JP4023329B2 - Optical filter and lighting apparatus using the same - Google Patents

Optical filter and lighting apparatus using the same Download PDF

Info

Publication number
JP4023329B2
JP4023329B2 JP2003035309A JP2003035309A JP4023329B2 JP 4023329 B2 JP4023329 B2 JP 4023329B2 JP 2003035309 A JP2003035309 A JP 2003035309A JP 2003035309 A JP2003035309 A JP 2003035309A JP 4023329 B2 JP4023329 B2 JP 4023329B2
Authority
JP
Japan
Prior art keywords
light
optical filter
wavelength
layer
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003035309A
Other languages
Japanese (ja)
Other versions
JP2004247156A5 (en
JP2004247156A (en
Inventor
慎一 青木
真 山田
修 倉光
達清 内田
敏彦 阪口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003035309A priority Critical patent/JP4023329B2/en
Publication of JP2004247156A publication Critical patent/JP2004247156A/en
Publication of JP2004247156A5 publication Critical patent/JP2004247156A5/ja
Application granted granted Critical
Publication of JP4023329B2 publication Critical patent/JP4023329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catching Or Destruction (AREA)
  • Optical Filters (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光フィルタ及びそれを用いる照明器具に関するものである。
【0002】
【従来の技術】
従来より、特定の波長の光を光フィルタでカットすることによって虫が近寄り難くした照明器具が提供されている。
【0003】
一般に、飛翔昆虫などの虫を誘引しやすい光の分光分布は紫外線にピークがあると言われているので、波長が約380nmまでの光(紫外光)をカットした照明器具や、紫外領域から可視領域の短波長側(約450nm)までの波長の光をカットした照明器具や、さらに短波長側(約600nm)までの波長の光をカットした照明器具が従来より提供されている(例えば特許文献1参照)。
【0004】
【特許文献1】
特開2001−161253号公報(第3頁−第5頁、及び、第1図)
【0005】
【発明が解決しようとする課題】
上述した照明器具の内、波長が約380nmまでの光(紫外光)をカットした照明器具では、紫外光を低減することで虫は近寄りにくくなるが、可視領域の短波長側の光にも虫を誘引する効果があるため、誘虫性の低減効果としては不十分であった。
【0006】
また、紫外領域から可視領域の短波長側(約450nm)までの波長の光をカットした照明器具では、紫外光をカットした照明器具に比べて虫が近寄りにくくなるものの、その光は明らかに黄色く見えるため、一般の照明に用いる場合は点灯時の照明器具の見掛けが悪くなるという問題があった。
【0007】
また、より短波長側(約600nm)の光をカットした照明器具では、さらに虫が近寄りにくくできるが、その光は赤色光となるため、その照明下で人が作業を行う場合には非常に不快に感じたり、作業能力が低下するという問題があった。
【0008】
本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、色調や透光性を損なうことなく、虫が近寄りにくくした光フィルタ及びそれを用いる照明器具を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明では、照明器具に用いられ光源の光から虫を誘引しやすい波長の光を取り除く光フィルタであって、波長が約300nmから約395nmまでの光を略100%カットし、波長が約405nmの光の透過率が約50%以下とし、波長が約450nm以上の光の平均透過率が約50%以上となるようにカット率及び透過率が調整された透光性材料からなることを特徴とする。
【0010】
請求項2の発明では、請求項1の発明において、透光性材料の単層又は複数層の積層体の何れかからなることを特徴とする。
【0014】
請求項の発明では、請求項1の発明において、少なくとも人から視認可能な側の表面に、透光性材料よりも屈折率の高い層を積層したことを特徴とする。
【0017】
請求項の発明では、請求項1の発明において、透光性材料は、波長が約410nm以下の光で励起し、青色領域の光に蛍光発色のピークを有するフォトルミネッセンス材料を添加した乳白色の材料又は拡散材料の何れかからなることを特徴とする。
【0018】
請求項の発明では、請求項1乃至の何れか1つに記載の光フィルタを光源の照射方向に配置したことを特徴とする。
【0019】
【発明の実施の形態】
本発明の実施の形態を図面に基づいて説明する。
【0020】
(実施形態1)
図1は本実施形態の光フィルタ1を用いる照明器具Aの外観図を示し、ポール10の上端にランプ11を収納する箱状のランプ収納部12が設けられており、ランプ収納部12の四方の側面に形成された窓孔に矩形板状の光フィルタ1が取り付けられている。
【0021】
図2は光フィルタ1の断面図を示し、図3(a)に示すような分光スペクトルを有する透光性材料から板状に形成されている。この光フィルタ1は照明器具に用いられてランプ11(光源)の光から虫を誘引しやすい波長の光を取り除くためのものであり、その材料には、アクリル(PMMA)樹脂、ポリカーボネイト(PC)樹脂、ポリスチレン(PS)樹脂、ポリエチレン(PE)樹脂、ポリエチレンテレフタレート(PET)樹脂、PS樹脂とPE樹脂からなるPS/PEアロイ等の透光性合成樹脂の何れかに、紫外線吸収剤や染料や顔料を添加したものが用いられている。そして、紫外線吸収剤や染料や顔料を添加することで、波長が約300nmから約395nmまでの光を略100%カットし、波長が約405nmの光の透過率が約50%以下となり、波長が約450nm以上の光の平均透過率が約50%以上となるようにカット率及び透過率が調整されている。
【0022】
このように各波長の光のカット率及び透過率が調整された光フィルタ1をランプ11の照射方向に配置しているので、ランプ11の光から波長が約300〜約395nmの光を略100%カットするとともに、波長が約405nmの光の透過率を約50%以下とすることで、紫外領域の光を低減して照明器具Aの光に誘引される虫の数を抑制することができる。また、波長が約405nmの光の透過率を約50%以下とし、約450nm以上の光の平均透過率を約50%以上としているので、可視領域の短波長側まで光をカットする場合のように、照射光が黄色味を帯びることはなく、照明器具Aの見掛けを良くできる。なお、ランプ11の光に誘引される虫がさらに低減するためには、波長が約405nmの光の透過率を約10%以下とすることが望ましい。
【0023】
また、虫が誘引されるのを防止しつつ、色調の黄色味を減らすためには、図3(b)に示すように横軸に波長を、縦軸に透過率をとり、波長の1nmの目盛りaが透過率の1%の目盛りbに等しくなるようにして透光性材料の透過率のグラフを作成した場合に、透過率の変化曲線の変曲点における接線Lと横軸とが交差する角度θの正接が2以上であることが望ましい(tanθ≧2)。すなわち、変曲点における接線Lの傾きを大きくすることで、透過率の立ち上がりを大きくして、波長が約450nm以上の光の透過率を約50%以上とすることができ、色調の黄色味を減らすことができる。なお、角度θの正接を3以上とすれば、透過率の立ち上がりをさらに大きくして、色調の黄色味をさらに低減することができる。
【0024】
尚、本実施形態では光フィルタ1を用いる照明器具Aとしてエクステリア用のものを例に説明したが、図1(b)に示すようなシーリングタイプの照明器具Bでは、円環状の蛍光ランプよりなるランプ11’を覆うドーム状のグローブ13を、紫外線吸収剤や染料や顔料を添加した透光性合成樹脂で形成することで、各波長の光のカット率や透過率を調整し、このグローブ13で光フィルタを構成すれば良い。また、図1(c)に示すような天井面に埋込配設されるベースライトタイプの照明器具Cでは、直管形の蛍光ランプよりなるランプ11”の前面(下面)を覆う前面パネル14を、紫外線吸収剤や染料や顔料を添加した透光性合成樹脂で形成することで、各波長の光のカット率や透過率を調整し、この前面パネル14で光フィルタを構成すれば良い。このようにシーリングタイプやベースライトタイプの照明器具B,Cにおいても、ランプ11’,11”の照射方向にグローブ13又は前面パネル14からなる光フィルタをそれぞれ配置することで、上述の照明器具Aと同様、色調を損なうことなく、光に誘引される虫(飛翔昆虫など)の数を低減することができる。
【0025】
また、本実施形態では光フィルタ1を、PMMA樹脂、PC樹脂、PS樹脂、PE樹脂、PET樹脂、PS樹脂とPE樹脂からなるPS/PEアロイ等の透光性合成樹脂の何れかに紫外線吸収剤や染料や顔料を添加したものから形成しているが、ハロゲン化物などを添加することによって各波長におけるカット率及び透過率を上述のように調整した硼珪酸系或いはリン酸系などの透光性ガラスから形成しても良い。また、光フィルタ1の材料を上記のものに限定する趣旨のものではなく、上記のように各波長における光のカット率及び透過率が調整できるのであれば、どのような材料を用いても良い。また、光フィルタ1を、上記の材料からなる単層構造としても良いし、上記の材料からなる複数の層を積層した積層体としても良い。
【0026】
(実施形態2)
本発明の実施形態2を図4に基づいて説明する。本実施形態では、実施形態1で説明した透光性材料からフィルタ層2を形成するとともに、フィルタ層2の少なくとも人から視認可能な側の表面に、フィルタ層2の材料よりもYI値の小さい層3を積層することによって、光フィルタ1を形成している。ここに、YI値とはJIS K7103に規定される黄色味の指数であり、X、Y、Zを光源色の三刺激値とすると、YI値は以下の式で求められる。
【0027】
YI=100×(1.28X−1.06Z)/Y
