JP4049726B2 - Foam cooling air ring apparatus and foam manufacturing apparatus - Google Patents

Foam cooling air ring apparatus and foam manufacturing apparatus Download PDF

Info

Publication number
JP4049726B2
JP4049726B2 JP2003324734A JP2003324734A JP4049726B2 JP 4049726 B2 JP4049726 B2 JP 4049726B2 JP 2003324734 A JP2003324734 A JP 2003324734A JP 2003324734 A JP2003324734 A JP 2003324734A JP 4049726 B2 JP4049726 B2 JP 4049726B2
Authority
JP
Japan
Prior art keywords
foam
air
cooling
manufacturing apparatus
air ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003324734A
Other languages
Japanese (ja)
Other versions
JP2005088356A (en
Inventor
充宏 金田
友浩 樽野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003324734A priority Critical patent/JP4049726B2/en
Publication of JP2005088356A publication Critical patent/JP2005088356A/en
Application granted granted Critical
Publication of JP4049726B2 publication Critical patent/JP4049726B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は熱可塑性樹脂の発泡押出成形に用いる発泡体冷却用エアリング装置(エア吹き出し装置)及び発泡体製造装置に関する。さらに詳しくは、サーキュラーダイなどから押出成形される円筒状の発泡押出シートを高速で成形する際に特に有用な冷却効果が高く且つ長期間安定して成形することのできる発泡体冷却用エアリング装置及び発泡体製造装置に関する。本発明は、また、前記発泡体製造装置を用いた発泡体の製造法に関する。   The present invention relates to a foam cooling air ring device (air blowing device) and a foam production device used for foam extrusion of a thermoplastic resin. More specifically, a foam cooling air ring device that has a particularly high cooling effect and can be stably molded for a long period of time, which is particularly useful when molding a cylindrical foam extrusion sheet extruded from a circular die or the like at high speed. And a foam manufacturing apparatus. The present invention also relates to a foam production method using the foam production apparatus.

熱可塑性樹脂の発泡押出成形により発泡シート或いは発泡フィルムを製造する場合、通常、サーキュラーダイ(環状ダイ)から押し出された樹脂はダイ出口から発泡して円筒状となり、押出方向に向かってその直径が次第に大きくなる。発泡体の直径が最大になった状態から、該発泡体の内側に金属製の円筒状冷却装置(マンドレル)を通して、金属面との接触により発泡体を内側から冷却すると同時に、発泡体の外側に配設されたリング状の吹き出し口を有するエアリング装置からのエアにより発泡体を外側から冷却する。すなわち、発泡体は内側及び外側の両側から冷却される。発泡体は冷却後、直径の一部が発泡体の押出方向に対して平行に設置されたカッターにより切断され、平板状のシート状物としてニップロールで引き取られる。   When a foam sheet or a foam film is produced by foaming extrusion molding of a thermoplastic resin, the resin extruded from a circular die (annular die) is usually foamed from a die outlet to become a cylindrical shape, and its diameter increases in the extrusion direction. Gradually grows. From the state in which the diameter of the foam is maximized, a metal cylindrical cooling device (mandrel) is passed through the inside of the foam to cool the foam from the inside by contact with the metal surface, and at the same time to the outside of the foam. The foam is cooled from the outside by air from an air ring device having a ring-shaped outlet. That is, the foam is cooled from both the inside and outside. After the foam is cooled, a part of the diameter is cut by a cutter installed parallel to the extrusion direction of the foam, and is taken up as a flat sheet by a nip roll.

発泡体の製造現場では、生産性を向上させるため処理量を多くすることが行われる。処理量は押出機の回転数を上げることで増大できる。また、発泡体の柔軟性の向上や材料削減などの理由から発泡倍率を向上させることも行われる。発泡倍率は発泡剤の量や発泡体製造時の操作条件により調整できる。このように、処理量を多くしたり、発泡倍率を大きくすると、一般には厚みが大きくなるが、それに伴い、発泡体の冷却時に冷えにくくなるという問題が生じる。また、発泡倍率が大きくなると共に発泡時の押出速度が速くなることから、効率よく発泡体を冷却しないと、冷却不十分による発泡体の収縮やシートの皺などが発生し、外観が損ねられたり、要求特性を得ることができなくなる。   In the foam manufacturing site, the amount of processing is increased in order to improve productivity. The throughput can be increased by increasing the number of revolutions of the extruder. In addition, the expansion ratio is also increased for reasons such as improvement of flexibility of the foam and reduction of materials. The expansion ratio can be adjusted by the amount of the foaming agent and the operating conditions at the time of foam production. As described above, when the processing amount is increased or the foaming ratio is increased, the thickness is generally increased. However, there is a problem that it is difficult to cool the foam when it is cooled. In addition, since the expansion ratio is increased and the extrusion speed at the time of foaming is increased, if the foam is not cooled efficiently, shrinkage of the foam due to insufficient cooling, sheet wrinkling, etc. may occur and the appearance may be impaired. The required characteristics cannot be obtained.

