用されることが多い。また、有機EL素子は電流注入型素子であり、使用する材料のガラス転移点(以下、Tgという)が低いと、駆動中の発熱により有機EL素子が劣化する結果となるので、Tgの高い材料が要求されている。特に、車載用途などの高耐熱性が要求される分野においては、特に高Tg材料が必要で、好ましくは120℃を超えるような材料が望まれている。
また、用いられている正孔輸送材料の正孔輸送性が十分でなく、素子の発光効率が実用的には十分でないという欠点を有していた。
【0007】
かかる有機EL素子に使用される正孔輸送材料としては、トリフェニルアミン誘導体を中心にして多種多様の材料が知られているにも拘わらず、実用化に適した材料は少ない。
例えば、N,N'-ジフェニル-N,N'-ビス(3-メチルフェニル)-4,4'-ジアミノビフェニル(以下、TPDと略記する)が報告されているが(アプライド・フィジックス・レター第57巻第6号第531ページ1990年)、この化合物は熱安定性に乏しく、素子の寿命などに問題があった。米国特許第5047687号、米国特許第4047948号、米国特許第4536457号、特公平6−32307号公報、特開平5−234681号公報、特開平5−239455号公報、特開平8−87122号公報および特開平8−259940号公報にも多くのトリフェニルアミン誘導体が記載されているが、十分な特性を持つ化合物はない。
例えば、特開平8−259940号公報に記載されている1,3,5−トリス−4−(ジフェニルアミノ)フェニルベンゼン(以下、TAPBと略記する)のTgは113℃であり、Tgの高さが十分でない。
【0008】
特開平4−308688号公報、特開平6−1972号公報およびアドバンスド・マテリアル第6巻第677ページ1994年に記載されているスターバーストアミン誘導体、特開平7−126226号公報、特開平7−126615号公報、特開平7−331238号公報、特開平7−97355号公報、特開平8−48656号公報、特開平8−100172号公報およびジャーナル・オブ・ザ・ケミカル・ソサイエティー・ケミカル・コミュニケーション第2175ページ1996年に記載されている各化合物においても、高発光効率で長寿命であるという実用上必須の特性を併せ持つものはない。
さらに、特開平9−194441には、ナフチルアミン誘導体を使用した例が報告されており、TPDの特性より向上していることが記載されているが、これらにおいても正孔輸送性及び耐熱性が十分足りてはいなかった。
【0009】
上述のように、従来の有機EL素子に用いられる正孔輸送材料は、実用上十分な性能を有しておらず、優れた材料を使用することにより、有機EL素子の耐熱性、効率及び寿命を高めることが望まれていた。
さらに、大部分の有機EL素子の発光は、正孔輸送層とは別個に設けられた発光層若しくは電子輸送層から得られることが多く、正孔輸送層から得られるものは少ない。この理由には、同時に使用する電子輸送層との相性の問題もあるが、正孔輸送材料自身の発光色、および発光強度も重要な因子になっていると考えられる。正孔輸送層から発光が取り出せれば、より実用的価値が高くなることが予測されるにも係わらず、そのような材料は少ない。また、そのような材料は多くの場合、発光波長が長く、短波長の発光を取り出すことができないなどの問題があった。
【0010】
【発明が解決しようとする課題】
本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、高発光効率で長寿命な有機EL素子、これに用いられる新規な化合物、正孔輸送材料及び有機電界発光材料を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、従来の有機EL素子が抱えている上述の課題を解決すべく鋭意検討した結果、特定のトリナフチルベンゼン誘導体を用いることにより、高効率、長寿命な有機EL素子が得られることを見出し、本発明を完成するに至った。
【0012】
すなわち、本発明の第一は、一般式(1)で表されるトリナフチルベンゼン誘導体である。
【0013】
【化2】

Figure 0004069505
【0014】
[一般式(1)中、R〜Rはそれぞれ独立にアリール基、またはヘテロ環基を示し、それらが隣接している場合には、互いに縮合した構造のものであってもよい]
発明の第二は、上記一般式(1)で表されるトリナフチルベンゼン誘導体を用いてなる有機電界発光素子。発明の第三は、正孔輸送層を有し、この正孔輸送層に上記一般式(1)で表されるトリナフチルベンゼン誘導体を含有している有機電界発光素子。
【0015】
発明の第四は、発光層を有し、この発光層に上記一般式(1)で表されるトリナフチルベンゼン誘導体を含有している有機電界発光素子。
発明の第五は、正孔注入層を有し、この正孔注入層に上記一般式(1)で表されるトリナフチルベンゼン誘導体を含有している有機電界発光素子。
発明の第六は、上記一般式(1)で表されるトリナフチルベンゼン誘導体からなる有機電界発光材料。
発明の第七は、上記一般式(1)で表されるトリナフチルベンゼン誘導体からなる正孔輸送材料。
【0016】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明の一般式(1)で表されるトリナフチルベンゼン誘導体の具体例としては、下記の化学式(2)〜()で表される化合物を挙げることができる。
【0017】
【化3】
Figure 0004069505
【0018】
【化4】
Figure 0004069505
【0019】
【化5】
Figure 0004069505
【0020】
【化6】
Figure 0004069505
【0022】
これらのトリナフチルベンゼン誘導体は、既知の合成法を利用して合成することができ、例えば、本明細書の合成例に記載の方法により、得ることができる。
本発明のトリナフチルベンゼン誘導体はそれ自身蛍光を発し、発光材料として適している。これは、トリナフチルベンゼン基を導入したことに起因している。特に、本発明のトリナフチルベンゼンは発光色が青色であるので、青、緑、赤色の他の発光材料を添加することによって、異なる発光色の有機EL素子を得ることができる。
【0023】
また、一般に、有機EL素子を構成する有機層に用いられる化合物は、他の層に用いられている化合物と励起錯体を形成しない方がよく、本発明のトリナフチルベンゼン誘導体は、他の化合物と励起錯体を形成し難いという利点もある。これも、トリナフチルベンゼン基を導入したことによると考えられる。
また、本発明の有機EL素子は、高効率ばかりでなく、保存時及び駆動時の耐久性も高い。これは、本発明で使用されるトリナフチルベンゼン誘導体のTgが高いためである。例えば、上記化学式(2)で表される化合物(以下、TANBと略記する)のTgは173℃であり、TAPBのそれより約60℃高い。
本発明の一般式(1)で表されるトリナフチルベンゼン誘導体は、正孔輸送材料および正孔注入材料としての機能をも有する。
【0024】
本発明の有機EL素子の構造としては、各種の態様があるが、基本的には一対の電極(陽極と陰極)間に、上記一般式(1)で表されるトリナフチルベンゼン誘導体を含有する有機層(以下、トリナフチルベンゼン誘導体層という)を挟持した構造であり、所望に応じて、該トリナフチルベンゼン誘導体層に正孔注入材料、正孔輸送材料、発光材料、電子注入材料あるいは電子輸送材料などを添加することができる。
また、本発明のトリナフチルベンゼン誘導体層を発光層として使用する場合、この発光層に他の発光材料を添加することにより、異なる波長の光を発生させたり、発光効率を向上させることができる。
また、これら正孔注入材料、正孔輸送材料、発光材料、電子注入材料および電子輸送材料などを正孔注入層、正孔輸送層、発光層、電子注入層および電子輸送層などとして本発明のトリナフチルベンゼン誘導体を含有する層に積層することもできる。
【0025】
具体的な構成としては、(1)陽極/本発明のトリナフチルベンゼン誘導体層/陰極、(2)陽極/本発明のトリナフチルベンゼン誘導体層/発光層/陰極、(3)陽極/本発明のトリナフチルベンゼン誘導体層/発光層/電子注入層/陰極、(4)陽極/正孔注入層/本発明のトリナフチルベンゼン誘導体層/発光層/電子注入層/陰極、(5)陽極/本発明のトリナフチルベンゼン誘導体層/正孔輸送層/発光層/電子注入層/陰極、(6)陽極/正孔注入層/本発明のリナフチルベンゼン誘導体層/電子注入層/陰極などの積層構造を挙げることができる。
これらの場合、正孔注入層や電子注入層は、必ずしも必要ではないが、これらの層を設けることにより、発光効率を向上させることができる。電極と各層の間に界面層を導入することも可能である。界面層に用いられる材料としては、酸化バナジウムなどの金属酸化物あるいはフッ化リチウムなどの金属フッ化物が挙げられる。
【0026】
本発明の有機EL素子は、上記のいずれの構造であっても、基板に支持されていることが好ましい。基板としては、機械的強度、熱安定性および透明性を有するものであればよく、ガラス、透明プラスチックフィルムなどを用いることができる。
本発明の有機EL素子の陽極物質としては、4eVより大きな仕事関数を有する金属、合金、電気伝導性化合物及びこれらの混合物を用いることができる。具体例として、Auなどの金属、CuI、インジウムチンオキサイド(以下、ITOと略記する)、SnO2、ZnOなどの導電性透明材料が挙げられる。
【0027】
陰極物質としては、4eVより小さな仕事関数の金属、合金、電気伝導性化合物、およびこれらの混合物を使用できる。具体例としては、カルシウム、マグネシウム、リチウム、アルミニウム、マグネシウム合金、リチウム合金、アルミニウム合金等があり、合金としてはアルミニウム/リチウム、マグネシウム/銀、マグネシウム/インジウムなどが挙げられる。