尚、光フィルタ1を用いる照明器具A〜Cは実施形態1と同様であるので、その説明は省略する。
【0028】
本実施形態ではフィルタ層2の少なくとも人から視認可能な表面に、フィルタ層2よりもYI値の小さい層3を形成しているので、消灯時に照明器具を見たときに、光フィルタ1の黄色味を減少することができ、商品の見掛けを良くできる。光フィルタ1の黄色味を低減するには、YI値をできるだけ小さくすることが望ましく、YI値を3以下とするのが好ましい。また、層3の色が乳白色の場合には黄色味を低減するのに有効である。尚、フィルタ層2の表面にYI値の小さい層3を積層する方法としては、フィルタ層2の形成時に層3を同時に形成しても良いし、フィルタ層2の形成後にフィルム状に形成された層3を貼り付けるようにしても良く、層3の積層方法は問わない。
【0029】
(実施形態3)
本発明の実施形態3を図5に基づいて説明する。本実施形態では、実施形態1で説明した透光性材料からフィルタ層2を形成するとともに、フィルタ層2の少なくとも人から視認可能な側の表面に、フィルタ層2の材料よりも屈折率が高く且つ透光性を有する高屈折率層4を積層することによって、光フィルタ1を形成している。尚、光フィルタ1を用いる照明器具A〜Cは実施形態1と同様であるので、その説明は省略する。
【0030】
上述のように本実施形態ではフィルタ層2の少なくとも人から視認可能な表面に、フィルタ層2よりも屈折率の高い高屈折率層4を形成しており、消灯時に照明器具を見たときに、高屈折率層4が無い場合に比べて表面反射が大きくなるので、フィルタ層2及び高屈折率層4の材料自体の黄色味を識別できなくなり、商品の見掛けを良くできる。なおフィルタ層2が透明な場合は、フィルタ層2の材料自体に添加剤を添加することなく、色調を改善することは難しいが、高屈折率層4を形成することで、フィルタ層2及び高屈折率層4の材料自体の黄色味を識別できなくしているので、消灯時の照明器具の見掛けを良くできる。
【0031】
(実施形態4)
本発明の実施形態4を図6に基づいて説明する。本実施形態では、実施形態1で説明した透光性材料からフィルタ層2を形成するとともに、フィルタ層2の表面に、点灯時のフィルタ層2の色と同色の層5を積層している。尚、光フィルタ1を用いる照明器具A〜Cは実施形態1と同様であるので、その説明は省略する。
【0032】
層5の材料としては、消灯時の色が乳白色で、点灯時に透明になるような材料であって、しかも色調が黄色味の少ない材料であることが必須であり、本実施形態では常温で乳白色であり、熱で溶融すると透明になる蝋を用いている。ここで、層5の材料に常温で乳白色の蝋を用いる場合、フィルタ層2の材料が透明であれば、光を透過させる必要があるフィルタ層2の部位はランプ点灯時に蝋の溶融温度以上になるように照明器具Aを構成する必要がある。また、点灯時に蝋を溶融させることで、ランプの光が層5で遮られるのを防止して、照明器具の発光効率が低減するのを防止できる。なお、層5は適宜の手段によって封止されており、蝋が溶融した際に蝋が漏れるのを防止している。
【0033】
このように、点灯時のフィルタ層2の色(白色)と同色の層5をフィルタ層2の表面に形成しているので、消灯時に光フィルタ1の色が黄色く見えるのを防止して、照明器具Aの見掛けを良くすることができる。
【0034】
尚、本実施形態では層5の材料として蝋を用いているが、層5を蝋に限定する趣旨のものではなく、フィルタ層2の表面に、点灯時のフィルタ層2の色と同色であって、通電されると透明になる液晶の層を形成しても良い。ここで、点灯時には液晶に通電して液晶の層を透明とすることでランプの光が遮られるのを防止して、発光効率が低減するのを防止することができ、消灯時には液晶への通電を停止して液晶の色を点灯時のフィルタ層2の色と同色にすることで、消灯時に光フィルタ1が黄色味を帯びて見えるのを防止して、照明器具の見掛けを良くできる。
【0035】
(実施形態5)
本発明の実施形態5を図7に基づいて説明する。本実施形態ではフィルタ層2’の材料として、波長が410nm以下の光で励起され、青色領域に蛍光発色のピークを有するフォトルミネッセンス材料を添加した乳白色の材料又は拡散材料の何れかを用いている。尚、光フィルタ1を用いる照明器具A〜Cは実施形態1と同様であるので、その説明は省略する。
【0036】
ここで、光フィルタ1の色調を効率良く改善するためには(より白くするためには)、フィルタ層2’の材料に蛍光増白剤などを添加することが望ましく、また光フィルタ1の耐久性を重視するのであれば、蛍光体や蛍光ガラスの粉末などを添加することが望ましい。また、フォトルミネッセンス材料の発光効率をアップするためには、一般的に使用するランプの中でも短波長光をより多く含む光源を使用することが望ましい。
【0037】
以下に、本発明の実施例と比較例について低誘虫性や色調を評価した結果を説明する。
【0038】
(実施例1)
図8は実施例1の光フィルタ1を示し、光フィルタ1は1層のフィルタ層2aからなり、フィルタ層2aの材料として、紫外線吸収剤や染料や顔料を添加することで、波長が約300nmから約395nmまでの光を略100%カットするとともに、波長が約405nmの光を略100%カットし、波長が約450nm以上の光の平均透過率が約90%以上となるようにカット率及び透過率が調整された透明なアクリルを用いており、tanθ=3となっている。
【0039】
(実施例2)
図9は実施例2の光フィルタ1の断面図であり、光フィルタ1は1層のフィルタ層2bからなり、フィルタ層2bの材料として、紫外線吸収剤や染料や顔料を添加することで、波長が約300nmから約395nmまでの光を略100%カットするとともに、波長が約405nmの光を略100%カットし、波長が約450nm以上の光の平均透過率が約50%以上となるようにカット率及び透過率が調整された乳白色のアクリルを用いており、tanθ=2.4となっている。
【0040】
(実施例3)
図10は実施例3の光フィルタ1の断面図であり、光フィルタ1は1層のフィルタ層2cからなり、フィルタ層2cの材料として、紫外線吸収剤や染料や顔料を添加することで、波長が約300nmから約395nmまでの光を略100%カットし、波長が約405nmの光の透過率が約50%以下となり、波長が約450nm以上の光の平均透過率が約90%以上となるようにカット率及び透過率が調整された透明なポリカーボネートを用いており、tanθ=3となっている。
【0041】
(実施例4)
実施例4では、光フィルタ1の材料として、ハロゲン化物などを添加することによって、波長が約300nmから約395nmまでの光を略100%カットするとともに、波長が約405nmの光の透過率が約50%以下となるようにカット率及び透過率が調整された透明なガラスを用いており、tanθ=3.5となっている。
【0042】
(実施例5)
実施例5では、光フィルタ1の材料として、ハロゲン化物などを添加することによって、波長が約300nmから約395nmまでの光を略100%カットするとともに、波長が約405nmの光を略100%カットするようにカット率が調整された透明なガラスを用いており、tanθ=3.5となっている。
【0043】
(実施例6)
図11は実施例6の光フィルタ1の断面図であり、実施例2と同一の材料で形成されたフィルタ層2bの表面に、フィルタ層2bよりもYI値の低い乳白色のアクリルの層3を形成している。
【0044】
(実施例7)
図12は実施例7の光フィルタ1の断面図であり、実施例1と同一の材料で形成されたフィルタ層2aの表面に、フィルタ層2aよりも屈折率の高い、膜厚が0.1μmのアルミナ(AL)の薄膜からなる高屈折率層4を形成している。
【0045】
(実施例8)
図13は実施例8の光フィルタ1の断面図であり、実施例5と同一の材料(透明なガラス)で形成されたフィルタ層2dと、フィルタ層2dに対向配置される板状のソーダガラス6との間に点灯時のフィルタ層2dの色と同色の蝋5’を挟み、フィルタ層2dとソーダガラス6との間を結合するシール材7,7で蝋5’を封止している。蝋5’は、点灯時にはランプの発熱で溶融して透明になり、消灯時には固化して点灯時のフィルタ層2dと同じ色に変化する。
【0046】
(実施例9)
図14は実施例9の光フィルタ1の断面図であり、実施例5と同一の材料で形成されたフィルタ層2dの表面に、点灯時のフィルタ層2の色と同色の液晶5”を形成している。液晶5”の駆動部は照明器具に設けられており、点灯時には駆動部によって液晶5”に通電されて、液晶5”の色が透明に変化するとともに、消灯時には液晶5”への通電が停止されて、点灯時のフィルタ層2の色と同じ色に変化する。
【0047】
(実施例10)
図15は実施例10の光フィルタ1の断面図であり、光フィルタ1は1層のフィルタ層2eからなり、実施例2の光フィルタ1に用いた乳白色のアクリルに、例えばUVITEX(R)OB(商品名)のような蛍光増白材を添加した材料でフィルタ層2eを形成している。
【0048】
(実施例11)
図16は実施例11の光フィルタ1の断面図であり、光フィルタ1は1層のフィルタ層2fからなり、実施例2の光フィルタ1に用いた乳白色のアクリルに、ZnSのような蛍光体の粉末を添加した材料でフィルタ層2fを形成している。
【0049】
(実施例12)
図17(a)は実施例12の光フィルタ1の断面図であり、波長が約380nmまでの光を略100%カットした透明なアクリルで形成されたフィルタ層2gの表面に、波長が約450nm付近のみの光をシャープカットし、420nm以上の可視光領域の光を通過させる光学多層膜8を形成してある。尚、図17(b)は光学多層膜8の分光スペクトルを示している。
【0050】
(実施例13)
図18(a)は実施例13の光フィルタ1の断面図であり、紫外領域の光をカットしない透明なアクリルで形成されたフィルタ層2gの表面に、波長が約420nm以上の可視光領域の光のみを通過させる光学多層膜8を形成してある。尚、図18(b)は光学多層膜8の分光スペクトルを示している。
【0051】
(比較例1〜4)
比較例1は透明なアクリルで形成され、波長が555nmの光の透過率が実施例1と同様である。比較例2は乳白色のアクリルで形成され、波長が555nmの光の透過率が実施例2と同様である。比較例3は透明なポリカーボネートで形成され、波長が555nmの光の透過率が実施例3と同様である。比較例4は一般的な透明なソーダガラスからなる。
【0052】
図19(a)は実験に用いた照明器具Aを示し、ポール10の上端に松下電器産業製の13W型コンパクト型蛍光ランプのようなランプ11を収納する箱状のランプ収納部12が設けられており、ランプ収納部12の四方の側面に形成された窓孔に実施例1〜13及び比較例1〜4の光フィルタ1をそれぞれ取り付けて誘虫性を評価する実験を行った。実験では10m四方の部屋の中に図19(a)の照明器具Aを設置してランプ11を点灯させるとともに、3種類の虫(ハエ、コナガ、ガ)を各々200匹ずつ離して、1時間後に光フィルタ1の下側に取り付けられた粘着シート9に捕獲された虫の数で評価する。尚、粘着シート9の大きさは□50〜300mmで、全ての実施例及び比較例で同じ大きさのものを使用した。以上のような条件で実験を行った結果と色調の評価を表1に示す。
【0053】
【表1】