冷却効率を向上させるための施策として、発泡体を内側から冷却する円筒状冷却装置(マンドレル)のサイズを大きくすることが考えられる。しかし、この方法ではスペースの問題、装置コストの問題に加えて、表面抵抗の増大による発泡体の成形性の低下等の問題が生じる。そこで、他の施策として、発泡体を外側から冷却するエアリングでの冷却能力を向上させることが考えられる。エアリングでの冷却能力を向上させるには、エアの風量を増大させる方法、エアの温度を低下させる方法、エアの吹きつけ面積を増大させる方法などが挙げられる。しかし、エアの風量を上げると、局所的にエアの圧力が発泡体にかかってシートが変形したり、エアが環状ダイや周辺の加熱ヒーターに当たり、温度が低下して発泡性が不安定になるという問題が生じる。また、エアの温度を下げるには、温度制御用システムが別途必要となり、設備面での負担が大きくなる。エアの吹き付け面積を増大させる場合には、全体として風量を増加させる必要があり、エア風量を大きくするための設備が別途必要になる。   As a measure for improving the cooling efficiency, it is conceivable to increase the size of a cylindrical cooling device (mandrel) for cooling the foam from the inside. However, in this method, in addition to the problem of space and the cost of the apparatus, problems such as a decrease in moldability of the foam due to an increase in surface resistance occur. Therefore, as another measure, it is conceivable to improve the cooling capacity of the air ring that cools the foam from the outside. In order to improve the cooling capacity in the air ring, a method of increasing the air flow rate, a method of reducing the air temperature, a method of increasing the air blowing area, and the like can be mentioned. However, when the air flow rate is increased, the air pressure is locally applied to the foam and the sheet is deformed, or the air hits the annular die and the surrounding heater, and the temperature drops and the foamability becomes unstable. The problem arises. Moreover, in order to lower the temperature of the air, a separate temperature control system is required, which increases the burden on the facility. When the air blowing area is increased, it is necessary to increase the air volume as a whole, and a separate facility for increasing the air air volume is required.

特開平5−228993号公報JP-A-5-228993

特開平5−169529号公報JP-A-5-169529

従って、本発明の目的は、発泡倍率の高い発泡体や発泡速度の速い樹脂発泡体の製造において、大規模な装置の設備負担を必要とすることなく、しかも発泡体の外観等の品質を損なうことなく、環状ダイより押し出された発泡体を効率よく十分に冷却できる発泡体冷却用エアリング装置を提供することにある。
本発明の他の目的は、シート成形用環状ダイや加熱ヒーターなどの周辺の機器・部材等にエアの当たるのを防止できる発泡体冷却用エアリング装置を提供することにある。
本発明のさらに他の目的は、発泡倍率の高い発泡体や発泡速度の速い発泡体であっても、品質を損なうことなく安定して且つ生産効率よく製造できる発泡体製造装置及び発泡体の製造法を提供することにある。
Accordingly, an object of the present invention is to reduce the quality of the foam appearance and the like without requiring a large equipment load in the production of a foam having a high foaming ratio or a resin foam having a fast foaming speed. An object of the present invention is to provide a foam cooling air ring device that can efficiently and sufficiently cool a foam extruded from an annular die.
Another object of the present invention is to provide a foam cooling air ring device capable of preventing air from hitting peripheral equipment such as a sheet forming annular die and a heater.
Still another object of the present invention is to produce a foam production apparatus and a foam which can be produced stably and efficiently without impairing the quality even if the foam has a high expansion ratio or a foam having a high foaming speed. To provide a law.

本発明者らは、上記の目的を達成するために鋭意検討した結果、環状ダイから押し出された発泡体の外表面の冷却に使用する発泡体冷却用エアリング装置のエア吹き出し角度を特定の範囲内に設定すると、処理量が大きい場合や発泡倍率が高い場合であっても発泡体の外観や要求性能を損なうことなく、効率よく冷却できることを見出し、本発明を完成した。   As a result of intensive studies to achieve the above object, the present inventors have determined the air blowing angle of the foam cooling air ring device used for cooling the outer surface of the foam extruded from the annular die within a specific range. When it is set within the range, even when the amount of treatment is large or the foaming ratio is high, it has been found that the foam can be efficiently cooled without impairing the appearance and required performance of the foam, and the present invention has been completed.