有機EL素子の発光を効率よく取り出すために、電極の少なくとも一方は光透過率が10%以上とすることが望ましい。電極としてのシート抵抗は数百Ω/mm以下とするのが好ましい。なお、膜厚は電極材料の性質にもよるが、通常10nm〜1μm、好ましくは10〜400nmの範囲で選定される。このような電極は、上述の電極物質を使用して蒸着やスパッタリングなどの方法により薄膜を形成させることにより作製することができる。
【0028】
また、これら正孔注入材料、正孔輸送材料、発光材料、電子注入材料および電子輸送材料などを正孔注入層、正孔輸送層、発光層、電子注入層および電子輸送層などとしてトリナフチルベンゼン誘導体を含有する層に積層することもできる。
本発明の有機EL素子において、正孔注入材料、正孔輸送材料、発光材料、電子注入材料などの使用材料としては、好ましくはTgが100℃以上のもの、より好ましくはTgが120℃以上のものである。
【0029】
本発明の有機EL素子に使用される他の正孔注入材料および正孔輸送材料については、光導電材料において、正孔の電荷輸送材料として従来から慣用されているものや、有機EL素子の正孔注入層および正孔輸送層に使用される公知のものの中から任意のものを選択して用いることができる。
例えば、カルバゾール誘導体(N-フェニルカルバゾール、ポリビニルカルバゾールなど)、トリアリールアミン誘導体(TPD、芳香族第3級アミンを主鎖あるいは側鎖に持つポリマー、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N'-ジフェニル-N,N'-ジナフチル-4,4'-ジアミノビフェニル、4,4',4''-トリス{N-(3-メチルフェニル)-N-フェニルアミノ}トリフェニルアミン、ジャーナル・オブ・ザ・ケミカル・ソサイエティー・ケミカル・コミュニケーション第2175ページ1996年に記載されている化合物、特開昭57−144558号公報、特開昭61−62038号公報、特開昭61−124949号公報、特開昭61−134354号公報、特開昭61−134355号公報、特開昭61−112164号公報、特開平4−308688号公報、特開平6−312979号公報、特開平6−267658号公報、特開平7−90256号公報、特開平7−97355号公報、特開平6−1972号公報、特開平7−126226号公報、特開平7−126615号公報、特開平7−331238号公報、特開平8−100172号公報および特開平8−48656号公報に記載されている化合物、アドバンスド・マテリアル第6巻第677ページ1994年に記載されているスターバーストアミン誘導体など)、スチルベン誘導体(日本化学会第72春季年会講演予稿集(II)、1392ページ、2PB098に記載のものなど)、フタロシアニン誘導体(無金属、銅フタロシアニンなど)、ポリシランなどがあげられる。
【0030】
なお、本発明の有機EL素子における正孔注入層および正孔輸送層は、上記の化合物の一種以上を含有する一つの層で構成されてもよいし、また、異種の化合物を含有する複数の層を積層したものであってもよい。
本発明の有機EL素子に使用される他の電子注入材料および電子輸送材料については特に制限はなく、光導電材料において、電子伝達化合物として従来から慣用されているもの、有機EL素子の電子注入層および電子輸送層に使用される公知のものの中から任意のものを選択して用いることができる。
【0031】
かかる電子伝達化合物の好ましい例として、ジフェニルキノン誘導体(電子写真学会誌、30,3(1991)などに記載のもの)、ペリレン誘導体(J.Apply.Phys.,27,269(1988)などに記載のもの)や、オキサジアゾール誘導体(前記文献、Jpn.J.Appl.Phys.,27,L713(1988)、アプライド・フィジックス・レター(Appl.Phys.Lett.),55,1489(1989)などに記載のもの)、チオフェン誘導体(特開平4−212286号公報などに記載のもの)、トリアゾール誘導体(Jpn.J.Appl.Phys.,32,L917(1993)などに記載のもの)、チアジアゾール誘導体(第43回高分子学会予稿集、(III)P1a007などに記載のもの)、オキシン誘導体の金属錯体(電子情報通信学会技術研究報告、92(311),43(1992)などに記載のもの)、キノキサリン誘導体のポリマー(Jpn.J.Appl.Phys.,33,L250(1994)などに記載のもの)、フェナントロリン誘導体(第43回高分子討論会予稿集、14J07などに記載のもの)などを挙げることができる。
【0032】
本発明の有機EL素子の発光層に用いる他の発光材料としては、高分子学会編高分子機能材料シリーズ”光機能材料”、共立出版(1991)、P236 に記載されているような昼光蛍光材料、蛍光増白剤、レーザー色素、有機シンチレータ、各種の蛍光分析試薬などの公知の発光材料を用いることができる。
具体的には、アントラセン、フェナントレン、ピレン、クリセン、ペリレン、コロネン、ルブレン、キナクリドンなどの多環縮合化合物、クオーターフェニルなどのオリゴフェニレン系化合物、1,4-ビス(2-メチルスチリル)ベンゼン、1,4-ビス(4-メチルスチリル)ベンゼン、1,4-ビス(4-メチル-5-フェニル-2-オキザゾリル)ベンゼン、1,4-ビス(5-フェニル-2-オキサゾリル)ベンゼン、2,5-ビス(5-タシャリー-ブチル-2-ベンズオキサゾリル)チオフェン、1,4-ジフェニル-1,3-ブタジエン、1,6-ジフェニル-1,3,5-ヘキサトリエン、1,1,4,4-テトラフェニル-1,3-ブタジエンなどの液体シンチレーション用シンチレータ、特開昭63−264692号公報記載のオキシン誘導体の金属錯体、クマリン染料、ジシアノメチレンピラン染料、ジシアノメチレンチオピラン染料、ポリメチン染料、オキソベンズアントラセン染料、キサンテン染料、カルボスチリル染料およびペリレン染料、独国特許2534713号公報に記載のオキサジン系化合物、第40回応用物理学関係連合講演会講演予稿集、1146(1993)に記載のスチルベン誘導体、特開平7−278537号公報記載のスピロ化合物および特開平4−363891号公報記載のオキサジアゾール系化合物などが好ましい。
【0033】
本発明の有機EL素子を構成する各層は、各層を構成すべき材料を蒸着法、スピンコート法およびキャスト法などの公知の方法で薄膜とすることにより、形成することができる。
このようにして形成された各層の膜厚については特に制限はなく、素材の性質に応じて適宜選定することができるが、通常2nm〜5000nmの範囲で選定される。
なお、本発明のトリナフチルベンゼン誘導体を薄膜化する方法としては、均質な膜が得やすく、かつピンホールが生成しにくいなどの点から蒸着法を適用するのが好ましい。蒸着法を用いて薄膜化する場合、その蒸着条件は、トリナフチルベンゼン誘導体の種類、分子累積膜の目的とする結晶構造及び会合構造などにより異なるが、一般に、ボート加熱温度50〜400℃、真空度10-6〜10-3Pa、蒸着速度0.01〜50nm/秒、基板温度−150〜+300℃、膜厚5nm〜5μmの範囲で適宜選定することが望ましい。
【0034】
次に、本発明のトリナフチルベンゼン誘導体を用いた有機EL素子を作製する方法の一例として、前述の陽極/トリナフチルベンゼン誘導体層/陰極からなる有機EL素子の作製法について説明する。適当な基板上に、陽極用物質からなる薄膜を、1μm以下、好ましくは10〜200nmの範囲の膜厚になるように、蒸着法により形成させて陽極を作製した後、この陽極上にトリナフチルベンゼン誘導体の薄膜を形成させて発光層とし、この発光層の上に陰極用物質からなる薄膜を蒸着法により、1μm以下の膜厚になるよう形成させて陰極とすることにより、目的の有機EL素子が得られる。
なお、上述の有機EL素子の作製においては、作製順序を逆にして、陰極、発光層、陽極の順に作製することも可能である。
【0035】
このようにして得られた有機EL素子に直流電圧を印加する場合には、陽極を+、陰極を−の極性として印加すれば良く、電圧2〜40V程度を印加すると、透明又は半透明の電極側(陽極又は陰極、及び両方)より発光が観測できる。
また、この有機EL素子は、交流電圧を印加した場合にも発光する。なお、印加する交流の波形は任意でよい。
【0036】
【実施例】
次に、本発明を実施例に基づいて更に詳しく説明する。
[Tg測定法]
Tgは、示差走査熱量計を用い、一旦融解した試料を急冷してガラス状態にした後、40℃/分で昇温して測定した。
【0037】
合成例1
<TANBの合成>
窒素雰囲気下、N,N-ジフェニル-N-(4-ブロモ-1-ナフチル)アミン3.67gの20mlTHF溶液に、ブチルリチウムの1.6mol/lヘキサン溶液6.3mlを−78℃で滴下した。30分攪拌後、塩化亜鉛のテトラメチルエチレンジアミン錯体2.5gを加え、室温で1時間攪拌した。さらに、1,3,5−トリブロモベンゼン0.95gの10mlTHF溶液及びジクロロビストリフェニルフォスフィンパラジウム0.34gを加え、24時間加熱還流した。放冷後、水を加えトルエンにて抽出した。減圧下に低沸点物を留去し、シリカゲルカラムクロマトグラフィー(ヘプタン/トルエン=3/1)にて精製した。収量は2.66gであった。
この化合物のトルエン中での蛍光色は青紫色であり、Tgは173℃であった。
1H−NMR(CDCl3)δ=6.9-7.0(m,6H), 7.05-7.10(m,12H), 7.18-7.23(m,12H), 7.36-7.41(m,6H),7.49(m,3H), 7.60(d,3H), 7.81(s,3H), 8.05(bd,3H), 8.25(bd,3H).
【0038】
合成例2
<化学式(3)で表される化合物の合成>
実施例1で用いたN,N-ジフェニル-N-(4-ブロモ-1-ナフチル)アミンをN-フェニル-N-(2-ピリジル)-N-(4-ブロモ-1-ナフチル)アミンに代えた以外は、実施例1と同様の方法で合成した。