Figure 0004023329
【0054】
表中のカット率及び透過率は分光光度計による測定結果であり、カット率は次式で表される。
【0055】
(カット率)=100−100×Q/(Y1×(395−300))
尚、Y1は図20に示すように透過率の曲線がフラットになる部分での値であり、Qは波長が300〜395nmの範囲で透過率を積分した値を簡略的に求めた値であり、図中に斜線で示す三角形の面積である。
【0056】
また、評価項目▲1▼は誘虫性の評価であり、比較例1の虫の総補虫数を100とした時の実施例1〜13及び比較例2〜4の総補虫数の相対値を示している。評価項目▲2▼は消灯時における光フィルタ1の黄色味の目視による評価、評価項目▲3▼は点灯時における光フィルタ1及び光色の黄色味の目視による評価であり、それぞれ◎(殆どわからない)、○(よく見ないとわからない)、×(一目見れば分かる)の三段階で評価している。
【0057】
表1の評価結果より実施例1〜13では比較例1に比べて捕虫した虫の数が約6割以下に低下しており、誘虫性を低減しつつ、消灯時及び点灯時の照明器具の見掛けをよくできた。
【0058】
また、実施例1及び比較例1、4の光フィルタ1を用いて、耐候変色試験を実施した。図21は試験に用いた照明器具Aを示し、照射面側の光フィルタ1の前方15cmのところに黄色染料を塗布した塗装紙15を配置し、松下電器産業製の400Wの水銀灯よりなるランプ11を点灯させた状態で1ヶ月後及び6ヶ月後の塗装紙15の変色度合いを目視で確認する試験(耐候変色試験1)を実施した。また、照射面側の光フィルタ1を太陽光と赤色染料を塗布した塗装紙の間に配置し、6ヶ月後及び12ヶ月後の塗装紙の変色度合いを目視で評価する試験(耐候変色試験2)も実施した。表2は両試験の試験結果を示しており、変色度合いを◎(殆ど変色無し)、○(若干変色あり)、×(変色が一目で分かる)の三段階で評価している。
【0059】
【表2】
Figure 0004023329
【0060】
表2の試験結果より、実施例1では比較例1,4に比べて物体の変退色を防止する効果のあることが判明し、人の皮膚に太陽光や照明の光が与えるダメージを低減する効果が得られる。
【0061】
【発明の効果】
上述のように、請求項1の発明は、照明器具に用いられ光源の光から虫を誘引しやすい波長の光を取り除く光フィルタであって、波長が約300nmから約395nmまでの光を略100%カットし、波長が約405nmの光の透過率が約50%以下とし、波長が約450nm以上の光の平均透過率が約50%以上となるようにカット率及び透過率が調整された透光性材料からなることを特徴とし、紫外領域の光を低減して虫を引き寄せにくくするととともに、波長が約405nmの光の透過率を約50%以下とし、約450nm以上の光の透過率を約50%以上としているので、可視領域の短波長側まで光をカットする場合に比べて光が黄色味を帯びるのを低減できるという効果がある。
【0062】
請求項2の発明は、請求項1の発明において、透光性材料の単層又は複数層の積層体の何れかからなることを特徴とし、請求項1の発明と同様の効果を有する。
【0066】
請求項の発明は、請求項1の発明において、少なくとも人から視認可能な側の表面に、透光性材料よりも屈折率の高い層を積層したことを特徴とし、透光性材料よりも屈折率の高い層(高屈折率層)を人から視認可能な側の表面に積層しているので、光フィルタを照明器具の照射方向に配置した場合には、消灯時に照明器具を見たときに、高屈折率層が無い場合に比べて表面反射が大きくなるため、光フィルタの黄色味を識別できなくなり、光フィルタの見掛けを良くできるという効果がある。
【0069】
請求項の発明は、請求項1の発明において、透光性材料は、波長が約410nm以下の光で励起し、青色領域の光に蛍光発色のピークを有するフォトルミネッセンス材料を添加した乳白材料又は拡散材料の何れかからなることを特徴とし、フォトルミネッセンス材料は波長が約410nm以下の紫外領域の光で励起されて青色領域の光で発光するので、光フィルタの色調を損なうことなく、紫外領域の光を低減して虫を引き寄せにくくできるという効果がある。
【0070】
請求項の発明は、請求項1乃至の何れか1つに記載の光フィルタを光源の照射方向に配置したことを特徴とし、紫外領域の光を低減して虫を引き寄せにくくするととともに、光が黄色味を帯びるのを低減した照明器具を実現できる。
【図面の簡単な説明】
【図1】(a)〜(c)は実施形態1の光フィルタを用いる照明器具の外観図である。
【図2】同上の光フィルタの断面図である。
【図3】(a)(b)は同上の光フィルタの分光分布の説明図である。
【図4】実施形態2の光フィルタの断面図である。
【図5】実施形態3の光フィルタの断面図である。
【図6】実施形態4の光フィルタの断面図である。
【図7】実施形態5の光フィルタの断面図である。
【図8】実施例1の光フィルタの断面図である。
【図9】実施例2の光フィルタの断面図である。
【図10】実施例3の光フィルタの断面図である。
【図11】実施例6の光フィルタの断面図である。
【図12】実施例7の光フィルタの断面図である。
【図13】実施例8の光フィルタの断面図である。
【図14】実施例9の光フィルタの断面図である。
【図15】実施例10の光フィルタの断面図である。
【図16】実施例11の光フィルタの断面図である。
【図17】実施例12を示し、(a)は光フィルタの断面図、(b)は光学多層膜の分光分布の説明図である。
【図18】実施例13を示し、(a)は光フィルタの断面図、(b)は光学多層膜の分光分布の説明図である。
【図19】実施例1〜13及び比較例1〜4の評価試験に用いる照明器具を示し、(a)は外観図、(b)は要部拡大図である。
【図20】カット率の計算式に用いる数値の説明図である。
【図21】実施例1及び比較例1、4の耐候変色試験に用いる照明器具の外観図である。
【符号の説明】
A,B,C 照明器具
1 光フィルタ
11,11’,11” ランプ
13 グローブ
14 前面パネル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical filter and a lighting fixture using the same.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been provided a lighting fixture that makes it difficult for insects to approach by cutting light of a specific wavelength with an optical filter.
[0003]
In general, the spectral distribution of light that attracts insects such as flying insects is said to have a peak in ultraviolet light, so lighting equipment that cuts light (ultraviolet light) up to a wavelength of about 380 nm and visible from the ultraviolet region. 2. Description of the Related Art Conventionally, a lighting fixture that cuts light of a wavelength up to a short wavelength side (about 450 nm) and a lighting fixture that cuts light of a wavelength up to a short wavelength side (about 600 nm) have been provided (for example, Patent Documents). 1).
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-161253 (pages 3 to 5 and FIG. 1)
[0005]
[Problems to be solved by the invention]
Among the lighting fixtures described above, in a lighting fixture that cuts light (ultraviolet light) up to a wavelength of about 380 nm, the insects are less likely to approach by reducing the ultraviolet light. Therefore, it was insufficient as an effect of reducing the insecticidal property.
[0006]
In addition, a luminaire that cuts light with a wavelength from the ultraviolet region to the short wavelength side (about 450 nm) in the visible region makes insects less likely to approach than a luminaire that cuts out ultraviolet light, but the light is clearly yellow. Since it can be seen, there has been a problem that when it is used for general lighting, the appearance of the lighting fixture at the time of lighting becomes worse.
[0007]
In addition, with a lighting fixture that cuts light on the shorter wavelength side (about 600 nm), insects can be made more difficult to approach, but since the light becomes red light, it is very difficult when a person works under that illumination. There was a problem that it felt uncomfortable and the work ability was reduced.
[0008]
The present invention has been made in view of the above problems, and an object of the present invention is to provide an optical filter that makes it difficult for insects to approach without impairing color tone and translucency, and a lighting apparatus using the same. It is in.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, there is provided an optical filter for removing light having a wavelength that is likely to attract insects from light of a light source used in a lighting fixture, wherein the light has a wavelength of about 300 nm to about 395 nm. The cut rate and transmittance are adjusted so that the average transmittance of light having a wavelength of about 450 nm or more is about 50% or more, and the transmittance of light having a wavelength of about 405 nm is about 50% or less. It is characterized by being made of a translucent material.
[0010]
The invention of claim 2 is characterized in that in the invention of claim 1, the light-transmitting material is formed of either a single layer or a multilayered structure of a plurality of layers.
[0014]
The invention of claim 3 is characterized in that, in the invention of claim 1, a layer having a refractive index higher than that of the light-transmitting material is laminated at least on a surface visible to a human.
[0017]
In the invention of claim 4, in the invention of claim 1, the light-transmitting material is a milky white material that is excited by light having a wavelength of about 410 nm or less, and to which a photoluminescent material having a fluorescence coloring peak is added to light in a blue region. It consists of either a material or a diffusion material.
[0018]
The invention according to claim 5 is characterized in that the optical filter according to any one of claims 1 to 4 is arranged in the irradiation direction of the light source.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings.
[0020]
(Embodiment 1)
FIG. 1 shows an external view of a luminaire A that uses the optical filter 1 of the present embodiment. A box-shaped lamp storage portion 12 that stores a lamp 11 is provided at the upper end of a pole 10. A rectangular plate-shaped optical filter 1 is attached to a window hole formed on the side surface of the glass plate.
[0021]
FIG. 2 shows a cross-sectional view of the optical filter 1, which is formed in a plate shape from a light-transmitting material having a spectral spectrum as shown in FIG. This optical filter 1 is used in a lighting fixture to remove light having a wavelength that easily attracts insects from the light of a lamp 11 (light source), and includes acrylic (PMMA) resin and polycarbonate (PC). Resin, polystyrene (PS) resin, polyethylene (PE) resin, polyethylene terephthalate (PET) resin, translucent synthetic resin such as PS / PE alloy composed of PS resin and PE resin, UV absorber, dye, What added the pigment is used. By adding an ultraviolet absorber, a dye or a pigment, the light having a wavelength of about 300 nm to about 395 nm is cut by about 100%, and the transmittance of light having a wavelength of about 405 nm is about 50% or less. The cut rate and transmittance are adjusted so that the average transmittance of light of about 450 nm or more is about 50% or more.
[0022]
Since the optical filter 1 in which the cut rate and transmittance of light of each wavelength are adjusted in this manner is arranged in the irradiation direction of the lamp 11, light having a wavelength of about 300 to about 395 nm from the light of the lamp 11 is approximately 100. % Cut and the transmittance of light having a wavelength of about 405 nm to be about 50% or less, the light in the ultraviolet region can be reduced and the number of insects attracted by the light of the lighting fixture A can be suppressed. . Further, since the transmittance of light having a wavelength of about 405 nm is set to about 50% or less and the average transmittance of light having a wavelength of about 450 nm or more is set to about 50% or more, the light is cut to the short wavelength side in the visible region. In addition, the irradiation light is not yellowish, and the appearance of the lighting fixture A can be improved. In order to further reduce the insects attracted by the light from the lamp 11, it is desirable to set the transmittance of light having a wavelength of about 405 nm to about 10% or less.