すなわち、本発明は、押出機の環状ダイから押し出された円筒状の発泡体の内側表面を冷却するマンドレルと、押出機の環状ダイから押し出された円筒状の発泡体の外側表面を冷却する発泡体冷却用エアリング装置とを有する発泡体製造装置であって、発泡体冷却用エアリング装置が、該発泡体の外側周方向にリング状のエア吹き出し口を有すると共に、エア吹き出し口の外側に、吹き出したエアを整流するためのガイド部を備えており、該エア吹き出し口の吹き出し角度が発泡体の押出方向に対して発泡体の外方に0°〜45°の範囲であることを特徴とする発泡体製造装置を提供する。 That is, the present invention provides a mandrel that cools the inner surface of a cylindrical foam extruded from an annular die of an extruder, and a foam that cools the outer surface of a cylindrical foam extruded from the annular die of an extruder. A foam manufacturing apparatus having a body cooling air ring device, wherein the foam cooling air ring device has a ring-shaped air outlet in an outer circumferential direction of the foam and is provided outside the air outlet. And a guide portion for rectifying the blown air, wherein the blowout angle of the air blowout port is in the range of 0 ° to 45 ° outward of the foam with respect to the extrusion direction of the foam. The foam manufacturing apparatus is provided.

この発泡体製造装置は、エア吹き出し口の外側に、吹き出したエアを整流するためのガイド部であって、該ガイド部のガイド方向が発泡体の押出方向に対して発泡体の外方に0°の方向であるガイド部を備えていてもよい。また、ガイド部の長さは、エアリング本体の長さ〜マンドレルの長さの1/2の範囲であってもよい。 This foam manufacturing apparatus is a guide part for rectifying the blown air outside the air outlet, and the guide direction of the guide part is 0 on the outside of the foam with respect to the extrusion direction of the foam. You may provide the guide part which is the direction of (degree). Further, the length of the guide portion may be in the range of 1/2 of the length of the air ring body to the length of the mandrel.

この発泡体製造装置は、ポリオレフィン系樹脂発泡体製造用に用いてもよい。You may use this foam manufacturing apparatus for polyolefin resin foam manufacture.

本発明は、さらに、発泡可能な熱可塑性樹脂組成物を上記の発泡体製造装置に供して発泡成形することを特徴とする発泡体の製造法を提供する。   The present invention further provides a method for producing a foam, wherein the foamable thermoplastic resin composition is subjected to foam molding using the foam production apparatus.

本発明の発泡体冷却用エアリング装置によれば、発泡倍率の高い発泡体や発泡速度の速い樹脂発泡体の製造において、大規模な装置の設備負担を必要とすることなく、しかも発泡体の外観等の品質を損なうことなく、環状ダイより押し出された発泡体を効率よく十分に冷却することができる。また、シート成形用環状ダイや加熱ヒーターなどの周辺の機器・部材等にエアの当たるのを抑制又は防止することができる。
本発明の発泡体製造装置及び発泡体の製造法によれば、発泡倍率の高い発泡体や発泡速度の速い発泡体であっても、品質を損なうことなく安定して且つ生産効率よく製造することができる。
According to the air cooling device for foam cooling of the present invention, in the production of a foam having a high foaming ratio or a resin foam having a fast foaming speed, the equipment load of a large-scale device is not required, and The foam extruded from the annular die can be efficiently and sufficiently cooled without deteriorating the quality such as the appearance. Further, it is possible to suppress or prevent the air from hitting peripheral devices / members such as a sheet-forming annular die and a heater.
According to the foam production apparatus and foam production method of the present invention, a foam having a high foaming ratio or a foam having a high foaming speed can be produced stably and efficiently without impairing the quality. Can do.

以下に、本発明を必要に応じて図面を参照しつつ詳細に説明する。図1は本発明の発泡体製造装置の一例を示す概略図である。この発泡体製造装置は、環状ダイ(サーキュラーダイ)を備えた押出機1と、環状ダイから押し出された円筒状の発泡体の外側表面を冷却するためのエアリング装置4と、前記円筒状の発泡体の内側表面を冷却するための円筒状冷却装置(マンドレル)5と、冷却された発泡体の直径の一部を切断してシート状に展開するためのカッター6と、シート状の発泡体を挟みながら引き取るニップロール7と、該シート状の発泡体を巻き取る巻き取り機(図示せず)とから構成されている。xは円筒状発泡体の中心軸を示す。L0はマンドレルの長さである。 Hereinafter, the present invention will be described in detail with reference to the drawings as necessary. FIG. 1 is a schematic view showing an example of the foam production apparatus of the present invention. The foam manufacturing apparatus includes an extruder 1 provided with an annular die (circular die), an air ring device 4 for cooling an outer surface of a cylindrical foam extruded from the annular die, and the cylindrical shape. A cylindrical cooling device (mandrel) 5 for cooling the inner surface of the foam, a cutter 6 for cutting a part of the diameter of the cooled foam and expanding it into a sheet, and a sheet-like foam A nip roll 7 that takes up the sheet-like foam and a winder (not shown) that winds up the sheet-like foam. x represents the central axis of the cylindrical foam. L 0 is the length of the mandrel.