【0039】
合成例3
<化学式(5)で表される化合物の合成>
実施例1で用いたN,N-ジフェニル-N-(4-ブロモ-1-ナフチル)アミンを4−ブロモ−1−カルバゾリルナフタレンに代えた以外は、実施例1と同様な方法で合成した。
【0040】
実施例1
25mm×75mm×1.1mmのガラス基板上にITOを蒸着法にて50nmの厚さに蒸着したもの(東京三容真空(株)製)を透明支持基板とした。この透明支持基板を市販の蒸着装置(真空機工(株)製)の基板ホルダーに固定し、TANBをいれた石英るつぼ、1-アリル-1,2,3,4,5-ペンタフェニルシラシクロペンタジエン(以下APSと略記する)を入れた石英製のるつぼ、マグネシウムを入れたグラファイト製のるつぼ、および銀を入れたグラファイト製のるつぼを装着した。
真空槽を1×10-3Paまで減圧し、TANB入りのるつぼを加熱して、膜厚50nmになるようにTANBを蒸着して正孔輸送層を形成し、次いで、APS入りのるつぼを加熱して、膜厚50nmになるようにAPSを蒸着して発光層を形成した。蒸着速度は0.1〜0.2nm/秒であった。
その後真空槽を2×10-4Paまで減圧し、グラファイト製のるつぼを加熱して、マグネシウムを1.2〜2.4nm/秒の蒸着速度で、同時に銀を0.1〜0.2nm/秒の蒸着速度で蒸着し、有機層の上に200nmのマグネシウムと銀の合金電極を形成することにより、有機EL素子を得た。
ITO電極を陽極、マグネシウムと銀の合金電極を陰極として、6.3Vの直流電圧を印加すると、約20mA/cm2の電流が流れ、輝度約200cd/m2、波長503nmの緑色の発光を得た。
また、80℃において、6.5Vの直流電圧を継続して印加したが、1時間後にも発光していた。
【0041】
実施例2
実施例1で用いたAPSをトリス(8−ヒドロキシキノリン)アルミニウム(以下ALQと略記する)に代えた以外は、実施例1と同様な方法で素子を作成した。
ITO電極を陽極、マグネシウムと銀の混合電極を陰極として、直流電圧5Vを印加すると電流が8mA/cm2程度流れ、緑色の発光を得た。
また、120℃において、5Vの直流電圧を継続して印加したが、1時間後にも発光していた。
【0042】
実施例3
実施例1と同様に、透明支持基板を蒸着装置の基板ホルダーに固定し、TANBをいれた石英るつぼ、TPDを入れた石英製のるつぼ、ALQを入れた石英製のるつぼ、マグネシウムを入れたグラファイト製のるつぼ、および銀を入れたグラファイト製のるつぼを装着した。
真空槽を1×10-3Paまで減圧し、TANB入りのるつぼを加熱して、膜厚10nmになるようにTANBを蒸着して正孔注入層を形成し、次いで、TPD入りのるつぼを加熱して、膜厚40nmになるようにTPDを蒸着して正孔輸送層を形成した。次いで、ALQ入りのるつぼを加熱して、膜厚50nmになるようにALQを蒸着して発光層を形成した。蒸着速度は0.1〜0.2nm/秒であった。
その後、真空槽を2×10-4Paまで減圧し、グラファイト製のるつぼを加熱して、マグネシウムを1.2〜2.4nm/秒の蒸着速度で、同時に銀を0.1〜0.2nm/秒の蒸着速度で蒸着し、有機層の上に200nmのマグネシウムと銀の合金電極を形成することにより、有機EL素子を得た。
ITO電極を陽極、マグネシウムと銀の混合電極を陰極として、直流電圧5.5Vを印加すると約5mA/cm2の電流が流れ、150cd/m2の緑色の発光を得た。
【0043】
実施例4
実施例1と同様に、透明支持基板を蒸着装置の基板ホルダーに固定し、TANBをいれた石英るつぼ、TPDを入れた石英製のるつぼ、9,9'-スピロビシラフルオレンを入れた石英製のるつぼ、マグネシウムを入れたグラファイト製のるつぼ、および銀を入れたグラファイト製のるつぼを装着した。
真空槽を1×10-3Paまで減圧し、TPD入りのるつぼを加熱して、膜厚50nmになるようにTPDを蒸着して正孔輸送層を形成し、次いで、TANB入りのるつぼを加熱して、膜厚20nmになるようにTANBを蒸着して発光層を形成し、次いで、9,9'-スピロビシラフルオレン入りのるつぼを加熱して、膜厚50nmになるように9,9'-スピロビシラフルオレンを蒸着して電子輸送層を形成した。蒸着速度は0.1〜0.2nm/秒であった。
その後、真空槽を2×10-4Paまで減圧し、グラファイト製のるつぼを加熱して、マグネシウムを1.2〜2.4nm/秒の蒸着速度で、同時に銀を0.1〜0.2nm/秒の蒸着速度で蒸着し、有機層の上に200nmのマグネシウムと銀の合金電極を形成することにより、有機EL素子を得た。
ITO電極を陽極、マグネシウムと銀の混合電極を陰極として、直流電圧10Vを印加すると約50mA/cm2の電流が流れ、TANBからの青色の発光を得た。発光波長は445nmであった。
【0044】
実施例5
実施例1と同様に、透明支持基板を蒸着装置の基板ホルダーに固定し、TANBをいれた石英るつぼ、4,4',4''-トリス{N-(3-メチルフェニル)-N-フェニルアミノ}トリフェニルアミンを入れた石英製のるつぼ、2,5-ビス{5-(2-ベンゾ[b]チエニル)チエニル}-1,1,3,4-テトラフェニルシラシクロペンタジエンを入れた石英製のるつぼ、マグネシウムを入れたグラファイト製のるつぼ、および銀を入れたグラファイト製のるつぼを装着した。
真空槽を1×10-3Paまで減圧し、4,4',4''-トリス{N-(3-メチルフェニル)-N-フェニルアミノ}トリフェニルアミン入りのるつぼを加熱して、膜厚30nmになるように4,4',4''-トリス{N-(3-メチルフェニル)-N-フェニルアミノ}トリフェニルアミンを蒸着して正孔注入層を形成し、次いで、TANB入りのるつぼを加熱して、膜厚20nmになるようにTANBを蒸着して正孔輸送層を形成し、次いで、2,5-ビス{5-(2-ベンゾ[b]チエニル)チエニル}-1,1,3,4-テトラフェニルシラシクロペンタジエン入りのるつぼを加熱して、膜厚50nmになるように2,5-ビス{5-(2-ベンゾ[b]チエニル)チエニル}-1,1,3,4-テトラフェニルシラシクロペンタジエンを蒸着して電子輸送性発光層を形成した。蒸着速度は0.1〜0.2nm/秒であった。
その後、真空槽を2×10-4Paまで減圧し、グラファイト製のるつぼを加熱して、マグネシウムを1.2〜2.4nm/秒の蒸着速度で、同時に銀を0.1〜0.2nm/秒の蒸着速度で蒸着し、有機層の上に200nmのマグネシウムと銀の合金電極を形成することにより、有機EL素子を得た。
ITO電極を陽極、マグネシウムと銀の混合電極を陰極として、直流電圧10Vを印加すると約100mA/cm2の電流が流れ、赤色の発光を得た。
【0045】
実施例6
実施例1で用いたTANBを、合成例2で合成した上記化学式(3)で表される化合物に代えた以外は、実施例1と同様な方法で素子を作成した。
ITO電極を陽極、マグネシウムと銀の混合電極を陰極として、6.6Vの直流電圧を印加すると、約20mA/cm2の電流が流れ、輝度約200cd/m2、波長503nmの緑色の発光を得た。
【0046】
比較例1
実施例1で用いたTANBをTPDに代えた以外は、実施例1と同様な方法で有機EL素子を作成した。
ITO電極を陽極、マグネシウムと銀の混合電極を陰極とし、直流電圧を7.5Vを印加すると約20mA/cm2の電流が流れ、200cd/m2の緑色の発光を得た。発光波長は503nmであった。
さらに、80℃で直流電圧を印加すると数秒後に発光しなくなった。
【0047】
比較例2
実施例2で用いたTANBをTAPBに代えた以外は、実施例2と同様な方法で有機EL素子を作成した。
ITO電極を陽極、マグネシウムと銀の混合電極を陰極とし、直流電圧を5Vを印加すると約8mA/cm2の電流が流れ緑色の発光を得た。
さらに、120℃で直流電圧を印加すると数秒後に発光しなくなった。
【0048】
【発明の効果】
本発明によれば、特定のトリナフチルベンゼン誘導体を用いることとしたため、高耐熱性で長寿命な有機EL素子、これに用いられる新規な発光材料、正孔輸送材料及び有機電界発光材料を提供することができる。
即ち、本発明のEL素子は、トリナフチルベンゼン誘導体を有機層として使用していることにより、高発光効率、高耐熱性、長寿命、フルカラー化が容易である。従って、本発明の有機EL素子を用いることにより、フルカラーディスプレーなどの高効率なディスプレイ装置が作成できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a trinaphthylbenzene derivative, a light emitting material using the same, an organic electroluminescent material, and an organic electroluminescent element (hereinafter abbreviated as an organic EL element).
[0002]
[Prior art]
In recent years, organic EL elements have attracted attention as candidates for unprecedented high-brightness flat displays, and their research and development have been activated. An organic EL element has a structure in which a light emitting layer made of an organic material is sandwiched between two electrodes, and holes injected from an anode and electrons injected from a cathode recombine in the light emitting layer to emit light. Organic materials used include low-molecular materials and high-molecular materials, and both are known to provide high-brightness organic EL elements.