[0023]
Further, in order to reduce the yellowness of the color tone while preventing the insects from being attracted, as shown in FIG. 3 (b), the horizontal axis indicates the wavelength, the vertical axis indicates the transmittance, and the wavelength of 1 nm is obtained. When a transmittance graph of the translucent material is created so that the scale a is equal to the scale b of 1% of the transmittance, the tangent L and the horizontal axis at the inflection point of the transmittance change curve intersect. It is desirable that the tangent of the angle θ to be 2 or more (tan θ ≧ 2). That is, by increasing the slope of the tangent line L at the inflection point, the rise of the transmittance can be increased, and the transmittance of light having a wavelength of about 450 nm or more can be made about 50% or more. Can be reduced. If the tangent of the angle θ is 3 or more, the rise in transmittance can be further increased, and the yellowness of the color tone can be further reduced.
[0024]
In the present embodiment, the lighting fixture A using the optical filter 1 has been described as an exterior lighting fixture A. However, the ceiling-type lighting fixture B as shown in FIG. 1B includes an annular fluorescent lamp. By forming the dome-shaped globe 13 covering the lamp 11 'with a light-transmitting synthetic resin to which an ultraviolet absorber, a dye or a pigment is added, the cut rate and transmittance of light of each wavelength are adjusted. The optical filter may be configured with Further, in the base light type lighting fixture C embedded in the ceiling surface as shown in FIG. 1C, the front panel 14 covering the front surface (lower surface) of the lamp 11 ″ made of a straight tube fluorescent lamp. Is formed of a translucent synthetic resin to which an ultraviolet absorber, a dye, or a pigment is added to adjust the cut rate and transmittance of light of each wavelength, and the front panel 14 may constitute an optical filter. As described above, also in the ceiling-type or base-light type lighting fixtures B and C, the above-described lighting fixture A can be obtained by disposing the light filter including the globe 13 or the front panel 14 in the irradiation direction of the lamps 11 ′ and 11 ″. Similarly to the above, it is possible to reduce the number of insects (such as flying insects) attracted by light without impairing the color tone.
[0025]
In this embodiment, the optical filter 1 absorbs ultraviolet light into any of PMMA resin, PC resin, PS resin, PE resin, PET resin, and a transparent synthetic resin such as PS / PE alloy made of PS resin and PE resin. Borosilicate or phosphoric acid, etc., whose cut rate and transmittance at each wavelength are adjusted as described above by adding halides, etc. You may form from a property glass. Further, the material of the optical filter 1 is not limited to the above, and any material may be used as long as the light cut rate and transmittance at each wavelength can be adjusted as described above. . Further, the optical filter 1 may have a single layer structure made of the above material, or a laminated body in which a plurality of layers made of the above material are laminated.
[0026]
(Embodiment 2)
A second embodiment of the present invention will be described with reference to FIG. In the present embodiment, the filter layer 2 is formed from the translucent material described in the first embodiment, and the YI value is smaller than the material of the filter layer 2 on the surface of the filter layer 2 that is at least visible to the human side. The optical filter 1 is formed by laminating the layers 3. Here, the YI value is a yellowish index defined in JIS K7103. When X, Y, and Z are tristimulus values of the light source color, the YI value is obtained by the following equation.
[0027]
YI = 100 × (1.28X−1.06Z) / Y
In addition, since the lighting fixtures A to C using the optical filter 1 are the same as those in the first embodiment, the description thereof is omitted.
[0028]
In the present embodiment, the layer 3 having a YI value smaller than that of the filter layer 2 is formed on at least the surface of the filter layer 2 that can be seen by humans. The taste can be reduced and the appearance of the product can be improved. In order to reduce the yellowishness of the optical filter 1, it is desirable to make the YI value as small as possible, and it is preferable to make the YI value 3 or less. Moreover, when the color of the layer 3 is milky white, it is effective in reducing yellowishness. In addition, as a method of laminating the layer 3 having a small YI value on the surface of the filter layer 2, the layer 3 may be formed at the same time when the filter layer 2 is formed, or the film layer is formed after the filter layer 2 is formed. The layer 3 may be affixed, and the lamination method of the layer 3 is not limited.
[0029]
(Embodiment 3)
Embodiment 3 of the present invention will be described with reference to FIG. In the present embodiment, the filter layer 2 is formed from the translucent material described in the first embodiment, and the refractive index is higher than the material of the filter layer 2 on at least the surface of the filter layer 2 that is visible to humans. The optical filter 1 is formed by laminating a high refractive index layer 4 having translucency. In addition, since the lighting fixtures A to C using the optical filter 1 are the same as those in the first embodiment, the description thereof is omitted.
[0030]
As described above, in the present embodiment, the high refractive index layer 4 having a refractive index higher than that of the filter layer 2 is formed on at least the surface of the filter layer 2 that can be seen by humans. Since the surface reflection becomes larger than when the high refractive index layer 4 is not provided, the yellowness of the material itself of the filter layer 2 and the high refractive index layer 4 cannot be identified, and the appearance of the product can be improved. When the filter layer 2 is transparent, it is difficult to improve the color tone without adding an additive to the material of the filter layer 2, but by forming the high refractive index layer 4, Since the yellowness of the material of the refractive index layer 4 cannot be identified, it is possible to improve the appearance of the lighting apparatus when the light is turned off.
[0031]
(Embodiment 4)
A fourth embodiment of the present invention will be described with reference to FIG. In the present embodiment, the filter layer 2 is formed from the translucent material described in the first embodiment, and a layer 5 having the same color as the color of the filter layer 2 at the time of lighting is laminated on the surface of the filter layer 2. In addition, since the lighting fixtures A to C using the optical filter 1 are the same as those in the first embodiment, the description thereof is omitted.
[0032]
As a material of the layer 5, it is essential that the color when turned off is milky white and becomes transparent when turned on, and it is essential that the color tone is less yellowish. In this embodiment, the material is milky white at room temperature. It uses wax that becomes transparent when melted with heat. Here, when milky white wax is used as the material of the layer 5, if the material of the filter layer 2 is transparent, the portion of the filter layer 2 that needs to transmit light is above the melting temperature of the wax when the lamp is lit. It is necessary to configure the lighting fixture A so as to be. Further, by melting the wax at the time of lighting, it is possible to prevent the lamp light from being blocked by the layer 5 and to prevent the luminous efficiency of the lighting fixture from being reduced. The layer 5 is sealed by an appropriate means to prevent the wax from leaking when the wax is melted.
[0033]
Thus, since the layer 5 having the same color as the color (white) of the filter layer 2 at the time of lighting is formed on the surface of the filter layer 2, it is possible to prevent the color of the optical filter 1 from appearing yellow when the light is turned off. The appearance of the instrument A can be improved.
[0034]