押出機1において溶融され環状ダイから押し出された樹脂はダイ出口2から発泡成長して円筒状となり、次第に直径が大きくなる。この円筒状発泡体は、直径が最大になった時点3より、内側からは円筒状冷却装置5との接触により冷却され、外側からはエアリング装置4からのエアにより冷却される。発泡体は、冷却後、直径の一部がカッター6により切り裂かれ、ニップロール7を経てシート状物8となる。なお、円筒状の発泡体を製品とする場合には、カッター6及びニップロール7は設ける必要がない。   The resin melted and extruded from the annular die in the extruder 1 is foamed and grown from the die outlet 2 to become a cylindrical shape, and the diameter gradually increases. The cylindrical foam is cooled from the inside by contact with the cylindrical cooling device 5 from the time point 3 when the diameter becomes maximum, and is cooled by the air from the air ring device 4 from the outside. After cooling, a part of the diameter of the foam is cut by the cutter 6, and the sheet 8 is formed through the nip roll 7. In addition, when using a cylindrical foam as a product, it is not necessary to provide the cutter 6 and the nip roll 7.

図2は図1におけるエアリング装置4(本発明の発泡体冷却用エアリング装置の一例)を示す概略部分断面図である。断面はエアリング装置の直径が最も大きい箇所の断面(円筒状発泡体の中心軸xを含む面)である。このエアリング装置4は環状ダイから押し出されて発泡した円筒状発泡体の外側を覆うようにリング状に配設されている。該エアリング装置4は、中心軸を含む縦断面がカタカナのレ字の軸対称の形状を有するリング状の部材4aと、該部材4aの下流側に部材4aと対向して配設されたリング状の部材4bと、該部材4bの下流側に部材4bと結合し、且つ内表面(内壁)が円筒状発泡体の外表面と平行に形成された円筒状の部材(エアリング本体)4cとで構成されている。L1はエアリング本体4cの長さである。部材4bの内表面の一部と部材4cの内表面は面一に形成されており、これが吹き出したエアを整流するためのガイド部を構成する。L2はガイド部の長さを示す。矢印14はエアの流れを示す。 FIG. 2 is a schematic partial sectional view showing the air ring device 4 (an example of the foam cooling air ring device of the present invention) in FIG. The cross section is a cross section (a plane including the central axis x of the cylindrical foam) at the location where the diameter of the air ring device is the largest. The air ring device 4 is arranged in a ring shape so as to cover the outside of a cylindrical foam that is extruded from an annular die and foamed. The air ring device 4 includes a ring-shaped member 4a having an axially symmetric shape with a longitudinal section including a central axis, and a ring disposed on the downstream side of the member 4a so as to face the member 4a. A cylindrical member (air ring main body) 4c coupled to the member 4b on the downstream side of the member 4b and having an inner surface (inner wall) formed in parallel with the outer surface of the cylindrical foam. It consists of L 1 is the length of the air ring body 4c. A part of the inner surface of the member 4b and the inner surface of the member 4c are formed flush with each other, and this constitutes a guide portion for rectifying the blown-out air. L 2 indicates the length of the guide portion. An arrow 14 indicates the flow of air.

冷却用エアは、エアリング装置4の外周部に位置するエア導入部9から導入され、部材4aと部材4bとの間の間隙10を円筒状発泡体の中心軸xに向かって垂直に進み、11の地点で発泡体の押出方向yに対して発泡体の外方(円筒状発泡体の中心軸xを含む断面において該中心軸xとは反対の方向)に0°〜45°の角度となるように向きが変えられ、その角度で吹き出し口12から吹き出される。以下、吹き出し口12におけるエアの吹き出し角度をαとする。図中のzはエアの吹き出し方向を示す。エア吹き出し口12は、エアリング装置4がリング状であることから、発泡体の外側周方向にリング状に形成されている。なお、上記発泡体の押出方向yは、環状ダイから発泡体が押し出される方向であり、環状ダイの中心軸(=円筒状発泡体の中心軸x)と平行な方向である。   Cooling air is introduced from an air introduction portion 9 located on the outer peripheral portion of the air ring device 4, and proceeds vertically through the gap 10 between the members 4a and 4b toward the central axis x of the cylindrical foam, An angle of 0 ° to 45 ° to the outside of the foam at a point 11 (direction opposite to the central axis x in the cross section including the central axis x of the cylindrical foam) with respect to the extrusion direction y of the foam; The direction is changed so that the air is blown out from the air outlet 12 at that angle. Hereinafter, the air blowing angle at the blowing port 12 is defined as α. Z in the figure indicates the air blowing direction. Since the air ring device 4 has a ring shape, the air outlet 12 is formed in a ring shape in the outer circumferential direction of the foam. Note that the extrusion direction y of the foam is a direction in which the foam is pushed out from the annular die, and is parallel to the central axis of the annular die (= the central axis x of the cylindrical foam).