[0003]
There are two types of such organic EL elements. One uses a charge transport material added with a fluorescent dye, published by CWTang et al., As a light emitting layer (J. Appl. Phys., 65, 3610). (1989)), and the other is the one using the fluorescent dye itself as the light emitting layer (for example, Japanese Journal of the Applied Physics (Jpn. J. Appl. Phys.), 27, L269). (Element described in (1988)).
[0004]
Organic EL elements using the fluorescent dye itself as a light emitting layer can be broadly divided into three types. The first is a three-layer structure in which a light-emitting layer is sandwiched between a hole-transport layer and an electron-transport layer, and the second is a two-layer structure in which a hole-transport layer and a light-emitting layer are stacked. The second is a two-layer structure in which an electron transport layer and a light-emitting layer are laminated. It is known that the luminous efficiency of the organic EL element is improved by laminating in two or three layers.
[0005]
The hole transport layer and the electron transport layer in the organic EL elements having the above-described configurations each contain a hole and an electron transfer compound, and have a function of transmitting the charge injected from the electrode to the light emitting layer. Yes. The hole injection layer and the electron injection layer are layers containing holes and an electron transfer compound, respectively, and have a function of transferring charges injected from the electrode to the light emitting layer. By interposing the electron injection layer between the electrode and the transport layer, a large amount of charge is injected into the light emitting layer with a lower electric field. The introduction of these layers makes it possible to confine the charge injected from the other electrode in the light emitting layer, so that an organic EL device having excellent light emitting performance such as improved light emission efficiency can be obtained.
[0006]
However, these organic EL elements did not have sufficient performance for practical use. A major cause of this is the lack of durability of the materials used, particularly the poor durability of the hole transport material. When an inhomogeneous portion such as a crystal grain boundary exists in the organic layer of the organic EL element, it is considered that an electric field concentrates on the portion and leads to deterioration and destruction of the element. Therefore, the organic layer is often used in an amorphous state. In addition, the organic EL element is a current injection type element, and if the glass transition point (hereinafter referred to as Tg) of the material used is low, the organic EL element deteriorates due to heat generation during driving. Is required. In particular, in a field requiring high heat resistance such as in-vehicle use, a high Tg material is particularly required, and a material that preferably exceeds 120 ° C. is desired.
In addition, the hole transporting material used has insufficient hole transportability, and the luminous efficiency of the device is not sufficient practically.
[0007]
As a hole transport material used for such an organic EL element, there are few materials suitable for practical use, although a wide variety of materials centering on triphenylamine derivatives are known.
For example, N, N′-diphenyl-N, N′-bis (3-methylphenyl) -4,4′-diaminobiphenyl (hereinafter abbreviated as TPD) has been reported (Applied Physics Letter No. 1). 57, No. 6, No. 531 (1990), this compound had poor thermal stability and had a problem in the lifetime of the device. U.S. Pat. No. 5,047,687, U.S. Pat. No. 4,049,948, U.S. Pat. No. 4,536,457, JP-B-6-32307, JP-A-5-234681, JP-A-5-239455, JP-A-8-87122, and Although many triphenylamine derivatives are described in JP-A-8-259940, there are no compounds having sufficient characteristics.
For example, the Tg of 1,3,5-tris-4- (diphenylamino) phenylbenzene (hereinafter abbreviated as TAPB) described in JP-A-8-259940 is 113 ° C., and the height of Tg Is not enough.