In this embodiment, wax is used as the material of the layer 5, but the purpose is not to limit the layer 5 to wax, and the surface of the filter layer 2 has the same color as the color of the filter layer 2 at the time of lighting. Thus, a liquid crystal layer that becomes transparent when energized may be formed. Here, when the lamp is turned on, the liquid crystal is energized to make the liquid crystal layer transparent so that the light from the lamp can be prevented from being blocked, and the luminous efficiency can be prevented from being reduced. By stopping the liquid crystal and making the color of the liquid crystal the same as the color of the filter layer 2 at the time of lighting, it is possible to prevent the optical filter 1 from appearing yellowish when it is turned off, and to improve the appearance of the lighting fixture.
[0035]
(Embodiment 5)
Embodiment 5 of the present invention will be described with reference to FIG. In this embodiment, as the material of the filter layer 2 ′, either a milky white material or a diffusing material added with a photoluminescence material that is excited by light having a wavelength of 410 nm or less and has a fluorescent color peak in a blue region is used. . In addition, since the lighting fixtures A to C using the optical filter 1 are the same as those in the first embodiment, the description thereof is omitted.
[0036]
Here, in order to improve the color tone of the optical filter 1 efficiently (in order to make it whiter), it is desirable to add a fluorescent whitening agent or the like to the material of the filter layer 2 ′. If importance is attached to the properties, it is desirable to add phosphor or fluorescent glass powder. Further, in order to increase the luminous efficiency of the photoluminescent material, it is desirable to use a light source that contains more short-wavelength light among the lamps that are generally used.
[0037]
Below, the result of having evaluated the low insect attractivity and color tone about the Example and comparative example of this invention is demonstrated.
[0038]
Example 1
FIG. 8 shows the optical filter 1 of Example 1. The optical filter 1 is composed of a single filter layer 2a, and a wavelength of about 300 nm is obtained by adding an ultraviolet absorber, a dye, or a pigment as the material of the filter layer 2a. To about 395 nm, the light with a wavelength of about 405 nm is cut about 100%, and the average transmittance of light with a wavelength of about 450 nm or more is about 90% or more. Transparent acrylic with adjusted transmittance is used, and tan θ = 3.
[0039]
(Example 2)
FIG. 9 is a cross-sectional view of the optical filter 1 according to the second embodiment. The optical filter 1 includes a single filter layer 2b. By adding an ultraviolet absorber, a dye, or a pigment as the material of the filter layer 2b, Cuts approximately 100% of light from about 300 nm to about 395 nm, cuts about 100% of light having a wavelength of about 405 nm, so that the average transmittance of light having a wavelength of about 450 nm or more is about 50% or more. Milky-white acrylic whose cut rate and transmittance are adjusted is used, and tan θ = 2.4.
[0040]
(Example 3)
FIG. 10 is a cross-sectional view of the optical filter 1 of Example 3. The optical filter 1 is composed of a single filter layer 2c, and the wavelength of the filter layer 2c can be increased by adding an ultraviolet absorber, a dye, or a pigment. Cuts approximately 100% of light from about 300 nm to about 395 nm, the transmittance of light having a wavelength of about 405 nm is about 50% or less, and the average transmittance of light having a wavelength of about 450 nm or more is about 90% or more. Thus, a transparent polycarbonate whose cut rate and transmittance are adjusted is used, and tan θ = 3.
[0041]
(Example 4)
In Example 4, by adding a halide or the like as the material of the optical filter 1, light having a wavelength of about 300 nm to about 395 nm is cut by about 100%, and the transmittance of light having a wavelength of about 405 nm is about A transparent glass whose cut rate and transmittance are adjusted to be 50% or less is used, and tan θ = 3.5.
[0042]
(Example 5)
In Example 5, by adding a halide or the like as the material of the optical filter 1, light having a wavelength of about 300 nm to about 395 nm is cut by about 100%, and light having a wavelength of about 405 nm is cut by about 100%. Thus, transparent glass with the cut rate adjusted is used, and tan θ = 3.5.
[0043]
(Example 6)
FIG. 11 is a cross-sectional view of the optical filter 1 of Example 6. On the surface of the filter layer 2b formed of the same material as that of Example 2, a milky white acrylic layer 3 having a YI value lower than that of the filter layer 2b is provided. Forming.
[0044]
(Example 7)
FIG. 12 is a cross-sectional view of the optical filter 1 of Example 7. The surface of the filter layer 2a formed of the same material as that of Example 1 has a refractive index higher than that of the filter layer 2a and a film thickness of 0.1 μm. A high refractive index layer 4 made of a thin film of alumina (AL 2 O 3 ) is formed.
[0045]
(Example 8)
FIG. 13 is a cross-sectional view of the optical filter 1 of Example 8, a filter layer 2d formed of the same material (transparent glass) as in Example 5, and a plate-like soda glass disposed to face the filter layer 2d. The wax 5 ′ having the same color as that of the filter layer 2d at the time of lighting is sandwiched between the filter layer 2d and the wax 5 ′ is sealed with the sealing materials 7 and 7 that join between the filter layer 2d and the soda glass 6. . The wax 5 ′ is melted and transparent by the heat generated by the lamp when turned on, and solidified when turned off to change to the same color as the filter layer 2 d when turned on.
[0046]
Example 9
FIG. 14 is a cross-sectional view of the optical filter 1 of the ninth embodiment. On the surface of the filter layer 2d formed of the same material as that of the fifth embodiment, a liquid crystal 5 ″ having the same color as that of the filter layer 2 at the time of lighting is formed. The driving unit of the liquid crystal 5 ″ is provided in the lighting fixture. When the light is turned on, the liquid crystal 5 ″ is energized by the driving unit to change the color of the liquid crystal 5 ″ to transparent, and to the liquid crystal 5 ″ when the light is turned off. Is turned off and changes to the same color as the color of the filter layer 2 at the time of lighting.
[0047]
(Example 10)
FIG. 15 is a cross-sectional view of the optical filter 1 according to the tenth embodiment. The optical filter 1 includes a single filter layer 2e. For example, UVITEX (R) OB is applied to the milky white acrylic used in the optical filter 1 according to the second embodiment. The filter layer 2e is formed of a material added with a fluorescent whitening material such as (trade name).
[0048]
(Example 11)
FIG. 16 is a cross-sectional view of the optical filter 1 according to the eleventh embodiment. The optical filter 1 includes a single filter layer 2f, and a phosphor such as ZnS is added to the milky white acrylic used in the optical filter 1 according to the second embodiment. The filter layer 2f is formed of a material to which the above powder is added.
[0049]
(Example 12)
FIG. 17A is a cross-sectional view of the optical filter 1 of Example 12, and the wavelength is about 450 nm on the surface of the filter layer 2g formed of transparent acrylic obtained by cutting substantially 100% of light having a wavelength up to about 380 nm. The optical multilayer film 8 that sharply cuts only the light in the vicinity and passes light in the visible light region of 420 nm or more is formed. FIG. 17B shows a spectral spectrum of the optical multilayer film 8.
[0050]
(Example 13)
FIG. 18A is a cross-sectional view of the optical filter 1 of Example 13, and the surface of the filter layer 2g formed of transparent acrylic that does not cut light in the ultraviolet region has a wavelength in the visible light region of about 420 nm or more. An optical multilayer film 8 that allows only light to pass through is formed. FIG. 18B shows the spectral spectrum of the optical multilayer film 8.
[0051]
(Comparative Examples 1-4)
Comparative Example 1 is formed of transparent acrylic and has the same light transmittance as that of Example 1 with a wavelength of 555 nm. Comparative Example 2 is made of milky white acrylic and has the same light transmittance as that of Example 2 with a wavelength of 555 nm. Comparative Example 3 is formed of a transparent polycarbonate and has the same light transmittance as that of Example 3 at a wavelength of 555 nm. Comparative Example 4 is made of a general transparent soda glass.
[0052]