エア吹き出し口におけるエア吹き出し角度αを0°〜45°の範囲に設定すると、適度な強さのエアが長い時間に亘って発泡体表面に当たるため、発泡体が外観を損なうことなく効率よく冷却される。エア吹き出し角度αが0°よりも小さくなると、エアが直接発泡体表面に吹き付けられるため、エア吹き付けによる表面の荒れや凹凸が発生する場合がある。また、エア吹き出し角度αが45°よりも大きいと、発泡体へのエア吹き付けが弱くなり冷却効率が低下する。前記エア吹き出し角度αは、好ましくは0°よりも大きく(例えば5°以上)、40°以下の範囲である。   When the air blowing angle α at the air blowing port is set in the range of 0 ° to 45 °, air of moderate strength strikes the foam surface for a long time, so the foam can be cooled efficiently without impairing the appearance. The When the air blowing angle α is smaller than 0 °, air is directly blown onto the surface of the foam, so that surface roughening or unevenness may occur due to air blowing. On the other hand, when the air blowing angle α is larger than 45 °, the air blowing to the foam is weakened and the cooling efficiency is lowered. The air blowing angle α is preferably larger than 0 ° (for example, 5 ° or more) and in a range of 40 ° or less.

エア吹き出し口12から吹き出たエアはガイド部(部材4bの内表面の一部と部材4cの内表面)に当たって流れが整えられ、円筒状発泡体の外表面に沿って発泡体の押出方向yに流れる。この例では、ガイド方向が、発泡体の押出方向yに対して、円筒状発泡体の中心軸xを含む断面において発泡体の外方に0°の方向(=円筒状発泡体の中心軸xと平行な方向)であるため、エアが外部に発散するのを防ぐことができると共に、発泡体に吹き付けられるエアの方向が発泡体の成形方向と並行流となるので、発泡体が長時間エアに接触されることになり、冷却効率がより向上する。なお、前記ガイド部によるガイド方向の前記角度は0°が好ましいが、±20°の範囲(好ましくは±10°の範囲)であってもよい。   The air blown out from the air blowing port 12 strikes the guide portion (a part of the inner surface of the member 4b and the inner surface of the member 4c) and the flow is adjusted, and in the foam extrusion direction y along the outer surface of the cylindrical foam. Flowing. In this example, the guide direction is a direction of 0 ° outward of the foam in the cross section including the central axis x of the cylindrical foam with respect to the extrusion direction y of the foam (= the central axis x of the cylindrical foam). The direction of the air blown to the foam is parallel to the direction of molding of the foam, so that the foam remains in the air for a long time. The cooling efficiency is further improved. The angle of the guide direction by the guide portion is preferably 0 °, but may be within a range of ± 20 ° (preferably a range of ± 10 °).

ガイド部(吹き出したエアの整流部)の長さL2は、成形条件等により適宜設定されるが、通常はエアリング本体の長さL1〜マンドレルの長さL0の1/2の範囲が好ましい。ガイド部を有する部材の厚みはエアの風圧や自重によって変形しない範囲で適宜設定できるが、装置の小型化の点からできるだけ薄い方が好ましい。また、ガイド部を有する部材は成形条件等により大きさを変更できるように、少なくともその一部が取り外し可能な構造が好ましい。部材4bと部材4cなどの各部材間の固定は、部材同士のねじ込み式による固定方式、ネジなどの第3の部材を用いた固定方式等の何れの方式であってもよい。 The length L 2 of the guide portion (the rectifying portion of the blown air) is appropriately set depending on molding conditions and the like, but is usually in the range of 1/2 of the length L 1 of the air ring body to the length L 0 of the mandrel Is preferred. The thickness of the member having the guide portion can be set as appropriate as long as it is not deformed by the wind pressure of the air or its own weight. Further, it is preferable that at least a part of the member having the guide portion is removable so that the size can be changed depending on molding conditions and the like. The fixing between each member such as the member 4b and the member 4c may be any method such as a fixing method using a screwing method between the members or a fixing method using a third member such as a screw.

エア吹き出し口12と発泡体との距離は一律には決定できないが、冷却効率の点からはなるべく近い方が好ましい。該距離は、一般には1〜10cmの範囲、好ましくは1〜5cmの範囲である。   The distance between the air outlet 12 and the foam cannot be determined uniformly, but is preferably as close as possible from the viewpoint of cooling efficiency. The distance is generally in the range of 1-10 cm, preferably in the range of 1-5 cm.

エアリング装置4の設置する位置は発泡体を冷却可能な位置であれば特に限定されないが、環状ダイから押し出された発泡体が成長し、その直径が最大となる位置よりも装置のニップロール7側(下流側)に設置するのが好ましく、またマンドレル5のニップロール側(下流)端部よりも押出機1側に設置するのがよい。エアリング装置4を発泡体の直径が最大になる位置よりもダイ側に設置した場合には、発泡が充分成長しないうちに発泡が停止してしまうことがある。   The position at which the air ring device 4 is installed is not particularly limited as long as the foam can be cooled. It is preferable to install it on the (downstream side), and it is better to install it on the extruder 1 side than the nip roll side (downstream) end of the mandrel 5. When the air ring device 4 is installed on the die side from the position where the diameter of the foam is maximum, the foaming may stop before the foam grows sufficiently.