[0008]
Starburst amine derivatives described in JP-A-4-308688, JP-A-6-1972 and Advanced Materials, Vol. 6, page 677, 1994, JP-A-7-126226, JP-A-7-126615 No. 7, JP-A-7-33238, JP-A-7-97355, JP-A-8-48656, JP-A-8-100192 and Journal of the Chemical Society Chemical Communication No. 2175. None of the compounds described on page 1996 have the practically essential properties of high luminous efficiency and long life.
Furthermore, Japanese Patent Application Laid-Open No. 9-194441 reports an example using a naphthylamine derivative, which describes that it is improved from the characteristics of TPD. However, these materials also have sufficient hole transportability and heat resistance. It was not enough.
[0009]
As described above, the hole transport material used in the conventional organic EL device does not have practically sufficient performance, and by using an excellent material, the heat resistance, efficiency, and lifetime of the organic EL device are increased. It was desired to increase.
Furthermore, most organic EL devices emit light from a light emitting layer or an electron transport layer provided separately from the hole transport layer, and few are obtained from the hole transport layer. For this reason, there is a problem of compatibility with the electron transport layer used at the same time, but it is considered that the emission color and emission intensity of the hole transport material itself are also important factors. There are few such materials, although light emission can be extracted from the hole transport layer, although it is expected that the practical value will be higher. In addition, in many cases, such materials have a problem that the emission wavelength is long and the emission of short wavelengths cannot be extracted.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide an organic EL device having a high luminous efficiency and a long lifetime, a novel compound used therefor, and a hole transporting method. It is to provide a material and an organic electroluminescent material.
[0011]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-described problems of conventional organic EL elements, the present inventors can obtain a highly efficient and long-life organic EL element by using a specific trinaphthylbenzene derivative. As a result, the present invention has been completed.
[0012]
That is, the first of the present invention is a trinaphthylbenzene derivative represented by the general formula (1).
[0013]
[Chemical 2]
Figure 0004069505
[0014]
[In general formula (1), R 1 ~ R 6 Each independently represents an aryl group or a heterocyclic group, and when they are adjacent to each other, they may have a condensed structure.
The second aspect of the invention is an organic electroluminescence device using the trinaphthylbenzene derivative represented by the general formula (1). A third aspect of the invention is an organic electroluminescent device having a hole transport layer and containing the trinaphthylbenzene derivative represented by the general formula (1) in the hole transport layer.
[0015]
A fourth aspect of the invention is an organic electroluminescence device having a light emitting layer and containing the trinaphthylbenzene derivative represented by the general formula (1) in the light emitting layer.
A fifth aspect of the invention is an organic electroluminescence device having a hole injection layer and containing the trinaphthylbenzene derivative represented by the general formula (1) in the hole injection layer.
A sixth aspect of the invention is an organic electroluminescent material comprising a trinaphthylbenzene derivative represented by the general formula (1).
A seventh aspect of the invention is a hole transport material comprising a trinaphthylbenzene derivative represented by the general formula (1).
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. Specific examples of the trinaphthylbenzene derivative represented by the general formula (1) of the present invention include the following chemical formulas (2) to ( 5 ) Can be mentioned.
[0017]
[Chemical 3]
Figure 0004069505
[0018]
[Formula 4]
Figure 0004069505
[0019]
[Chemical formula 5]
Figure 0004069505
[0020]
[Chemical 6]
Figure 0004069505
[0022]
These trinaphthylbenzene derivatives can be synthesized using a known synthesis method, and can be obtained, for example, by the method described in the synthesis examples of the present specification.
The trinaphthylbenzene derivative of the present invention itself emits fluorescence and is suitable as a light emitting material. This is due to the introduction of a trinaphthylbenzene group. In particular, since the trinaphthylbenzene of the present invention has a blue emission color, organic EL elements having different emission colors can be obtained by adding other light emitting materials of blue, green and red.
[0023]
In general, the compound used in the organic layer constituting the organic EL element should not form an exciplex with the compound used in the other layer, and the trinaphthylbenzene derivative of the present invention There is also an advantage that it is difficult to form an exciplex. This is also considered to be due to the introduction of a trinaphthylbenzene group.
The organic EL device of the present invention has not only high efficiency but also high durability during storage and driving. This is because the Tg of the trinaphthylbenzene derivative used in the present invention is high. For example, the Tg of the compound represented by the chemical formula (2) (hereinafter abbreviated as TANB) is 173 ° C., which is about 60 ° C. higher than that of TAPB.
The trinaphthylbenzene derivative represented by the general formula (1) of the present invention also has a function as a hole transport material and a hole injection material.
[0024]
The structure of the organic EL device of the present invention includes various modes, but basically contains a trinaphthylbenzene derivative represented by the above general formula (1) between a pair of electrodes (anode and cathode). An organic layer (hereinafter, referred to as a trinaphthylbenzene derivative layer) is sandwiched, and a hole injection material, a hole transport material, a light emitting material, an electron injection material, or an electron transport is formed on the trinaphthylbenzene derivative layer as desired. Materials etc. can be added.
Moreover, when using the trinaphthylbenzene derivative layer of this invention as a light emitting layer, the light of a different wavelength can be generated or luminous efficiency can be improved by adding another light emitting material to this light emitting layer.
Further, these hole injection material, hole transport material, light emitting material, electron injection material and electron transport material are used as a hole injection layer, a hole transport layer, a light emitting layer, an electron injection layer, an electron transport layer, etc. It can also be laminated on a layer containing a trinaphthylbenzene derivative.
[0025]
Specifically, (1) anode / trinaphthylbenzene derivative layer / cathode of the present invention, (2) anode / trinaphthylbenzene derivative layer / luminescent layer / cathode of the present invention, (3) anode / according to the present invention Trinaphthylbenzene derivative layer / light emitting layer / electron injection layer / cathode, (4) anode / hole injection layer / trinaphthylbenzene derivative layer / light emitting layer / electron injection layer / cathode of the present invention, (5) anode / present invention (6) Anode / hole injection layer / linaftylbenzene derivative layer / electron injection layer / cathode of the present invention. Can be mentioned.
In these cases, the hole injection layer and the electron injection layer are not necessarily required, but the light emission efficiency can be improved by providing these layers. It is also possible to introduce an interface layer between the electrode and each layer. Examples of the material used for the interface layer include metal oxides such as vanadium oxide or metal fluorides such as lithium fluoride.
[0026]
The organic EL device of the present invention is preferably supported by a substrate in any of the structures described above. As the substrate, any substrate having mechanical strength, thermal stability and transparency can be used, and glass, a transparent plastic film and the like can be used.
As the anode material of the organic EL device of the present invention, metals, alloys, electrically conductive compounds and mixtures thereof having a work function larger than 4 eV can be used. Specific examples include metals such as Au, CuI, indium tin oxide (hereinafter abbreviated as ITO), SnO. 2 And conductive transparent materials such as ZnO.
[0027]
As the cathode material, metals, alloys, electrically conductive compounds, and mixtures thereof having a work function smaller than 4 eV can be used. Specific examples include calcium, magnesium, lithium, aluminum, magnesium alloy, lithium alloy, and aluminum alloy. Examples of the alloy include aluminum / lithium, magnesium / silver, magnesium / indium, and the like.
In order to efficiently extract light emitted from the organic EL element, it is desirable that at least one of the electrodes has a light transmittance of 10% or more. The sheet resistance as the electrode is preferably several hundred Ω / mm or less. Although the film thickness depends on the properties of the electrode material, it is usually selected in the range of 10 nm to 1 μm, preferably 10 to 400 nm. Such an electrode can be produced by forming a thin film by a method such as vapor deposition or sputtering using the electrode material described above.
[0028]
In addition, these hole injection materials, hole transport materials, light emitting materials, electron injection materials, and electron transport materials can be used as hole injection layers, hole transport layers, light emitting layers, electron injection layers, electron transport layers, and the like as trinaphthylbenzene. It can also be laminated on a layer containing a derivative.
In the organic EL device of the present invention, the materials used such as a hole injection material, a hole transport material, a light emitting material, and an electron injection material are preferably those having a Tg of 100 ° C. or more, more preferably a Tg of 120 ° C. or more. Is.