FIG. 19A shows the luminaire A used in the experiment, and a box-shaped lamp storage portion 12 for storing a lamp 11 such as a 13W compact fluorescent lamp manufactured by Matsushita Electric Industrial is provided at the upper end of the pole 10. An experiment was conducted to evaluate the insect attracting property by attaching the optical filters 1 of Examples 1 to 13 and Comparative Examples 1 to 4 to the window holes formed on the four side surfaces of the lamp housing portion 12. In the experiment, the lighting fixture A shown in FIG. 19 (a) was installed in a 10m square room, the lamp 11 was turned on, and 200 kinds of three kinds of insects (fly, moth, moth) were separated from each other for one hour. Later, the number of insects captured by the adhesive sheet 9 attached to the lower side of the optical filter 1 is evaluated. In addition, the magnitude | size of the adhesive sheet 9 is (square) 50-300 mm, and the thing of the same magnitude | size was used in all the Examples and the comparative examples. Table 1 shows the result of the experiment conducted under the above conditions and the evaluation of the color tone.
[0053]
[Table 1]
Figure 0004023329
[0054]
The cut rate and transmittance in the table are measurement results by a spectrophotometer, and the cut rate is expressed by the following equation.
[0055]
(Cut rate) = 100-100 × Q / (Y1 × (395-300))
Y1 is a value at a portion where the transmittance curve is flat as shown in FIG. 20, and Q is a value obtained by simply obtaining a value obtained by integrating the transmittance in a wavelength range of 300 to 395 nm. , The area of the triangle indicated by diagonal lines in the figure.
[0056]
Evaluation item {circle around (1)} is an evaluation of the attracting property, and the relative value of the total number of complements of Examples 1 to 13 and Comparative Examples 2 to 4 when the total number of complements of the insect of Comparative Example 1 is 100. Is shown. Evaluation item (2) is the visual evaluation of the yellow color of the optical filter 1 when the light is turned off, and evaluation item (3) is the visual evaluation of the optical filter 1 and the yellow color of the light color when it is turned on. ), ○ (I do not know if I do not look closely), × (I understand at a glance).
[0057]
From the evaluation results in Table 1, in Examples 1 to 13, the number of insects captured was reduced to about 60% or less compared to Comparative Example 1, and the lighting fixtures were turned off and turned on while reducing the insect attractivity. The appearance was good.
[0058]
In addition, a weather resistance discoloration test was performed using the optical filter 1 of Example 1 and Comparative Examples 1 and 4. FIG. 21 shows the luminaire A used in the test, in which a coated paper 15 coated with a yellow dye is disposed 15 cm ahead of the optical filter 1 on the irradiation surface side, and a lamp 11 made of a 400 W mercury lamp manufactured by Matsushita Electric Industrial Co., Ltd. A test (weather resistance discoloration test 1) for visually confirming the degree of discoloration of the coated paper 15 after 1 month and 6 months in a state where was turned on. Further, a test (weather resistance discoloration test 2) in which the optical filter 1 on the irradiated surface side is disposed between the coated paper coated with sunlight and red dye and the degree of discoloration of the coated paper after 6 months and 12 months is visually evaluated. ). Table 2 shows the test results of both tests, and the degree of discoloration is evaluated in three stages: ◎ (almost no discoloration), ○ (slight discoloration), × (discoloration can be seen at a glance).
[0059]
[Table 2]
Figure 0004023329
[0060]
From the test results in Table 2, it was found that Example 1 has an effect of preventing discoloration of an object compared to Comparative Examples 1 and 4, and reduces damage caused by sunlight or illumination light on human skin. An effect is obtained.
[0061]
【The invention's effect】
As described above, the invention of claim 1 is an optical filter that removes light having a wavelength that is likely to attract insects from the light of a light source and is used in a lighting fixture, and has a wavelength of about 300 nm to about 395 nm. The transmittance is adjusted so that the transmittance of light having a wavelength of about 405 nm is about 50% or less and the average transmittance of light having a wavelength of about 450 nm or more is about 50% or more. It is made of a light-sensitive material, making it difficult to attract insects by reducing the light in the ultraviolet region, and having a light transmittance of about 405 nm and a light transmittance of about 450 nm or more. Since it is about 50% or more, there is an effect that it is possible to reduce the yellowishness of the light compared to the case where the light is cut to the short wavelength side in the visible region.
[0062]
The invention of claim 2 is the invention of claim 1, characterized in that it is composed of either a single layer or a multi-layer laminate of translucent materials, and has the same effect as the invention of claim 1.
[0066]
The invention of claim 3 is characterized in that, in the invention of claim 1, a layer having a refractive index higher than that of the light-transmitting material is laminated on at least a surface visible to a person, Since a layer with a high refractive index (high refractive index layer) is laminated on the surface that can be seen by humans, when the light filter is placed in the illumination direction of the lighting fixture, when the lighting fixture is viewed when the light is turned off In addition, since the surface reflection is larger than when there is no high refractive index layer, the yellowness of the optical filter cannot be identified, and the appearance of the optical filter can be improved.
[0069]
According to a fourth aspect of the present invention, in the first aspect of the invention, the translucent material is a milky white material obtained by adding a photoluminescent material having a fluorescent color peak to light in a blue region when excited by light having a wavelength of about 410 nm or less. Or a diffusing material, and the photoluminescence material is excited by light in the ultraviolet region having a wavelength of about 410 nm or less and emits light in the blue region. This has the effect of reducing the light in the area and making it difficult to attract insects.
[0070]
Invention of Claim 5 has arrange | positioned the optical filter as described in any one of Claim 1 thru | or 4 in the irradiation direction of a light source, and makes it difficult to attract an insect by reducing the light of an ultraviolet region, It is possible to realize a lighting fixture that reduces the yellowing of light.
[Brief description of the drawings]
FIGS. 1A to 1C are external views of a luminaire using an optical filter according to a first embodiment.
FIG. 2 is a cross-sectional view of the above optical filter.
FIGS. 3A and 3B are explanatory views of the spectral distribution of the optical filter of the above.
FIG. 4 is a cross-sectional view of an optical filter according to a second embodiment.
FIG. 5 is a cross-sectional view of an optical filter according to a third embodiment.
FIG. 6 is a cross-sectional view of an optical filter according to a fourth embodiment.
FIG. 7 is a cross-sectional view of an optical filter according to a fifth embodiment.
8 is a cross-sectional view of the optical filter of Example 1. FIG.
9 is a cross-sectional view of an optical filter of Example 2. FIG.
10 is a cross-sectional view of an optical filter of Example 3. FIG.
11 is a cross-sectional view of an optical filter of Example 6. FIG.
12 is a cross-sectional view of an optical filter of Example 7. FIG.
13 is a cross-sectional view of an optical filter of Example 8. FIG.
14 is a sectional view of an optical filter according to Example 9. FIG.
15 is a cross-sectional view of an optical filter according to Example 10. FIG.
16 is a sectional view of an optical filter according to Example 11. FIG.
FIGS. 17A and 17B show Example 12, in which FIG. 17A is a cross-sectional view of an optical filter, and FIG. 17B is an explanatory diagram of a spectral distribution of an optical multilayer film;
18A and 18B are diagrams illustrating Example 13, in which FIG. 18A is a cross-sectional view of an optical filter, and FIG. 18B is an explanatory diagram of a spectral distribution of an optical multilayer film.
FIG. 19 shows lighting fixtures used in the evaluation tests of Examples 1 to 13 and Comparative Examples 1 to 4, wherein (a) is an external view and (b) is an enlarged view of a main part.
FIG. 20 is an explanatory diagram of numerical values used in a calculation formula for a cut rate.
21 is an external view of a lighting fixture used in a weather resistance change test of Example 1 and Comparative Examples 1 and 4. FIG.
[Explanation of symbols]
A, B, C Lighting fixture 1 Optical filter 11, 11 ', 11 "Lamp 13 Globe 14 Front panel