本発明の発泡体の製造方法では、発泡可能な熱可塑性樹脂組成物を前記本発明の発泡体製造装置に供して発泡成形する。発泡体の原料となる熱可塑性樹脂としては、発泡剤により発泡可能な樹脂であれば特に限定されず、例えば、ポリオレフィン系樹脂、ポリスチレン系樹脂、ポリエステル(ポリエチレンテレフタレート樹脂等)、ポリ塩化ビニリデン系樹脂、ポリアミド(ポリアミド6、ポリアミド66等)などを使用できる。熱可塑性樹脂は単独で又は2種以上を組み合わせて使用できる。また、熱可塑性樹脂(例えば、ポリオレフィン系樹脂等)とゴム又は熱可塑性エラストマーとを組み合わせて用いることもできる。   In the method for producing a foam of the present invention, the foamable thermoplastic resin composition is subjected to foam molding using the foam production apparatus of the present invention. The thermoplastic resin used as the raw material of the foam is not particularly limited as long as it is a resin that can be foamed by a foaming agent. For example, polyolefin resin, polystyrene resin, polyester (polyethylene terephthalate resin, etc.), polyvinylidene chloride resin Polyamide (polyamide 6, polyamide 66, etc.) can be used. A thermoplastic resin can be used individually or in combination of 2 or more types. Further, a thermoplastic resin (for example, polyolefin-based resin or the like) and rubber or thermoplastic elastomer can be used in combination.

前記熱可塑性樹脂の中でもポリオレフィン系樹脂を使用することが好ましい。特に好ましいポリオレフィン系樹脂には、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン又はプロピレンと他のα−オレフィンとの共重合体、エチレンと酢酸ビニル、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、ビニルアルコール等との共重合体、これらの混合物などが含まれる。前記エチレン、プロピレン以外のα−オレフィンとしては、ブテン−1、ペンテン−1、ヘキセン−1、4−メチルペンテン−1などが例示できる。共重合体はランダム共重合体、ブロック共重合体等の何れであってもよい。これらのポリオレフィン系樹脂は結晶性ポリマーであるため、融点近傍で急激に粘度変化する。そのため、本発明の効果がより顕著に奏される。   Among the thermoplastic resins, it is preferable to use a polyolefin resin. Particularly preferred polyolefin-based resins include, for example, low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, polypropylene, ethylene-propylene copolymer, copolymer of ethylene or propylene and other α-olefins. Copolymers, copolymers of ethylene and vinyl acetate, acrylic acid, acrylic acid esters, methacrylic acid, methacrylic acid esters, vinyl alcohol, etc., and mixtures thereof are included. Examples of the α-olefin other than ethylene and propylene include butene-1, pentene-1, hexene-1, 4-methylpentene-1. The copolymer may be any of a random copolymer and a block copolymer. Since these polyolefin resins are crystalline polymers, the viscosity changes rapidly in the vicinity of the melting point. Therefore, the effect of the present invention is more remarkably exhibited.

熱可塑性樹脂組成物中に含有させる発泡剤としては、物理的発泡剤、化学的発泡剤の何れであってもよい。物理的発泡剤として、例えば、クロロフルオロカーボン類、炭化水素類などの低沸点液体などが挙げられるが、これらに限定されない。環境保護の観点、セル径が小さくセル密度の高い発泡体が得られる点などからすると、二酸化炭素、窒素等の不活性ガス或いは無機ガス(超臨界流体を含む)などが好ましい。   The foaming agent contained in the thermoplastic resin composition may be either a physical foaming agent or a chemical foaming agent. Examples of the physical blowing agent include, but are not limited to, low boiling point liquids such as chlorofluorocarbons and hydrocarbons. From the viewpoint of environmental protection, and from the point of obtaining a foam having a small cell diameter and a high cell density, an inert gas such as carbon dioxide and nitrogen, or an inorganic gas (including a supercritical fluid) is preferable.

熱可塑性樹脂組成物中には、必要に応じて添加剤を含有させてもよい。該添加剤としては特に限定されず、発泡成形に通常用いられる各種添加剤を使用できる。添加剤として、気泡核剤、結晶核剤、可塑剤、滑剤、着色剤、紫外線吸収剤、酸化防止剤、充填剤、補強剤、難燃剤、帯電防止剤、加硫剤、顔料、染料、表面処理剤などが例示される。   An additive may be contained in the thermoplastic resin composition as necessary. The additive is not particularly limited, and various additives usually used for foam molding can be used. Additives include cell nucleating agent, crystal nucleating agent, plasticizer, lubricant, colorant, UV absorber, antioxidant, filler, reinforcing agent, flame retardant, antistatic agent, vulcanizing agent, pigment, dye, surface A processing agent etc. are illustrated.