[0029]
Other hole injection materials and hole transport materials used in the organic EL device of the present invention are those conventionally used as a charge transport material for holes in photoconductive materials, Any known material used for the hole injection layer and the hole transport layer can be selected and used.
For example, carbazole derivatives (N-phenylcarbazole, polyvinylcarbazole, etc.), triarylamine derivatives (TPD, polymers having aromatic tertiary amine in the main chain or side chain, 1,1-bis (4-di-p- Tolylaminophenyl) cyclohexane, N, N'-diphenyl-N, N'-dinaphthyl-4,4'-diaminobiphenyl, 4,4 ', 4''-tris {N- (3-methylphenyl) -N- Phenylamino} triphenylamine, Journal of the Chemical Society, Chemical Communication, page 2175, page 1996 compound, JP-A-57-144558, JP-A-61-62038, JP 61-124949, JP 61-134354, JP 61-134355, JP 61-112164, JP 4-308688 JP-A-6-312979, JP-A-6-267658, JP-A-7-90256, JP-A-7-97355, JP-A-6-1972, JP-A-7-126226, The compounds described in JP-A-7-126615, JP-A-7-33238, JP-A-8-100192 and JP-A-8-48656, Advanced Materials, Vol. 6, page 677, 1994 Starburst amine derivatives described), stilbene derivatives (Proceedings of the 72nd Annual Meeting of the Chemical Society of Japan (II), page 1392, 2PB098), phthalocyanine derivatives (metal-free, copper phthalocyanine, etc.) And polysilane.
[0030]
In addition, the hole injection layer and the hole transport layer in the organic EL device of the present invention may be composed of one layer containing one or more of the above compounds, or a plurality of different compounds containing different compounds. It may be a laminate of layers.
Other electron injection materials and electron transport materials used in the organic EL device of the present invention are not particularly limited, and those conventionally used as electron transfer compounds in photoconductive materials, the electron injection layer of organic EL devices In addition, any of known materials used for the electron transport layer can be selected and used.
[0031]
Preferred examples of such electron transfer compounds include diphenylquinone derivatives (described in the Journal of Electrophotographic Society, 30, 3 (1991), etc.), perylene derivatives (described in J. Apply. Phys., 27, 269 (1988), etc. Oxadiazole derivatives (described in the aforementioned literature, Jpn. J. Appl. Phys., 27, L713 (1988), Applied Physics Letter (Appl. Phys. Lett.), 55, 1489 (1989), etc.) Thiophene derivatives (described in JP-A-4-212286), triazole derivatives (described in Jpn.J.Appl.Phys., 32, L917 (1993)), thiadiazole derivatives ( 43th Polymer Society Proceedings, (III) as described in P1a007, etc.), metal complexes of oxine derivatives (as described in IEICE Technical Report, 92 (311), 43 (1992), etc.), quinoxaline Derivative polymers (as described in Jpn. J. Appl. Phys., 33, L250 (1994), etc.), phenanthroline derivatives 43rd polymer debate proceedings, and the like can be mentioned ones) such as described in 14J07.
[0032]
Other light emitting materials used for the light emitting layer of the organic EL device of the present invention include daylight fluorescence as described in Polymer Functional Materials Series “Photofunctional Materials” edited by the Society of Polymer Science, Kyoritsu Shuppan (1991), P236. Known light-emitting materials such as materials, fluorescent brighteners, laser dyes, organic scintillators, and various fluorescent analysis reagents can be used.
Specifically, polycyclic condensed compounds such as anthracene, phenanthrene, pyrene, chrysene, perylene, coronene, rubrene and quinacridone, oligophenylene compounds such as quarterphenyl, 1,4-bis (2-methylstyryl) benzene, 1 , 4-bis (4-methylstyryl) benzene, 1,4-bis (4-methyl-5-phenyl-2-oxazolyl) benzene, 1,4-bis (5-phenyl-2-oxazolyl) benzene, 2, 5-bis (5-tert-butyl-2-benzoxazolyl) thiophene, 1,4-diphenyl-1,3-butadiene, 1,6-diphenyl-1,3,5-hexatriene, 1,1, Scintillators for liquid scintillation such as 4,4-tetraphenyl-1,3-butadiene, metal complexes of oxine derivatives described in JP-A 63-264692, coumarin dyes, dicyanomethylenepyran dyes, dicyanomethylenethiopyran dyes, poly Chin dyes, oxobenzanthracene dyes, xanthene dyes, carbostyryl dyes and perylene dyes, oxazine compounds described in German Patent No. 2534713, Proceedings of the 40th Joint Conference on Applied Physics, 1146 (1993) Preferred are the stilbene derivatives described, the spiro compounds described in JP-A-7-278537, and the oxadiazole compounds described in JP-A-4-363891.
[0033]
Each layer constituting the organic EL device of the present invention can be formed by forming a material to constitute each layer into a thin film by a known method such as a vapor deposition method, a spin coating method, or a casting method.
There is no restriction | limiting in particular about the film thickness of each layer formed in this way, Although it can select suitably according to the property of a raw material, Usually, it selects in the range of 2 nm-5000 nm.
In addition, as a method for thinning the trinaphthylbenzene derivative of the present invention, it is preferable to apply a vapor deposition method from the viewpoint that a homogeneous film can be easily obtained and pinholes are hardly generated. When thinning using a vapor deposition method, the vapor deposition conditions vary depending on the type of trinaphthylbenzene derivative, the intended crystal structure and association structure of the molecular accumulation film, etc., but generally, a boat heating temperature of 50 to 400 ° C., vacuum Degree 10 -6 -10 -3 It is desirable to select appropriately within the ranges of Pa, vapor deposition rate of 0.01 to 50 nm / second, substrate temperature of −150 to + 300 ° C., and film thickness of 5 nm to 5 μm.
[0034]
Next, as an example of a method for producing an organic EL device using the trinaphthylbenzene derivative of the present invention, a method for producing an organic EL device comprising the above-mentioned anode / trinaphthylbenzene derivative layer / cathode will be described. A thin film made of a material for an anode is formed on a suitable substrate by vapor deposition so as to have a film thickness of 1 μm or less, preferably in the range of 10 to 200 nm, and then a trinaphthyl is formed on the anode. A thin film of a benzene derivative is formed as a light emitting layer, and a thin film made of a cathode material is formed on the light emitting layer by a vapor deposition method so as to have a film thickness of 1 μm or less to form a cathode. An element is obtained.
It should be noted that in the production of the organic EL element described above, the production order can be reversed, and the cathode, the light emitting layer, and the anode can be produced in this order.
[0035]
When a DC voltage is applied to the organic EL device thus obtained, the anode may be applied with a positive polarity and the cathode with a negative polarity. When a voltage of about 2 to 40 V is applied, a transparent or translucent electrode is applied. Luminescence can be observed from the side (anode or cathode and both).
The organic EL element also emits light when an alternating voltage is applied. The alternating current waveform to be applied may be arbitrary.
[0036]
【Example】
Next, the present invention will be described in more detail based on examples.
[Tg measurement method]
Tg was measured by using a differential scanning calorimeter to rapidly cool a once melted sample to a glass state and then raise the temperature at 40 ° C./min.
[0037]
Synthesis example 1
<Synthesis of TANB>
Under a nitrogen atmosphere, 6.3 ml of a 1.6 mol / l hexane solution of butyllithium was added dropwise at −78 ° C. to a solution of 3.67 g of N, N-diphenyl-N- (4-bromo-1-naphthyl) amine in 20 ml of THF. . After stirring for 30 minutes, 2.5 g of tetramethylethylenediamine complex of zinc chloride was added and stirred at room temperature for 1 hour. Further, 0.95 g of 1,3,5-tribromobenzene in 10 ml of THF and 0.34 g of dichlorobistriphenylphosphine palladium were added and heated to reflux for 24 hours. After allowing to cool, water was added and extracted with toluene. Low boiling point substances were distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (heptane / toluene = 3/1). The yield was 2.66 g.
The fluorescent color of this compound in toluene was blue-violet, and Tg was 173 ° C.