Claims (5)

照明器具に用いられ光源の光から虫を誘引しやすい波長の光を取り除く光フィルタであって、波長が約300nmから約395nmまでの光を略100%カットし、波長が約405nmの光の透過率が約50%以下となり、波長が約450nm以上の光の平均透過率が約50%以上となるようにカット率及び透過率が調整された透光性材料からなることを特徴とする光フィルタ。  An optical filter that removes light with a wavelength that is likely to attract insects from the light of a light source, which is used in a lighting fixture, and cuts light with a wavelength of about 300 nm to about 395 nm by about 100% and transmits light with a wavelength of about 405 nm. An optical filter comprising a translucent material whose cut rate and transmittance are adjusted so that the rate is about 50% or less and the average transmittance of light having a wavelength of about 450 nm or more is about 50% or more . 前記透光性材料の単層又は複数層の積層体の何れかからなることを特徴とする請求項1記載の光フィルタ。  The optical filter according to claim 1, wherein the optical filter is formed of either a single layer or a multilayered structure of the translucent material. 少なくとも人から視認可能な側の表面に、前記透光性材料よりも屈折率の高い層を積層したことを特徴とする請求項1記載の光フィルタ。 2. The optical filter according to claim 1 , wherein a layer having a refractive index higher than that of the translucent material is laminated on at least a surface visible to a human side . 前記透光性材料は、波長が約410nm以下の光で励起し、青色領域の光に蛍光発色のピークを有するフォトルミネッセンス材料を添加した乳白色の材料又は拡散材料の何れかからなることを特徴とする請求項1記載の光フィルタ。 The translucent material is made of either a milky white material or a diffusing material, which is excited by light having a wavelength of about 410 nm or less and added with a photoluminescent material having a fluorescence coloring peak in light in a blue region. The optical filter according to claim 1. 請求項1乃至4の何れか1つに記載の光フィルタを光源の照射方向に配置したことを特徴とする照明器具。 An illumination fixture comprising the optical filter according to any one of claims 1 to 4 arranged in a light source irradiation direction .
JP2003035309A 2003-02-13 2003-02-13 Optical filter and lighting apparatus using the same Expired - Lifetime JP4023329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003035309A JP4023329B2 (en) 2003-02-13 2003-02-13 Optical filter and lighting apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003035309A JP4023329B2 (en) 2003-02-13 2003-02-13 Optical filter and lighting apparatus using the same