発泡可能な熱可塑性樹脂組成物を前記発泡体製造装置に供して発泡成形することにより、円筒状、シート状などの発泡体を得ることができる。この発泡体の製造法によれば、押出機の環状ダイから押し出された円筒状の発泡体の表面がエアにより極めて効率よく冷却されるため、発泡倍率の高い発泡体や発泡速度の大きい樹脂発泡体を製造する場合であっても、大規模な装置の設備負担を必要とせず、発泡速度の速い領域における冷却不足が解消され、しかも環状ダイや加熱ヒーター等にエアが当たることを防止できるので、外観等の品質に優れた発泡体を安定して製造することが可能となる。   By subjecting the foamable thermoplastic resin composition to the foam production apparatus and performing foam molding, a foam such as a cylinder or a sheet can be obtained. According to this foam manufacturing method, the surface of the cylindrical foam extruded from the annular die of the extruder is cooled very efficiently by air, so that the foam with a high expansion ratio or the resin foam with a high expansion speed can be obtained. Even when manufacturing a body, it does not require the equipment burden of large-scale equipment, the lack of cooling in the region where the foaming speed is fast is eliminated, and it is possible to prevent the air from hitting the annular die, the heater, etc. Thus, it is possible to stably produce a foam having excellent quality such as appearance.

以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、相対密度は下記の式により算出した。
相対密度={発泡後の密度(発泡体の密度)(g/cm3)}÷{発泡前の密 度(発泡させる前のペレットの密度)(g/cm3)}
EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited at all by these Examples. The relative density was calculated by the following formula.
Relative density = {density after foaming (density of foam) (g / cm 3 )} ÷ {density before foaming (density of pellets before foaming) (g / cm 3 )}

実施例1
密度が0.9g/cm3、メルトフローレート(230℃)が0.5g/10分であるポリプロピレン45重量部、エチレン−プロピレン共重合体系エラストマー45重量部、ポリエチレン系添加剤10重量部、カーボンブラック10重量部、及び平均粒子径1μmの水酸化マグネシウム120重量部を、二軸押出機を用いて混練した後、押出してペレット化した。
得られたペレットを、図1に示す発泡体製造装置(L0=380mm、L1=35mm、L2=37mm、α=5°)を用いて発泡成形し、厚み1.5mmのシート状の発泡体を得た。なお、発泡剤として二酸化炭素を用いた。操作条件は、押出機内の温度200〜240℃、押出機内の圧力15〜20MPa、ダイ温度174℃、ダイ圧力9MPaであり、処理量は50kg/時である。また、エアリング装置におけるエアの流量は250L/分である。
得られた発泡体の相対密度は0.121であった。発泡体の外観は、皺や荒れ、凹凸などは見られず極めて良好であった。
Example 1
45 parts by weight of polypropylene having a density of 0.9 g / cm 3 and a melt flow rate (230 ° C.) of 0.5 g / 10 min, 45 parts by weight of an ethylene-propylene copolymer elastomer, 10 parts by weight of a polyethylene additive, carbon 10 parts by weight of black and 120 parts by weight of magnesium hydroxide having an average particle diameter of 1 μm were kneaded using a twin screw extruder, and then extruded and pelletized.
The obtained pellets were foam-molded using the foam production apparatus (L 0 = 380 mm, L 1 = 35 mm, L 2 = 37 mm, α = 5 °) shown in FIG. A foam was obtained. Carbon dioxide was used as a foaming agent. The operating conditions are a temperature in the extruder of 200 to 240 ° C., a pressure in the extruder of 15 to 20 MPa, a die temperature of 174 ° C., a die pressure of 9 MPa, and a throughput of 50 kg / hour. The air flow rate in the air ring device is 250 L / min.
The relative density of the obtained foam was 0.121. The appearance of the foam was very good with no wrinkles, roughness or irregularities.

本発明の発泡体製造装置の一例を示す概略図である。It is the schematic which shows an example of the foam manufacturing apparatus of this invention. 本発明の発泡体冷却用エアリング装置の一例を示す概略部分断面図である。It is a schematic fragmentary sectional view which shows an example of the air ring apparatus for foam cooling of this invention.

符号の説明Explanation of symbols

1 押出機
2 ダイ出口
4 エアリング装置
4a,4b,4c エアリング装置を構成する部材
5 円筒状冷却装置(マンドレル)
6 カッター
7 ニップロール
8 シート状発泡体
9 エア導入部
12 エア吹き出し口
14 エアの流れ
1 Extruder
2 Die exit
4 Air ring device
4a, 4b, 4c Components constituting the air ring device
5 Cylindrical cooling device (mandrel)
6 Cutter
7 Nip roll
8 Sheet foam
9 Air introduction part
12 Air outlet
14 Air flow

Claims (5)