1 H-NMR (CDCl Three ) Δ = 6.9-7.0 (m, 6H), 7.05-7.10 (m, 12H), 7.18-7.23 (m, 12H), 7.36-7.41 (m, 6H), 7.49 (m, 3H), 7.60 (d, 3H), 7.81 (s, 3H), 8.05 (bd, 3H), 8.25 (bd, 3H).
[0038]
Synthesis example 2
<Synthesis of Compound Represented by Chemical Formula (3)>
N, N-diphenyl-N- (4-bromo-1-naphthyl) amine used in Example 1 was changed to N-phenyl-N- (2-pyridyl) -N- (4-bromo-1-naphthyl) amine The synthesis was carried out in the same manner as in Example 1 except that it was replaced.
[0039]
Synthesis example 3
<Synthesis of Compound Represented by Chemical Formula (5)>
Synthesis was performed in the same manner as in Example 1 except that N, N-diphenyl-N- (4-bromo-1-naphthyl) amine used in Example 1 was replaced with 4-bromo-1-carbazolylnaphthalene. did.
[0040]
Example 1
A transparent support substrate was obtained by depositing ITO to a thickness of 50 nm on a glass substrate of 25 mm × 75 mm × 1.1 mm by a vapor deposition method (manufactured by Tokyo Sanyo Vacuum Co., Ltd.). This transparent support substrate is fixed to a substrate holder of a commercially available vapor deposition apparatus (manufactured by Vacuum Kiko Co., Ltd.), a quartz crucible containing TANB, 1-allyl-1,2,3,4,5-pentaphenylsilacyclopentadiene A quartz crucible containing (hereinafter abbreviated as APS), a graphite crucible containing magnesium, and a graphite crucible containing silver were attached.
1 × 10 vacuum chamber -3 The pressure is reduced to Pa, the TANB-containing crucible is heated, TANB is deposited to a film thickness of 50 nm to form a hole transport layer, and then the APS-containing crucible is heated to a film thickness of 50 nm. Thus, APS was deposited to form a light emitting layer. The deposition rate was 0.1 to 0.2 nm / second.
Then vacuum the tank 2 × 10 -Four The pressure is reduced to Pa, the graphite crucible is heated, magnesium is deposited at a deposition rate of 1.2 to 2.4 nm / sec, and silver is deposited at a deposition rate of 0.1 to 0.2 nm / sec. An organic EL element was obtained by forming an alloy electrode of 200 nm magnesium and silver on the layer.
When a direct current voltage of 6.3 V is applied with the ITO electrode as the anode and the magnesium and silver alloy electrode as the cathode, about 20 mA / cm 2 Current flows and the brightness is about 200 cd / m 2 A green light emission having a wavelength of 503 nm was obtained.
Further, at 80 ° C., a DC voltage of 6.5 V was continuously applied, but light was emitted even after 1 hour.
[0041]
Example 2
A device was prepared in the same manner as in Example 1 except that APS used in Example 1 was replaced with tris (8-hydroxyquinoline) aluminum (hereinafter abbreviated as ALQ).
With an ITO electrode as the anode and a mixed electrode of magnesium and silver as the cathode, when a DC voltage of 5 V is applied, the current is 8 mA / cm. 2 After a while, green light emission was obtained.
Further, although a DC voltage of 5 V was continuously applied at 120 ° C., light was emitted even after 1 hour.
[0042]
Example 3
As in Example 1, a transparent support substrate is fixed to a substrate holder of a vapor deposition apparatus, a quartz crucible containing TANB, a quartz crucible containing TPD, a quartz crucible containing ALQ, and a graphite containing magnesium. A crucible made of graphite and a graphite crucible containing silver were attached.
1 × 10 vacuum chamber -3 The pressure is reduced to Pa, the TANB-containing crucible is heated, TANB is deposited to a film thickness of 10 nm to form a hole injection layer, and then the TPD-containing crucible is heated to a film thickness of 40 nm. Thus, TPD was vapor-deposited to form a hole transport layer. Next, the crucible containing ALQ was heated, and ALQ was vapor-deposited to a film thickness of 50 nm to form a light emitting layer. The deposition rate was 0.1 to 0.2 nm / second.
Then the vacuum chamber is 2 × 10 -Four The pressure is reduced to Pa, the graphite crucible is heated, magnesium is deposited at a deposition rate of 1.2 to 2.4 nm / sec, and silver is deposited at a deposition rate of 0.1 to 0.2 nm / sec. An organic EL element was obtained by forming an alloy electrode of 200 nm magnesium and silver on the layer.
When a direct current voltage of 5.5 V is applied using an ITO electrode as an anode and a mixed electrode of magnesium and silver as a cathode, about 5 mA / cm 2 Current flowed, and green light emission of 150 cd / m 2 was obtained.
[0043]
Example 4
As in Example 1, a transparent support substrate is fixed to a substrate holder of a vapor deposition apparatus, a quartz crucible containing TANB, a quartz crucible containing TPD, and a quartz made of 9,9′-spirobisilafluorene. A crucible made of graphite, a graphite crucible containing magnesium, and a graphite crucible containing silver were attached.
1 × 10 vacuum chamber -3 The pressure is reduced to Pa, the crucible containing TPD is heated, TPD is deposited to a film thickness of 50 nm to form a hole transport layer, and then the crucible containing TANB is heated to a film thickness of 20 nm. TANB is vapor-deposited to form a light emitting layer, and then a 9,9'-spirobisilafluorene-containing crucible is heated to deposit 9,9'-spirobisilafluorene to a film thickness of 50 nm. Thus, an electron transport layer was formed. The deposition rate was 0.1 to 0.2 nm / second.
Then the vacuum chamber is 2 × 10 -Four The pressure is reduced to Pa, the graphite crucible is heated, magnesium is deposited at a deposition rate of 1.2 to 2.4 nm / sec, and silver is deposited at a deposition rate of 0.1 to 0.2 nm / sec. An organic EL element was obtained by forming an alloy electrode of 200 nm magnesium and silver on the layer.
When an ITO electrode is used as an anode and a mixed electrode of magnesium and silver is used as a cathode and a DC voltage of 10 V is applied, it is about 50 mA / cm. 2 Current was emitted, and blue light emission from TANB was obtained. The emission wavelength was 445 nm.
[0044]
Example 5
As in Example 1, the transparent support substrate is fixed to the substrate holder of the vapor deposition apparatus, and the quartz crucible containing TANB is 4,4 ′, 4 ″ -tris {N- (3-methylphenyl) -N-phenyl. Quartz crucible with amino} triphenylamine, quartz with 2,5-bis {5- (2-benzo [b] thienyl) thienyl} -1,1,3,4-tetraphenylsilacyclopentadiene A crucible made of graphite, a graphite crucible containing magnesium, and a graphite crucible containing silver were attached.
1 × 10 vacuum chamber -3 The pressure is reduced to Pa, and the crucible containing 4,4 ′, 4 ″ -tris {N- (3-methylphenyl) -N-phenylamino} triphenylamine is heated to obtain a film thickness of 30 nm. 4 ', 4''-tris {N- (3-methylphenyl) -N-phenylamino} triphenylamine is deposited to form a hole injection layer, and then the TANB crucible is heated to form a film. TANB is deposited to a thickness of 20 nm to form a hole transport layer, and then 2,5-bis {5- (2-benzo [b] thienyl) thienyl} -1,1,3,4-tetra A crucible containing phenylsilacyclopentadiene is heated to reach 2,5-bis {5- (2-benzo [b] thienyl) thienyl} -1,1,3,4-tetraphenylsila Cyclopentadiene was deposited to form an electron transporting light emitting layer. The deposition rate was 0.1 to 0.2 nm / second.
Then the vacuum chamber is 2 × 10 -Four The pressure is reduced to Pa, the graphite crucible is heated, magnesium is deposited at a deposition rate of 1.2 to 2.4 nm / sec, and silver is deposited at a deposition rate of 0.1 to 0.2 nm / sec. An organic EL element was obtained by forming an alloy electrode of 200 nm magnesium and silver on the layer.
When a direct current voltage of 10 V is applied with an ITO electrode as an anode and a mixed electrode of magnesium and silver as a cathode, about 100 mA / cm 2 Current flowed, and red light emission was obtained.