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2007019897A Division JP4023519B2 (en) 2007-01-30 2007-01-30 Optical filter and lighting apparatus using the same
JP2007019898A Division JP4023520B2 (en) 2007-01-30 2007-01-30 Optical filter and lighting apparatus using the same
JP2007019899A Division JP4023521B2 (en) 2007-01-30 2007-01-30 Optical filter and lighting apparatus using the same

Publications (3)

Publication Number Publication Date
JP2004247156A JP2004247156A (en) 2004-09-02
JP2004247156A5 JP2004247156A5 (en) 2007-03-15
JP4023329B2 true JP4023329B2 (en) 2007-12-19

Family

ID=33020766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003035309A Expired - Lifetime JP4023329B2 (en) 2003-02-13 2003-02-13 Optical filter and lighting apparatus using the same

Country Status (1)

Country Link
JP (1) JP4023329B2 (en)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002007587A2 (en) 2000-07-14 2002-01-31 Xillix Technologies Corporation Compact fluorescent endoscopy video system
US20060241496A1 (en) * 2002-01-15 2006-10-26 Xillix Technologies Corp. Filter for use with imaging endoscopes
US20090303317A1 (en) 2006-02-07 2009-12-10 Novadaq Technologies Inc. Near infrared imaging
US8113651B2 (en) 2006-03-20 2012-02-14 High Performance Optics, Inc. High performance corneal inlay
US8882267B2 (en) 2006-03-20 2014-11-11 High Performance Optics, Inc. High energy visible light filter systems with yellowness index values
US20120075577A1 (en) 2006-03-20 2012-03-29 Ishak Andrew W High performance selective light wavelength filtering providing improved contrast sensitivity
US9377569B2 (en) 2006-03-20 2016-06-28 High Performance Optics, Inc. Photochromic ophthalmic systems that selectively filter specific blue light wavelengths
JP2007250500A (en) * 2006-03-20 2007-09-27 Tsugunori Uchiyama Electric bulbs protection cover
JP2007294204A (en) * 2006-04-24 2007-11-08 Matsushita Electric Works Ltd Light filter for lighting fixture and lighting fixture using it
JP4552885B2 (en) * 2006-04-25 2010-09-29 パナソニック電工株式会社 Optical filter and lighting fixture using the same
EP2051603B1 (en) 2006-07-28 2019-09-11 Novadaq Technologies ULC System and method for deposition and removal of an optical element on an endoscope objective
JP5475458B2 (en) * 2006-11-28 2014-04-16 ハイ・パフォーマンス・オプティクス・インコーポレーテッド High-performance selective optical wavelength filtering provides improved contrast sensitivity
US8498695B2 (en) 2006-12-22 2013-07-30 Novadaq Technologies Inc. Imaging system with a single color image sensor for simultaneous fluorescence and color video endoscopy
MX2010010292A (en) 2008-03-18 2011-01-25 Novadaq Technologies Inc Imaging system for combined full-color reflectance and near-infrared imaging.
JP2010118294A (en) * 2008-11-14 2010-05-27 Panasonic Electric Works Co Ltd Noxious insect evasion illumination apparatus
JP5460512B2 (en) * 2010-07-27 2014-04-02 パナソニック株式会社 Insect lighting system
JP5789746B2 (en) * 2010-08-25 2015-10-07 パナソニックIpマネジメント株式会社 LIGHT INSPECTIVE SUBSTRATE
BR112013022997A2 (en) 2011-03-08 2018-07-03 Novadaq Technologies Inc. full spectrum led illuminator.
WO2014148527A1 (en) 2013-03-19 2014-09-25 国立大学法人 浜松医科大学 Light emitting device
US9798163B2 (en) 2013-05-05 2017-10-24 High Performance Optics, Inc. Selective wavelength filtering with reduced overall light transmission
US9683102B2 (en) 2014-05-05 2017-06-20 Frontier Scientific, Inc. Photo-stable and thermally-stable dye compounds for selective blue light filtered optic
JP2017027916A (en) * 2015-07-28 2017-02-02 パナソニックIpマネジメント株式会社 Lighting fixture
WO2017079844A1 (en) 2015-11-13 2017-05-18 Novadaq Technologies Inc. Systems and methods for illumination and imaging of a target
EP4155716A1 (en) 2016-01-26 2023-03-29 Stryker European Operations Limited Image sensor assembly
US10293122B2 (en) 2016-03-17 2019-05-21 Novadaq Technologies ULC Endoluminal introducer with contamination avoidance
USD916294S1 (en) 2016-04-28 2021-04-13 Stryker European Operations Limited Illumination and imaging device
CA3027592A1 (en) 2016-06-14 2017-12-21 John Josef Paul FENGLER Methods and systems for adaptive imaging for low light signal enhancement in medical visualization
EP4242743A3 (en) 2017-02-10 2023-10-18 Stryker European Operations Limited Open-field handheld fluorescence imaging systems and methods

Also Published As

Publication number Publication date
JP2004247156A (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP4023329B2 (en) Optical filter and lighting apparatus using the same
TWI463096B (en) Optical elements with internal optical features and methods of fabricating same
JP5342016B2 (en) Large area light panel and screen
TWI497167B (en) Direct-type backlight module and diffuser structure
TWI629338B (en) Phosphor sheet
KR101480423B1 (en) an advertising Panel using in LED
JP5529516B2 (en) LIGHTING DEVICE AND LIGHTING COLOR CHANGE METHOD FOR LIGHTING DEVICE
JP6622187B2 (en) Wavelength conversion member, light guide device, and display device
TWI688730B (en) Planar light-emitting apparatus
KR20160140717A (en) Wavelength conversion sheet, backlight unit, and film for protecting luminescent substance
US20150219830A1 (en) Window structure
JP2013127928A (en) Lighting device
TWI413820B (en) Lighting apparatus and light guide plate
JP4023521B2 (en) Optical filter and lighting apparatus using the same
JP6407259B2 (en) Compound transparent lighting device
KR20140107385A (en) Color shift sign
JPWO2016072311A1 (en) Wavelength conversion member, and light emitting device, light emitting element, light source device, and display device using the same
JP4023519B2 (en) Optical filter and lighting apparatus using the same
JP4023520B2 (en) Optical filter and lighting apparatus using the same
JP3211553U (en) Lighting device
JP3118226B2 (en) Lighting filter
RU2011146673A (en) LUMINESCENT COMPOSITE MATERIAL AND A LIGHT-RADIATING DEVICE ON ITS BASIS
JP2012113960A (en) Lighting system
KR100855732B1 (en) Lighting apparatus of flat panel type
TW201441685A (en) Light guide plate and planar light-emitting apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070130

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070820

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070924

R151 Written notification of patent or utility model registration

Ref document number: 4023329

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

EXPY Cancellation because of completion of term