環状ダイを備えた押出機と、押出機の環状ダイから押し出された円筒状の発泡体の内側表面を冷却するマンドレルと、押出機の環状ダイから押し出された円筒状の発泡体の外側表面を冷却する発泡体冷却用エアリング装置とを有する発泡体製造装置であって、発泡体冷却用エアリング装置が、該発泡体の外側周方向にリング状のエア吹き出し口を有すると共に、エア吹き出し口の外側に、吹き出したエアを整流するためのガイド部を備えており、該エア吹き出し口の吹き出し角度が発泡体の押出方向に対して発泡体の外方に0°〜45°の範囲であることを特徴とする発泡体製造装置。An extruder with an annular die, a mandrel for cooling the inner surface of a cylindrical foam extruded from the annular die of the extruder, and an outer surface of the cylindrical foam extruded from the annular die of the extruder A foam manufacturing apparatus having a foam cooling air ring device for cooling, the foam cooling air ring device having a ring-shaped air outlet in an outer circumferential direction of the foam, and an air outlet Is provided with a guide portion for rectifying the blown air, and the blowout angle of the air blowout port is in the range of 0 ° to 45 ° outward of the foam with respect to the extrusion direction of the foam. The foam manufacturing apparatus characterized by the above-mentioned. イド部のガイド方向が発泡体の押出方向に対して発泡体の外方に0°の方向である請求項1記載の発泡体製造装置 Guide portion of the guide direction foam manufacturing apparatus according to claim 1, wherein the outside of the foam in the direction of 0 ° with respect to the extrusion direction of the foam. ガイド部の長さが、エアリング本体の長さ〜マンドレルの長さの1/2の範囲である請求項2又は3記載の発泡体製造装置。The foam manufacturing apparatus according to claim 2 or 3, wherein the length of the guide portion is in a range of 1/2 of the length of the air ring body to the length of the mandrel. ポリオレフィン系樹脂発泡体製造用である請求項1〜3の何れかの項に記載の発泡体製造装置。It is an object for polyolefin resin foam manufacture, The foam manufacturing apparatus in any one of Claims 1-3. 発泡可能な熱可塑性樹脂組成物を請求項1〜4の何れかの項に記載の発泡体製造装置に供して発泡成形することを特徴とする発泡体の製造法。A foam production method, comprising subjecting a foamable thermoplastic resin composition to the foam production apparatus according to any one of claims 1 to 4 for foam molding.
JP2003324734A 2003-09-17 2003-09-17 Foam cooling air ring apparatus and foam manufacturing apparatus Expired - Lifetime JP4049726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003324734A JP4049726B2 (en) 2003-09-17 2003-09-17 Foam cooling air ring apparatus and foam manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324734A JP4049726B2 (en) 2003-09-17 2003-09-17 Foam cooling air ring apparatus and foam manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2005088356A JP2005088356A (en) 2005-04-07
JP4049726B2 true JP4049726B2 (en) 2008-02-20

Family

ID=34455412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324734A Expired - Lifetime JP4049726B2 (en) 2003-09-17 2003-09-17 Foam cooling air ring apparatus and foam manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP4049726B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102160457B1 (en) * 2018-12-27 2020-09-28 주식회사 휴비스 Cooling device for polyethylene terephthalate foam sheets

Also Published As

Publication number Publication date
JP2005088356A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
US4832770A (en) Method of manufacturing foamed polypropylene resin sheet
KR840001700B1 (en) Method for cooling film bubble of low
US6432525B1 (en) Blow-molded foam and process for producing the same
JP5572364B2 (en) Resin foam sheet
EP3235624B1 (en) Method for producing foam blow-molded article
JP2009241528A (en) Foamed blow-molded article, and its manufacturing method
JP2010270228A (en) Method for producing polypropylene-based resin foam and polypropylene-based resin foam
US4747983A (en) Process and apparatus for manufacturing foamed structures with integral skin
WO2011062141A1 (en) Resin foamed sheet
EP1198333A1 (en) Method for forming an article comprising closed-cell microfoam from thermoplastic
JP2005138508A (en) Method for producing foamed polypropylene resin sheet
TWI552875B (en) Foamed resin sheet and method of manufacturing foamed resin sheet
JP4049726B2 (en) Foam cooling air ring apparatus and foam manufacturing apparatus
JP2011178957A (en) Foamed sheet and foamed resin container
JP3895237B2 (en) Method for producing polypropylene resin foam
JP7201910B2 (en) Foam blow molding resin, method for manufacturing foam blow molding
JP2002036337A (en) Foam of non-crosslinked polyethylene resin, manufacturing method therefor and molding using this foam
JP2001219466A (en) Inflation film, sealant film for retort made up of inflation film and method for forming inflation film
JP4855138B2 (en) Polypropylene resin foam particles and method for producing the same
JP5674585B2 (en) Breathable waterproof filter
JP4256536B2 (en) Method for producing hollow foam blow molded article
JP2007160582A (en) Manufacturing method of foamed blow molded product
JP3585589B2 (en) Inflation molding method
JP5474457B2 (en) Mandrel for manufacturing foam sheet, thermoplastic resin foam sheet manufacturing apparatus, and thermoplastic resin foam sheet manufacturing method
JP2005246849A (en) Plug and manufacturing method of thermoplastic resin foamed sheet using the plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

R150 Certificate of patent or registration of utility model

Ref document number: 4049726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20161207

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term