[0045]
Example 6
A device was produced in the same manner as in Example 1 except that TANB used in Example 1 was replaced with the compound represented by the above chemical formula (3) synthesized in Synthesis Example 2.
When a direct current voltage of 6.6 V is applied using an ITO electrode as an anode and a mixed electrode of magnesium and silver as a cathode, about 20 mA / cm 2 Current flows and the brightness is about 200 cd / m 2 A green light emission having a wavelength of 503 nm was obtained.
[0046]
Comparative Example 1
An organic EL element was produced in the same manner as in Example 1 except that TANB used in Example 1 was replaced with TPD.
When the ITO electrode is the anode, the mixed electrode of magnesium and silver is the cathode, and a DC voltage of 7.5 V is applied, it is about 20 mA / cm. 2 Current of 200 cd / m 2 Of green light emission. The emission wavelength was 503 nm.
Furthermore, when a DC voltage was applied at 80 ° C., light emission stopped after a few seconds.
[0047]
Comparative Example 2
An organic EL device was produced in the same manner as in Example 2 except that TANB used in Example 2 was replaced with TAPB.
When the ITO electrode is the anode, the mixed electrode of magnesium and silver is the cathode, and a DC voltage of 5 V is applied, about 8 mA / cm 2 Current flowed and green emission was obtained.
Furthermore, when a DC voltage was applied at 120 ° C., light emission stopped after a few seconds.
[0048]
【The invention's effect】
According to the present invention, since a specific trinaphthylbenzene derivative is used, a highly heat-resistant and long-life organic EL device, a novel light-emitting material, a hole transport material, and an organic electroluminescent material used therefor are provided. be able to.
In other words, the EL element of the present invention uses a trinaphthylbenzene derivative as an organic layer, and thus can easily achieve high luminous efficiency, high heat resistance, long life, and full color. Therefore, by using the organic EL element of the present invention, a highly efficient display device such as a full color display can be created.

Claims (8)

一般式(1)で表されるトリナフチルベンゼン誘導体。
Figure 0004069505
[一般式(1)中、R〜Rはそれぞれ独立にアリール基、またはヘテロ環基を示し、それらが隣接している場合には、互いに縮合した構造のものであってもよい]
A trinaphthylbenzene derivative represented by the general formula (1).
Figure 0004069505
[In General Formula (1), R 1 to R 6 each independently represents an aryl group or a heterocyclic group, and when they are adjacent to each other, they may have a condensed structure.
一般式(1)において、RIn the general formula (1), R 1 〜R~ R 6 はそれぞれ独立にフェニル基、またはピリジル基であり、それらが隣接している場合には、互いに縮合してカルバゾリル基を形成してもよい、請求項1に記載のトリナフチルベンゼン誘導体。Are each independently a phenyl group or a pyridyl group, and when they are adjacent to each other, they may be condensed with each other to form a carbazolyl group. 請求項1、または2に記載のトリナフチルベンゼン誘導体を用いてなる有機電界発光素子。The organic electroluminescent device obtained by using the trinaphthyl benzene derivative according to claim 1 or 2,. 正孔輸送層を有し、この正孔輸送層に請求項1、または2に記載のトリナフチルベンゼン誘導体を含有している有機電界発光素子。The organic electroluminescent element which has a hole transport layer and contains the trinaphthylbenzene derivative of Claim 1 or 2 in this hole transport layer. 発光層を有し、この発光層に請求項1、または2に記載のトリナフチルベンゼン誘導体を含有している有機電界発光素子。The organic electroluminescent element which has a light emitting layer and contains the trinaphthylbenzene derivative of Claim 1 or 2 in this light emitting layer. 正孔注入層を有し、この正孔注入層に請求項1、または2に記載のトリナフチルベンゼン誘導体を含有している有機電界発光素子。A hole injection layer, an organic electroluminescent device containing the trinaphthyl benzene derivative according to claim 1 or 2, the hole injection layer. 請求項1、または2に記載のトリナフチルベンゼン誘導体からなる有機電界発光材料。The organic electroluminescent material comprising a trinaphthyl benzene derivative according to claim 1 or 2,. 請求項1、または2に記載のトリナフチルベンゼン誘導体からなる正孔輸送材料。Hole transport material comprising a trinaphthyl benzene derivative according to claim 1 or 2,.
JP21073398A 1998-07-27 1998-07-27 Trinaphthylbenzene derivative and organic electroluminescence device using the same Expired - Fee Related JP4069505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21073398A JP4069505B2 (en) 1998-07-27 1998-07-27 Trinaphthylbenzene derivative and organic electroluminescence device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21073398A JP4069505B2 (en) 1998-07-27 1998-07-27 Trinaphthylbenzene derivative and organic electroluminescence device using the same

Publications (2)

Publication Number Publication Date
JP2000044519A JP2000044519A (en) 2000-02-15
JP4069505B2 true JP4069505B2 (en) 2008-04-02

Family

ID=16594217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21073398A Expired - Fee Related JP4069505B2 (en) 1998-07-27 1998-07-27 Trinaphthylbenzene derivative and organic electroluminescence device using the same

Country Status (1)

Country Link
JP (1) JP4069505B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001060942A1 (en) * 2000-02-18 2001-08-23 Taiho Industries, Co., Ltd Fluorescent substances
TW532048B (en) * 2000-03-27 2003-05-11 Idemitsu Kosan Co Organic electroluminescence element
JP3870102B2 (en) * 2001-02-22 2007-01-17 キヤノン株式会社 Organic light emitting device
JP4707082B2 (en) * 2002-11-26 2011-06-22 コニカミノルタホールディングス株式会社 Organic electroluminescence element and display device
JP5057633B2 (en) * 2003-08-25 2012-10-24 三菱化学株式会社 Organic compounds having m-linked aromatic 6-membered rings
JP4476594B2 (en) * 2003-10-17 2010-06-09 淳二 城戸 Organic electroluminescent device
KR100972993B1 (en) 2009-08-03 2010-07-30 주식회사 유피케미칼 Organic compounds for organic electroluminescent device and organic electroluminescent device using same
JP4926229B2 (en) * 2009-11-11 2012-05-09 淳二 城戸 Organic electroluminescent device
KR101841351B1 (en) * 2015-09-11 2018-03-22 주식회사 엘지화학 Heterocyclic compound and organic light emitting device using the same

Also Published As

Publication number Publication date
JP2000044519A (en) 2000-02-15

Similar Documents

Publication Publication Date Title
JP3965800B2 (en) Organic electroluminescent device using triarylamine derivative
JP4090874B2 (en) Organic electroluminescence device
JP4055363B2 (en) Borane derivatives and organic electroluminescent devices
KR100825211B1 (en) Cyclic tertiary amine compound and organic electroluminescent device containing the compound
JP4545243B2 (en) Diaminonaphthalene derivative and organic electroluminescence device using the same
KR100806059B1 (en) Organic electroluminescent device comprising dipyridylthiophene derivative
JPH10265773A (en) Positive hole injection material for organic electroluminescence element and organic electroluminescence element using the same
JP3985311B2 (en) Amine derivative and organic electroluminescence device using the same
JP4604312B2 (en) Benzothiophene derivative and organic electroluminescence device using the same
JPH11338172A (en) Naphthalene derivative and organic electroluminescent element using same
JP3579730B2 (en) Organic electroluminescent device using quinoxaline derivative
JP4069505B2 (en) Trinaphthylbenzene derivative and organic electroluminescence device using the same
JP4792687B2 (en) Charge transport material, light-emitting material containing diazapentacene derivative, and organic electroluminescent device using the same
JP3726316B2 (en) Electroluminescent device
JP2003277744A (en) Material for organic electroluminescent element and organic electroluminescent element obtained using the same
JPH1154280A (en) Organic electroluminescent element using naphthylamine derivative
JPH08183953A (en) Organic electric field element using oxadiazole derivative
JP2004146110A (en) Organic electroluminescent element containing dihydrophenazine derivative in positive electrode buffer layer
JP2002117979A (en) Organic el element containing dithiafulvene derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees